A miniature and low-cost glucose measurement system

2018-01-01
Adams, S. D.
Buber, E.
Bicak, T. C.
Yager, Y.
Toppare, Levent Kamil
Kaynak, A.
Kouzani, A. Z.
One of the bottlenecks in widespread adoption of biosensors is the large and sophisticated bioanalytical system that is required to perform signal transduction and analysis. A miniaturized bioanalytical system facilitates biosensing techniques that are portable, easy to handle and inexpensive for fast and reliable measurements of biochemical species. Thus, downscaling the bioanalytical system has become a highly active research area, significantly assisted by recent advances in the microelectronics technology. In this work, a miniaturized system is designed and implemented for amperometric detection, and subsequently tested with a glucose biosensor based on the one-step approach utilizing water soluble poly(o-aminophenol). Several experiments are conducted to assess the viability of this system including calibration, interference and application tests. The results are compared with the previously published work performed using the same biosensor tested with a commercial potentiostat in order to verify the applicability of the designed system. (C) 2018 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING

Suggestions

A new approach to unified performance analysis of randomly-spread CDMA systems over multipath fading channels via crosscorrelation matrix non-asymptotic average eigenvalue distributions
Ertug, O; Baykal, Buyurman; Sayrac, B (2003-09-10)
A new unified method for closed-form theoretical performance analysis of randomly-spread CDMA systems over multipath fading channels with multiuser receivers is presented. The basis of the analysis is the representation of the random signal-to-interference ratios (SIR) at finite system parameters in terms of the eigenvalues of the crosscorrelation matrices for which the non-asymptotic average distributions are found or known. The methodology presented complements the asymptotic limiting theory used in simil...
A symmetric surface micromachined gyroscope with decoupled oscillation modes
Alper, Said Emre; Akın, Tayfun (2001-06-14)
This paper reports a new symmetric gyroscope structure that allows not only matched resonant frequencies for the drive and sense vibration modes for better resolution, but also decoupled drive and sense oscillation modes for preventing unstable operation due to mechanical coupling. The symmetry and decoupling features are achieved at the same time with a new suspension beam design. The gyroscope structure is designed using a standard three-layer polysilicon surface micromachining process (MUMPs) and simulat...
A Reduced complexity ungerboeck type receiver for multi-code signaling in dispersive channels
Güvensen, Gökhan Muzaffer; Tanık, Yalçın; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2014)
The main aim in this thesis is to propose multiple signaling waveforms (multi-code) based yet spectrally efficient modulation schemes and competent receiver architectures realizing soft-input-soft-output (SISO) detection. We search for generic suboptimal receiver architectures for Multi-Code Signaling (MCS), which can be represented as selection of one out of M waveforms per signaling interval. The proposed receiver architectures exhibit almost optimal performance at significantly reduced complexity in high...
An 80x80 Microbolometer Type Thermal Imaging Sensor using the LWIR-Band CMOS Infrared (CIR) Technology
Tankut, Firat; Cologlu, Mustafa H.; Askar, Hidir; Ozturk, Hande; Dumanli, Hilal K.; Oruc, Feyza; Tilkioglu, Bilge; Ugur, Beril; Akar, Orhan Sevket; Tepegoz, Murat; Akın, Tayfun (2017-04-13)
This paper introduces an 80x80 microbolometer array with a 35 mu m pixel pitch operating in the 8-12 aem wavelength range, where the detector is fabricated with the LWIR-band CMOS infrared technology, shortly named as CIR, which is a novel microbolometer implementation technique developed to reduce the detector cost in order to enable the use of microbolometer type sensors in high volume markets, such as the consumer market and IoT. Unlike the widely used conventional surface micromachined microbolometer ap...
A Distributed Fault-Tolerant Topology Control Algorithm for Heterogeneous Wireless Sensor Networks
Bagci, Hakki; KÖRPEOĞLU, İBRAHİM; Yazıcı, Adnan (Institute of Electrical and Electronics Engineers (IEEE), 2015-04-01)
This paper introduces a distributed fault-tolerant topology control algorithm, called the Disjoint Path Vector (DPV), for heterogeneous wireless sensor networks composed of a large number of sensor nodes with limited energy and computing capability and several supernodes with unlimited energy resources. The DPV algorithm addresses the k-degree Anycast Topology Control problem where the main objective is to assign each sensor's transmission range such that each has at least k-vertex-disjoint paths to superno...
Citation Formats
S. D. Adams et al., “A miniature and low-cost glucose measurement system,” BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, pp. 841–849, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40744.