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Effective one-body approach to general relativistic two-body dynamics
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We map the general relativistic two-body problem onto that of a test particle moving in an effective external
metric. This effective-one-body approach defines, in a non-perturbative manner, the late dynamical evolution
of a coalescing binary system of compact objects. The transition from the adiabatic inspiral, driven by gravi-
tational radiation damping, to an unstable plunge, induced by strong spacetime curvature, is predicted to occur
for orbits more tightly bound than the innermost stable circular orbit in a Schwarzschild metric of massM
5m11m2 . The binding energy, angular momentum and orbital frequency of the innermost stable circular
orbit for the time-symmetric two-body problem are determined as a function of the mass ratio.
@S0556-2821~99!04806-7#

PACS number~s!: 04.30.Db, 04.25.Nx, 97.80.Fk
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I. INTRODUCTION

Binary systems made of compact objects~neutron stars or
black holes!, and driven toward coalescence by gravitation
radiation damping, are among the most promising candid
sources for interferometric gravitational-wave detectors s
as the Laser Interferometric Gravitational Wave Observat
~LIGO! and VIRGO. It is therefore important to study th
late dynamical evolution of a coalescing binary system
compact objects and, in particular, to estimate when the t
sition occurs from an adiabatic inspiral, driven by gravi
tional radiation damping, to an unstable plunge, induced
strong spacetime curvature. The global structure of the gr
tational wave signal emitted by a coalescing binary depe
sensitively on the location of the transition from inspiral
plunge. For instance, in the case of a system of two eq
mass neutron stars, if this transition occurs for relativ
loosely bound orbits, the inspiral phase will evolve into
plunge phase before tidal disruption takes place. On the o
hand, if the transition occurs for tightly bound orbits, tid
effects will dominate the late dynamical evolution.

In this paper we introduce a novel approach to the gen
relativistic two-body problem. The basic idea is to map~by a
canonical transformation! the two-body problem onto an ef
fective one-body problem, i.e. the motion of a test particle
some effective external metric. When turning off radiati
damping, the effective metric will be a static and spherica
symmetric deformation of the Schwarzschild metric.@The
deformation parameter is the symmetric mass ration
[m1m2 /(m11m2)2.# Solving exactly the effective problem
of a test particle in this deformed Schwarzschild met
amounts to introducing a particularnon-perturbativemethod
for re-summing the post-Newtonian expansion of the eq
tions of motion.

Our effective one-body approach is inspired by~though
different from! an approach to electromagnetically intera
ing quantum two-body problems developed in the works
Brézin, Itzykson and Zinn-Justin@1# ~see also@2#! and of
0556-2821/99/59~8!/084006~24!/$15.00 59 0840
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Todorov and co-workers@3,4#. Reference@1# has shown that
an approximate summation~corresponding to the eikonal ap
proximation! of the ‘‘crossed-ladder’’ Feynman diagrams fo
the quantum scattering of two charged particles led to
‘‘relativistic Balmer formula’’ for the squared mass of boun
states which correctly included recoil effects@i.e. effects
linked to the finite symmetric mass ration5m1m2 /(m1
1m2)2#. However, the eikonal approximation does not ca
ture some of the centrifugal barrier shifts which have to
added by hand through a shiftn→n2e j of the principal
quantum number@1,2#. The approach of Ref.@3# is more
systematic, being based on a~Lippmann-Schwinger-type!
quasi-potential equation whose solution is fitted to the Fe
man expansion of the~on-shell! scattering amplitudes
^p18p28uSup1p2&. However, several arbitrary choices have
be made to define the~off-shell! quasi-potential equation an
the nice form of the relativistic Balmer formula proposed
Ref. @1# is recovered only at the end, after two seeming
accidental simplifications:~i! the ratio of some complicated
energy-dependent quantities simplifies@5#, and ~ii ! the
second-order contribution to the quasi-potential contribu
only to third order. We note also that the extension of Tod
ov’s quasi-potential approach~initially developed for quan-
tum two-body electrodynamics! to the gravitational two-
body problem @4# leads to much more complicate
expressions than the approach developed here.

Before entering into the technical details of the effecti
one-body approach, let us outline the main features of
work. We use as input the explicit, post-Newtonian~PN!
expanded classical equations of motion of a gravitationa
interacting system of two compact objects. In harmonic
ordinates~which are convenient to start with because th
are standardly used for computing the generation of grav
tional radiation!, these equations of motion are explicit
known up to the 2.5PN level@(v/c)5 accuracy# @6,7#. They
have the form (a,b51,2)

aa5Aa
2PN~zb ,vb!1Aa

reac~zb ,vb!1O~c26!, ~1.1!
©1999 The American Physical Society06-1
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where A2PN5A01c22A21c24A4 denotes the time-
symmetric part of the equations of motion, andAreac

5c25A5 their time-antisymmetric part. Here,za , va , aa ,
denote the positions, velocities and accelerations, in
monic coordinates, of the two bodies.~In this work we con-
sider only non-spinning objects.! Throughout this paper, we
shall use the following notation for the quantities related
the massesm1 andm2 of the two bodies:

M[m11m2 , m[
m1m2

M
, n[

m

M
[

m1m2

~m11m2!2 .

~1.2!

Note that the ‘‘symmetric mass ratio’’n varies between 0
~test mass limit! and 1

4 ~equal mass case!.
We first focus on the time-symmetric, 2PN dynamics d

fined byAa
2PN(zb ,vb). After going to the center of mas

frame ~uniquely defined by the Poincare´ symmetries of the
2PN dynamics!, and after a suitable coordinate transform
tion @from harmonic coordinates to Arnowitt-Deser-Misn
~ADM ! coordinatesza→qa#, the dynamics of the relative co
ordinates q[q12q2 is defined by a 2PN Hamiltonian
H(q,p). Starting fromH(q,p), we shall uniquely introduce a
2PN-accurate static and spherically symmetric ‘‘effect
metric’’

dseff
2 52A~Reff!c

2dteff
2

1
D~Reff!

A~Reff!
dReff

2 1Reff
2 ~dueff

2 1sin2 ueffdweff
2 !,

~1.3!

where

A~R!511
a1

c2R
1

a2

c4R2 1
a3

c6R3 ,

~1.4!

D~R!511
d1

c2R
1

d2

c4R2 ,

such that the ‘‘linearized’’ effective metric~defined bya1
andd1! is the linearized Schwarzschild metric defined by t
total massM5m11m2 , and such that the effective Hami
tonian Heff(qeff ,peff) defined by the geodesic actio
2*mcdseff , wherem5m1m2 /M is the reduced mass, ca
be mapped onto the relative-motion 2PN Hamiltoni
H(q,p) by the combination of a canonical transformati
(qeff ,peff)→(q,p) and of an energy transformationH
5 f (Heff), corresponding to an energy-dependent ‘‘cano
cal’’ rescaling of the time coordinatedteff5dt(dH/dHeff).

The effective metric so constructed is a deformation
the Schwarzschild metric, with the deformation parame
being the symmetric mass ration5m/M . Considering this
deformed Schwarzschild metric as an exact external me
then defines~in the effective coordinates! a n-deformed
Schwarzschild-like dynamics, which can be mapped b
onto the original coordinatesqa or za . Our construction can
be seen as a non-perturbative way of re-summing the p
Newtonian expansion in the relativistic regime whe
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GM/(c2uq12q2u) becomes of order unity. In particular, ou
construction defines a specificn-deformed innermost stabl
circular orbit ~ISCO!. Superposing the gravitational reactio
force Areac onto the ‘‘exact’’ deformed-Schwarzschild dy
namics~defined by mapping back the effective problem on
the real one! finally defines, in a non-perturbative manner,
dynamical system which is a good candidate for describ
the late stages of evolution of a coalescing compact bina

II. SECOND POST-NEWTONIAN DYNAMICS OF THE
RELATIVE MOTION OF A TWO-BODY SYSTEM

Let us recall some of the basic properties of the dynam
defined by neglecting the time-odd reaction force in t
Damour-Deruelle equations of motion~1.1!. The 2PN@i.e.
(v/c)4-accurate# truncation of these equations of motion d
fines a time-symmetric dynamics which is derivable from
generalizedLagrangianL(z1 ,z2 ,v1 ,v2 ,a1 ,a2) @8,7# ~a func-
tion of the harmonic positions,z1 ,z2 , velocitiesv1 ,v2 and
accelerations a1 ,a2!. The generalized Lagrangia
L(z1 ,z2 ,v1 ,v2 ,a1 ,a2) is ~approximately! invariant under the
Poincare´ group @9#. This invariance leads~via Noether’s
theorem! to an explicit construction of the usual ten relati
istic conserved quantities for a dynamical system: energE,
linear momentumP, angular momentumJ, and center-of-
mass constantK5G2Pt. Because of the freedom to pe
form a Poincare´ transformation~in harmonic coordinates!,
we can go to the~2PN! center-of-mass frame, defined suc
as

P5K5G50. ~2.1!

References@10,11# explicitly constructed the coordinat
transformation between the harmonic~or de Donder! coordi-
nates, sayzm, used in the Damour-Deruelle equations of m
tion, and the coordinates, sayqm, introduced by Arnowitt,
Deser and Misner@12# in the framework of their canonica
approach to the dynamics of the gravitational field. The L
grangian giving the 2PN motion in ADM coordinates has t
advantage of being an ordinary LagrangianL(q1 ,q2 ,q̇1 ,q̇2)
~depending only on positions and velocities!, which is
equivalent to an ordinary HamiltonianH(q1 ,q2 ,p1 ,p2)
@13,14#. The explicit expression of the 2PN Hamiltonian
ADM coordinates,H(q1 ,q2 ,p1 ,p2), has been derived in Ref
@11# by applying a contact transformation

qa~ t !5za~ t !2d* za~z,v ! ~2.2!

to the generalized LagrangianL(za ,va ,aa). The shiftd* za
is of orderO(c24) and is defined in Eq.~35! of @10# or Eqs.
~2.4! of @11#. The contact transformation~2.2! removes the
acceleration dependence of the harmonic-coordinate
grangian Lharm(z,v,a) and transforms it into the ADM-
coordinate ordinary LagrangianLADM(q,q̇). A further Leg-
endre transform turnsLADM(q1 ,q2 ,q̇1 ,q̇2) into the needed
2PN HamiltonianH(q1 ,q2 ,p1 ,p2) in ADM coordinates. The
explicit expression of this Hamiltonian is given in Eq.~2.5!
of Ref. @11#. It has also been shown in Ref.@10# that the
Hamiltonian H(q1 ,q2 ,p1 ,p2) can be directly derived in
ADM coordinates from the~not fully explicit! N-body re-
6-2
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EFFECTIVE ONE-BODY APPROACH TO GENERAL . . . PHYSICAL REVIEW D 59 084006
sults of Ref.@13# by computing a certain integral entering th
two-body interaction potential.~For further references on th
general relativistic problem of motion, see the review
@15#; for recent work on the gravitational Hamiltonian s
@16,17,18,19#.!

The ADM expression of the total Noether linear mome
tumP associated to the translational invariance ofL(z,v,a)
is simplyP5p11p2 . Therefore it is easily checked that,
the center-of-mass frame~2.1!, the relative motion is ob-
tained by substituting in the two-body Hamiltonia
H(q1 ,q2 ,p1 ,p2),

p1→P, p2→2P, ~2.3!

whereP5]S/]Q is the canonical momentum associated w
the relative ADM position vectorQ[q12q2 . ~For clarity,
we modify the notation of Ref.@11# by usingq1 , q2 , Q and
q for the ADM position coordinates which are denotedr1 ,
r2 , R and r, respectively, in Ref.@11#.!

Our technical starting point in this work will be there-
duced center-of-mass2PN Hamiltonian~in reduced ADM
coordinates!. We introduce the following reduced variable
~all defined in ADM coordinates, and in the center-of-ma
frame!:

q[
Q

GM
[

q12q2

GM
, p[

P

m
,

t̂[
t

GM
, Ĥ[

HNR

m
[

HR2Mc2

m
. ~2.4!

In the last equation, the superscript ‘‘NR’’ means ‘‘no
relativistic’’ ~i.e. after subtraction of the appropriate re
mass contribution!, while ‘‘R’’ means ‘‘relativistic’’ ~i.e. in-
cluding the appropriate rest-mass contribution!. From Eq.
~3.1! of @11# the reduced 2PN relative-motion Hamiltonia
~without the rest-mass contribution! reads

Ĥ~q,p!5Ĥ0~q,p!1
1

c2 Ĥ2~q,p!1
1

c4 Ĥ4~q,p!, ~2.5!

where

Ĥ0~q,p!5
1

2
p22

1

q
, ~2.6a!

