A numerical study on linear bifurcation web buckling of steel I-beams in the sidesway mode

2006-06-01
Sidesway web buckling is a limit state that needs to be considered during the design of steel I-beams subjected to transverse concentrated loads. Sidesway web buckling capacity equations presented by design codes offer estimates which are conservative to varying degrees. In this paper, the sidesway web buckling equations used by the AISC-LRFD specification are revisited. A parametric study based on finite element analysis has been conducted to identify the parameters that influence the web buckling of simply supported beams subjected to concentrated loads. The effects of coexistent bending stresses on the buckling capacity have been explored. A new set of design equations has been developed by complementing the results of the parametric study with the fundamentals of plate buckling theory. In addition, beams having negative end moments have been analyzed under concentrated loads. A lateral buckling type of instability which precedes sidesway web buckling has been identified for beams with negative end moments. Design equations have been developed for beams with end rotational restraints in the light of findings from the numerical analyses.
ENGINEERING STRUCTURES

Suggestions

A numerical study on block shear failure of steel tension members
Kara, Emre; Topkaya, Cem; Department of Civil Engineering (2005)
Block shear is a limit state that should be accounted for during the design of the steel tension members. This failure mechanism combines a tension failure on one plane and a shear plane on a perpendicular plane. Although current design specifications present equations to predict block shear load capacities of the connections, they fail in predicting the failure modes. Block shear failure of a structural connection along a staggered path may be the governing failure mode. Code treatments for stagger in a bl...
The effect of shape memory alloys on the ductility of exterior reinforced concrete beam-column joints using the damage plasticity model
Halahla, Abdulsamee M.; Abu Tahnat, Yazan B.; Almasri, Amin H.; Voyiadjis, George Z. (Elsevier BV, 2019-12-01)
Using shape memory alloys (SMA) bars can significantly enhance the ductility of exterior reinforced concrete joints, where they can replace the conventional steel reinforcement. This research focuses on studying the effect of using SMA on the ductility capacity of exterior reinforced concrete beam-column joints at different column axial load levels. Finite element analysis was carried out and compared with the experimental results from the literature for verification purposes, and both were compared with th...
A three component force transducer for reinforced concrete structural testing
Canbay, Erdem; Tankut, T (Elsevier BV, 2004-01-01)
The design, manufacture and calibration of two special force transducers, capable of measuring the axial force, shear, and bending moment at the base of a structural column are presented. The special force transducers were fabricated to measure the reactions at the base of the exterior columns of a reinforced concrete three-bay, two-story test specimen. The force transducers had the following capacities: 35 kN for axial load, 4 kN for shear, and 3 kN in for bending moment. These values include a safety fact...
A comparative study on the nonlinear behavior of chevron and suspended zipper braced steel frames
Özçelik, Ahmet Yiğit; Sarıtaş, Afşin; Department of Civil Engineering (2010)
Chevron braced steel frames require large beams to redistribute the unbalanced vertical forces exerted on the beams after brace buckling. A new frame configuration similar to chevron brace was proposed in literature, where zipper columns were attached between mid-spans of the beams from second to top story. During severe ground motion, the unbalanced vertical forces caused by buckling of lower story braces are in this case redistributed to the upper story braces by these zipper columns. Consequently, all st...
A detailed analysis for evaluation of the degradation characteristics of simple structural systems
Kurtman, Burak; Erberik, Murat Altuğ; Department of Civil Engineering (2007)
Deterioration in the mechanical properties of concrete, masonry and steel structures are usually observed under repeated cyclic loading in the inelastic response range. Therefore such a behavior becomes critical when these types of structures are subjected to ground motions with specific characteristics. The objective of this study is to address the influence of degrading behavior on simple systems. The Structural Performance Database on the PEER web site, which contains the results of cyclic, lateral-load ...
Citation Formats
C. Topkaya, “A numerical study on linear bifurcation web buckling of steel I-beams in the sidesway mode,” ENGINEERING STRUCTURES, pp. 1028–1037, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43014.