A Reduced complexity ungerboeck type receiver for multi-code signaling in dispersive channels

Download
2014
Güvensen, Gökhan Muzaffer
The main aim in this thesis is to propose multiple signaling waveforms (multi-code) based yet spectrally efficient modulation schemes and competent receiver architectures realizing soft-input-soft-output (SISO) detection. We search for generic suboptimal receiver architectures for Multi-Code Signaling (MCS), which can be represented as selection of one out of M waveforms per signaling interval. The proposed receiver architectures exhibit almost optimal performance at significantly reduced complexity in highly dispersive channels. First, an efficient reduced complexity implementation of the Ungerboeck type Maximum a Posteriori (MAP) receiver, directly operating on unwhitened channel matched filter and code matched filter outputs, is proposed for MCS by forming the factor graph (FG) and sum-product algorithm (SPA) framework. The proposed MAP receiver, generating the a posteriori probabilities by bidirectional reduced state sequence estimation (RSSE) recursions, is substantiated with symbol rate bidirectional decision feedback based on surviving paths in order to eliminate the post- and pre-cursor inter-symbol interference (ISI) as well as multi-code interference due to the non-ideal properties of the signaling waveforms and multipath channel. Second, we extend the proposed Ungerboeck receiver to be exploited in multiple access channel by unifying the bidirectional RSSE applied to each user and the mitigation of multi-user interference fulfilled by the SPA based on the obtained Ungerboeck type FG, resulting in linear complexity in the number of interfering users. Finally, error probability analysis, which provides significant insight on the success of the proposed reduced state Ungerboeck receivers in case of uncoded MCS transmission, and the packet error rate analysis based on the random coding approach that determines the cutoff rate for coded transmission are provided. These analyses help the designer determine system parameters and open up new possibilities for a performance enhancement of reduced complexity Ungerboeck receivers via a proper selection of a modulation scheme for the general class of MCS especially in long ISI channels. To sum up, the proposed receiver architectures here confirm, compare many previous works, and complement reduced complexity Ungerboeck structure by changing several system parameters generalized to MCS format with the help of the developed analytical tools.

Suggestions

A new electromagnetic target classification method with MUSIC algorithm
Secmen, Mustafa; Sayan, Gönül (2006-01-01)
This paper introduces a novel method for aspect invariant electromagnetic target recognition based on the use of multiple signal classification (MUSIC) algorithm to extract late-time resonant target features from the ultra-wideband scattered data. This method is mainly based on the usage of MUSIC spectra obtained from electromagnetic scattered data as the target features. This approach achieves very high accuracy rates even at very low signal-to-noise ratio (SNR) values although it needs scattered data for ...
A Distributed Fault-Tolerant Topology Control Algorithm for Heterogeneous Wireless Sensor Networks
Bagci, Hakki; KÖRPEOĞLU, İBRAHİM; Yazıcı, Adnan (Institute of Electrical and Electronics Engineers (IEEE), 2015-04-01)
This paper introduces a distributed fault-tolerant topology control algorithm, called the Disjoint Path Vector (DPV), for heterogeneous wireless sensor networks composed of a large number of sensor nodes with limited energy and computing capability and several supernodes with unlimited energy resources. The DPV algorithm addresses the k-degree Anycast Topology Control problem where the main objective is to assign each sensor's transmission range such that each has at least k-vertex-disjoint paths to superno...
A novel electromagnetic target recognition method by MUSIC algorithm
Secmen, Mustafa; Sayan, Gönül (2006-12-01)
This paper introduces a novel method for aspect invariant electromagnetic target recognition based on the use of multiple signal classification (MUSIC) algorithm to extract late-time resonant target features from the ultra-wideband scattered data. This approach achieves very high accuracy rates even at very low signal-to-noise ratio (SNR) values although it needs scattered data for classifier design at only a few different aspects and makes use of the MUSIC algorithm in a simple and computationally efficien...
A unity-power-factor buck-type PWM rectifier for medium/high-power DC motor drive applications
Bilgin, HF; Kose, KN; Zenginobuz, G; Ermiş, Muammer; Nalcaci, E; Cadirci, I; Kose, H (2002-09-01)
This paper describes the application of a single-stage unity-power-factor buck-type pulsewidth modulation (PWM) rectifier to medium- and high-power variable-speed dc motor drives. The advantages of the developed system are low harmonic distortion in ac supply currents (complying with IEEE Std. 519 and IEC 555), nearly unity power factor over a wide operating shaft speed range, and nearly level armature current and voltage waveforms. These properties of output voltage and current quantities of the converter ...
AN AUTOMATIC MODE MATCHING SYSTEM FOR A HIGH Q-FACTOR MEMS GYROSCOPE USING A DECOUPLED PERTURBATION SIGNAL
Yesil, F.; Alper, S. E.; Akın, Tayfun (2015-06-25)
This paper reports a closed-loop controller system developed for in-run automatic matching of the drive and sense mode resonance frequencies of a MEMS gyroscope with a high quality factor (Q). This is achieved by injecting a perturbation signal to the quadrature cancellation loop, while keeping it decoupled from the angular rate control loop. The new controller is implemented in a CMOS ASIC together with the other sensor control loops, and it is verified to maintain matched-mode state under changing environ...
Citation Formats
G. M. Güvensen, “A Reduced complexity ungerboeck type receiver for multi-code signaling in dispersive channels,” Ph.D. - Doctoral Program, Middle East Technical University, 2014.