Ĥ2~q,p!52
1

8
~123n!p42

1

2q
@~31n!p21n~n•p!2#

1
1

2q2 , ~2.6b!
08400
-

s

Ĥ4~q,p!5
1

16
~125n15n2!p6

1
1

8q
@~5220n23n2!p422n2p2~n•p!2

23n2~n•p!4#

1
1

2q2 @~518n!p213n~n•p!2#2
1

4q3 ~113n!,

~2.6c!

in which q[uqu[(q2)1/2 andn[q/q. When convenient, we
shall also use the notationr for the reduced radial separatio
q ~andR for the unreduced oneQ! @as in Eqs.~2.8!–~2.12!
below#.

The relative-motion Hamiltonian~2.5! is invariant under
time translations and space rotations. The associated
served quantities are the reduced center-of-mass~c.m.! en-
ergy and angular momentum of the binary system:

Ĥ~q,p!5 ÊNR[
Ec.m.

NR

m
, q3p5 j[

Jc.m.

mGM
. ~2.7!

A convenient way of solving the 2PN relative-motion d
namics is to use the Hamilton-Jacobi approach. The mo
in the plane of the relative trajectory is obtained, in po
coordinates

qx5r cosw, qy5r sinw, qz50, ~2.8!

by separating the time and angular coordinates in the~planar!
reduced action

Ŝ[
S

mGM
52 ÊNRt̂1 j w1Ŝr~r ,ÊNR, j !. ~2.9!

The time-independent Hamilton-Jacobi equationĤNR(q,p)
5 ÊNR with p5]Ŝ/]q can be~iteratively! solved with respect
to (dŜr /dr)2 with a result of the form

Ŝr~r ,ÊNR, j !5E drAR~r ,ÊNR, j !. ~2.10!

The radial ‘‘effective potential’’R(r ,ÊNR, j ) is a fifth-order
polynomial in 1/r[1/q which is explicitly written down in
Eqs. ~3.4! of @11#. In this section, we shall only need th
corresponding~integrated! radial action variable

i r[
I R

mGM
[

2

2p E
r min

r max
drAR~r ,ÊNR, j !. ~2.11!

The functioni r( ÊNR, j ) has been computed, at 2PN accura
in Ref. @11# @see Eq.~3.10! there#. To clarify some issues
connected with the fact that the natural scalings in the ‘‘
fective one-body problem’’~to be considered below! differ
from those in the present, real two-body problem, let
quote the expression of the unscaled radial action variab
6-3
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I R5a i r5
2

2p E
Rmin

Rmax
dR

dSR~R,ENR,J!

dR
, ~2.12!

in terms of the unscaled variablesENR5m ÊNR andJ5a j .
Here R5Q5GMr5GMq, and we introduced the shor
hand notation

a[mGM5Gm1m2 ~2.13!

for the gravitational two-body coupling constant. We hav

I R~ENR,J!5
am1/2

A22ENR F11S 15

4
2

n

4D ENR

mc2 1S 35

32
1

15

16
n

1
3

32
n2D S ENR

mc2D 2G
2J1

a2

c2J F31S 15

2
23n D ENR

mc2 G
1S 35

4
2

5

2
n D a4

c4J 3 . ~2.14!

Equation ~2.14! can also be solved with respect toENR

[ER2Mc2 with the ~2PN-accurate! result†see Eq.~3.13! of
Ref. @11#‡

ER~N,J!5Mc22
1

2

ma2

N 2 F11
a2

c2 S 6

NJ2
1

4

152n

N 2 D
1

a4

c4 S 5

2

722n

NJ 3 1
27

N 2J 2 2
3

2

3524n

N 3J

1
1

8

145215n1n2

N 4 D G , ~2.15!

whereN denotes the Delaunay action variableN[I R1J.
The notation is chosen so as to evoke the one often use
the quantum Coulomb problem. Indeed, the classical ac
variablesI R andJ, or their combinationsN5I R1J andJ,
are adiabatic invariants which, according to the Bo
Sommerfeld rules, become~approximately! quantized in
units of\ for the corresponding quantum bound states. M
preciselyN/\ becomes the ‘‘principal quantum number
andJ/\ the total angular momentum quantum number. T
fact that the Newtonian-level non-relativistic energyENR5
2 1

2 ma2/N 21O(c22) depends only on the combinationN
5I R1J is the famous special degeneracy of the Coulo
problem. Note that 1PN~and 2PN! effects lift this degen-
eracy by bringing an extra dependence onJ. There remains,
however, the degeneracy associated with the spherical s
metry of the problem, which implies that the energy does
depend on the ‘‘magnetic quantum number,’’ i.e. onM
5Jz , but only on the magnitude of the angular momentu
vectorJ5AJ2. Though we shall only be interested in th
classical gravitational two-body problem, it is conceptua
useful to think in terms of the associated quantum proble
From this point of view, the formula~2.15! describes, when
N/\ andJ/\ take~non-zero! integer values, all the quantum
08400
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energy levelsas a function of the parametersM5m11m2 ,
m5m1m2 /(m11m2), a5Gm1m2 andn5m/M . It is to be
noted that the functionER(N,J) describing the energy level
is a coordinate-invariant object.

III. SECOND POST-NEWTONIAN ENERGY LEVELS
OF THE EFFECTIVE ONE-BODY PROBLEM

The ‘‘energy levels’’~2.15! summarize, at the 2PN accu
racy, the dynamics obtained by eliminating the field va
ablesgmn(x) in the total action of a gravitationally interac
ing binary system:

Stot@z1
m ,z2

m ,gmn#52E m1cds12E m2cds2

1Sfield@gmn~x!#, ~3.1!

whereds15A2gmn(z1
l)dz1

mdz1
n and whereSfield@gmn(x)# is

the ~gauge-fixed! Einstein-Hilbert action for the gravitationa
field. Let Sreal@z1

m ,z2
m# be the Fokker-type action obtained b

~formally! integrating outgmn(x) in Eq. ~3.1!. ~See, e.g.,@10#
for more details on Fokker-type actions. As we work he
only at the 2PN level, and take advantage of the expl
results of Refs.@8,7#, we do not need to enter the subtleti
of the elimination of the field degrees of freedom, which a
probably best treated within the ADM approach. S
@20,14#.!

The basic idea of the present work is to, somehow, as
ciate to the ‘‘real’’ two-body dynamicsSreal@z1

m ,z2
m# some

‘‘effective’’ one-body dynamics in an external spacetime,
described by the action

Seff@z0
m#52E m0cds0 , ~3.2!

where ds05A2gmn
eff (z0

l)dz0
mdz0

n, with some spherically sym-
metric static effective metric

dseff
2 5gmn

eff ~xeff
l !dxeff

m dxeff
n 52A~Reff!c

2dteff
2 1B~Reff!dReff

2

1C~Reff!Reff
2 ~dueff

2 1sin2 ueffdweff
2 !. ~3.3!

To simplify the notation we shall, henceforth in this sectio
drop the subscript ‘‘eff’’ on the coordinates used in the e
fective problem.~Later in this paper we shall explicitly relat
the coordinatesz0

m of the effective particle to the coordinate
z1

m , z2
n of the two real particles.! The metric functionsA(R),

B(R), C(R) will be constructed in the form of an expansio
in 1/R:

A~R!511
a1

c2R
1

a2

c4R2 1
a3

c6R3 1¯ ,

B~R!511
b1

c2R
1

b2

c4R2 1¯ . ~3.4!

Beware that the variableR in Eqs. ~3.4! denotes~in this
section! the effectiveradial coordinate, which differs from
the real ADM separationQ5RADM5GMr used in the pre-
6-4
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vious section~e.g. in the definition ofI R!. We indicate in Eq.
~3.4! the terms that we shall need at the 2PN level. The th
function C(R) entering the effective metric will be eithe
fixed to CS(R)[1 ~in ‘‘Schwarzschild’’ coordinates! or to
satisfyCI(R)[B(R) ~in ‘‘isotropic’’ coordinates!.

There are two mass parameters entering the effec
problem: ~i! the massm0 of the effective particle and~ii !
some mass parameterM0 used to scale the coefficientsai , bi
entering the effective metric. For instance, we can defineM0
by conventionally setting

a1[22GM0 . ~3.5!

By analogy to Eq. ~2.15!, we can summarize, in a
coordinate-invariant manner, the dynamics of the effective
one-body problem~3.2!–~3.4! by considering the ‘‘energy
levels’’ of the bound states of the particlem0 in the metric
gmn

eff :

E 0
R5m0c21E 0

NR5F~N0 ,J0 ;m0 ,ai ,bi !. ~3.6!

Here, the relativistic effective energyE 0
R and the effective

action variablesN0 ,J0 are unambiguously defined by th
action ~3.2!. Namely, we can separate the effecti
Hamilton-Jacobi equation

geff
mn

]Seff

]xm

]Seff

]xn 1m0
2c250, ~3.7!

by writing ~considering, for simplicity, only motions in th
equatorial planeu5p/2!

Seff52E0t1J0w1SR
0~R,E0 ,J0!. ~3.8!

To abbreviate the notation we suppress the superscript ‘R’’
on the relativistic effective energyE0 . Inserting Eq.~3.8!
into Eq. ~3.7! yields

2
1

A~R!

E 0
2

c2 1
1

B~R!
S dSR

0

dR D 2

1
J 0

2

C~R!R2 1m0
2c250,

~3.9!

and therefore

SR
0~R,E0 ,J0!5E dRAR0~R,E0 ,J0!, ~3.10!

where

R0~R,E0 ,J0![
B~R!

A~R!

E 0
2

c2 2B~R!S m0
2c21

J 0
2

C~R!R2D .

~3.11!

The effective radial action variableI R
0 is then defined as

I R
0~E0 ,J0![

2

2p E
Rmin

Rmax
dRAR0~R,E0 ,J0!, ~3.12!

while the effective ‘‘principal’’ action variableN0 is defined
as the combinationN0[I R

01J0 .
08400
d

e

To obtain the effective ‘‘energy levels’’E05F(N0 ,J0)
one needs to compute the definite radial integral~3.12!. Ref-
erence@11# ~extending some classic work of Sommerfel
used in the old quantum theory! has shown how to comput
the PN expansion of the radial integral~3.12! to any order in
the 1/R expansions~3.4!. At the present 2PN order, Ref.@11#
gave a general formula@their Eq. ~3.9!# which can be
straightforwardly applied to our case.

As we said above, the function describing the ‘‘ener
levels,’’ E05F(N0 ,J0), is acoordinate-invariantconstruct.
As a check on our calculations, we have computed it@or
rather, we have computed the radial actionI R

0(E0 ,J0)# in the
two preferred coordinate gauges for a spherically symme
metric: the ‘‘Schwarzschild gauge’’ and the ‘‘isotropic’’ one
If ( ai ,bi) denote the expansion coefficients~3.4! in the
Schwarzschild gauge@CS(R)[1#, we find ~at the 2PN ac-
curacy!

I R
0~E0 ,J0!5

m0
3/2

A22E 0
NR FA1B

E 0
NR

m0c2 1CS E 0
NR

m0c2D 2G2J0

1
m0

2

c2J0
FD1E

E 0
NR

m0c2G1
m0

4

c4J 0
3 F, ~3.13!

whereE 0
NR[E02m0c2, and where

A52
1

2
a1 , B5b12

7

8
a1 , C5

b1

4
2

19

64
a1 ,

D5
a1

2

2
2

a2

2
2

a1b1

4
, E5a1

22a22
a1b1

2
2

b1
2

8
1

b2

2
,

F5
1

64
@24a1

4248a1
2a218a2

2116a1a328a1
3b118a1a2b1

2a1
2b1

214a1
2b2#. ~3.14!

Denoting by (ãi ,b̃i) the expansion coefficients~3.4! in
the isotropic gauge@CI(R)[BI(R)#, we find, by calculating
I R

0 directly in the isotropic gauge, that the coefficien
A,B,...,F entering Eq.~3.13! have the following~slightly
simpler! expressions in terms ofãi and b̃i :

A52
1

2
ã1 , B5b̃12

7

8
ã1 , C5

b̃1

4
2

19

64
ã1 ,

D5
ã1

2

2
2

ã2

2
2

ã1b̃1

2
, E5ã1

22ã22ã1b̃11b̃2 ,

F5
1

8
@3ã1

426ã1
2ã21ã2

212ã1ã324ã1
3b̃114ã1ã2b̃1

1ã1
2b̃1

212ã1
2b̃2#. ~3.15!

The numerical values of the coefficientsA,B,...,F are
checked to be coordinate invariant by using the followi
relation between the (ai ,bi) and the (ãi ,b̃i) @which is easily
6-5
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derived either by integratingdRI /RI5ABS(RS)dRS /RS or
by using the algebraic linkRS5RIABI(RI)#:

ã15a1 , b̃15b1 , ~3.16!

ã25a22
1

2
a1b1 , b̃25

1

2
b22

1

8
b1

2 ,

ã35a32a2b11
7

16
a1b1

22
1

4
a1b2 .

