Ab initio investigation of FeTi-H system

2007-09-01
In this study, a first principles search for a possible hydride with high hydrogen storage capacity was carried out in the FeTi intermetallic system. In this regard, formation energies of FeTiHx (x = 1-6) hydrides are systematically investigated on the basis of crystal and electronic structures and structural stability. Total energies were calculated by ab initio pseudopotential method within the generalized gradient approximation (GGA) to density functional theory (DFr). In the stability analysis, mostly the subgroups of the space group of the FeTi structure (P m(3) over bar m), as well as some special cases in which Fe-Ti coordination is similar to P m(3) over bar m were considered. Our calculations predicted the experimental structures of FeTiH and FeTiH2. It was found that, the insertion of hydrogen into the structure causes an increased electron density in the electronic orbitals of Fe which were oriented towards hydrogen atoms. We have also identified a new hydride which is less stable than the experimentally observed ones, having four hydrogen atoms per chemical formula. (C) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Suggestions

Factors affecting the longterm stability of biomass and hydrogen productivity in outdoor photofermentation
Androga, Dominic Deo; Ozgur, Ebru; Guncluz, Ufuk; Yucel, Meral; Eroğlu, İnci (Elsevier BV, 2011-08-01)
In this study, the long-term stability of biomass and hydrogen production on acetate by Rhodobacter capsulatus YO3 (hup(-)) was investigated. The experiments were performed in fed-batch panel photobioreactors operated under the natural sunlight in Ankara, Turkey. They were carried out between October and December in order to resemble low temperature and low light intensity and between July and August in order to resemble high temperature and high light intensity.
Enhancement of hydrogen storage capacity of multi-walled carbon nanotubes with palladium doping prepared through supercritical CO2 deposition method
ERÜNAL, EBRU; Ulusal, Fatma; ASLAN, MUSTAFA YASİN; GÜZEL, BİLGEHAN; Üner, Deniz (Elsevier BV, 2018-06-07)
Pd doped Multi-Walled Carbon Nanotubes were prepared via supercritical carbon dioxide deposition method in order to enhance the hydrogen uptake capacity of carbon nanotubes at ambient conditions. A new bipyridyl precursor that enables reduction at moderate conditions was used during preparation of the sample. Both XRD analyses and TEM images confirmed that average Pd nanoparticle size distribution was around 10 nm. Hydrogen adsorption and desorption experiments at room temperature with very low pressures (0...
Comparative study of PV/PEM fuel cell hybrid energy system based on methanol and water electrolysis
Budak, Yagmur; DEVRİM, YILSER (Elsevier BV, 2019-01-01)
In this study, we investigated the comparative analysis of a solar-fuel cell hybrid system based on water and methanol electrolysis. The proposed system comprises PV, electrolyzer and proton exchange membrane fuel cell (PEMFC). The hybrid system is designed to supply the hydrogen (H-2) needed of the PEMFC system and also to fulfill the H-2 requirement of other applications. The actual data of solar irradiation of Izmir, Turkey are used in the simulation. The methanol and water electrolyzers were designed fo...
A photoelectrochemical device for water splitting using oligoaniline-crosslinked [Ru(bpy)(2)(bpyCONHArNH(2))](+2) dye/IrO2 nanoparticle array on TiO2 photonic crystal modified electrode
YILDIZ, HÜSEYİN BEKİR; Carbas, Buket Bezgin; Sonmezoglu, Savas; KARAMAN, MUSTAFA; Toppare, Levent Kamil (Elsevier BV, 2016-09-07)
This article describes the construction of photoelectrochemical cell system splitting water into hydrogen and oxygen using UV-vis light under constant applied voltage. Oligoaniline-crosslinked 2-(4-aminobenzyl)malonic acid functionalized IrO2 center dot nH(2)O nanoparticles and visible light absorbing dye, [Ru(bpy)(2)(bpyCONHArNH(2))(+2)] arrays on titanium dioxide (TiO2) photonic crystals modified electrodes were used as photoanode, and nanostructures based on bonding of Pt nanoparticles by using electropo...
Ammonia borane as hydrogen storage materials
AKBAYRAK, SERDAR; Özkar, Saim (Elsevier BV, 2018-10-04)
Ammonia borane is an appropriate solid hydrogen storage material because of its high hydrogen content of 19.6% wt., high stability under ambient conditions, nontoxicity, and high solubility in common solvents. Hydrolysis of ammonia borane appears to be the most efficient way of releasing hydrogen stored in it. Since ammonia borane is relatively stable against hydrolysis in aqueous solution, its hydrolytic dehydrogenation can be achieved at an appreciable rate only in the presence of suitable catalyst at roo...
Citation Formats
A. Kinaci and M. K. Aydınol, “Ab initio investigation of FeTi-H system,” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, pp. 2466–2474, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47185.