Classical flutter analysis of composite wind turbine blades including compressibility

2020-08-01
Farsadi, Touraj
Kayran, Altan
For wind turbine blades with the increased slenderness ratio, flutter instability may occur at lower wind and rotational speeds. For long blades, at the flutter condition, relative velocities at blade sections away from the hub center are usually in the subsonic compressible range. In this study, for the first time for composite wind turbine blades, a frequency domain classical flutter analysis methodology has been presented including the compressibility effect only for the outboard blade sections, which are in the compressible flow regime exceeding Mach 0.3. Flutter analyses have been performed for the baseline blade designed for the 5-MW wind turbine of NREL. Beam-blade model has been generated by making analogy with the structural model of the prewisted rotating thin-walled beam (TWB) and variational asymptotic beam section (VABS) method has been utilized for the calculation of the sectional properties of the blade. To investigate the compressibility effect on the flutter characteristics of the blade, frequency and time domain aeroelastic analyses have been conducted by utilizing unsteady aerodynamics via incompressible and compressible indicial functions. This study shows that with use of compressible indicial functions, the effect of compressibility can be taken into account effectively in the frequency domain aeroelastic stability analysis of long blades whose outboard sections are inevitably in the compressible flow regime at the onset of flutter.
WIND ENERGY

Suggestions

Predictions of ice formations on wind turbine blades and power production losses due to icing
YIRTICI, ÖZCAN; Özgen, Serkan; Tuncer, İsmail Hakkı (Wiley, 2019-07-01)
Prediction of ice shapes on a wind turbine blade makes it possible to estimate the power production losses due to icing. Ice accretion on wind turbine blades is responsible for a significant increase in aerodynamic drag and decrease in aerodynamic lift and may even cause premature flow separation. All these events create power losses and the amount of power loss depends on the severity of icing and the turbine blade profile. The role of critical parameters such as wind speed, temperature, liquid water conte...
Feasibility of pumped storage hydropower with existing pricing policy in Turkey
Barbaros, Efe; Aydın, İsmail; Celebioglu, Kutay (Elsevier BV, 2021-02-01)
Pumped-storage hydroelectricity (PSH) has been used worldwide as a means of energy storage for many years. Unlike many countries with pumped storage, Turkey has not needed a PSH facility until very recently since the existing hydropower plants with large reservoirs provided the required flexibility to meet daily demand variations. The share of renewable energy in Turkey's electrical grid has significantly increased in the last decade. Moreover, the first nuclear power plant of the country is planned to star...
Designing the C-GEN lightweight direct drive generator for wave and tidal energy
Keysan, Ozan; McDonald, Alasdair; Hodgins, Neil; Shek, Jonathan (Institution of Engineering and Technology (IET), 2012-05-01)
The C-GEN is a novel permanent magnet generator aimed at reducing overall system mass in direct drive power takeoff applications. The design of a C-GEN generator requires the combination of electromagnetic, structural and thermal models. Models used in the development of design tools applicable to both rotary and linear C-GEN generators are described in this study. The design tool is verified with the experiment results obtained from a 15 kW prototype. A genetic optimisation algorithm is developed combining...
Computer-aided design of horizontal-axis wind turbine blades
Duran, Serhat; Albayrak, Kahraman; Department of Mechanical Engineering (2005)
Designing horizontal-axis wind turbine (HAWT) blades to achieve satisfactory levels of performance starts with knowledge of the aerodynamic forces acting on the blades. In this thesis, HAWT blade design is studied from the aspect of aerodynamic view and the basic principles of the aerodynamic behaviors of HAWTs are investigated. Blade-element momentum theory (BEM) known as also strip theory, which is the current mainstay of aerodynamic design and analysis of HAWT blades, is used for HAWT blade design in thi...
Classical Aeroelastic Stability Analysis of Large Composite Wind Turbine Blades
Farsadi, Touraj; Kayran, Altan (2016-01-04)
To achieve higher energy production bigger wind turbine systems with very long blades are increasingly used in the wind turbine industry. As the length of the wind turbine blades is increased, blades become more flexible in bending and torsion. Increased bending and torsional flexibility of long wind turbine blades may cause torsional divergence and flapwise bending-torsion flutter at high speeds. Therefore, it is important that aeroelastic stability characteristics of the blades be investigated to ensure t...
Citation Formats
T. Farsadi and A. Kayran, “Classical flutter analysis of composite wind turbine blades including compressibility,” WIND ENERGY, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38144.