Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes

2017-02-01
Nacre-mimetic epoxy matrix composites reinforced with readily available micron-sized high aspect ratio C-glass flakes were fabricated by a relatively simple, single-step, scalable, time, cost and manpower effective processing strategy: hot-press assisted slip casting (HASC). HASC enables the fabrication of preferentially oriented two-dimensional inorganic reinforcement-polymer matrix bulk lamellar composites with a micro-scale structure resembling the brick-and-mortar architecture of nacre. By applying the micro-scale design guideline found in nacre and optimizing the relative volume fractions of the reinforcement and the matrix as well as by anchoring the brick-and-mortar architecture, and tailoring the interface between reinforcements and the matrix via silane coupling agents, strong, stiff and tough bio-inspired nacre-mimetic bulk composites were fabricated. As a result of high shear stress transfer lengths and effective stress transfer at the interface achieved through surface functionalization of the reinforcements, fabricated bulk composites exhibited enhanced mechanical performance as compared to neat epoxy. Furthermore, governed flake pull-out mode along with a highly torturous crack path, which resulted from extensive deflection and meandering of the advancing crack around well-aligned high aspect ratio C-glass flakes, have led to high work-of-fracture values similar to nacre.
BIOINSPIRATION & BIOMIMETICS

Suggestions

Nacre-mimetic epoxy matrix composites reinforced by two-dimensional glass reinforcements
Dericioğlu, Arcan Fehmi (Royal Society of Chemistry (RSC), 2016-01-01)
Inspired by the micro-scale "brick-and-mortar" architecture of nacre, epoxy matrix composites reinforced by aligned two-dimensional glass reinforcements were fabricated using a newly proposed simple, one-step, time and man-power efficient processing pathway called the hot-press assisted slip casting process (HASC). Effect of reinforcement aspect ratio along with interfacial compatibility and bonding on the mechanical behavior of the fabricated bulk nacre-mimetic composites was investigated. The achieved res...
Fabrication of Ag Nanoparticles Embedded in Al:ZnO as Potential Light-Trapping Plasmonic Interface for Thin Film Solar Cells
Nasser, Hisham; Saleh, Zaki M.; Ozkol, Engin; Gunoven, Mete; Bek, Alpan; Turan, Raşit (Springer Science and Business Media LLC, 2013-09-01)
Incident photon conversion efficiency of the absorbing materials at either side of a thin film solar module can be enhanced by integrating a plasmonic interface. Silver nanoparticles represent a good candidate that can be integrated to a thin film solar cell for efficient light-trapping. The aim of this work is to fabricate plasmonically active interface consisting of Ag nanoparticles embedded in Al:ZnO that has the potential to be used at the front surface and at the back reflector of a thin film solar cel...
Error analysis and assessment of unsteady forces acting on a flapping wing micro air vehicle: free flight versus wind-tunnel experimental methods
Caetano, J. V.; Perçin, Mustafa; van Oudheusden, B. W.; Remes, B.; de Wagter, C.; de Croon, G. C. H. E.; de Visser, C. C. (IOP Publishing, 2015-10-01)
An accurate knowledge of the unsteady aerodynamic forces acting on a bio-inspired, flapping-wing micro air vehicle (FWMAV) is crucial in the design development and optimization cycle. Two different types of experimental approaches are often used: determination of forces from position data obtained from external optical tracking during free flight, or direct measurements of forces by attaching the FWMAV to a force transducer in a wind-tunnel. This study compares the quality of the forces obtained from both m...
Approximate analytical solutions to the double-stance dynamics of the lossy spring-loaded inverted pendulum
SHAHBAZI, Mohammad; Saranlı, Uluç; BABUSKA, Robert; LOPES, Gabriel A. D. (IOP Publishing, 2017-02-01)
This paper introduces approximate time-domain solutions to the otherwise non-integrable double-stance dynamics of the 'bipedal' spring-loaded inverted pendulum (B-SLIP) in the presence of nonnegligible damping. We first introduce an auxiliary system whose behavior under certain conditions is approximately equivalent to the B-SLIP in double-stance. Then, we derive approximate solutions to the dynamics of the new system following two different methods: (i) updated-momentum approach that can deal with both the...
Development of postprocessor, simulation and verification software for a five-axis CNC milling machine
Cengiz, Ender; Gökler, Mustafa İlhan; Department of Mechanical Engineering (2005)
Five-axis CNC milling machine tools bring great facility to produce complex workpieces with increased dimensional accuracy and better surface quality in shorter machining times. However, kinematics of five-axis machine tools has a complex form which makes it difficult to operate these machine tools properly. The difficulty arises from the complexity of NC-Code generation and tool path verification. Collision of machine tool or setup components with each other is a severe problem in five-axis machining opera...
Citation Formats
S. GÜNER and A. F. Dericioğlu, “Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes,” BIOINSPIRATION & BIOMIMETICS, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45843.