This study focuses on the paleontological content of the middle Eocene (Bartonian) carbonate–siliciclastic sediments of the Capo Mortola Calcarenite Formation from Olivetta San Michele (Liguria, Italy). Along the succession, there are significant paleoecological changes triggered by the variation in neritic input as a consequence of tectonic and climatic instability. Among microfossils, nummulitids prevail, followed by orthophragmines, smaller benthic, and planktonic foraminifera, whereas mollusks and ichnofossils are the most abundant macrofossils. The sudden changes in the benthic communities due to the progressive increase in fluvial input are recorded throughout the sedimentary succession. An increase in water turbid- ity caused stressful conditions for autotrophic taxa, reducing their size and abundance. In contrast, filter feeders became dominant, suggesting an increase in dissolved and suspended nutrients. Ichnological analysis shows environmental fluctua- tions controlled by the transport of neritic material offshore, thus confirming the general deepening trend of the studied succession. In the upper part of the succession, we recorded an alternation between gravity flows and marly sediments that are interpreted as short-term alternations between low and intense precipitations. The gravity flows yield taxa such as larger benthic foraminifera (LBF), smaller benthic and planktonic foraminifera, mollusks, and corals. In turn, marls display only a few LBF and abundant smaller benthic and planktonic foraminifera. In these intervals, the increase in planktonic foraminif- era also suggests a deepening of the carbonate ramp coinciding with a reduction of light that did not favor the development of LBF. These changes are probably related to the climatic dynamics that occurred in the Bartonian in the western Tethys.

Short-term middle Eocene (Bartonian) paleoenvironmental changes in the sedimentary succession of Olivetta San Michele (NW Italy): the response of shallow-water biota to climate in NW Tethys / Arena, Luca; Giraldo-Gómez, Victor M.; Baucon, Andrea; Piazza, Michele; Papazzoni, Cesare A.; Pignatti, Johannes; Gandolfi, Antonella; Briguglio, Antonino. - In: FACIES. - ISSN 0172-9179. - 70:1(2024), pp. 1-21. [10.1007/s10347-023-00677-4]

Short-term middle Eocene (Bartonian) paleoenvironmental changes in the sedimentary succession of Olivetta San Michele (NW Italy): the response of shallow-water biota to climate in NW Tethys

Baucon, Andrea;Papazzoni, Cesare A.;Pignatti, Johannes;
2024

Abstract

This study focuses on the paleontological content of the middle Eocene (Bartonian) carbonate–siliciclastic sediments of the Capo Mortola Calcarenite Formation from Olivetta San Michele (Liguria, Italy). Along the succession, there are significant paleoecological changes triggered by the variation in neritic input as a consequence of tectonic and climatic instability. Among microfossils, nummulitids prevail, followed by orthophragmines, smaller benthic, and planktonic foraminifera, whereas mollusks and ichnofossils are the most abundant macrofossils. The sudden changes in the benthic communities due to the progressive increase in fluvial input are recorded throughout the sedimentary succession. An increase in water turbid- ity caused stressful conditions for autotrophic taxa, reducing their size and abundance. In contrast, filter feeders became dominant, suggesting an increase in dissolved and suspended nutrients. Ichnological analysis shows environmental fluctua- tions controlled by the transport of neritic material offshore, thus confirming the general deepening trend of the studied succession. In the upper part of the succession, we recorded an alternation between gravity flows and marly sediments that are interpreted as short-term alternations between low and intense precipitations. The gravity flows yield taxa such as larger benthic foraminifera (LBF), smaller benthic and planktonic foraminifera, mollusks, and corals. In turn, marls display only a few LBF and abundant smaller benthic and planktonic foraminifera. In these intervals, the increase in planktonic foraminif- era also suggests a deepening of the carbonate ramp coinciding with a reduction of light that did not favor the development of LBF. These changes are probably related to the climatic dynamics that occurred in the Bartonian in the western Tethys.
2024
70
1
1
21
Short-term middle Eocene (Bartonian) paleoenvironmental changes in the sedimentary succession of Olivetta San Michele (NW Italy): the response of shallow-water biota to climate in NW Tethys / Arena, Luca; Giraldo-Gómez, Victor M.; Baucon, Andrea; Piazza, Michele; Papazzoni, Cesare A.; Pignatti, Johannes; Gandolfi, Antonella; Briguglio, Antonino. - In: FACIES. - ISSN 0172-9179. - 70:1(2024), pp. 1-21. [10.1007/s10347-023-00677-4]
Arena, Luca; Giraldo-Gómez, Victor M.; Baucon, Andrea; Piazza, Michele; Papazzoni, Cesare A.; Pignatti, Johannes; Gandolfi, Antonella; Briguglio, Antonino
File in questo prodotto:
File Dimensione Formato  
Arena, Giraldo-Gómez, Baucon, Piazza, Papazzoni, Pignatti, Gandolfi & Briguglio 2024 Bartonian Olivetta San Michele LR.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 2.69 MB
Formato Adobe PDF
2.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1329968
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact