PUSH-PULL switching DC converter design using Power MOSFETS.

1985
Gül, Harun

Suggestions

Direct Torque Control of a 4-Phase Switched Reluctance Machine
Petrus, V.; Pop, A. -C.; Martis, C. S.; Iancu, V.; Gyselinck, J. (2011-09-10)
Due to its doubly salient structure and highly nonlinear behavior, the Switched Reluctance Machine (SRM) operates with very high torque ripple. To overcome these inconveniences different average and instantaneous torque control techniques were developed. This paper presents an instantaneous torque control technique named Direct Torque Control (DTC) implemented on a 4-phase, 8/6, 0.75kW SRM. Simulations results with modified flux observer and with fast torque response are presented and discussed, along with ...
Live load distribution in integral bridge girders
Erhan, S.; Dicleli, Murat (2010-07-15)
In this study, live load distribution formulae for the girders of single-span integral abutment bridges (IABs) are developed. For this purpose, two and three dimensional finite element models (FEMs) of several IABs are built and analyzed. The analyses results are then used to development of live load distribution formulae to estimate the girder live load moments and exterior girder live load shear for IABs with prestressed concrete girders.
Closed loop speed control of a squirrel cage induction motor by a variable frequency supply.
Nalçaci, A Erbil; Department of Electrical Engineering (1981)
Contact electrification in water free media
Baytekin, Bilge; Baytekin, Hasan Tarık; Grzybowskı, Bartosz A (2011-03-27)
Active clamped ZVS forward converter with soft-switched synchronous rectifier for high efficiency, low output voltage applications
Acik, A; Cadirci, I (Institution of Engineering and Technology (IET), 2003-03-01)
The analysis, design, and implementation of an active clamped ZVS forward converter equipped with a soft-switched synchronous rectifier (ACFC-SR), proposed for high-efficiency low output voltage DC-DC converter applications, is presented. The converter efficiency is maximised due to soft switching of the main, active clamp, synchronous rectifier, and freewheeling MOSFET switches. The operating principles of the ACFC-SR are analysed in detail, and the converter performance is compared with that of alternativ...
Citation Formats
H. Gül, “PUSH-PULL switching DC converter design using Power MOSFETS.,” Middle East Technical University, 1985.