The nature of Dark Matter (DM) remains one of the most important unresolved questions of fundamental physics. Many models, including Weakly Interacting Massive Particles (WIMPs), assume DM to be a particle and predict a weak coupling with Standard Model matter. If DM particles can scatter off nuclei in the vicinity of a massive object such as a star or a planet, they may lose kinetic energy and become gravitationally trapped in the center of such objects, including Earth. As DM accumulates in the center of the Earth, self-annihilation of WIMPs into Standard Model particles can result in an excess of neutrinos which are detectable at the IceCube Neutrino Observatory, situated at the geographic South Pole. A search for excess neutrinos from these annihilations has been performed using 8 years of IceCube data, and results have been interpreted in the context of a number of WIMP annihilation channels (XX → τ+τ−/W+W−/bb¯) and masses ranging from 10 GeV to 10 TeV. We present the latest results from this analysis and compare the outcome with previous analyses by IceCube and other experiments, showing competitive results, which are even world-leading in some parts of the parameter space.

Search for dark matter from the center of the Earth with 8 years of IceCube data

Bernardini E.;Mancina S.;
2022

Abstract

The nature of Dark Matter (DM) remains one of the most important unresolved questions of fundamental physics. Many models, including Weakly Interacting Massive Particles (WIMPs), assume DM to be a particle and predict a weak coupling with Standard Model matter. If DM particles can scatter off nuclei in the vicinity of a massive object such as a star or a planet, they may lose kinetic energy and become gravitationally trapped in the center of such objects, including Earth. As DM accumulates in the center of the Earth, self-annihilation of WIMPs into Standard Model particles can result in an excess of neutrinos which are detectable at the IceCube Neutrino Observatory, situated at the geographic South Pole. A search for excess neutrinos from these annihilations has been performed using 8 years of IceCube data, and results have been interpreted in the context of a number of WIMP annihilation channels (XX → τ+τ−/W+W−/bb¯) and masses ranging from 10 GeV to 10 TeV. We present the latest results from this analysis and compare the outcome with previous analyses by IceCube and other experiments, showing competitive results, which are even world-leading in some parts of the parameter space.
2022
Proceedings of Science
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3468110
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact