Multisensor controlled robotic tracking and automatic pick and place

1996-01-01
A multisensor controlled robotic tracking and automatic pick and place system is presented in this paper. The system is designed for recognizing and tracking an object which is selected from multiple objects that are unknown and randomly placed on a moving conveyor belt, using a vision, infrared and encoder sensors in the feedback loop. The robot tracks the parts and transfers them to the proper pallets. We address the use of vision system for identifying and locating objects on a moving conveyor belt, besides we address the use of vision, infrared and encoder sensors for dynamically servoing a manipulator for object tracking, grasping and placing.

Suggestions

Motion control of flexible-link manipulators
KILIÇASLAN, SEMA; Ider, S. K.; Özgören, Mustafa Kemal (2008-12-01)
A new method is proposed for the end-effector trajectory tracking control of flexible robot manipulators. The equations of motion are separated into two parts that represent the pseudostatic equilibrium and the deviations from it, The part of the control input for the pseudostatic equilibrium is determined algebraically, and the other part of the control input for the stabilization of the deviations is obtained by a state variable feedback law, by using strain, joint variable, and end-effector position meas...
Direct command generation for CNC machinery based on data compression techniques
Yaman, Ulaş; Dölen, Melik (2013-04-01)
This paper presents a direct command generation technique for digital motion control systems. In this paradigm, higher-order differences of a given trajectory (i.e. position) are calculated and the resulting sequence is compacted via data compression techniques. The overall method is capable of generating trajectory data at variable rates in forward- and reverse-directions with the utilization of a linear interpolator. As a part of the command generation scheme, the paper also proposes a new data compressio...
Multi-agent system-based fuzzy controller design with genetic tuning for a mobile manipulator robot in the hand over task
Erden, MS; Leblebicioğlu, Mehmet Kemal; Halıcı, Uğur (Springer Science and Business Media LLC, 2004-03-01)
This paper presents an application of the multi-agent system approach to a service mobile manipulator robot that interacts with a human during an object delivery and hand-over task in two dimensions. The base, elbow and shoulder of the robot are identified as three different agents, and are controlled using fuzzy control. The control variables of the controllers are linear velocity of the base, angular velocity of the elbow, and angular velocity of the shoulder. Main inputs to the system are the horizontal ...
Interacting fuzzy multimodel intelligent tracking system for swift target manoeuvres
Gokkus, L; Erkmen, Aydan Müşerref; Tekinalp, Ozan (1997-09-11)
This paper focuses on the generation of an intelligent tracker module equipped with a wavelet based neural network that learns predictions from past experience. The perception of actual tar et manoeuvre and prediction of its future states are achieved in this work by "projecting" actual observations into decision spaces of local fuzzy predictions based on independent prototypical trajectory types: linear, parabolic and square root type trajectory. Decentralized tracking decisions are thus generated which ar...
Robot end-effector based sensor integration for tracking moving parts
Konukseven, Erhan İlhan (2000-08-31)
This paper presents a cost-efficient end-effector based infrared proximity sensor integration system and the implementation of fuzzy-logic control algorithm.
Citation Formats
E. İ. Konukseven and T. Balkan, “Multisensor controlled robotic tracking and automatic pick and place,” 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54376.