Finally, solving iteratively Eq.~3.13! with respect toE 0
NR,

we find the analogue of Eq.~2.15!, i.e. the explicit formula
giving the effective ‘‘energy levels.’’ It is convenient t
write it in terms ofN0[I R

01J0 , of the coupling constant

a0[GM0m0 , ~3.17!

where M0 is defined by Eq. ~3.5!, and of the
(GM0)-rescaled, dimensionless expansion coefficientsâi

and b̂i , of the Schwarzschild gauge:

âi[ai /~GM0! i , b̂i[bi /~GM0! i , ~3.18!

with â1[22.
We find

E0~N0 ,J0!5m0c22
1

2

m0a0
2

N 0
2 F11

a0
2

c2 S C3,1

N0J0
1

C4,0

N 0
2 D

1
a0

4

c4 S C3,3

N0J 0
3 1

C4,2

N 0
2J 0

2 1
C5,1

N 0
3J0

1
C6,0

N 0
4 D G ,
~3.19!

where the coefficientsCp,q @which parametrize the contribu
tions }2 1

2 (a0 /c)p1qN 0
2pJ 0

2q to E0 /m0c2# are given by

C3,152D̂, C4,052B̂,

C3,352F̂, C4,253D̂2,

C5,152~4B̂D̂1Ê!, C6,05
1

4
~5B̂212Ĉ!. ~3.20!

Here, the dimensionless quantitiesB̂,Ĉ,D̂,Ê,F̂ are the
GM0-rescaled versions of the coefficients of Eq.~3.13!,
given by replacing theai ’s by âi in Eqs.~3.14!. For instance,
B̂5b̂127/8â15b̂117/4, etc.

IV. RELATING THE ‘‘REAL’’ AND THE ‘‘EFFECTIVE’’
ENERGY LEVELS, AND DETERMINING

THE EFFECTIVE METRIC

We still have to define the precise rules by which we w
to relate the real two-body problem to the effective one-bo
one. If we think in quantum terms, there is a natural cor
spondence betweenN andN0 , andJ and J0 , which are
08400
y
-

quantized in units of\. It is therefore very natural to requir
the identification

N5N0 , J5J0 , ~4.1!

between the real action variables and the effective ones,
we will do so in the following. What isa priori less clear is
the relation between the real masses and energies,m1 , m2 ,
Ereal

R 5(m11m2)c21Ereal
NR , and the effective ones,m0 , M0 ,

E05m0c21E 0
NR. The usual non-relativistic definition of a

effective dynamics associated with the relative motion o
~Galileo-invariant! two-body system introduces an effectiv
particle whose positionq0 is the relative position,q05q1

2q2 , whose inertial massm0
NR is the ‘‘reduced’’ massm

[m1m2 /(m11m2), and whose potential energy is the p
tential energy of the system,Veff(q0)5Vreal(q12q2). In the
present case of a gravitationally interacting two-body s
tem, withVreal

NR52Gm1m2 /uq12q2u, this would determine

m0
NR5m, and M0

NR5m11m2[M , ~4.2!

such that a real5Gm1m25a05GM0
NRm0

NR. The non-
relativistic identifications~4.2! are, however, paradoxica
within a relativistic framework, even if they are modified b
‘‘relativistic corrections,’’ so that, say,m05m1O(c22),
M05M1O(c22), because the reference level~and accumu-
lation point forN,J→`! of the real relativistic levels~2.15!
will be the total rest-mass-energyMc2, and will therefore be
completely different from the reference levelm0c2.mc2 of
the effective relativistic energy levels. This difference in t
relativistic reference energy level shows that, while it is ve
natural to require the straightforward identifications~4.1! of
the action variables, the mapping betweenEreal andE0 must
be more subtle.

One mighta priori think that the most natural relativisti
generalization of the usual non-relativistic rules for defini
an effective one-body problem consists in requiring that

E0~N0 ,J0!5Ereal~N,J!2c0 , ~4.3!

with a properly chosen constantc05Mc22m0c2 taking care
of the shift in reference level. The rule~4.3! is equivalent to
requiring the identification of the ‘‘non-relativistic’’ Hamil-
tonians~with subtraction of the rest-mass contribution!

H0
NR~q8,p8!5H real

NR~q,p!, ~4.4!

where the canonical coordinates in each problem mus
mapped@because of the identification~4.1!# by a canonical
transformation,

(
i

pidqi5(
i

pi8dq8 i1dg~q,q8!, ~4.5!

with some ‘‘generating function’’g(q,q8).
We have explored the naive identification~4.3!, or ~4.4!,

and found that it was unsatisfactory. Indeed, one finds th
is impossibleto require simultaneously that~i! the energy
levels coincide modulo an overall shift~4.3!, ~ii ! the effec-
tive massm0 coincides with the usual reduced massm
6-6
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5m1m2 /(m11m2), and~iii ! the effective metric~3.3! depends
only onm1 andm2 . @This impossibility comes from the fac
that the requirement~4.4! is a very strong constraint whic
imposes more equations than unknowns.# If one insists on
imposing the naive identification~4.3!, there is a price to
pay: one must drop at least one of the requirements~ii ! or
~iii !. Various possibilities are discussed in the Appendixes
this paper. One possibility is to drop the requirement t
m05m. As discussed in Appendix A, we find that there is
unique choice of masses in the effective problem, name

m05mj22, GM05GMj3, ~4.6!

with

j25
1

5
@2A100130n14n22151n#, ~4.7!

which is compatible with the requirements~i! and~iii ! above.
However, we feel that it is quite unnatural to introduce
effective massm0 which differs from m even in the non-
relativistic limit c→1`. We feel also that this possibility is
so constrained that it is only available at the 2PN level a
will not be generalizable to higher post-Newtonian orders

A second~formal! possibility is to introduce some energ
dependence, either inm0 , say

m05mF11b1

E 0
NR

mc2 1b2S E 0
NR

mc2D 2

1¯G , ~4.8!

or in the effective metric~3.3!. Namely, the various coeffi
cientsa1 ,b1 ,a2 ,b2 ,a3 ,... in Eq.~3.4! can be expanded as

a1~E0!5a1
~0!1a1

~2!
E 0

NR

m0c2 1a1
~4!S E 0

NR

m0c2D 2

1¯ , ~4.9!

etc. These possibilities are discussed, for completenes
Appendix B.

Though the trick of introducing an energy dependence
~both! m0 and the effective potential has been advocated,
used, in the quasi-potential approach of Todorov and
workers@3,4#, we feel that it is unsatisfactory. Conceptuall
it obscures very much the nature of the mapping between
two problems, and, technically, it renders very difficult t
generalization~we are interested in! to the case where radia
tion damping is taken into account~and where the energy i
no longer conserved!. We find much more satisfactory t
drop the naive requirement~4.3!, and to replace it by the
more general requirement that there exist a certain one
one mapping between the real energy levels and the effec
ones, say

E0~N0 ,J0!5 f @Ereal~N,J!#. ~4.10!

In explicit, expanded form, the requirement~4.10! yields a
deformed version of Eq.~4.3!:

E 0
NR

m0c2 5
Ereal

NR

mc2 F11a1

Ereal
NR

mc2 1a2S Ereal
NR

mc2D 2

1¯G . ~4.11!
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Here, we assume that the standard identification~4.3! holds
@together withm05m1O(c22)# in the non-relativistic limit
c→`.

We are going to show that thea priori arbitrary function
f , i.e. the parametersa1 ,a2 ,..., can beuniquely selected~at
the 2PN level! by imposing the following physically natura
requirements:~a! the mass of the effective test particle coi
cides with the usual reduced mass,

m05m, ~4.12!

and ~b! the linearized ~‘‘one-graviton-exchange’’! effective
metric coincides with the linearized Schwarzschild met
with massM[m11m2 , i.e.

a1522GM, b152GM. ~4.13!

Note that the requirement~4.12! is actually imposed by di-
mensional analysis as soon as one requiresm05m
1O(c22). Indeed, as we bar any dependence on the ene
it is impossible to write any correction termsO(c22) in the
link betweenm0 andm. The requirement~4.13! is very natu-
ral when one thinks that the role of the effective metric is
reproduce, at all orders in the coupling constantG, the in-
teraction generated by exchanging gravitons between
massesm1 and m2 . The ‘‘one-graviton-exchange’’ interac
tion ~linear in Gm1m2! depends only on the~Lorentz-
invariant! relative velocity and corresponds to a lineariz
Schwarzschild effective metric in the test-mass limitn→0.
As the coefficient2 1

2 a1 is fixed~by dimensional analysis, a
above! to its non-relativistic value2 1

2 a1m05GM0m0
5Gm1m2 , it is very natural not to deform the coefficientb1
by n-dependent corrections.

Let us now prove the consistency of the requireme
~4.12!, ~4.13! and determine the energy mappingf . We can
start from the result~3.13!, in which one replacesE 0

NR by the
expansion~4.11!. This leads again to an expression of t
form ~3.13!, with E 0

NR replaced byEreal
NR . One can simplify

this expression by working with scaled variables:

Î R
0[

I R
0

a0
, Î R

real[
I R

real

a
[ i r , E0[

E 0
NR

m0
, Ereal[

Ereal
NR

m
,

j 0[
J0

a0
, j [

J
a

. ~4.14!

Here a0[GM0m0 and a[GMm[Gm1m2 as above. We
use also the scaled metric coefficientsâi andb̂i of Eq. ~3.18!.
Let us note, in passing, that, very generally, the dimensi
less quantityÊ0 /c2[E0 /(m0c2)511c22E0 is expressible
entirely in terms of the dimensionless scaled action variab
Î a

0/c5I a
0/(a0c) and of the dimensionless scaled metric co

ficients âi ,b̂i . @This scaling behavior can be proved ve
easily by scaling from the start the effective actionS05
2*m0cds0

eff52a0c*dŝ0
eff with dŝ0

2[(GM0)22ds0
2, and by

using scaled coordinates:R̂5R/GM0 , t̂5t/GM0 .#
Let us now make use of the assumptionsm05m and

GM0[2 1
2 a15GM ~so thata05GM0m05GMm5a!. But
6-7
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let us not yet assume the second equation~4.13!; i.e., let us
assumeâ1[22, but let us not yet assume any value forb̂1
[b1 /GM0[b1 /GM. Within these assumptions, the scal
version of the result~3.13!, with E 0

NR replaced by Eq.~4.11!,
reads

Î R
0
„E0~Ereal!, j 0…52 j 01

1

A22Ereal
F Â1B̂8

Ereal

c2

1Ĉ8S Ereal

c2 D 2G
1

1

c2 j 0
F D̂1Ê

Ereal

c2 G1
1

c4 j 0
3 F̂,

~4.15!

where

Â52
1

2
â151, B̂85

7

4
1b̂12

a1

2
,

Ĉ85
19

32
1

b̂1

4
1

a1

2 S b̂11
7

4D1
3

8
a1

22
a2

2
,

~4.16!

and whereD̂, Ê and F̂ are obtained from the expression
~3.14! by the replacementsai→âi , bi→b̂i ~with â1522!.
Finally, identifying @ I R

0(E0 ,J0)#J05Jreal

E05 f (Ereal) with I R(Ereal,Jreal)

or, equivalently, Î R
0
„E0(Ereal), j 0… with Î R(Ereal, j 0) yields

five equations to be satisfied, namely the equations sta
that B̂8, Ĉ8, D̂, Ê and F̂ coincide with the correspondin
coefficients in Eq.~2.14!. The explicit form of these equa
tions is

7

4
1b̂12

a1

2
5

15

4
2

n

4
, ~4.17!

19

32
1

b̂1

4
1

a1

2 S b̂11
7

4D1
3

8
a1

22
a2

2
5

35

32
1

15

16
n1

3

32
n2,

~4.18!

22
â2

2
1

b̂1

2
53, ~4.19!

42â21b̂12
b̂1

2

8
1

b̂2

2
5

15

2
23n, ~4.20!

623â21
â2

2

8
2

â3

2
1b̂12

1

4
â2b̂12

b̂1
2

16
1

b̂2

4
5

35

4
2

5

2
n.

~4.21!

Note that the subsystem made of the two equations~4.17!,
~4.18! ~corresponding toB̂8 and Ĉ8! contains the three un
knowns b̂1 ,a1 ,a2 , while the three equations~4.19!–~4.21!
~corresponding toD̂, Ê and F̂! contain the unknownsb̂1 ,
08400
ng

b̂2 , â2 , â3 . In this section we shall consider only the fir
~‘‘ BC’’ ! subsystem, leaving the ‘‘DEF’’ system to the next
section.

It is easily seen that theBC subsystem would admit no
solution inb̂1 if we were to imposea15a250. This proves
the assertion made above that one needs a non-trivial en
mappingE05 f (Ereal). On the other hand, if we introduce th
two free parametersa1 ,a2 , the BC subsystem becomes a
indeterminate system of two equations for three unknow
As argued above, it is physically very natural to impose t
the linearized effective metric coincide with the lineariz
Schwarzschild metric, i.e. that

b̂152. ~4.22!

Then theBC system~4.17!,~4.18! admits the unique solution

a15
n

2
, a250. ~4.23!

