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Effective one-body approach to general relativistic two-body dynamics

A. Buonanno
Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France

T. Damour
Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France
and DARC, CNRS-Observatoire de Paris, 92195 Meudon, France
(Received 30 November 1998; published 8 March 1999

We map the general relativistic two-body problem onto that of a test particle moving in an effective external
metric. This effective-one-body approach defines, in a non-perturbative manner, the late dynamical evolution
of a coalescing binary system of compact objects. The transition from the adiabatic inspiral, driven by gravi-
tational radiation damping, to an unstable plunge, induced by strong spacetime curvature, is predicted to occur
for orbits more tightly bound than the innermost stable circular orbit in a Schwarzschild metric ofMnass
=m;+m,. The binding energy, angular momentum and orbital frequency of the innermost stable circular
orbit for the time-symmetric two-body problem are determined as a function of the mass ratio.
[S0556-282(199)04806-1

PACS numbe(s): 04.30.Db, 04.25.Nx, 97.80.Fk

[. INTRODUCTION Todorov and co-workerg3,4]. Referencg1] has shown that
an approximate summatidnorresponding to the eikonal ap-
Binary systems made of compact obje@teutron stars or proximation of the “crossed-ladder” Feynman diagrams for
black hole$, and driven toward coalescence by gravitationalthe quantum scattering of two charged particles led to a
radiation damping, are among the most promising candidatérelativistic Balmer formula” for the squared mass of bound
sources for interferometric gravitational-wave detectors sucktates which correctly included recoil effedtse. effects
as the Laser Interferometric Gravitational Wave Observatoryinked to the finite symmetric mass ratio=m;m,/(m;
(LIGO) and VIRGO. It is therefore important to study the +Mz)®]. However, the eikonal approximation does not cap-
late dynamical evolution of a coalescing binary system ofture some of the centrifugal barrier shifts which have to be
compact objects and, in particular, to estimate when the trardded by hand through a shift—~n—¢; of the principal
sition occurs from an adiabatic inspiral, driven by gravita-quantum numbef1,2]. The approach of Refl.3] is more
tional radiation damping, to an unstable plunge, induced bypystematic, being based on (aippmann-Schwinger-type
strong spacetime curvature. The global structure of the graviduasi-potential equation whose solution is fitted to the Feyn-
tational wave signal emitted by a coalescing binary dependgan expansion of the(on-shel) scattering amplitudes
sensitively on the location of the transition from inspiral to (P1P2|S|p1p,). However, several arbitrary choices have to
plunge. For instance, in the case of a system of two equake made to define th@ff-shell) quasi-potential equation and
mass neutron stars, if this transition occurs for relativelythe nice form of the relativistic Balmer formula proposed in
loosely bound orbits, the inspiral phase will evolve into aRef. [1] is recovered only at the end, after two seemingly
plunge phase before tidal disruption takes place. On the othé@ccidental simplifications(i) the ratio of some complicated
hand, if the transition occurs for tightly bound orbits, tidal energy-dependent quantities simplifi¢S], and (i) the
effects will dominate the late dynamical evolution. second-order contribution to the quasi-potential contributes
In this paper we introduce a novel approach to the generainly to third order. We note also that the extension of Todor-
relativistic two-body problem. The basic idea is to nfapa  0v’s quasi-potential approadinitially developed for quan-
canonical transformatigrthe two-body problem onto an ef- tum two-body electrodynamigsto the gravitational two-
fective one-body problem, i.e. the motion of a test particle inbody problem [4] leads to much more complicated
some effective external metric. When turning off radiationexpressions than the approach developed here.
damping, the effective metric will be a static and spherically Before entering into the technical details of the effective
symmetric deformation of the Schwarzschild metfithe  one-body approach, let us outline the main features of our
deformation parameter is the symmetric mass ratio Work. We use as input the explicit, post-Newtoni€N)
=m;m,/(m;+m,)?.] Solving exactly the effective problem expanded classical equations of motion of a gravitationally
of a test particle in this deformed Schwarzschild metricinteracting system of two compact objects. In harmonic co-
amounts to introducing a particulaon-perturbativenethod ~ ordinates(which are convenient to start with because they
for re-summing the post-Newtonian expansion of the equaare standardly used for computing the generation of gravita-
tions of motion. tional radiation, these equations of motion are explicitly
Our effective one-body approach is inspired tyough ~ known up to the 2.5PN levé(v/c)® accuracy [6,7]. They
different from an approach to electromagnetically interact-have the form §,b=1,2)
ing quantum two-body problems developed in the works of 2PN ea e
Brezin, ltzykson and Zinn-Justifil] (see alsq2]) and of 8= A" (2,0p) AT (2, 0p) +O(c™®), (LD
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where A*N=Ag+c ?Ay+c7?A, denotes the time- GM/(c?|q,—q,|) becomes of order unity. In particular, our
symmetric part of the equations of motion, amd®®*®  construction defines a specifiedeformed innermost stable
=c~°Ag their time-antisymmetric part. Here,, v,, a,, circular orbit(ISCO). Superposing the gravitational reaction
denote the positions, velocities and accelerations, in harfforce A" onto the “exact” deformed-Schwarzschild dy-
monic coordinates, of the two bodie#n this work we con-  namics(defined by mapping back the effective problem onto
sider only non-spinning objecjsThroughout this paper, we the real ongfinally defines, in a non-perturbative manner, a
shall use the following notation for the quantities related todynamical system which is a good candidate for describing

