Enhancement of plasmonic nonlinear conversion and polarization lifetime via fano resonances

Download
2017
Yıldız Karakul, Bilge Can
Boundary conditions and dispersion at dielectric-conductor interfaces, together, results in bands of energies or wavelengths of light within which light-matter interaction strength displays peaks as a result of fulfilled resonance conditions. At these resonance energies light propagation is strongly coupled to collective oscillation of free charges at the dielectric-conductor interface which qualifies to be given a quasiparticle name, "the surface plasmon polariton" (SPP). When dealing with zero-dimensional metal nanostructures (MNSs) in dielectric environment, these SPPs are necessarily bound to the structure and cannot propagate, hence become localized surface plasmons (LSPs). Around resonant LSP wavelengths, light is effectively confined to nanoscale sizes in the near field of the supporting MNSs, which offers a playground for effective light-management at the nanoscale, hence applicability of concept of plasmonics arises in nanoscience and nanotechnology. Despite its high amplitude, induced polarization field at the MNS suffers from rapid decay in time due to Ohmic losses such as electron-core interactions. In this thesis, it is shown that when conditions are favorable, Fano resonances may offer lifetime enhancement in plasmonic oscillators as a result of coupling of short lifetime bright and long-lived dark plasmon oscillation modes. Fano resonance is a destructive path interference effect, which emerges as an asymmetric dip in the spectral response of a driven harmonic oscillator, when a short lifetime oscillator is driven by a harmonic field at the resonance frequency of a long lifetime oscillator. At a certain frequency, the driven oscillator becomes under the influence of two driving forces which are out-of-phase, and hence their effects cancel each other. Time response of a plasmonic system can be extended by Fano resonance at a particular coupling strength, resonance and damping frequency. In addition, it is shown that Fano resonance mechanism is an effective way to enhance optical nonlinearities owing to plasmons in MNSs. Strong localized field leads to enhancement in higher harmonic fields compared to the linear responses. An analytical approach based on harmonic oscillator and a numerical approach based on 3D finite difference time domain Maxwell solution is presented to study the plasmonic coupling which resulted in prolonged lifetimes and enhanced or suppressed optical nonlinearity, in particular second harmonic generation. An experimental study on a silver coupled nanostructure system, results of which agree with the ones obtained in theory, is also presented as a verification of the developed model. Gaining the capability to obtain prolonged lifetime and enhanced nonlinear response of plasmonic MNS may play an important role for their successful integration to molecular switching, solar energy, photocatalysis and imaging applications. 

Suggestions

Numerical evidence of spontaneous division of dissipative solitons in a planar gas discharge-semiconductor system
Rafatov, İsmail (AIP Publishing, 2019-09-01)
This work deals with the formation of patterns of spatially localized solitary objects in a planar semiconductor gas-discharge system with a high Ohmic electrode. These objects, known as dissipative solitons, are generated in this system in the form of self-organized current filaments, which develop from the homogeneous stationary state by the Turing bifurcation. The numerical model reveals, for the first time, evidence of spontaneous division of the current filaments in this system, similar to that observe...
Development of software for calculations of the reflectance, transmittance and absorptance of multilayered thin films
Şimşek, Yusuf; Esendemir, Akif; Department of Physics (2008)
The aim of this study is to develop a software which calculates reflection, transmission and absorption of multilayered thin films by using complex indices of refraction, as a function of both wavelength and thickness. For these calculations matrix methods will be considered and this software is programmed with the matrix method. Outputs of the program will be compared with the theoretical and experimental results studied in the scientific papers.
Measurement of the production cross section for pairs of isolated photons in pp collisions at root s=7 TeV
Chatrchyan, S.; et. al. (Springer Science and Business Media LLC, 2012-01-01)
The integrated and differential cross sections for the production of pairs of isolated photons is measured in proton-proton collisions at a centre-of-mass energy of 7TeV with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 36 pb(-1) is analysed. A next-to-leading-order perturbative QCD calculation is compared to the measurements. A discrepancy is observed for regions of the phase space where the two photons have an azimuthal angle difference Delta phi less than or sim...
Improvement of fracture resistance in a glass matrix optomechanical composite by minicomposite unit bridging
Dericioğlu, Arcan Fehmi (Elsevier BV, 2005-10-15)
Minicomposite unit bridging, which was experimentally determined to be the dominant toughening mechanism resulting in the R-curve behavior of the Al2O3-ZrO2 minicomposite-reinforced glass matrix optomechanical composite, was studied quantitatively using luminescence spectroscopy. Applied stress induced shift of the luminescence bands of the minicomposite reinforcement was calibrated. Using the experimentally obtained calibration curve, axial stresses could be mapped along the minicomposite embedded in the g...
ENHANCEMENT OF THE RESOLUTION OF A SEMICONDUCTOR PHOTOGRAPHIC SYSTEM IN A MAGNETIC-FIELD
SALAMOV, BG; Akınoğlu, Bülent Gültekin; ELLIATLIOGLU, S; ALLAKHVERDIEV, KR; LEBEDEVA, NN (1994-01-01)
A method is described for enhancing the resolution R of a semiconductor photographic system by subjecting it to a homogenous magnetic field. Bi has been chosen as the photographic plate, since it has a large value of the cathode sputtering coefficient which is important in the formation of image by charged particle flux. A considerable increase of the resolution is observed when the applied magnetic field is parallel to the electric field between the electrodes. Effect of the magnetic field on the I - V cha...
Citation Formats
B. C. Yıldız Karakul, “Enhancement of plasmonic nonlinear conversion and polarization lifetime via fano resonances,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.