This solution corresponds to the link

E 0
NR

m0c2 5
Ereal

NR

mc2 S 11
n

2

Ereal
NR

mc2D , ~4.24!

which is equivalent to

E0

m0c2 [
Ereal

2 2m1
2c42m2

2c4

2m1m2c4 . ~4.25!

Remarkably, the map~4.25! between the real total relativisti
energyEreal5Mc21Ereal

NR , and the effective relativistic en
ergy E05m0c21E 0

NR coincides with the one introduced b
Brézin, Itzykson and Zinn-Justin@1#, which maps very sim-
ply the one-body relativistic Balmer formula onto the tw
body one~in quantum electrodynamics!. The same map was
also recently used by Damour, Iyer and Sathyaprakash@21#.
There it was emphasized that the functionw(s) of the Man-
delstam invariants5Ereal

2 appearing on the right-hand sid
~RHS! of Eq. ~4.25! is the most natural symmetric functio
of the asymptotic1 4-momentap1

m ,p2
m of a two-particle sys-

tem which reduces, in the test-mass limitm2!m1 , to the
energy ofm2 in the rest-frame ofm1 . Indeed~setting here
c51 for simplicity!,

w~s![
s2m1

22m2
2

2m1m2
5

2~p11p2!22m1
22m2

2

2m1m2
52

p1•p2

m1m2
.

~4.26!

Finally, we have twoa priori independent motivations fo
using the functionw(s), i.e. the link~4.25!, to map the real
two-body energy onto the effective one-body one:~i! the
simplicity, and the symmetry, of the expression~4.26! which
generalizes the test-mass conserved energyE0 /m05

1We consider here scattering states. By analytic continuation is,
the functionw(s) is naturally expected to play a special role in th
energetics of two-body bound states.
6-8
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2Kmp0
m/m0 ~whereKm is the Killing vector defined by the

time direction of the background field! ~see@21#!, and~ii ! the
fact that it corresponds to a linearized effective metric co
ciding with the linearized Schwarzschild metric. Actuall
these two facts are not really independent, because~as dis-
cussed in@1# and@2#! they correspond heuristically to sayin
that the ‘‘effective interaction’’ is the interaction felt by an
of the two particles in the rest frame of the other particle

Summarizing, the rules we shall assume for relating
real two-body problem to the effective one-body one
Eqs.~4.1! @or equivalently the condition~4.5! that the phase-
space coordinates be canonically mapped# and Eq.~4.25!.

V. EFFECTIVE ONE-BODY METRIC AND THE
DYNAMICS IT DEFINES

Having specified the rules linking the real two-body pro
lem to the effective one-body one, we can now proceed
the determination of the effective metric~at the 2PN level!.
We shall work in Schwarzschild coordinates:

dseff
2 52A~R!c2dt21B~R!dR21R2~du21sin2 udw2!,

~5.1!

with A(R) andB(R) constructed as expansions of the for
~3.4!. It will be useful to rewrite also the effective metric i
the form

dseff
2 52A~R!c2dt21

D~R!

A~R!
dR21R2~du21sin2 udw2!,

~5.2!

in which we factorize, in the manner of Schwarzschild,g00
21

in front of thedR2 term, and consider that, besidesA(R), the
second function constructed as an expansion in 1/R is

D~R!5A~R!B~R!511
d1

c2R
1

d2

c4R2 1¯ , ~5.3!

where

d15a11b1 , d25a21a1b11b2 . ~5.4!

To determine the effective metric, i.e. the coefficientsâi

and b̂i or, equivalently,âi and d̂i[di /(GM) i , we insert the
known values ofb̂1 , a1 and a2 ~namely b̂152, a15n/2,
a250! into the remaining equations~4.19!–~4.21! ~‘‘ DEF
system’’!. This yields three equations for the three unknow
â2 , b̂2 and â3 . The unique solution of thisDEF system
reads

â250, â352n, b̂25426n. ~5.5!

In other words, our natural assumptions~4.12!,~4.13! have
led us uniquely to the simple energy map~4.25! and to an
effective one-body metric given by

A~R!512
2GM

c2R
12nS GM

c2RD 3

1¯ , ~5.6!
08400
-

e
e

-
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B~R!511
2GM

c2R
1~426n!S GM

c2RD 2

1¯ ,

~5.7!

D~R!5126nS GM

c2RD 2

1¯ . ~5.8!

The simplicity of the final results~5.6!–~5.8! is striking. The
effective metric ~5.2! is a simple deformation of the
Schwarzschild metric@As(R)5122GM/c2R, Ds(R)51#
with deformation parametern. Note also that there are n
n-dependent corrections toA(R) at the 1PN level, i.e. no
n(GM/c2R)2 contribution toA(R). The first n-dependent
corrections enter at the 2PN level. Remembering that
~2PN! effective metric fully encodes the information con
tained in the complicated 2PN expressions~2.14! or ~2.15!, it
is remarkable that the metric coefficients~5.6!–~5.8! are so
simple. The previous approach of Ref.@4# led to much more
complicated expressions at the 1PN level~to which it was
limited!.

In this paper, we propose to trust the physical con
quences of the effective metric~5.2!, with A(R) given by Eq.
~5.6! andD(R) given by Eq.~5.8!, even in the region where
R is of order of a few timesGM/c2. Note that even in the
extreme case wheren51/4 and R.2GM/c2 the
n-dependent additional terms entering the effective me
remain relatively small: indeed, in this case,dnA(R)
52n(GM/c2R)351/16 and 2dnD(R)56n(GM/c2R)2

53/8. We expect, therefore, that it should bea fortiori pos-
sible to trust the predictions of the effective metric~5.2! near
the innermost stable circular orbit, i.e. aroundR.6GM/c2

@wherednA(R).231023 and 2dnD(R).431022#. Note
that this nice feature of having only a small deformation
the Schwarzschild metric, even whenn51/4, is not shared
by the ‘‘hybrid’’ approach of Kidder, Will and Wiseman
@22#. Indeed, as emphasized in Ref.@21#, then deformations
considered in the hybrid approach are, for some coefficie
larger than unity whenn51/4. This is related to the fac
pointed out by Wex and Scha¨fer @23,24# that, by applying the
hybrid approach of@22# to the Hamiltonian, instead of the
equations of motion, one gets significantly different pred
tions.

Let us note also that, if we decide to write the effecti
metric in the form~5.2!, the existence of a simple zero in th
function A(R), say A(RH)50, implies @if D(RH)Þ0, and
D(R).0 for R.RH# that the hypersurfaceR5RH is ~like in
the undeformed Schwarzschild case! a regular~Killing ! ho-
rizon. As usual, one can define Kruskal-like coordinates
see explicitly the regular nature of the horizonR5RH ~made
of two intersecting null hypersurfaces!. In our case, one
checks easily that the functionA2PN(R) defined by the first
three terms on the RHS of Eq.~5.6! admits a simple zero2 at
someRH(n), when 0<n< 1

4 . The positionRH(n) of this

2We consider here only the zero ofA2PN(R) which is continuously
connected to the usual horizonRH

S52GM/c2 whenn→0.
6-9
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‘‘effective horizon’’ smoothly, and monotonically, evolve
with the deformation parametern between RH(0)
52GM/c2 and

RH~1/4!.0.9277~2GM/c2!. ~5.9!

This relatively small change of the horizon toward a sma
value, i.e. a smaller horizon area~to quote an invariant mea
sure of the location of the horizon!, suggests that the dynam
ics of trajectories in the effective metric will also be only
small deformation of the standard Schwarzschild case.

One of the main aims of the present work is indeed
study the dynamics~and the energetics! in the effective met-
ric ~5.2!. In particular, as gravitational radiation damping
known to circularize binary orbits, we are especially inte
ested in studying the stable circular orbits in the effect
metric. A convenient tool for doing this is to introduce a
effective potential@28,29#. Note that the Hamilton-Jacob
equation~3.9! yields

S E0

m0c2D 2

5WJ0
~R!1

A~R!

B~R! S PR

m0cD 2

>WJ0
~R!,

~5.10!

where PR[]Seff /]R is the effective radial momentum, an
where the ‘‘effective radial potential’’WJ0

(R) is defined as

WJ0
~R![A~R!F11

~J0 /m0c!2

C~R!R2 G . ~5.11!

We read also from Eq.~5.10! the relativistic effective Hamil-
tonian

H0
R~R,PR ,Pw!

5m0c2AA~R!F11
PR

2

m0
2c2B~R!

1
Pw

2

m0
2c2C~R!R2G ,

[m0c2AWPw
~R!1

A~R!

B~R! S PR

m0cD 2

. ~5.12!

The coordinate angular frequency along circular orbits is
tained by differentiating the Hamiltonian, that is

v0[S dw

dt D
circ

5S ]H0
R~R,PR ,Pw!

]Pw
D

PR50

, ~5.13!

which gives, explicitly~usingPw5J0!,

v05
J0

m0C~R!R2

AA~R!

A11
J 0

2

m0
2c2C~R!R2

. ~5.14!

Equations~5.11! and ~5.14! are valid in an arbitrary radia
coordinate gauge, but we shall use them in the Schwa
child gauge where the metric coefficientC(R)[1. Note that
W(R) and v0 then depend only on the metric coefficie
A(R). In dimensionless scaled variablesR̂[c2R/(GM), j 0
08400
r

o

-
e

-

s-

[cJ0 /(GMm), v̂0[GMv0 /c3 ~in our caseM05M and
m05m!, the effective potential and the orbital frequen
~along circular orbits! are quite simple:

Wj 0
~R̂!5A~R̂!F11

j 0
2

R̂2G ,

v̂05
j 0

R̂2

AA~R̂!

A11
j 0
2

R̂2

. ~5.15!

If we define the 2PN-accurateA(R) by the straightforward
truncation of Eq.~5.6!, namely

A2PN~R̂!512
2

R̂
1

2n

R̂3
; ~5.16!

Wj 0
is a fifth-order polynomial inu[1/R̂[GM/(c2R). As

the analytical study of the extrema ofWj 0
is rather compli-

cated, we have used a numerical approach. Whenn varies
between 0 and 1/4,Wj 0

evolves into a smoothly deforme
version of the standard Schwarzschild effective potential.
illustrate this fact, we plot, in Fig. 1,Wj 0

(R̂) for n5 1
4 and

for various values of the dimensionless angular momen
j 0 . Note that the latter quantity coincides~in view of our
rules! with the corresponding real two-body dimensionle
angular momentumj :

j 0[
cJ0

GM0m0
5

cJreal

GMm
[ j . ~5.17!

FIG. 1. The effective radial potentialWj (R) ~at the 2PN level
and forn51/4! versus the dimensionless radial variablec2R/(GM)
for three different values of the dimensionless angular momen
j 5cJreal/(GMm). Note that the effective radial potential tends
1 for R→`. The stable circular orbits are located at the minima
the effective potential and are indicated by the solid circles. T
innermost stable circular orbit corresponds to the critical valuej * .
In the case of thej 1 curve the orbit of a particle with energyE0

R

5 Ê0 is an elliptical rosette.
6-10
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~Note that our definition of thej ’s differs by a factor ofc
from the one used in the previous section.!

As usual, because of the inequality~5.10!, when j and
Ê0[E0 /(m0c2) are fixed, the trajectory of a particle follow
ing a geodesic in the effective metric~5.2! can be qualita-
tively read in Fig. 1. For instance, in the case illustrated
the j 1 curve ~E0

R[ Ê0 line!, the orbit will be an elliptical
rosette, with the radial variable oscillating between a mi
mum and a maximum~solid line in Fig. 1!. The stable cir-
cular orbits are located at the minima of the effective pot
tial ~the maxima being unstable circular orbits!. The ISCO
corresponds to the critical valuej * of the angular momen
tum where the maximum and the minimum of the effect
potential fuse together to form an horizontal inflection poi

]Wj
*

]R̂*

505
]2Wj

*

]R̂
*
2

. ~5.18!

Let us, for comparison with our deformed case, recall
standard results for circular orbits in a Schwarzschild spa
time @28,29#. With the notation u[GM0 /c2R ~for a
Schwarzschild metric of massM0!, the location, orbital
frequency3 and energy of circular orbits are given, whenj
varies, by

u5
1

6 F12A12
12

j 2 G , ~5.19!

v̂S[
GM0

c3 v5u3/2, ~5.20!

ÊS[S E0

m0c2D S

5 j ~122u!u1/2. ~5.21!

The ISCO corresponds to the critical values

j
*
S 5A12, u

*
S 5

1

6
, v̂

*
S 5

1

6A6
, Ê

*
S 5A8

9
.

~5.22!

In the deformed Schwarzschild case defined by Eq.~5.16!,
the ISCO for the extreme casen5 1

4 is numerically found to
correspond to the values

j
*
2PN[S cJreal

GMm D
ISCO

53.40450.983j
*
S , ~5.23!

u0*
2PN[S GM

c2RD
ISCO

50.174951.049u
*
S , ~5.24!

