Spatial probabilistic evaluation of offshore/nearshore sea bottom soils based on cone penetration tests

2020-03-01
Oguz, Emir Ahmet
Huvaj Sarıhan, Nejan
The inherent variability of soil has a crucial role in reliability-based design, especially for offshore foundations where the variability and uncertainty are more critical due to high costs as compared to the onshore counterparts. In this study, spatial probabilistic evaluation of the characteristics of offshore/nearshore sea bottom soils is performed based on data of 65 cone penetration tests (CPTs), reaching to 200-m depths in seabed soils, in up to 64 m of water. The types and typical characteristics of sea bottom soils are reported, together with statistical evaluation. A key parameter for random field theory, the spatial correlation length, based on CPT data is obtained for different soil types, using four different autocovariance functions (exponential, squared exponential, cosine exponential and second-order autoregressive). For these purposes, a MATLAB code is developed to take the CPT data, identify individual soil layers, carry out statistical evaluation of the properties of soils and report the vertical spatial correlation length of each layer using four different autocovariance functions. The undrained shear strength of clays in nearshore and offshore soils increases with depth, at rates of 1 to 3 kPa/m. Sands nearshore and offshore have similar relative density that is generally less than 50% (i.e. in loose to medium-dense state). The vertical spatial correlation length based on CPT of all soils is in the range of 0.11 m to 0.27 m, for all four different autocovariance functions, for all CPT cone tip resistances, sleeve friction and friction ratio, and for all shallow- and deep-water soils. The vertical spatial correlation length of nearshore soils is slightly larger than offshore soils. The results add to the scarce data on the spatial correlation length of offshore soils and can be useful for future studies on reliability and risk assessment of nearshore/offshore foundations.
Bulletin of Engineering Geology and the Environment

Suggestions

Probabilistic Models for Cyclic Straining of Saturated Clean Sands
Çetin, Kemal Önder; Wu, Jiaer; Kammerer, Annie M.; Seed, Raymond B. (American Society of Civil Engineers (ASCE), 2009-03-01)
A maximum likelihood framework for the probabilistic assessment of postcyclic straining of saturated clean sands is described. Databases consisting of cyclic laboratory test results including maximum shear and postcyclic volumetric strains in conjunction with relative density, number of stress (strain) cycles, and "index" test results were used for the development of probabilistically based postcyclic strain correlations. For this purpose, in addition to the compilation of existing data from literature, a s...
Probabilistic Model for the Assessment of Cyclically Induced Reconsolidation (Volumetric) Settlements
Çetin, Kemal Önder; Wu, Jiaer; Kammerer, Annie M.; Seed, Raymond B. (American Society of Civil Engineers (ASCE), 2009-03-01)
A maximum likelihood framework for the probabilistic assessment of cyclically induced reconsolidation settlements of saturated cohesionless soil sites is described. For this purpose, over 200 case history sites were carefully studied. After screening for data quality and completeness, the resulting database is composed of 49 high-quality, cyclically induced ground settlement case histories from seven different earthquakes. For these case history sites, settlement predictions by currently available methods o...
Constant water content direct shear testing of compacted residual soils
ÜYETÜRK, CELAL EMRE; Huvaj Sarıhan, Nejan (Springer Science and Business Media LLC, 2020-08-01)
Mechanical behavior of residual soils are studied by performing constant water content direct shear tests on reconstituted specimens using total stress analysis. The testing program involves initial degree of saturation (Sr) and applied normal stress as the control parameters. For three different soil samples, a total of 55 direct shear tests are conducted at Sr = 60%, 80%, and saturated conditions, in the normal stress range of 15-60 kPa. The results showed that shear strength increases with decreasing Sr ...
Assessment of soil acidification due to a natural gas-fired power plant by using two different approaches
Soyupak, S; Yurteri, C; Mukhallalati, L; Kilic, B; Kayin, S; Onder, K (Informa UK Limited, 1996-01-01)
Potential soil acidification impacts of a proposed natural gas-fired combined cycle power plant were assessed using an integrated approach coupling an atmospheric deposition model with soil acidification quantification. The deposition model was used to estimate the rates of nitrogen oxide (NOx) deposition on the air-soil boundary. The expected changes in the soil column were then predicted by utilizing mechanistic and experimental methods, and the number of years required to reach critical pH values were pr...
Shear-Wave Velocity-Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential
Kayen, R.; Moss, R. E. S.; Thompson, E. M.; Seed, R. B.; Çetin, Kemal Önder; Kiureghian, A. Der; Tanaka, Y.; Tokimatsu, K. (American Society of Civil Engineers (ASCE), 2013-03-01)
Shear-wave velocity (V-s) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new V-s site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a d...
Citation Formats
E. A. Oguz and N. Huvaj Sarıhan, “Spatial probabilistic evaluation of offshore/nearshore sea bottom soils based on cone penetration tests,” Bulletin of Engineering Geology and the Environment, pp. 971–983, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40536.