the masses; andm, of the two bodies: the late stages of evolution of a coalescing compact binary.
M=m+my, p=—ate  _#_ MM IIl. SECOND POST-NEWTONIAN DYNAMICS OF THE
M M (myg+my) RELATIVE MOTION OF A TWO-BODY SYSTEM
1.2

Let us recall some of the basic properties of the dynamics

Note that the “symmetric mass ratio¥ varies between 0 defined by neglecting the time-odd reaction force in the
(test mass limjtand ; (equal mass case Damour-Deruelle equations of motidd.1). The 2PN[i.e.

We first focus on the time-symmetric, 2PN dynamics de-(v/c)*-accuratg truncation of these equations of motion de-
fined by LA2"Nz,,v,). After going to the center of mass fines a time-symmetric dynamics which is derivable from a
frame (uniquely defined by the Poincasymmetries of the generalized_agrangian_(z,,z,,v1,v5,8;,8,) [8,7] (a func-
2PN dynamics and after a suitable coordinate transforma-tion of the harmonic positions; ,z,, velocitiesv,,v, and
tion [from harmonic coordinates to Arnowitt-Deser-Misner accelerations a;,a,). The generalized Lagrangian
(ADM) coordinatez,— q,], the dynamics of the relative co- L(z,2 ,v,.v5,8;,8,) is (approximately invariant under the
ordinates g=q;,—q, is defined by a 2PN Hamiltonian Poincaregroup [9]. This invariance leadgvia Noether's
H(q,p). Starting fromH(q,p), we shall uniquely introduce a theorem to an explicit construction of the usual ten relativ-
2PN-accurate static and spherically symmetric “effectiveistic conserved quantities for a dynamical system: enéigy

metric” linear momentuniP, angular momentuny7, and center-of-
b2 mass constaniC=G— Pt. Because of the freedom to per-
dsgff:_A(Reff)C dtgy form a Poincaregransformation(in harmonic coordinatés
D(Ryq) we can go to th€2PN) center-of-mass frame, defined such
ff .
A(Reﬁ) d R+ RE(d 05+ Sir? e o5e), as
€
(1.3 P=K=G=0. (2.1