3Here, as well as in Eqs.~5.25! and ~5.31! below, v denotes the
angular frequencydw/dt on a circular orbit ~in the equatorial
plane!.
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v̂0*
2PN[S GMv0

c3 D
ISCO

50.0723051.063v̂
*
S , ~5.25!

Ê0*
2PN[S E0

mc2D
ISCO

50.9404050.99744Ê
*
S . ~5.26!

Note that the Schwarzschild-coordinate radius of the eff
tive ISCO is~whenn51/4! RISCO55.718GM/c2, i.e. lower
than the standard Schwarzschild value 6GM/c2 correspond-
ing to the total massM5m11m2 . This is consistent with
the fact that the effective horizon was drawn in belo
2GM/c2 when n was turned on. Note, however, that th
three quantitiesu0

2PN, v0
2PN and E 0

2PN entering equations
~5.24!–~5.26! are mathematical quantities defined in theef-
fective problem, and not physical quantities defined in t
real problem~hence the subscript 0 added as a warning!. @By
contrast,j 2PN, Eq. ~5.23! is directly related to the real, two
body angular momentum.# For physical~and astrophysical!
purposes, we need to transform the information containe
Eqs.~5.24!–~5.26! into numbers concerning physical quan
ties defined in the real, two-body problem. For the ener
this is achieved~by definition! by using Eq.~4.25! to com-
pute the real, two-body total energyEreal. Explicitly, the so-
lution of Eq. ~4.25! is ~see also@21#!

Ereal5Mc2A112nS E02m0c2

m0c2 D . ~5.27!

We need also to transform the effective orbital frequen
v0 . This is easily done as follows. We know that the Ham
tonians of the real and effective problems are related b
mapping

H real~ I a
real!5h„H0~ I a

0!…, ~5.28!

wherea5R,u,w ~for the 3-dimensional problem!, and where
the functionh @the inverse of the functionf of Eq. ~4.10!# is,
in our case, explicitly defined by Eq.~5.27!. On the other
hand, we know that the action variables are identica
mapped onto each other:I a

05I a
real ~canonical transformation!.

The frequency of the motion of any separated degree of f
dom is given by the general formulasva

05]H0(I0)/]I a
0 ,

va
real5]H real(I

real)/]I a
real, where the Hamiltonians are con

sidered as functions of the canonically conjugate acti
angle variables (I a ,ua) ~remembering that for such inte
grable systems the Hamiltonian does not depend on theu’s!.
Therefore the frequencies of the real problem are all obtai
from the frequencies of the effective one by a commo
energy-dependent factor

va
real

va
0 5

dt0
dtreal5

dHreal

dH0
5

]h~H0!

]H0
. ~5.29!

In our case this ‘‘blueshift’’4 factor reads

4For bound states,v real.v0.
6-11
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FIG. 2. Variation withn ~at the 2PN level! of the ISCO values of the real non-relativistic energyEreal[ Êreal
NR[(Ereal2M c2)/mc2 ~on the

left! and of the real angular momentumj [cJreal/GMm ~on the right!, divided by the corresponding Schwarzschild valuesuESu[uÊS
NRu

512A8/9.0.05719 andj S5A12, respectively.
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va
real

va
0 5

dt0
dtreal5

1

A112n~E02m0c2!/m0c2
. ~5.30!

As indicated in Eqs.~5.29! and ~5.30! the same energy
dependent ‘‘blueshift’’ factor maps the effective and the r
times~along corresponding orbits!. Note that we have here
simple generalization of the spatial canonical transforma
(dp∧dq5dp0∧dq0) to the time domain (dH∧dt
5dH0∧dt0).

Applying the transformations~5.27! and~5.29!, we obtain
the physical quantities5 predicted by our effective 2PN me
ric, still in the extreme casen51/4,

v̂ real*
2PN 5S GM

c3 v realD
ISCO

51.079v̂
*
S 50.07340, ~5.31!

S Ereal
2PN2Mc2

mc2 D
ISCO

51.050~ Ê
*
S 21!520.06005.

~5.32!

We represent in Figs. 2 and 3 the variation withn of the
ISCO values of the real non-relativistic energy,Ereal[ Êreal

NR

[(Ereal2Mc2)/mc2, the real angular momentum,j
[cJreal/GMm, and of the quantity

z[S GM

c3 v realD 22/3

, ~5.33!

which is an invariant measure of the radial position of t
orbit, and which coincides with the scaled Schwarzsch

5In Eq. ~5.31!, v real5dEreal/dJreal is again the angular frequenc
on a circular orbit. It should not be confused with the radial~peri-
astron to periastron! frequencyvR for non-circular, rosette orbits.
08400
l

n

d

radius R̂5c2R/(GM) in the test-mass limitn→0. One
checks that our ISCO values respect the ‘‘black hole lim
Jreal,GE real

2 /c5, so that the system does not need to radi
a lot of gravitational waves in the final coalescence bef
being able to settle down as a black hole.

Let us now briefly compare our predictions with previo
ones in the literature. The first attempt to address the qu
tion of the ISCO for binary systems of comparable mas
was made by Clark and Eardley@30#. They worked only at
the 1PN level, and predicted that the ISCO should be sign
cantly more tightly bound than in the Schwarzschild ca
~with M05M5m11m2!: ECE

NR/mc2.20.1 when n51/4,
compared toESchwarz

NR /m0c25A8/921.20.0572. Blackburn
and Detweiler@31# used an initial value formalism~which is
only a rough approximation, even in the test-mass limit! to
predict an extremely tight ISCO whenn51/4: EBD

NR/mc2.
20.7. Kidder, Will and Wiseman~KWW! @22# were the first
to try to use the full 2PN information contained in th
Damour-Deruelle equations of motion~1.1! to estimate ana-
lytically the change of the ISCO brought by turning on
finite mass ration. They introduced a ‘‘hybrid’’ approach in
which one re-sums exactly the ‘‘Schwarzschild’’~n-

FIG. 3. ISCO values~at the 2PN level! of the quantity z
5(GMv real/c

3)22/3, divided by the Schwarzschild valuezS56,
versusn.
6-12
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FIG. 4. ISCO values~for n51/4! of the real non-relativistic energyE[ Êreal
NR , divided by the corresponding Schwarzschild valueES

[ ÊS
NR , versusz/zS . On the left we have compared our predictions at the 1PN level~j! and 2PN level~l! with the results obtained in@21#

~c! and@22# ~b!. The~* ! indicates the Schwarzschild predictions. The right panel is a magnification of the part of the left one in wh
analyze the robustness of our method by exhibiting the points~d! obtained by introducing in the effective metric reasonable 3PN and 4
contributions: (a48 ,a58)5(64,24), (64,0) and (64,14) in the notation of Eq.~5.34!.
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independent! terms in the equations of motion, and treats t
n-dependent terms as additional corrections. In contrast w
our present 2PN-effective approach~and also with the less
reliable previous studies@30,31#!, they predict6 that, whenn
increases, the ISCO becomes markedly less tightly bou
e.g.EKWW

NR /mc2.20.0377 whenn51/4. If their trend were
real, this would imply that, except for the very stiff equatio
of state of nuclear matter~leading to large neutron star radii!,
the final plunge triggered when the ISCO is reached by
inspiraling (1.4M (11.4M () neutron star binary would
probably take place before tidal disruption. However, b
the robustness and the consistency of the hybrid approac
@22# have been questioned. Wex and Scha¨fer @23# showed
that the predictions of the hybrid approach were not ‘‘r
bust’’ in that they could be significantly modified by appl
ing this approach to the Hamiltonian, rather than to the eq
tions of motion. Scha¨fer and Wex@24# further showed that
the predictions of the hybrid approach were not robust un
a change of coordinate system. Moreover, Ref.@21# has
questioned the consistency of the hybrid approach by po
ing out that the formal ‘‘n corrections’’ represent, in severa
cases, a very large~larger than 100%! modification of the
correspondingn-independent terms. This unreliability of th
hybrid approach casts a doubt on the ISCO estimates of
@25# which are based on hybrid orbital terms, and which u
only 1PN accuracy in most terms.

Damour, Iyer and Sathyaprakash~DIS! @21# have intro-
duced~at the 2PN level! another analytical approach to th
determination of the ISCO, based on the Pade´ approximants
of some invariant energy function@closely related to the en
ergy transformation~4.25!#. Their trend is consistent with th
one found in the present paper, namely a more tightly bo
ISCO: for n51/4, the Pade´ approximant approach predic
EDIS

NR /mc2.20.0653.

6We use here the values read in Figs. 3 and 4 of Ref.@22#: for E NR

and (m f)50.00963, which refer to a static ISCO without radiatio
damping.
08400
e
th

d:

n

h
of

-

a-

er

t-

ef.
e

d

Numerical methods have recently been used to try to
cate the ISCO for binary neutron stars@26,27#. However, we
do not think that thetruncationof Einstein’s field equations
~to a conformally flat spatial metric! used in these works is a
good approximation for close orbits. Indeed, at the 2PN
proximation, some numerically significant terms in the inte
action potential come from the transverse-traceless par
the metric@13,7,10#. Moreover, the~unrealistic! assumption
used in these works that the stars are corotating has prob
also a significant effect on the location of the ISCO by ad
ing both spin-orbit and spin-spin interaction terms.

This large scatter in the predictions for the location of t
ISCO for comparable masses poses the question of the
bustness’’ of our new, effective-action approach. The m
problem can be formulated as follows. Assuming that
effective-action approach~for the time-symmetric part of the
dynamics! makes sense at higher post-Newtonian levels,
‘‘exact’’ effective functionA(R) will read

A~R!5122S GM

c2RD12nS GM

c2RD 3

1na48S GM

c2RD 4

1na58S GM

c2RD 5

1¯ . ~5.34!

The question is then to know how sensitive is the location
the ISCO to the values of the~still unknown! coefficients
a48 ,a58 ,... . Oneshould have somea priori idea of the rea-
sonable range of values ofa48 ,a58 ,... . A rationale for decid-
ing upon the reasonable values ofa48 is the following. At the
2PN level, it is formally equivalent to use~with u
[GM/c2R! A2PN5122u12nu3 or the factorized form
A2PN8 5(122u)(112nu3). However, A2PN8 5A2PN24nu4

which corresponds toa48524. This suggests that24<a48
<14 is a reasonable range. We shall also consider24
<a58<14 as a plausible range. Note that both choices c
respond to having coefficients ofun which vary between21
and11 whenn51/4. The robustness of our effective-actio
6-13
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TABLE I. Summary of the ISCO values used in Fig. 4 (n51/4). Note that we give hereEreal
NR/Mc2, that

is the ratio between the energy that can be radiated in gravitational waves before the final plunge and
mass-energy initially available. The first row refers to the naive estimate defined by a test particle of mm
in a Schwarzschild spacetime of massM . We show also in the last column the solar-mass-scaled orb
frequencyf ( defined byf real5v real/(2p)[ f ((M ( /M ).

Method Ereal
NR/Mc2 z v̂ real f ( ~kHz!

‘‘Schwarzschild’’ 20.01430 6 0.06804 2.199
Eff. action 1PN 20.01440 5.942 0.06904 2.231
Eff. action 2PN 20.01501 5.704 0.07340 2.372
Eff. action (a48 ,a58)5(24,24) 20.01462 5.891 0.06994 2.260
Eff. action (a48 ,a58)5(24,0) 20.01469 5.854 0.07061 2.267
Eff. action (a48 ,a58)5(24,14) 20.01476 5.815 0.07131 2.304
Eff. action (a48 ,a58)5(14,24) 20.01530 5.583 0.07582 2.450
Eff. action (a48 ,a58)5(14,0) 20.01540 5.531 0.07688 2.484
Eff. action (a48 ,a58)5(14,14) 20.01551 5.475 0.07806 2.522
DIS @21# 20.01633 5.036 0.08850 2.860
KWW @22# 20.00943 6.49 0.0605 1.96
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predictions against the introduction ofa48 anda58 is illustrated
in Fig. 4. The numerical values used in Fig. 4 are exhibi
in Table I.

Figure 4 plots the ratioE/uESu where E[Ereal
NR/mc2

[(Ereal2Mc2)/mc2 at the ISCO ~for n51/4! and ES

5A(8/9)21.20.05719 is the corresponding ‘‘Schwarz
child’’ value, versusz/zS wherez is defined in Eq.~5.33!,
and wherezS56. This figure compares the predictions
Ref. @22#, of Ref. @21# and of our new, effective-action pre
diction ~at the 2PN level!. We have also added what wou
be the prediction of the effective-action approach at the 1
level. Note that, at the 1PN level, the functionA(R), Eq.
~5.6!, exactly coincides with the Schwarzschild one, but t
the energy mapping~4.24! introduces a slight deviation from
the test-mass limit. Figure 4 exhibits also the points obtai
when considering (a48 ,a58)5(64,24), (64,0) and (64,
14). We see in this figure that the main prediction of t
present approach@a prediction already clear from the fa
that the 2PN contribution toA(R) is fractionally small#,
namely that the ISCO is only slightly more bound than in t
test-mass limit, is robust under the addition of higher P
contributions. The sensitivity toa48 of the binding energy is
only at the;3% level~for a48564!, while its sensitivity to
the 4PN coefficienta58 is further reduced to the;0.6% level
~for a58564!. Still, it would be important to determine th
3PN coefficienta48 to refine the determination of the ISC
quantities.

