Thermal analysis of stirling cycle regenerators

Download
2011
Özbay, Sercan
Stirling cycle cryocoolers are used widely in military applications. The regenerator is the key element of Stirling cycle cryocoolers. It is known that performance of the regenerator directly affects the cryocooler performance. Therefore, any improvement on the regenerator will lead to a more efficient cryocooler. Thus, it is essential to have an idea about regenerator parameters and their effects on the system. In this study Stirling engine regenerator, which is constructed by wire mesh screens, is accepted as a porous medium. Using energy balance and continuity equation, matrix and fluid thermal equations are derived. Simplified versions of these equations are obtained for not only the ideal case, but also two other cases which take into account the effects of longitudinal conduction and the effects of regenerator wall. A computer code is developed in Matlab to solve these equations using finite difference method. The developed code is validated by using Sage. Afterwards, effects of all regenerator parameters on regenerator performance are investigated in detail and results are presented. To make this investigation easier, a graphical user interface is also built (in Matlab) and used.

Suggestions

Experimental Analysis and Multiscale Modeling of the Dynamics of a Fiber-Optic Coil
Kahveci, Oezkan; Gencoglu, Caner; Yalçınkaya, Tuncay (2022-01-01)
Fiber-optic gyroscopes (FOGs) are common rotation measurement devices in aerospace applications. They have a wide range of diversity in length and in the winding radius of the coil to meet system requirements. Every dimensional parameter in the coil influences the dynamic response of the system, eventually leading to measurement errors. In order to eliminate the errors and to qualify the system, after the design and production stages, a deep and comprehensive testing procedure follows. In this study, the dy...
Computational analysis for performance prediction of Stirling cryocoolers
Çakıl, Semih; Yamalı, Cemil; Department of Mechanical Engineering (2010)
Stirling cryocoolers are required for a wide variety of applications, especially in military equipment, due to their small size, low weight, long lifetime and high reliability considering their efficiency. Thus, it is important to be able to investigate the operating performance of these coolers in the design stage. This study focuses on developing a computer program for simulating a Stirling cryocooler according to the second order analysis. The main consideration is to simulate thermodynamic, fluid dynami...
DYNAMIC MODELING AND CONTROL OF AN ELECTROMECHANICAL CONTROL ACTUATION SYSTEM
Yerlikaya, Umit; Balkan, Raif Tuna (2017-10-13)
Electromechanical actuators are widely used in miscellaneous applications in engineering such as aircrafts, missiles, etc. due to their momentary overdrive capability, long-term storability, and low quiescent power/low maintenance characteristics. This work focuses on electromechanical control actuation systems (CAS) that are composed of a brushless direct current motor, ball screw, and lever mechanism. In this type of CAS, nonlinearity and asymmetry occur due to the lever mechanism itself, saturation limit...
Performance Study of Wind Turbines with Bend-Twist Coupled Blades at Underrated Wind Speeds
Atalay, Oğuz; Farsadi, Touraj; Kayran, Altan (2017-09-22)
Use of bend-twist coupled blades is one of the ways to alleviate fatigue loads in wind turbine systems. Load reduction is achieved by placing off-axis layers in the spar caps of composite wind turbine blades. Off-axis layers provide twisting of the blade in the feathering direction thereby decreasing the aerodynamic loads due to the reduced effective angle of attack. Reduction of fatigue loads in the wind turbine system is generally measured by the damage equivalent load. In the present study, performance o...
Electropolishing of an Fe-Ni-Co Alloy in Acetic Acid-Perchloric Acid Mixture
Aksu, Yasemin; ERDOĞAN, METEHAN; Demirci, Gokhan; Karakaya, İshak (2016-06-02)
Among Fe-Ni-Co alloys, Kovar (53%Fe-29%Ni-17%Co) designated as ASTM F-15 (1), is a well-known glass-sealing alloy. It is also classified as low–expansion alloy (2). Low expansion is required to avoid internal stresses in applications that involve strong ceramic to metal joining such as in vacuum systems (3-6). Electropolishing is applied to obtain smooth metallic surfaces to gain low outgassing rates from the chamber walls in vacuum applications (7-9). The effects of current density, perchloric acid concent...
Citation Formats
S. Özbay, “Thermal analysis of stirling cycle regenerators,” M.S. - Master of Science, Middle East Technical University, 2011.