Referenceg10,11] explicitly constructed the coordinate
transformation between the harmofiac de Dondex coordi-
a, a, as nates, say”, used in the Damour-Deruelle equations of mo-
AR)=1+ ﬁﬂL “r2 T R tion, and the coordinates, say*, introduced by Arnowitt,
Deser and Misnef12] in the framework of their canonical
approach to the dynamics of the gravitational field. The La-
— = grangian giving the 2PN motion in ADM coordinates has the
c*R?’ . . A
advantage of being an ordinary Lagrangiaft; ,0,,6; ,0p)

d di I iti d velocifiesvhich i
such that the “linearized” effective metriedefined bya, (depending only on positions and velocitiesvhich is

; . ; . . X equivalent to an ordinary Hamiltoniand(q,,d,,p;,
andd,) is the linearized Schwarzschild metric defined by the[lq3 14, The explicit expresysion of the 2PI\(Iq}E|aqr$1iIF':(1)nFi);)n in
total massM =m;+m,, and such that the effective Hamil- \

i . X . ADM coordinatesH(q; ,d,,p1,p2). has been derived in Ref.
tonian Hx(0er.Per) defined by the geodesic action [11] by applying a co?]taét t%anzsformation
— [ucdssy, whereu=m;m,/M is the reduced mass, can

be mapped onto the relative-motion 2PN Hamiltonian Oa(t) =24(t) — 8* z4(Z,0) (2.2
H(q,p) by the combination of a canonical transformation

(Geff Pei)—(a,p) and of an energy transformatiomd to the generalized Lagrangidi(z,,v,,a,). The shift 5*z,
=f(Hg), corresponding to an energy-dependent “canonids of orderO(c~*) and is defined in E¢(35) of [10] or Egs.
cal” rescaling of the time coordinatét.;=dt(dH/dH). (2.4 of [11]. The contact transformatio2.2) removes the

The effective metric so constructed is a deformation ofacceleration dependence of the harmonic-coordinate La-

the Schwarzschild metric, with the deformation parametegrangian L"™z,v,a) and transforms it into the ADM-
being the symmetric mass ratio= /M. Considering this coordinate ordinary Lagrangidn®®(q,q). A further Leg-
deformed Schwarzschild metric as an exact external metriendre transform turn&“°™(q,,a,,9;,6,) into the needed
then defines(in the effective coordinatg¢sa r-deformed 2PN HamiltonianH(q;,0,,p1,p2) in ADM coordinates. The
Schwarzschild-like dynamics, which can be mapped baclexplicit expression of this Hamiltonian is given in EQ.5)
onto the original coordinates, or z,. Our construction can of Ref. [11]. It has also been shown in Rdfl0] that the
be seen as a non-perturbative way of re-summing the posHamiltonian H(q;,0,,p1,p,) can be directly derived in
Newtonian expansion in the relativistic regime whereADM coordinates from thgnot fully explicit) N-body re-

where

(1.9

D(R)=1 d , d
(R=1+ gt
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sults of Ref[13] by computing a certain integral entering the _ o 6
two-body interaction potentialFor further references on the Ha(q,p)= 75(1—-5v+51%)p
general relativistic problem of motion, see the review in

[15]; for recent work on the gravitational Hamiltonian see 1 o 4 - ,
[16,17,18,19) +@[(5—20v—3v )p*—2v°p(n-p)
The ADM expression of the total Noether linear momen-
tum P associated to the translational invariance_¢f,v,a) —313(n-p)*]
is simply P=p,+p,. Therefore it is easily checked that, in 1 1
the center-of-mass framg.1), the relative motion is ob- 2 27
tained by substituting in the two-body Hamiltonian " W[(5+8y)p +3v(n-pr] W(“—Sy)'
H(dy,02,P1,P2), (2.60

in which g=|q/=(0?)? andn=g/q. When convenient, we
shall also use the notationfor the reduced radial separation

g (andR for the unreduced on®) [as in Eqs(2.8—(2.12
whereP= gS/JQ is the canonical momentum associated withP€low]. _ _ o S

the relative ADM position vectoQ=q,—g,. (For clarity, _ The relatl\_/e-monon Ham|It0n|aQ2.5) is invariant gnder