VI. EXPLICIT MAPPING BETWEEN THE REAL
PROBLEM AND THE EFFECTIVE ONE

The basic idea of the effective one-body approach is
map the complicated and badly convergent PN expansio
the dynamics of a two-body system onto a simpler auxili
one-body problem. We have shown in the previous secti
that by imposing some simple, coordinate-invariant requ
ments, we could uniquely determine that the one-body
namics was defined~at the 2PN level! by geodesic motion in
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a certain deformed Schwarzschild spacetime. The latter
namics can be solved exactly by means of quadratures@e.g.
by using the Hamilton-Jacobi method: see Eqs.~3.7!–
~3.12!#. Note that this exact solution defines a particular
summation of the original 2PN-expanded dynamics. T
hope ~which we tried to substantiate in Sec. V! is that this
re-summation captures, with sufficient approximation,
crucial non-perturbative aspects of the two-body dynam
such as the existence of an ISCO.

As all the current work about the equations of moti
and/or the gravitational-wave radiation of binary systems
done in some specific coordinate systems~harmonic or
ADM !, we need to complete the~coordinate-invariant! work
done in the previous sections by explicitly constructing t
transformation which maps the variables entering the eff
tive problem onto those of the real one. We have alrea
mentioned that the transformation between harmonic
ADM coordinates has been explicitly worked out in Re
@10# and @11#. Here, we shall explicitly relate the ADM
phase-space variablesQ5q12q2 andP5]S/]Q of the rela-
tive motion~as defined in Sec. II above! to the coordinate
and momenta of the effective problem. More precisely,
shall construct the map

q8 i5Q i~qj ,pj !, pi85Pi~qj ,pj !, ~6.1!

transforming thereducedADM relative position and mo-
menta (qi ,pi), defined in Eq.~2.4!, into the corresponding
reduced Cartesian-likeposition and momenta (q8 i ,pi8) ca-
nonically defined by the~Schwarzschild-gauge! effective ac-
tion ~3.2!. In other words,

q8 i5
Q8 i

GM
, pi85

Pi8

m
, ~6.2!

with Q815R sinu cosw, Q825R sinu sinw, Q835R cosu,
and Pi85]Seff /]Q8i. Here, the ‘‘effective’’ coordinates
R,u,w are those of Eq.~5.1! ~in Schwarzschild gauge! and
6-14
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Seff52*mcdseff . The corresponding effective Hamiltonia
~with respect to the coordinate timet of the effective prob-
lem! is easily found by solvinggeff

mn(Q8)Pm8Pn81m0
2c250 in

terms of the energyE052P08 . Transforming the usual polar
coordinate result@equivalent to Eq.~5.10!# into Cartesian
coordinates leads to

Heff~Q8,P8!

5mc2AA~Q8!F11
~n8•P8!2

m2c2B~Q8!
1

~n83P8!2

m2c2 G , ~6.3!

whereQ8[Ad i j Q8 iQ8 j5R, wheren8 i5Q8 i /Q8 is the unit
vector in the radial direction, and where the scalar and ve
products are performed as in Euclidean space. When sca
the effective coordinates as in Eq.~6.2!, we need to scale
correspondingly the time variable, the Hamiltonian and
action of the effective problem:

t̂[
t

GM
, Ĥeff[

Heff

m
, Ŝeff[

Seff

mGM
. ~6.4!

Note that the effective Hamiltonian~6.3! contains the rest-
mass contribution. The scaled version of Eq.~6.3! simplifies
to

Ĥeff~q8,p8!

5c2AA~q8!F11
p82

c2 1
~n8•p8!2

c2 S 1

B~q8!
21D G ,

~6.5!

where q8[Ad i j q8 iq8 j5R/GM and n8 i[q8 i /q8. As was
mentioned above the identification of the action variables
the real and effective problems guarantees that the two p
lems are mapped by a canonical transformation, i.e. a tr
formation such that Eq.~4.5! is satisfied. It will be more
convenient to replace the generating functiong(q,q8) of Eq.
~4.5! by the new generating functionG̃(q,p8)5g(q,q8)
1pi8q8 i such that

pidqi1q8 idpi85dG̃~q,p8!. ~6.6!

We can further separateG̃(q,p8) into G̃id(q,p8)[qipi8 ,
which generates the identity transformation, and an ad
tional ~perturbative! contributionG(q,p8):

G̃~q,p8!5qipi81G~q,p8!,

G~q,p8!5
1

c2 G1PN~q,p8!1
1

c4 G2PN~q,p8!. ~6.7!

Equations~6.6!,~6.7! yield the link

q8 i5qi1
]G~q,p8!

]pi8
, pi85pi2

]G~q,p8!

]qi . ~6.8!

Note that Eqs.~6.8! are exact and determineq8 and p in
function of q and p8. We have, however, written them in
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form appropriate for determining, by successiveiteration, q8
and p8 in function of q and p. If needed~e.g. for applica-
tions of the present work to the direct numerical calculat
of the effective dynamics in the originalq,p coordinates!, it
is numerically fast to iterate Eqs.~6.8! to get Eqs.~6.1!. For
our present purpose we need an explicit analytical appr
mation of Eqs.~6.1! at the 2PN level. Remembering thatG
starts at order 1/c2, one easily finds that

q8 i5qi1
]G~q,p!

]pi
2

]G~q,p!

]qj

]2G~q,p!

]pj]pi
1OS 1

c6D ,

pi85pi2
]G~q,p!

]qi 1
]G~q,p!

]qj

]2G~q,p!

]pj]qi 1OS 1

c6D .

~6.9!

In the terms linear inG(q,p) one needs to use the fu
(1PN12PN) expression ofG(q,p), while in the quadratic
terms it is enough to useG1PN/c2.

To determine the generating functionG(q,p) we need to
write the equation stating that, under the canonical trans
mation~6.8!, the effective HamiltonianHeff(q8,p8) is mapped
into a function ofq and p which is linked to the real~rela-
tivistic! Hamiltonian H real

R (q,p) by our rule ~4.25!. If we
write this link in terms of the reduced effective Hamiltonia
~6.5!, and of the reduced, non-relativistic real Hamiltoni
Ĥ real

NR[(H real
R 2Mc2)/m @the same asĤ appearing in Eqs.

~2.5!,~2.6! above#, it reads

11
Ĥ real

NR~q,p!

c2 S 11
n

2

Ĥ real
NR~q,p!

c2 D
5

1

c2 Ĥeff@q8~q,p!,p8~q,p!#. ~6.10!

Actually, we found it more convenient to work with th
square of Eq.~6.10!, so as to get rid of the square root
Ĥeff , Eq. ~6.5!. Hence, writing ~half! the square of Eq.
~6.10!, and Taylor-expandingĤeff@q8(q,p),p8(q,p)# using Eqs.
~6.7!–~6.9!, we get, at order 1/c4, the following partial dif-
ferential equation forG1PN(q,p):

]ĤNewt

]qi

]G1PN

]pi
2

]ĤNewt

]pi

]G1PN

]qi 5
n

2
p42~11n!

p2

q

1S 12
n

2D ~n•p!2

q
1S 11

n

2D 1

q2 , ~6.11!

where we have denoted the Newtonian Hamiltonian
ĤNewt[Ĥ05p2/221/q @see Eq.~2.6a!#. At order 1/c6, a
more complex calculation gives the partial differential equ
tion for G2PN(q,p),
6-15
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]ĤNewt

]qi

]G2PN

]pi
2

]ĤNewt

]pi

]G2PN

]qi

5
n

2
Ĥ0

31~11n!Ĥ0Ĥ21Ĥ4

2~213n!
~n•p!2

q2 2
n

q3 1
]R
]qi

]G1PN

]pi
2

]R
]pi

]G1PN

]qi

1
]G1PN

]qj

]2G1PN

]pj]pi

]ĤNewt

]qi 2
]G1PN

]qj

]2G1PN

]pj]qi

]ĤNewt

]pi

2
1

2

]G1PN

]pi

]G1PN

]pj

]2ĤNewt

]qi]qj

2
1

2

]G1PN

]qi

]G1PN

]qj

]2ĤNewt

]pi]pj
, ~6.12!

whereĤ2 and Ĥ4 are given by Eqs.~2.6b!,~2.6c!, while

R5
1

q
@~n•p!21p2#. ~6.13!

The partial differential equations~6.11! and ~6.12! have the
general form

]ĤNewt

]qi

]Gn

]pi
2

]ĤNewt

]pi

]Gn

]qi 5
qi

q3

]Gn

]pi
2pi

]Gn

]qi
5Kn~q,p!,

~6.14!

where, at each PN ordern51PN or 2PN, the RHS is a
known source termKn(q,p). Note that the LHS of Eq.
~6.14! is the Poisson brackets$ĤNewt,Gn% or, equivalently,
minus the time derivative ofGn along the Newtonian mo
tion. It is easily checked that the solution of Eq.~6.14! is
unique modulo the addition of terms generating a cons
time shift or a spatial rotation.@Indeed, the homogeneou
scalar solutions of Eq.~6.14! must correspond to the scala
constants of motion of the Keplerian motion:ĤNewt(q,p) and
(q3p)2.# If we require~as we can! thatG(q,p) change sign
whenq or ~separately! p change sign, the generating functio
is uniquely fixed. In particular, at 1PN level, by looking
the structure of the source terms, i.e. the RHS of Eq.~6.11!,
we can prove in advance thatG1PN must be of the form

G1PN~q,p!5~q•p!Fa1p21
b1

q G . ~6.15!

Inserting Eq.~6.15! into the equation to be satisfied, E
~6.11! gives a system of four equations for the two unkno
coefficientsa1 andb1 . Two of these equations give directl
the valuesa1 andb1 ,

a152
n

2
, b1511

n

2
, ~6.16!

while the two redundant equations
08400
nt

a12b15212n, 2a11b1512
n

2
~6.17!

are identically satisfied by the solution~6.16!.
Using these 1PN results we can go further and evalu

the 2PN-source termK2(q,p) in Eq. ~6.14!:

K2~q,p!52
n

8
~113n!p61

n

8
~2118n!

p4

q

2
n

4
~91n!

~n•p!2p2

q
1

3

8
n~813n!

~n•p!4

q

1
1

8
~22116n27n2!

p2

q2

1
1

8
~413n2!

~n•p!2

q2 1
1

4
~127n1n2!

1

q3 .

~6.18!

By looking at the structures in Eq.~6.18! we deduce that the
most general form ofG2PN is

G2PN~q,p!5~q•p!Fa2p41
1

q
„b2p21g2~n•p!2

…1
d2

q2G .
~6.19!

Inserting the ansatz~6.19! and the 1PN results in Eq.~6.12!,
we get again more equations than unknowns:

2a21
n

8
1

3

8
n250, a22b21

n

8
2n250,

4a21b223g21
9

4
n1

n2

4
50, 3g223n2

9

8
n250,

1

4
1b22d222n1

7

8
n250,

2
1

2
12b212d213g22

3

8
n250,

2
1

4
1d21

7

4
n2

n2

4
50. ~6.20!

As it should~in view of the work of the previous sections!
one finds that all the redundant equations can be satis
The final, unique solutions for the coefficientsa2 , b2 , g2
andd2 are

a25
n13n2

8
, b25

2n25n2

8
,

g25
8n13n2

8
, d25

127n1n2

4
. ~6.21!
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Finally, we give the explicit form of the canonical transformation between the coordinates (q,p) and (q8,p8) at the 2PN level
@see Eq.~6.9!#:

q8 i2qi5
1

c2 F S 11
n

2D qi

q
2

n

2
qip22npi~q•p!G

1
1

c4 FnS 11
n

8D qi~q•p!2

q3 1
n

4 S 52
n

2D qip2

q
1

3

2
nS 12

n

2D pi~q•p!

q

1
1

4
~127n1n2!

qi

q2 1
n

8
~12n!qip41

n

2
~11n!pip2~q•p!G , ~6.22!

pi82pi5
1

c2 F2S 11
n

2D pi

q
1

n

2
pip

21S 11
n

2D qi~q•p!

q3 G
1

1

c4 Fn8 ~2113n!pip
41

1

4
~3111n!

pi

q2 2
3

4
nS 31

n

2D pip
2

q

1
1

4
~22218n1n2!

qi~q•p!

q4 1
n

8
~102n!

qi~q•p!p2

q3

2
n

8
~1615n!

pi~q•p!2

q3 1
3

8
n~813n!

qi~q•p!3

q5 G . ~6.23!

