Tracking free surface and estimating sloshing force using image processing

2017-11-01
Tosun, Ufuk
AGHAZADEH, Reza
Sert, Cüneyt
Ozer, Mehmet Bulent
Ultrasonic level sensors are commonly used to measure the motion of the free surface in fluid sloshing. They are used to measure the elevation of the free surface at a single point. The sloshing forces are generally measured with load sensors, which require two sets of measurements, with and without the fluid in the tank. This paper develops a method, which tracks the free surface motion during sloshing with a camera and uses the captured images to estimate the forces due to sloshing in a rectangular tank. One of the major assumptions is that the displacement input which causes sloshing is one dimensional and the resulting sloshing motion is two dimensional. For the method to correctly estimate the sloshing forces along the displacement input direction, sloshing should be around the resonant sloshing frequency. This new method can track the motion of the complete free surface rather than a single point. It estimates the sloshing forces using image processing and potential flow theory, without the need for a load cell measurement. Free surface shapes and sloshing force estimates obtained by image processing are compared with those measured by the sensors. Good agreement is observed for low amplitude sloshing around fundamental resonance frequency.
EXPERIMENTAL THERMAL AND FLUID SCIENCE

Suggestions

Experimental Analysis and Multiscale Modeling of the Dynamics of a Fiber-Optic Coil
Kahveci, Oezkan; Gencoglu, Caner; Yalçınkaya, Tuncay (2022-01-01)
Fiber-optic gyroscopes (FOGs) are common rotation measurement devices in aerospace applications. They have a wide range of diversity in length and in the winding radius of the coil to meet system requirements. Every dimensional parameter in the coil influences the dynamic response of the system, eventually leading to measurement errors. In order to eliminate the errors and to qualify the system, after the design and production stages, a deep and comprehensive testing procedure follows. In this study, the dy...
Computation of drag force on single and close-following vehicles
Örselli, Erdem; Çetinkaya, Tahsin Ali; Department of Mechanical Engineering (2006)
In this study, application of computational fluid dynamics to ground vehicle aerodynamics was investigated. Two types of vehicle models namely, Ahmed Body and MIRA Notchback Body and their scaled models were used. A commercial software "Fluent" was used and the effects of implementing different turbulence models with wall functions were observed. As a result, an appropriate turbulence model was selected to use in the study. The drag forces, surface pressure distributions and wake formations were investigate...
Dynamical analysis of the fiber optic coils through multiscale numerical modeling and modal tests
Kahveci, Özkan; Yalçınkaya, Tuncay; Department of Aerospace Engineering (2022-4-28)
Fiber optic gyroscopes (FOGs) are common rotation measurement devices in aerospace applications. They have a wide range of diversity in length and winding radius of coils to meet the system requirements. Every dimensional parameter in the coil influences the dynamic response of the system, which eventually leads to measurement errors. In order to eliminate the errors and qualify the system, after the design and production stages, a deep and comprehensive testing procedure follows. In this study, the dynamic...
Processing forced vibration test records of structural systems using the analytic signal
Çelik, Ozan Cem (SAGE Publications, 2020-09-01)
This article presents the use of the analytic signal procedure for processing the large volume of structural vibration data recorded in forced vibration tests. The analytic signal facilitates the computationally laborious task of extracting the steady-state amplitude for each response measure of interest from the recorded accelerations throughout the building at each operated frequency of the forced vibration source. The implementation of the signal processing procedure introduced here is illustrated in der...
Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers
Yaralioglu, GG; Ergun, AS; Bayram, Barış; Haeggstrom, E; Khuri-Yakub, BT (2003-04-01)
The electromechanical coupling coefficient is an important figure of merit of ultrasonic transducers. The transducer bandwidth is determined by the electromechanical coupling efficiency. The coupling coefficient is, by definition, the ratio of delivered mechanical energy to the stored total energy in the transducer. In this paper, we present the calculation and measurement of coupling coefficient for capacitive micromachined ultrasonic transducers (CMUTs). The finite element method (FEM) is used for our cal...
Citation Formats
U. Tosun, R. AGHAZADEH, C. Sert, and M. B. Ozer, “Tracking free surface and estimating sloshing force using image processing,” EXPERIMENTAL THERMAL AND FLUID SCIENCE, pp. 423–433, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47161.