we modify the notation of Ref11] by usingg;, g, Q and time translations and space rotations. The associated con-

q for the ADM position coordinates which are denoted served quantities are the reduced ce.nter—of—nﬁasn.) en-
r,, R andr, respectively, in Ref{11].) ergy and angular momentum of the binary system:

p—P, p——P, 2.3

Our technical starting point in this work will be the- SR
duced center-of-mas8PN Hamiltonian(in reduced ADM A — gNR_ ZCm. Y p=i= &M 2
: ; , , (a,p) o OXPp=] . (@27
coordinates We introduce the following reduced variables M #GM

(all defined in ADM coordinates, and in the center-of-mass ) ) ] )
frame: A convenient way of solving the 2PN relative-motion dy-

namics is to use the Hamilton-Jacobi approach. The motion
in the plane of the relative trajectory is obtained, in polar

_Q _a _P coordinates
g*=rcosp, '=rsing, q*=0, (2.9
ot  HMR  HR_Mc2 by separating the time and angular coordinates ir{phenay
t=——, H=—=———. (2.9 reduced action
GM M M

S Anion A o
=——=—ERt+jo+S(r,EN ). 2.9
In the last equation, the superscript “NR” means “non- nGM JotSi( D 29

relativistic” (i.e. after subtraction of the appropriate rest- R
mass contribution while “R” means “relativistic” (i.e. in-  The time-independent Hamilton-Jacobi equatiefR(q,p)

cluding the appropriate rest-mass contributioRrom Eq. = ZNR with p=95/4q can beliteratively) solved with respect
(3.1) of [11] the reduced 2PN relative-motion Hamiltonian (d$ /dr)? with a result of the form

(without the rest-mass contributipreads
ér(r,éNR,j)=f dryR(r, &R j). (2.10

The radial “effective potential”R(r,EVR,j) is a fifth-order
polynomial in 1f=1/q which is explicitly written down in
where Egs. (3.4 of [11]. In this section, we shall only need the
correspondingintegrated radial action variable

. . 1. 1.
Atap=Aoap+ zMaap+ zHaap, 29

. 1. 1 g2 [Tmax n—
Ho(q,p)=§p2—a, (2.69 =GN n dryRr(r,&NRj).  (2.1))

"min

The functionir(:SNR,j) has been computed, at 2PN accuracy,

in Ref. [11] [see EQq.(3.10 therd. To clarify some issues

connected with the fact that the natural scalings in the “ef-

fective one-body problem’{to be considered belgwdiffer

1 (2.60) from those in the present, real two-body problem, let us
' quote the expression of the unscaled radial action variable,

A 1 1
Ho(q.p)=— 5(1—3V)I04— ﬁ[(SJF v)p?+ v(n-p)?]
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2 (Rmax _dSx(R,ENR ) energy levelsas a function of the parametefé=m;+m,,
Ej —ar @12 p=mm,/(m+my), a=Gmm, andv=pu/M. ltis to be
noted that the functio& }(V,7) describing the energy levels
is a coordinate-invariant object.

| =i, =
Rmin

in terms of the unscaled variabl€dR= &R and 7= aj.

Here R=Q=GMr=GMgq, and we introduced the short-
hand notation I1l. SECOND POST-NEWTONIAN ENERGY LEVELS

OF THE EFFECTIVE ONE-BODY PROBLEM

a=pGM=Gmm, (2.13 The “energy levels”(2.15 summarize, at the 2PN accu-

for the gravitational two-body coupling constant. We have racy, the dynamics obtained by eliminating the field vari-
ablesg,,,(x) in the total action of a gravitationally interact-