Note that then→0 limit of Eq. ~6.22! givesq8 i5@111/(2c2q)#2qi which is ~as it should! the relation between ‘‘Schwarzs
child’’ ( q8) and ‘‘isotropic’’ (q) quasi-Cartesian coordinates in a Schwarzschild spacetime.~In this case,
ADM5isotropic.! As a check on Eqs.~6.22!,~6.23! we have verified that~at the 2PN level! q83p8 coincides withq3p.
@They should coincide exactly, when solving exactly Eqs.~6.8! with any~spherically symmetric! generating functionG(q,p).#
Let us quote, for completeness, the partial derivatives of the generating functionG5c22G1PN1c24G2PN, which must be used
to solve by successive iterations the exact equations~6.8! and determineq8 andp8 in terms ofq andp:

]G1PN~q,p!

]qi 52
n

2
pip

21S 11
n

2D pi

q
2S 11

n

2D qi~q•p!

q3 , ~6.24!

]G1PN~q,p!

]pi
52

n

2
qip21S 11

n

2D qi

q
2npi~q•p!, ~6.25!

]G2PN~q,p!

]qi 5
1

8
n~113n!pip

41
n

8
~225n!

pip
2

q
1

3

8
n~813n!

pi~q•p!2

q3

2
3

8
n~813n!

qi~q•p!3

q5 1
1

4
~127n1n2!

pi

q2 2
n

8
~225n!

qi~q•p!p2

q3

2
1

2
~127n1n2!

qi~q•p!

q4 , ~6.26!

]G2PN~q,p!

]pi
5

1

8
n~113n!qip41

n

8
~225 n!

qip2

q
1

3

8
n~813n!

qi~q•p!2

q3

1
1

4
~127n1n2!

qi

q2 1
n

2
~113n!pip2~q•p!1

n

4
~225n!

pi~q•p!

q
. ~6.27!
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VII. INCLUSION OF RADIATION REACTION EFFECTS
AND TRANSITION BETWEEN INSPIRAL

AND PLUNGE

In the preceding sections we have limited our attention
the conservative~time-symmetric! part of the dynamics of a
two-body system, i.e. the one defined, at the 2PN level,
neglectingAa

reacin Eq. ~1.1!. We expect that the separation
the dynamics in a conservative part plus a reactive p
makes sense also at higher PN orders~though it probably
gets blurred at some high PN level!. However, there exists, a
present, no algorithm defining precisely this separation. A
way we shall content ourselves here to working at the 2.5
level where this separation is well defined, as shown in
~1.1!. When dealing with the relative motion we find it con
venient to continue using an Hamiltonian formalism. Scha¨fer
@20,14,18# has shown how to treat radiation reaction effe
within the ADM canonical formalism. His result~at the
2.5PN level! is that it is enough to use as Hamiltonian for t
dynamics of two masses atime-dependentHamiltonian ob-
tained by adding to the conservative 2PN Hamilton
H2PN(q1 ,q2 ,p1 ,p2) the following ‘‘reactive’’ Hamiltonian:

H reac~q1 ,q2 ,p1 ,p2 ;t !52hi j
TTreac~ t !Fp1

i p1
j

2m1
1

p2
i p2

j

2m2

2
1

2
Gm1m2

~q1
i 2q2

i !~q1
j 2q2

j !

uq12q2u3 G ,
~7.1!

where

hi j
TTreac~ t !52

4

5

G

c5

d3Qi j ~ t !

dt3
, ~7.2!

Qi j denoting the quadrupole moment of the two-body s
tem,

Qi j ~ t !5 (
a51,2

maS qa
i qa

j 2
1

3
qa

2d i j D . ~7.3!

Note thathi j
TTreac in Eq. ~7.1! should be treated as a give

time-dependent external field, considered as being inde
dent of the canonical variablesqa ,pa . In other words, when
writing the canonical equations of motionq̇5]H tot /]p, ṗ5
2]H tot /]q, one should consider only the explicitq-p depen-
dence appearing in the square brackets on the RHS of
~7.1!. After differentiation with respect toq and p one can
insert the explicit phase-space expression of the third t
derivative ofQi j (t) @obtained, with sufficient precision, b
using the Newtonian-level dynamics, i.e. by computing a
peated Poisson bracket ofQi j (q,p) with HNewton(q,p)#.

Finally, we propose to graft radiation-reaction effects on
the non-perturbatively re-summed conservative dynamics
fined by our effective-action approach in the following wa
The total Hamiltonian for the relative motionQ,P in ADM
coordinates is

H tot~Q,P;t !5H real
improved~Q,P!1H reac~Q,P;t !, ~7.4!
08400
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where the ‘‘improved 2PN’’ Hamiltonian is that defined b
solving Eq.~4.25! for Ereal5H real

R , i.e.

H real
improved~Q,P!

Mc2

5A112nS Heff„Q8~Q,P!,P8~Q,P!…

mc2 21D , ~7.5!

on the RHS of which one must transform, by the canoni
transformation discussed in Sec. VI, the~exact! effective
Hamiltonian defined by Eq.~6.3!. In the latter, we propose to
use our current best estimates of the effective metric coe
cientsA(Q8),B(Q8), namely

A~Q8![12
2GM

c2Q8
12nS GM

c2Q8D
3

,

B~Q8![A21~Q8!F126nS GM

c2Q8D
2G .

~7.6!

On the other hand the ‘‘reactive’’ contribution to the tot
Hamiltonian~7.4! is the center of mass reduction~p152p2
5P, Q5q12q2! of Eq. ~7.1!.

In terms of reduced variables~q5Q/GM, p5P/m! and
of the non-relativistic reduced Hamiltonian,Ĥ real

NR[(H real
R

2Mc2)/m, our proposal reads

Ĥ tot
NR~q,p;t !5Ĥ real

NR improved~q,p!1Ĥ reac~q,p;t !, ~7.7!

with

Ĥ real
NR improved~q,p!

[
c2

n FA112nS 1

c2 Ĥeff„q8~q,p!,p8~q,p!…21D21G ,
~7.8!

where Ĥeff(q8,p8) is defined by inserting Eq.~7.6! into Eq.
~6.5!, and with

Ĥ reac~q,p;t !52hi j
TTreac~ t !F1

2
pipj2

1

2

qiqj

q3 G , ~7.9!

hi j
TTreac~ t !52

4

5c5

n

q2 F24~pinj1pjni !16ninj~n•p!

1
2

3
~n•p!d i j G , ~7.10!

whereni[qi /q. As explained above, the quantityhi j
TTreac(t)

should not be differentiated with respect toq and p when
writing the equations of motion
6-18
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FIG. 5. Inspiraling circular orbits in (q8,p8) coordinates including radiation reaction effects forn50.1 ~left panel! and n51/4 ~right
panel!. The location of the ISCO and of the horizon are indicated.
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q̇i5
]Ĥ real

NR improved~q,p!

]pi
1

]Ĥ reac
„q,p;hi j

TTreac~ t !…

]pi
,

ṗi52
]Ĥ real

NR improved~q,p!

]qi 2
]Ĥ reac

„q,p;hi j
TTreac~ t !…

]qi .

~7.11!

When inserting, after differentiation, Eq.~7.10!, the equa-
tions of motion ~7.11! become an explicit, autonomou
~time-independent! evolution equation in phase space:ẋ
5 f (x) wherex5(qi ,pi). From the study in Sec. V above o
the circular orbits defined by the exact, non-perturbat
Hamiltonian Heff , we expect that the combined dynami
~7.11! will exhibit a transition from inspiral to plunge whe
q5uqu ~which decreases under radiation damping! reaches
the image in theq-p phase space of the ISCO, studied abo
in q8,p8 coordinates. We have in mind here quasi-circul
inspiraling orbits~circularized by radiation reaction!, though,
evidently, our approach can be used to study all poss
orbits. We further expect that, whenn!1, the inspiral will
be very slow@the reaction Hamiltonian being proportional
n; see Eq.~7.10!# and therefore the transition to plunge w
be quite sharp and well located at the ISCO. Whenn51/4
the radiation reaction effects are numerically smallish,
not parametrically small at the ISCO, and the transition
plunge cannot be expected to be very sharp. These expe
behaviors are illustrated in Fig. 5.

For simplicity, we have computed the orbits exhibited
these figures inq8 space, neglecting the~formally 3.5PN!
effect of the (q,p)→(q8,p8) transformation on the reactiv
part of the equations of motion.@Thanks to the canonica
invariance of the Hamilton equations of motion, the cruc
conservative part of the evolution inq8,p8 space is simply
obtained from the HamiltonianĤ real

NR improved(q8,p8) defined
by keeping the variablesq8 andp8 on the RHS of Eq.~7.8!.#

Let us finally mention another possibility for incorpora
ing radiation reaction effects directly in the effective on
body dynamics. In theq-p coordinates the~2.5PN! reaction
Hamiltonian ~7.1! can be simply seen as due to perturbi
08400
e

e
,

le

t
o
ted

l

-

the Euclidean metricgi j
0 5d i j appearing in the lowest orde

Newtonian Hamiltonian (qab
i [qa

i 2qb
i )

HNewtonian~qa ,pa!5(
a

g0
i j paipa j

2ma
2 (

a,b

Gmamb

~gi j
0 qab

i qab
j !1/2,

~7.12!

by taking into account the near zone radiative field:

gi j .gi j
0 1hi j

TTreac~ t !, gi j .g0
i j 2hreac

i jTT~ t !. ~7.13!

By mapping back@through our (qp)↔(q8p8) link# the met-
ric perturbationhi j

TTreaconto the effective problem, one migh
try to incorporate reaction effects by defining a suitable ‘‘r
active’’ perturbation of our effective metric:

gmn~q8!5gmn
eff ~q8!1d reacgmn

eff ~q8!. ~7.14!

This approach might be useful for trying to go beyond t
2.5PN level discussed here and to define a ‘‘re-summe
version of reaction effects. Alternatively, if one has at on
disposal a more complete PN-expanded reactive force
pressed in the originalq coordinates@32#, one can, following
the strategy proposed in Eq.~7.4!, graft this improved~per-
turbative! reactive force onto the non-perturbatively im
proved conservative force defined by mapping back our
fective dynamics onto theq coordinates.

VIII. CONCLUSIONS

We have introduced a novel approach to studying the
dynamical evolution of a coalescing binary system of co
pact objects. This approach is based on mapping~by a ca-
nonical transformation! the dynamics of the relative motio
of a two-body system, with comparable massesm1 ,m2 , onto
the dynamics of one particle of massm5m1m2 /(m11m2)
moving in some effective metricdseff . When neglecting ra-
diation reaction, the mapping rules between the two pr
lems are best interpreted in quantum terms~mapping be-
tween the discrete energy spectrum of bound states!. They
involve a physically natural transformation of the ener
6-19
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axis between the two problems, stating essentially that
effective energy of the effective particle is the energy
particle 1 in the rest frame of particle 2~or reciprocally!; see
Eq. ~4.26!. The usefulness of this energy mapping was p
viously emphasized both in quantum two-body problems@1#
and in classical ones@21#.

Starting from the currently most accurate knowledge
two-body dynamics@6,7#, we have shown that, when ne
glecting radiation reaction, our rules uniquely determine
effective metric gmn

eff (q8) in which the effective particle
moves. This metric is a simple deformation of a Schwar
child metric of massM5m11m2 , with deformation param-
etern5m/M . Our suggestion is then todefine~as is done in
quantum two-body problems@1,3#! a particular non-
perturbative re-summation of the usual, badly converg
post-Newtonian-expanded dynamics by considering the
namics defined by the effective metric as exact. This defi
tion leads, in particular, to specific predictions for the ch
acteristics of the innermost stable circular orbit f
comparable-mass systems. In agreement with some prev
predictions~notably one based on Pade´ approximants@21#!,
but in disagreement with the predictions of the ‘‘hybrid
approach of Ref.@22#, we predict an ISCO which is mor
tightly bound than the usual test-mass-in-Schwarzschild o
The invariant physical characteristics of our predicted IS
are given in Eqs.~5.31! and~5.32!; see also Table I. Note in
particular that the binding energy at the ISCO is robus
predicted to beE real

NR.21.5%Mc2 ~for equal-mass systems
n51/4!, while the orbital frequency at the ISCO is nume
cally predicted to be~again forn51/4!

f ISCO52372 HzS M (

M D . ~8.1!

Note that this corresponds to;847 Hz for (1.4M ( ,1.4M ()
neutron star systems.

We have argued, by studying the effects of higher~time-
symmetric! post-Newtonian contributions, that our predi
tions for the characteristics of the ISCO are rather rob
~especially when compared to the scatter of previous pre
tions!. See Fig. 4 and Table I. We note, however, that kno
edge of the 3PN dynamics~currently in progress@19,33#!
would significantly reduce the present~2PN-based! uncer-
tainty on the knowledge of the effective metric.

