Inelastic deformation demands on moment-resisting frame structures

Download
2006
Metin, Aslı
Interstory drift ratio is an important parameter for the determination of the structural performance under strong ground motions. A probabilistic procedure is proposed in this study to estimate the inelastic maximum interstory drift ratio. The procedure considers the uncertainties associated with the strong ground motions and structural behavior. Elastic and inelastic response history analyses of reinforced-concrete, moment-resisting frames are used together with a near-fault strong ground motion data set to derive the probabilistic procedure. The elastic and inelastic response history analysis results are evaluated in a statistical manner to present the probabilistic approach proposed here. The method presented basically makes use of the fundamental mode properties of the frame systems and modifies the elastic maximum interstory drift ratio by a modifying factor that is determined from the idealized lateral strength capacity (pushover analysis) of the structure. As a part of this thesis, the performance of recently improved nonlinear static procedures that are used in estimating the deformation demands on structural systems are also evaluated using the single- and multi-degree-of-freedom response history analyses results obtained during the conduct of the study.

Suggestions

Nonlinear Fiber Modeling of Steel-Concrete Partially Composite Beams with Channel Connectors
Ozturk, Alper; Baran, Eray; Tort, Cenk (Springer Science and Business Media LLC, 2019-05-01)
A simplified nonlinear fiber-based finite element model of steel-concrete partially composite beams utilizing channel type mechanical shear connectors is developed in OpenSees framework. The interaction between steel beam and concrete slab is accounted for by introducing nonlinear zero length elements and rigid links. The channel shear connector response used in numerical models is based on the previously obtained experimental response from pushout tests. Accuracy of the numerical models in predicting the r...
Seismic retrofitting of highway bridges in Illinois using friction pendulum seismic isolation bearings and modeling procedures
Dicleli, Murat (Elsevier BV, 2003-07-01)
In this paper, the economical and structural efficiency of friction pendulum bearings (FPB) for retrofitting typical seismically vulnerable bridges in the State of Illinois is studied. For this purpose, a bridge was carefully selected by the Illinois Department of Transportation (IDOT) to represent typical seismically vulnerable bridges commonly used in the State of Illinois. A comprehensive structural model of the bridge was first constructed for seismic analysis. An iterative multi-mode response spectrum ...
Analysis of specimen size effects in inclined compression test on laminated elastomeric bearings
Topkaya, Cem (Elsevier BV, 2004-07-01)
Inclined compression test method is a practical way of determining the shear modulus of full-size laminated elastomeric bearings. Performing full-size bearing tests requires high-capacity testing machines. It may be possible to cut the specimens into smaller sizes for testing purposes. Limited amount of experimental data show that specimen size has a significant effect on the measured shear modulus. In this paper, the Haringx shear weak column theory is used to identify the important geometric specimen prop...
Seismic behavior and improvement of autoclaved aerated concrete infill walls
Binici, Barış; Canbay, Erdem; Uzgan, Ugur; Eryurtlu, Zafer; Bulbul, Koray; Yakut, Ahmet (Elsevier BV, 2019-08-15)
Performance of infill walls in reinforced concrete (RC) frames is generally questionable under the combined action of in-plane and out-of-plane seismic demands. Despite the vast number of tests investigating the behavior of brick masonry infill walls in RC frames, past research is limited for infill walls made of Autoclaved Aerated Concrete (AAC) blocks. In the first part of the study, six single-bay single-story half-scaled RC frames were tested under the action of in-plane cyclic displacement excursions a...
Test method for appraising future durability of new concrete bridge decks
Yaman, İsmail Özgür; Aktan, H.M.; Hearn, N.; Staton, J.F. (SAGE Publications, 2002-01-01)
The nondestructive test procedure for quantifying the future durability of bridge deck concrete is based on the fundamental relationship between ultrasonic pulse velocity (UPV) and the permeability of an elastic medium. An experimental study using standard concrete cylindrical specimens (ASTM C192) documented adequate sensitivity between UPV and permeability. The test procedure uses a parameter directly proportional to increase in-field concrete permeability called paste quality loss (PQL). The PQL is compu...
Citation Formats
A. Metin, “Inelastic deformation demands on moment-resisting frame structures,” M.S. - Master of Science, Middle East Technical University, 2006.