Intermolecular acetaldehyde and dimethoxymethane formation mechanisms via ethenol and methoxymethylene precursors in reactions of atomic carbon with methanol: a computational study

2012-01-01
DEDE, YAVUZ
Özkan, İlker
Atomic carbon, a reactive intermediate abundant in the interstellar medium (ISM) can participate in various energetically demanding reactions in its extremely long living (69 min) first excited singlet state (D-1). Several studies on reactions of oxygen containing species with carbon atoms have been reported, however mechanistic details of the title reaction remain obscure. We report here quantum chemical studies on reactions of methanol with P-3 and D-1 carbon atoms at the CCSD(T)/cc-pVTZ level of theory, with which experimentally well known facile CO production, intermolecular acetaldehyde formation, and intermolecular dimethoxymethane production mechanisms are explained. Energetics of the fragmentation, O-H insertion, C-H insertion, and O-C insertion channels on the triplet and singlet surfaces are studied. The CO production mechanism by C (D-1) is identified as an oxygen abstraction and a triplet PES seems non-operative. Presenting novel features for the intermolecular reaction channels, current findings may be applicable to C + ROR reactions.
PHYSICAL CHEMISTRY CHEMICAL PHYSICS

Suggestions

Kinetic study of the reaction between hydroxyl-terminated polybutadiene and isophorone diisocyanate in bulk by quantitative FTIR spectroscopy
Kincal, D; Özkar, Saim (Wiley, 1997-12-05)
A kinetic study of the reaction between a hydroxyl-terminated polybutadiene (HTPB) and isophorone diisocyanate (IPDI) was carried out in the bulk state by using quantitative Fourier transform infrared(FTIR) spectroscopy. The reaction is shown to obey a second-order rate law, being first order in both the HTPB and IPDI concentrations. The activation parameters obtained from the evaluation of kinetic data are Delta H-double dagger = 41.1 +/- 0.4 kJ mol, Delta S-double dagger = -198 +/- 2 J K-1 mol(-1) and E-a...
Molecular dynamics and quantum chemical studies on nitroglycerine
Türker, Burhan Lemi (Elsevier BV, 2004-07-05)
A constant temperature molecular dynamics study has been performed on PM3 (RHF) geometry optimized nitroglycerine molecule. The dynamics was carried out by using MM + method at 550 K which is above the explosion point of nitroglycerine. Some molecular orbital characteristics of nitroglycerine at elevated temperatures were computed.
Interaction of BrPDI, BrGly, and BrAsp with the Rutile TiO2(110) Surface for Photovoltaic and Photocatalytic Applications: A First-Principles Study
Cakir, D.; GÜLSEREN, Oğuz; METE, ERSEN; Ellialtıoğlu, Süleyman Şinasi (American Chemical Society (ACS), 2011-05-12)
The adsorption of perylenediimide (PDI)-based dye compounds (BrPDI, BrGly, and BrAsp) on the defect-free unreconstructed (UR) rutile TiO2(110) surface has been studied using total energy pseudopotential calculations based on density functional theory. All dye molecules form moderate chemical bonds with the defect-free UR rutile (110) surface in the most stable adsorption configurations. Electronic structure analysis reveals that HOMO and LUMO levels of the adsorbed dye molecules appear within the band gap a...
Multicomponent ion exchange on clinoptilolite
Bayraktaroğlu, Kerem; Yücel, Hayrettin; Department of Chemical Engineering (2006)
Zeolites are crystalline, hydrated aluminosilicate minerals that are characterized by their ability to exchange some of their constituent cations with cations in aqueous solutions, without a major change in their crystalline structure. Clinoptilolite is the most abundant ype of zeolite and it has received extensive attention due to its favorable selectivity for mmonium and certain heavy metal cations. The aim of this study is to investigate the binary and ternary (multicomponent) ion xchange behavior of sod...
Intermolecular addition of aldehydes to ketones via acyl phosphonates
Esiringü, İlker; Demir, Ayhan Sıtkı; Department of Chemistry (2008)
This thesis presents a new developed method for first intermolecular aldehyde/ketone cross benzoin coupling. Protected α-keto tertiary alcohols are synthesized starting from easily available acyl phosphonates and ketones via Brook rearrangement in the presence of catalytic amount of cyanide ion. The scopes and the limitations of the methods for the synthesis of tertiary alcohols with α-keto group are discovered.
Citation Formats
Y. DEDE and İ. Özkan, “Intermolecular acetaldehyde and dimethoxymethane formation mechanisms via ethenol and methoxymethylene precursors in reactions of atomic carbon with methanol: a computational study,” PHYSICAL CHEMISTRY CHEMICAL PHYSICS, pp. 2326–2332, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/29990.