The coordinate separation, in effective Schwarzschild
ordinates, corresponding to the ISCO isQ85R
.5.72GM/c2, i.e.;23.6 km for a (1.4M ( ,1.4M () neutron
star system@from our canonical transformation~6.8!, this
corresponds to an ADM-coordinate relative separation oQ
.4.79GM/c2#. This value is near the sum of the nomin
radii of ~isolated! neutron stars for most nuclear equations
state@34#. This suggests that the inspiral phase of coalesc
neutron star systems might terminate into tidal disruption~or
at least tidally dominated dynamics! without going through a
well-defined plunge phase. Fully relativistic 3D numeric
simulations are needed to investigate this question. We
that a positive aspect of having~as predicted here! a rather
low ISCO is that the end of the inspiral phase might well
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very sensitive to the nuclear equation of state, so that LI
and VIRGO observations might teach us something n
about dense nuclear matter.

Finally, we have proposed two ways of adding radiati
reaction effects to our effective one-body dynamics. T
most straightforward one consists in directly combining
diation effects determined in the real two-body problem w
the non-perturbative conservative dynamics~which, in par-
ticular, features a dynamical instability at our ISCO! ob-
tained by mapping the effective dynamics onto some st
dard ~ADM or harmonic! two-body coordinate system: se
Eq. ~7.7!. A more subtle approach, which needs to be furth
developed, would consist in adding radiation reaction effe
at the level of the effective metric itself; see Eq.~7.14!. We
have illustrated in Fig. 5 the transition from inspiral
plunge implied by~an approximation to! Eq. ~7.7!. In prin-
ciple, this transition, and in particular the frequency at t
ISCO, will be observable in gravitational wave observatio
of systems containing black holes.

We hope that the approach presented here will also b
value for supplementing numerical relativity investigation
Indeed, our main~hopeful! claim is that the effective one
body dynamics is a ‘‘good’’ non-perturbative re-summati
of the standard post-Newtonian-expanded results. There
it gives a simple way of boosting up the accuracy of ma
PN-expanded results.~We leave to future work a more sys
tematic analysis of the extension of our approach to hig
post-Newtonian orders.! Effectively, this extends the validity
of the post-Newtonian expansions in a new way~e.g. differ-
ent from Pade´ approximants7!. In particular, our results could
be used to define initial conditions for two-body system
very near, or even at, the ISCO, thereby cutting down s
nificantly the numerical work needed to evolve fully relati
istic 3D binary-system simulations.

As a final remark, let us note that many extensions of
approach presented here are possible. In particular, the a
tion of the~classical! spindegrees of freedom to the effectiv
one-body problem~in the effective metric and/or in the ef
fective particle! suggests itself as an interesting issue~with
possibly important physical consequences!.
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APPENDIX A

In this appendix we determine, at the 2PN level and in
Schwarzschild gauge, the effective metric

dseff
2 52A~R!c2dt21B~R!dR21R2~du21sin2 udw2!,

~A1!

7It should be, however, possible to combine the effective o
body approach with Pade´ approximants, thereby defining an eve
better scheme.
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a2

c4R2 1
a3

c6R3 , B~R!511
b1

c2R
1

b2

c4R2 ,

~A2!

when requiring simultaneously that~a! the energy levels of
the ‘‘effective’’ and ‘‘real’’ problems coincide modulo an
overall shift, i.e. E0(N0 ,J0)5Ereal(N,J)2c0 , with c0
5Mc22m0c2, J05J andN05N and~b! the effective met-
ric depend only onm1 andm2 . In this case, as anticipated i
Sec. IV, we will see that it not possible to satisfy the con
tion m05m.

The radial actionI R
0(E0 ,J0) of the ‘‘effective’’ descrip-

tion is

I R
0~E0 ,J0!5

a0m0
1/2

A22E 0
NR F Â1B̂

E 0
NR

m0c2 1ĈS E 0
NR

m0c2D 2G2J0

1
a0

2

c2J0
F D̂1Ê

E 0
NR

m0c2G1
a0

4

c4J 0
3 F̂, ~A3!

whereE 0
NR[E02m0c2, a0[GM0m0 ,

Â52
1

2
â1 , B̂5b̂12

7

8
â1 , Ĉ5

b̂1

4
2

19

64
â1 , ~A4!

D̂5
â1

2

2
2

â2

2
2

â1b̂1

4
, Ê5â1

22â22
â1b̂1

2
2

b̂1
2

8
1

b̂2

2
,

F̂5
1

64
@24â1

4248â1
2â218â2

2116â1â328â1
3b̂118â1â2b̂1

2â1
2b̂1

214â1
2b̂2#,

and we have introduced the dimensionless coefficients

âi5
ai

~GM0! i , b̂i5
bi

~GM0! i . ~A5!

We define the massM0 used to scale the coefficientsai and
bi by requiringâ1[22 ~i.e. a1[22GM0!. Identifying Eq.
~A3! with the radial actionI R

0(ENR,J) of the ‘‘real’’ prob-
lem, i.e.

I R~ENR,J!5
am1/2

A22ENR F11S 15

4
2

n

4D ENR

mc2 1S 35

32
1

15

16
n

1
3

32
n2D S ENR

mc2D 2G
2J1

a2

c2J F31S 15

2
23n D ENR

mc2 G
1S 35

4
2

5

2
n D a4

c4J 3 , ~A6!

wherea[GMm andENR[Ereal2Mc2, yields six equations
to be satisfied. The requirement~a! above implies the simple
identification of the variables entering Eqs.~A3! and ~A6!:
08400
-

E 0
NR5ENR, J05J, I R

05I R . The explicit form of the equa-

tions stating thatÂm0
1/2a0 ~0PN level!, B̂m0

21/2a0 , D̂a0
2

~1PN level! andĈm0
23/2a0 , Êa0

2/m0 andF̂a0
4 ~2PN level! in

Eq. ~A3! coincide with the analogous coefficients in Eq.~A6!
yields

m0
1/2a05m1/2a, ~A7!

S b̂11
7

4Dm0
21/2a05

1

4
~152n!m21/2a, ~A8!

~42â21b̂1!a0
256a2, ~A9!

S 19

32
1

b̂1

4
Dm0

23/2a05S 35

32
1

15

16
n1

3

32
n2Dm23/2a, ~A10!

S 42â21b̂12
b̂1

2

8
1

b̂2

2
D a0

2

m0
5S 15

2
23n D a2

m
, ~A11!

F̂a0
45S 35

4
2

5

2
n Da4. ~A12!

It is to be noted that if we imposem05m and GM05GM
~so thata05a!, we get an incompatibility at the 2PN leve
Indeed, Eq.~A7! is satisfied and we can solve Eqs.~A8!,~A9!

in terms of the 1PN coefficientsb̂1 andâ2 , but then the 2PN
equation ~A10!, which contains onlyb̂1 , is not satisfied.
~This problem is due to the fact that we have more equati
than unknowns.! Hence, we are obliged to relax the co
straintm05m. Let us introduce the parameterj, defined by
m0[mj22. Equation~A7! then givesGM05GMj3. Note
that we are crucially using here the fact that the Newto
order energy levelsENR52m0a0

2/(2N0)1O(c22) do not
depend separately onm0 anda05GM0m0 , but only on the
combinationm0a0

25G2M0
2m0

3. Solving the 1PN-level equa
tions ~A8!,~A9! we then get

b̂15
1

4j2 ~1527j22n!, â25
1

4j2 ~2919j22n!,

~A13!

while the 2PN-level equation~A10! gives a quadratic equa
tion in j2 which fixes uniquely its value~as well as that of
the positive parameterj!, namely

j25
m

m0
5

1

5
@2151n12&A50115n12n2#. ~A14!

Finally, the remaining 2PN equations~A11! and ~A12! de-
termine the coefficients of the effective metric at the 2P
level:

b̂25
1

64j2 ~11852978j2149j42414n114j2n1n2!,

~A15!
6-21



it

h
s

a
e

e.

n

.

e

e

e
hat
ely,

A. BUONANNO AND T. DAMOUR PHYSICAL REVIEW D 59 084006
â35
1

64j4 ~22891402j22113j41158n150j2n2n2!.

~A16!

The complexity of the results~A13!–~A16!, compared to the
simplicity of our preferred solution~5.6!–~5.8!, convinced us
that the requirement~a! above should be relaxed. Also,
seems suspicious to have an effective massm0 which differs
from m even in the non-relativistic limitc→`. Finally, it is
not evident that this method can be generalized to hig
post-Newtonian orders~where more redundant equation
will have to be satisfied!.

APPENDIX B

In this appendix we describe an alternative, more form
method to map the ‘‘effective’’ one-body problem onto th
‘‘real’’ two-body one. We work in the Schwarzschild gaug
Here we require simultaneously that~a! the energy levels of
the ‘‘effective’’ and ‘‘real’’ descriptions coincide modulo a
overall shift, i.e. E0(N0 ,J0)5Ereal(N,J)2c0 , with c0
5Mc22m0c2, J05J andN05N and~b! the effective mass
m0 be equal to the reduced massm5m1m2 /(m11m2). In-
troducing the dimensionless quantities

Î R
0[

I R
0

a0
, Î R

real[
I R

real

a
, E0[

E 0
NR

m0
, Ereal[

Ereal
NR

m
,

~B1!

j 0[
J0

a0
, j [

J
a

,

wherea0[GM0 m0 and a[GM m[G m1 m2 , we can re-
write the radial action for the ‘‘effective’’ problem, Eq
~3.13!, in the form

Î R
0~E0 , j 0!5

1
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F Â1B̂

E0

c2 1ĈS E0

c2 D 2G2 j 0
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and where we have used, as above, the scaled metric co
cients
08400
er

l

ffi-

âi5
ai

~GM0! i , b̂i5
bi

~GM0! i . ~B4!

Identifying Î R
0(E0 , j 0) with the analogous expression for th

‘‘real’’ problem,
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and imposingE05Ereal, m05m, a05a, we get more equa-
tions to be satisfied than unknowns,
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â151, ~B6!
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F̂5
35

4
2
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2
n. ~B11!

Note that Eqs.~B7! and~B9! depend only onâ1 andb̂1 , and
cannot both be satisfied. To solve this incompatibility w
consider here the possibility that the various coefficients t
appear in the effective metric depend on the energy. Nam
at the 2PN level we consider the following expansions:

â1~E0!5â1
~0!1â1

~2! S E0

c2 D1â1
~4! S E0

c2 D 2

, ~B12!

â2~E0!5â2
~0!1â2

~2! S E0

c2 D , ~B13!

â3~E0!5â3
~0! , ~B14!

and

b̂1~E0!5b̂1
~0!1b̂1

~2! S E0

c2 D , b̂2~E0!5b̂2
~0! . ~B15!
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The introduction of an energy dependence in the coefficie
âi ,b̂i reshuffles thec22 expansion of Eq.~B2! and modifies
Eqs. ~B6!–~B11! which are to be satisfied. It is easy to s
that the flexibility introduced by the new coefficientsâi

(2n) ,

b̂i
(2n) allows one to solve in many ways the constraints to

satisfied. The simplest solution is obtained by requiring t
the energy dependence enter only inâ1(E0) and only at the
2PN level,

â1
~2!50, â2

~2!50, b̂1
~2!50, ~B16!

because in this case only Eq.~B9! gets modified. Indeed, it is
straightforward to derive the new equation replacing~B9!:

2
19

64
â1

~0!1
b̂1

~0!

4
2

â1
~4!

2
5

35

32
1

15

16
n1

3

32
n2. ~B17!

Hence, from Eqs.~B6!–~B8! we obtain the effective metric
coefficients at the 1PN level:

â1
~0!522, â2

~0!52
n

4
, b̂1

~0!5
1

4
~82n!, ~B18!

while the 2PN equations~B17! and ~B11!,~B12! give

â1
~4!52

n

16
~3213n!, â3

~0!5
n

64
~2082n!,
h.

r.

r.

08400
ts

e
t

b̂2
~0!5

1

64
~2562400n1n2!. ~B19!

Again this solution is more complex than our preferred s
lution ~5.6!–~5.8!. Moreover, we think that the assumption
an energy dependence in the effective metric introduce
conceptual obscurity in the entire approach: Indeed,
should introduce two separate~effective! energies: the en-
ergy parameterE0

(0) appearing explicitly ingmn
eff and the con-

served energyE0
(1) of some individual geodesic motion i

gmn
eff (E0

(0)). They can only be identified,a posteriori, for each
specified geodesic motion. This makes it also quite diffic
to incorporate radiation reaction effects.

Finally, one can require that the effective metric does
depend on the energy, but that the effective massm0 depends
on E0 . One then finds the solution

m0~E0!5m F11
n

48
~3213 n! S E0

c2 D 2G , ~B20!

with a corresponding effective metric defined by the ener
independent partâi

(0) ,b̂i
(0) of the solution above. The objec

tions of complexity and conceptual obscurity raised abo
also apply to this energy-dependent effective-mass solut
r.
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