R aul? . 15 p\ VR (35 15 ing binary system:
RETID=—==m| 1" 773w T 321 16"
. Solt.24.9,.1=— [ meds— [ mcds,
3 &
=2
* 32V ) (,U,C2 +Sfie|d[gp,v(x)]! (31)
. a_z - 1__3 c‘?_NR whereds,;=+/—g,,(z})dzdz; and whereSgeg,,,(X)] is
2T 2 v uc? the (gauge-fixed Einstein-Hilbert action for the gravitational
4 field. Let S,eal 24,251 be the Fokker-type action obtained by
(35_ E,,) a (2.14 (formally) integrating oug,,,(x) in Eq.(3.1). (See, e.g[10]
4 27T ' for more details on Fokker-type actions. As we work here

_ _ 5 only at the 2PN level, and take advantage of the explicit
Equgtlon (22-1_49 can also be solved with respect &" results of Refs[8,7], we do not need to enter the subtleties
=£"—Mc* with the (2PN-accurateresult[see Eq(3.13 of  of the elimination of the field degrees of freedom, which are

Ref. [11]] probably best treated within the ADM approach. See
1 ) 2/ 6 11 [20,14].)
ERN. D) =Mc?— = e 14 0‘_(__ 115- V) The basic idea of the present work is to, somehow, asso-
' 2 N? P \NT 4 N? ciate to the “real” two-body dynamicsSS..[z},z4] some

2 _ _ “effective” one-body dynamics in an external spacetime, as
@ (§ m2v 27 3354 described by the action
2 NJ° " N°g* 2 N°g

. 1 145- 15+ 12
8 Nt

+ —
C4

| o1 sulzt1-- [ mcds, (32

whereds,= \/—giv(%)d#dzg, with some spherically sym-

where A/ denotes the Delaunay action variablé=Igr+J.  metric static effective metric

The notation is chosen so as to evoke the one often used in

the quantum Coulomb problem. Indeed, the classical actiondggﬁz giff,(xgﬁ)dxgﬁdxgﬁ —A(Reﬁ)czdt§ﬁ+ B(Reﬁ)ngﬁ
variablesl g and 7, or their combinationgV=Ig+ 7 and 7,

are adiabatic invariants which, according to the Bohr- +C(Ref) REy(d 03+ SIN? O o3 3.3
Sommerfeld rules, becomeéapproximately quantized in o ] o )
units of# for the corresponding quantum bound states. Morel © Simplify the notation we shall, henceforth in this section,
precisely 7% becomes the “principal quantum number” drop the subscript “ef_f” on the coordinates use_d_ in the ef-
and 777 the total angular momentum quantum number. Thdective prgblem(Later in this paper we shall explicitly relate
fact that the Newtonian-level non-relativistic ener§)R= the coordinategl of the effective particle to the coordinates
—14a?IN?+O(c™?) depends only on the combinatiof z{*, z; of the two real particleg. The metric function#\(R),
=|r+J is the famous special degeneracy of the CoulomtB(R), C(R) will be constructed in the form of an expansion
problem. Note that 1PNand 2PN effects lift this degen- in 1/R:

eracy by bringing an extra dependencefrrhere remains,

however, the degeneracy associated with the spherical sym- R T as .

metry of the problem, which implies that the energy does not AR=1+ Zpt R T oore T

depend on the “magnetic quantum number,” i.e. @

=/7,, but only on the magnitude of the angular momentum by b,

vector 7=\ J2. Though we shall only be interested in the BR)=1+ ot gz T - (3.4

classical gravitational two-body problem, it is conceptually

useful to think in terms of the associated quantum problemBeware that the variabl® in Eqgs. (3.4) denotes(in this
From this point of view, the formulg2.15 describes, when section the effectiveradial coordinate, which differs from
NIt and J1% take (non-zerg integer values, all the quantum the real ADM separatio® = Rapy=GMr used in the pre-
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vious sectior(e.g. in the definition of g). We indicate in Eq.

