Admittance Analysis of Thermally Evaporated Hole Selective MoO3 on Crystalline Silicon

2016-11-14
Ahiboz, Doğuşcan
Nasser, Hısham
Turan, Raşit
Integration of stoichiometric molybdenum trioxide (MoO 3-x ) as an effective hole transport layer (HTL) in solar cells is expected to reduce fabrication cost by eliminating the high temperature processes while maintaining high conversion efficiency. In this work we performed a systematic study to extract the electronic properties of vapor-phase deposited MoO 3-x thin film and MoO 3-x /crystalline silicon interface through capacitance and conductance analysis. Effect of MoO 3-x thickness as well as post deposition annealing on series resistance, electrical response, interface and bulk trapped oxide charges were profoundly examined and determined. Moreover, variation in series resistance, behavior of the interface and bulk trapped charges were revealed. Finally, frequency and bias voltage dependence of the series resistance and interface trapped charge were determined.
2016 International Renewable and Sustainable Energy Conference (IRSEC)

Suggestions

Electrical response of electron selective atomic layer deposited TiO2-x heterocontacts on crystalline silicon substrates
Ahiboz, Doguscan; Nasser, Hisham; Aygun, Ezgi; Bek, Alpan; Turan, Raşit (IOP Publishing, 2018-04-01)
Integration of oxygen deficient sub-stoichiometric titanium dioxide (TiO2-x) thin films as the electron transporting-hole blocking layer in solar cell designs are expected to reduce fabrication costs by eliminating high temperature processes while maintaining high conversion efficiencies. In this paper, we conducted a study to reveal the electrical properties of TiO2-x thin films grown on crystalline silicon (c-Si) substrates by atomic layer deposition (ALD) technique. Effect of ALD substrate temperature, p...
Acidity of surface-infiltrated binary oxides as a sensitive descriptor of oxygen exchange kinetics in mixed conducting oxides
Nicollet, Clement; Toparlı, Çiğdem; Harrington, George F.; Defferriere, Thomas; Yildiz, Bilge; Tuller, Harry L. (2020-11-01)
Improving the kinetics of O-2 reduction on oxide surfaces is critical in many energy and fuel conversion technologies. Here we show that the acidity scale for binary oxides is a powerful descriptor for tuning and predicting oxygen surface exchange kinetics on mixed conducting oxides. By infiltrating a selection of binary oxides from strongly basic (Li2O) to strongly acidic (SiO2) onto the surface of Pr(0.1)Ce(0.9)O(2-delta)samples, it was possible to vary the chemical surface exchange coefficient k(chem) by...
Passivation of type II InAs/GaSb superlattice photodetectors with atomic layer deposited Al2O3
Salihoglu, Omer; Muti, Abdullah; Kutluer, Kutlu; Tansel, Tunay; Turan, Raşit; KOCABAŞ, COŞKUN; AYDINLI, ATİLLA (2012-04-27)
We have achieved significant improvement in the electrical performance of the InAs/GaSb midwave infrared photodetector (MWIR) by using atomic layer deposited (ALD) aluminium oxide (Al2O3) as a passivation layer. Plasma free and low operation temperature with uniform coating of ALD technique leads to a conformal and defect free coverage on the side walls. This conformal coverage of rough surfaces also satisfies dangling bonds more efficiently while eliminating metal oxides in a self cleaning process of the A...
Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrays
Kartopu, G.; Turkay, D.; Özcan, Can; Hadıbrata, W.; Aurang, P.; Yerci, Selçuk; Ünalan, Hüsnü Emrah; Barrioz, V.; Qu, Y.; Bowen, L.; Gurlek, A. K.; Maiello, P.; Turan, Raşit; Irvine, S. J. C. (2018-03-01)
One-dimensional nanostructures, such as nanorod (NR) arrays, are expected to improve the photovoltaic (PV) response of solar cells with an ultrathin absorber due to an increased areal (junction) density and light trapping. We report on the deposition of CdS and CdTe:As semiconductor thin films on ZnO NR arrays by means of metalorganic chemical vapour deposition (MOCVD). The change in optical properties of the ZnO NRs upon the growth of CdS shell was monitored and compared to the simulated data, which confir...
PASSIVATION OF SILICON SOLAR CELLS VIA LOW TEMPERATURE WET CHEMICAL OXIDATION
KÖKBUDAK, GAMZE; Çiftpınar, Emine Hande; DEMİRCİOĞLU, OLGU; Turan, Raşit (2016-12-01)
In the development of high efficiency crystalline Si solar cells, decreasing bulk and surface recombination velocities of the minority carriers is vital. As the bulk recombination could be suppressed by enhancing the material quality, the effect of surface recombination on cell performance becomes more dominant. Also, recent studies have revealed that the area under the metal contacted region needs to be passivated to minimize the carrier recombination. The passivation of front and back surface of the cell ...
Citation Formats
D. Ahiboz, H. Nasser, and R. Turan, “Admittance Analysis of Thermally Evaporated Hole Selective MoO3 on Crystalline Silicon,” presented at the 2016 International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/77234.