Single wall bamboo shaped carbon nanotube: A molecular dynamics and electronic study

2006-02-01
Thermal stability and molecular electronic properties of a single walled, bamboo shaped carbon nanotube has been investigated. Molecular dynamics method is applied to investigate thermal stability, and electronic properties are calculated at the Extended Huckel level. Although bamboo shaped carbon nanotubes observed in experimental literature are multi-walled, it is shown that the suggested structural model in this work, which is single-walled, is also both thermodynamically and energetically stable. Bamboo shape of the model investigated is due to periodical coronene-like spacers. The resultant structure is compartmented, having geometrical aberrations in the vicinity of spacers. There is no degradation in the average coordination number. The geometrical aberrations in the vicinity of spacers is due to curvature induced by the pentagons of the resultant geometry.
INTERNATIONAL JOURNAL OF MODERN PHYSICS C

Suggestions

Titanium coverage on a single-wall carbon nanotube: Molecular dynamics simulations
Oymak, H; Erkoç, Şakir (2003-09-12)
The minimum energy structures of titanium covered finite-length C(8,0) singlewall carbon nanotubes (SWNT) have been investigated. We first parameterized an empirical potential energy function (PEF) for the CTi system. The PEF used in the calculations includes two- and three-body atomic interactions. Then, performing molecular dynamics simulations, we obtained the minimum-energy configurations for titanium covered SWNTs. The reported configurations include low and high coverage of Ti on SWNTs. We saw that on...
Design of oxygen-doped TiZrHfNbTa refractory high entropy alloys with enhanced strength and ductility
Iroc, L.K.; Tukac, O.U.; Tanrisevdi, B.B.; El-Atwani, O.; Tunes, M.A.; Kalay, Yunus Eren; Aydoğan Güngör, Eda (2022-11-01)
© 2022Refractory high entropy alloys (RHEAs) are considered promising materials for high-temperature applications due to their thermal stability and high-temperature mechanical properties. However, most RHEAs have high density (>10 g/cm3) and exhibit limited ductility at low temperatures and softening at high temperatures. In this study, we show that oxygen-doping can be used as a new alloy design strategy for tailoring the mechanical behavior of the TiZrHfNbTa alloy: a novel low-density (7.98 g/cm3) ductil...
Single- and multi-walled carbon nanotubes for solar cell applications
Obaidullah, Madina; Esat, Volkan; Sabah, Cumali (2018-08-20)
Emerging nanotechnologies have revealed carbon nanotubes (CNTs) as one of the best materials with immense potential. Considering the outstanding physical, mechanical, electrochemical, thermal, and optoelectronic properties of CNTs, extensive studies have been reported assessing their applications in several disciplines. This paper presents a broad review of the studies in the literature that address the contribution of CNTs in terms of their applications as different parts of solar cells such as photoelectr...
Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films
Ünalan, Hüsnü Emrah; Kuo, Daniel; Parekh, Bhavin; Amaratunga, Gehan; Chhowalla, Manish (Royal Society of Chemistry (RSC), 2008-01-01)
The fabrication of flexible organic photovoltaics (OPVs) which utilize transparent and conducting single walled carbon nanotube (SWNT) thin films as current collecting electrodes on plastic substrates in zinc oxide nanowire (ZnO NW)/poly(3-hexylthiophene) (P3HT) bulk heterojunction photovoltaic devices is reported. The bulk heterojunctions for exciton dissociation are created by directly growing ZnO nanowires from solution on the SWNT electrodes and spin coating the P3HT polymer. A maximum OPV power convers...
From carbon nanotubes to carbon nanorods
Erkoç, Şakir (2000-09-01)
The structural properties of single and multi-wall carbon nanotubes and the formation of carbon nanorods from multi-wall carbon nanotubes have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanorod formation takes place with smallest possible multi-wall nanotubes under heat treatment. On the other hand, it has been also found that single-wall carbon na...
Citation Formats
O. B. Malcıoğlu and S. Erkoc, “Single wall bamboo shaped carbon nanotube: A molecular dynamics and electronic study,” INTERNATIONAL JOURNAL OF MODERN PHYSICS C, pp. 187–196, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41425.