Developing replaceable members for steel lateral load resisting systems

Download
2017
Bozkurt, Mehmet Bakır
Steel structures utilize lateral load resisting systems to provide sufficient strength, stiffness and ductility. Damaged structures need to be either demolished or retrofitted to recover their initial properties after a major earthquake. In steel structures, damage is concentrated to predefined fuse members and most other members are designed to behave elastic under seismic events. In buckling restrained braced frames (BRBFs) and eccentrically braced frames (EBFs), the fuse members are well defined and can be conveniently repaired. In the literature, experimented studies were conducted to develop fuse members for BRBFs and EBFs. This thesis reports findings of a three-phase experimental research program on steel encased buckling-restrained braces (BRBs) and a two-phase experimental research program on eccentrically braced frames with replaceable links. The first experimental research program investigated the potential use of steel encased BRBs using subassemblage testing. Because steel encasements can provide lighter solutions, they are more advantageous compared to concrete or mortar filled encasements in terms of replacement of BRBs. Pursuant to this goal, a three-phase experimental research program consisting of thirteen tests was conducted where BRBs were investigated under subassemblage testing. The first phase of the program aimed at studying the performance of steel encased BRBs which utilize constant width core plates. Test results indicated that these braces develop unacceptably high compression and tension resistances and the behaviors of these BRBs under uniaxial testing and subassemblage testing are markedly different. In second phase of the research program, a new type of BRB core, which utilizes a welded overlap, was developed to improve the cyclic performance observed in the first phase. Experimental results showed that the braces sustain axial strains that vary between 2.0 and 2.5% and resistances in tension and compression were found to improve significantly when compared with the findings of the first phase. Welded overlap core steel encased BRBs were found to sustain cumulative axial strains that are 419 times the yield strain when properly detailed. The third phase focused on connections of welded overlap steel encased BRBs. Two typical connection details, namely the pin connection and gusseted connection, were experimented by considering the collar detail as the prime variable. Test results indicate that the gusseted detail does not require collars to be used while the pinned detail mandates the use of collars for acceptable performance. The second experimental research program concentrated on developing replaceable links for steel eccentrically braced frames. A replaceable link detail, which is based on splicing braces and the beam outside the link, was proposed. This detail eliminates the need to use hydraulic jacks and flame cutting operations for replacement purposes. The first phase of the research program concentrated on replaceable links with direct brace attachments while the second phase concentrated on links with gusset plate connected brace attachments. Performance of these proposed replaceable links was studied by conducting eight full-scale EBF tests with directly attached braces and eleven full-scale EBF tests with gusset plate connected braces under quasi-static cyclic loading. The link length ratio, stiffening of the link, loading protocol, connection type, bolt pretension, gap size of splice connections, and demand-to-capacity ratios of members were considered as the prime variables. The specimens primarily showed two types of failure modes: link web fracture and fracture of the flange at the link-to-brace connection. No failures were observed at the splice connections indicating that the proposed replaceable link details provide excellent response. The inelastic rotation capacity provided by the replaceable links satisfied the requirements of the AISC Seismic Provisions for Structural Steel Buildings (AISC341-10). The overstrength factor of the links exceeded 2.0 which is larger than the value assumed for EBF links by design provisions. The high level of overstrength resulted in brace buckling in one of the specimens with direct connected brace and one of specimens with gusset plate connected brace which demonstrated the importance of overstrength factor used for EBF links.

Suggestions

Improving the strength of additively manufactured objects via modified interior structure
Al, Can Mert; Yaman, Ulaş; Department of Mechanical Engineering (2018)
This thesis study provides an approach to improve the durability of additively manufactured parts via modified interior structures by considering the stress field results from tensile loading conditions. In other words, the study provides an automated method, i.e., implicit slicing method, which improves the strength of the parts with infill structures modified according to the quasi-static Finite Element Analysis (FEA) results under tensile loadings, automatically. The parts which are used throughout the w...
Development of a physical theory model for the simulation of hysteretic behavior of steel braces
Çalık, Ertuğrul Emre; Dicleli, Murat; Department of Engineering Sciences (2007)
Bracing members are considered to be effective earthquake-resistant elements as they improve the lateral strength and stiffness of the structural system and contribute to seismic energy dissipation by deforming inelastically during severe earthquake motions. However, the cyclic behavior of such bracing members is quite complex because it is influenced by both buckling and yielding. This thesis presents simple but an efficient analytical model that can be used to simulate the inelastic cyclic behavior of ste...
The effect of shape memory alloys on the ductility of exterior reinforced concrete beam-column joints using the damage plasticity model
Halahla, Abdulsamee M.; Abu Tahnat, Yazan B.; Almasri, Amin H.; Voyiadjis, George Z. (Elsevier BV, 2019-12-01)
Using shape memory alloys (SMA) bars can significantly enhance the ductility of exterior reinforced concrete joints, where they can replace the conventional steel reinforcement. This research focuses on studying the effect of using SMA on the ductility capacity of exterior reinforced concrete beam-column joints at different column axial load levels. Finite element analysis was carried out and compared with the experimental results from the literature for verification purposes, and both were compared with th...
Determination of mechanical properties of hybrid fiber reinforced concrete
Yurtseven, Alp Eren; Tokyay, Mustafa; Department of Civil Engineering (2004)
Fiber reinforcement is commonly used to provide toughness and ductility to brittle cementitious matrices. Reinforcement of concrete with a single type of fiber may improve the desired properties to a limited level. A composite is termed as hybrid, if two or more types of fibers are rationally combined to produce a composite that derives benefits from each of the individual fibers and exhibits a synergetic response. This study aims to characterize and quantify the mechanical properties of hybrid fiber reinfo...
A detailed analysis for evaluation of the degradation characteristics of simple structural systems
Kurtman, Burak; Erberik, Murat Altuğ; Department of Civil Engineering (2007)
Deterioration in the mechanical properties of concrete, masonry and steel structures are usually observed under repeated cyclic loading in the inelastic response range. Therefore such a behavior becomes critical when these types of structures are subjected to ground motions with specific characteristics. The objective of this study is to address the influence of degrading behavior on simple systems. The Structural Performance Database on the PEER web site, which contains the results of cyclic, lateral-load ...
Citation Formats
M. B. Bozkurt, “Developing replaceable members for steel lateral load resisting systems,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.