PHYSICAL REVIEW D 59 084006

To obtain the effective “energy levels€y=F(Ny,Jp)

(3.4) the terms that we shall need at the 2PN level. The thirdbne needs to compute the definite radial inte¢8al?). Ref-
function C(R) entering the effective metric will be either erence[l1l] (extending some classic work of Sommerfeld,

fixed to Cg(R)=1 (in “Schwarzschild” coordinatesor to
satisfy C,(R)=B(R) (in “isotropic” coordinates.

used in the old quantum thegrizas shown how to compute
the PN expansion of the radial integ(8l12 to any order in

There are two mass parameters entering the effectivthe 1R expansiong3.4). At the present 2PN order, R¢fl1]

problem: (i) the massm, of the effective particle andii)
some mass parametel, used to scale the coefficierds, b;
entering the effective metric. For instance, we can defige
by conventionally setting

alz_ZGMo. (35)

By analogy to Eg.(2.15, we can summarize, in a
coordinate-invariant mannerthe dynamics of the effective
one-body problem3.2—(3.4) by considering the “energy
Ie\f/fels” of the bound states of the partiake, in the metric
Do

SCF;:m0C2+5gR=]:(./\fo,jo;mo.ai,bi)- (3.6

Here, the relativistic effective energyy and the effective

action variables\g, J, are unambiguously defined by the
we can separate the effective

action (3.2. Namely,
Hamilton-Jacobi equation

0 9Sett ISt

2.2 _
—— ——+m;c =0,
eff XK OXY 0

3.7

by writing (considering, for simplicity, only motions in the
equatorial plané= 7/2)

Serr= — Eot + Too + SRR, Eo, Tp). (3.8

To abbreviate the notation we suppress the superscRt
on the relativistic effective energ¥,. Inserting Eq.(3.9
into Eq. (3.7) yields

1 & 1 (dsg)2+

T
TAR & BRI AR

cRiRe T Mo =0

(3.9

and therefore

SURE. 0= [ ORVR(RE. T, (310
where
B(R) &5 , 5
Ro(R.o.J0)= 5 oz ~B(R) moc?+ CRRE)"
(3.11

The effective radial action variablg, is then defined as

2 Rmax
%6000 = 5= | ORVRARE Do), (312

while the effective “principal” action variableV, is defined
as the combinatioV,=1%+ J,.

gave a general formuldtheir Eq. (3.9] which can be
straightforwardly applied to our case.

As we said above, the function describing the “energy
levels,” &= F(Ny,Jp), is acoordinate-invarianiconstruct.
As a check on our calculations, we have computefbit
rather, we have computed the radial acﬂ&(ﬁo,jo)] in the
two preferred coordinate gauges for a spherically symmetric
metric: the “Schwarzschild gauge” and the “isotropic” one.
If (a;,b;) denote the expansion coefficient3.4) in the
Schwarzschild gaugeCg(R)=1], we find (at the 2PN ac-
curacy

3/2 NR NR \ 2
10T = 2 arB 2%, el 20} g
RL€0,J0 \/W m002 mOCZ 0

-f—m—S D+E BIR + mg F (3.13
o moc?|  c*T5 '
where & "= £,—myc?, and where
N oy by 19
581, B=Dimga, =72 8

D—ai a; ab; B aib; bl b,
2 2 4 fm®T T T

1
F= a[24a‘1‘— 48a7a,+8a5+ 16a,a;— 8ah, +8a,a,b;

—a?b?+4a3b,]. (3.19
Denoting by & ,b;) the expansion coefficienté3.4) in
the isotropic gauggC,(R)=B,(R)], we find, by calculating
I% directly in the isotropic gauge, that the coefficients
A,B,...,F entering Eq.(3.13 have the following(slightly

simpley expressions in terms & andb; :

A 1 BB7~ C’Bllg~
—_Eal, = 1_§a1, _Z_aall
a3 7, b P
P2 2 2 FrRTRTALD,

1 -
F= §[351‘1‘— 6878, + A5+ 28,8, — 445h, + 43,3,b,

(3.19

The numerical values of the coefficients,B,...,F are
checked to be coordinate invariant by using the following

relation between thea{ ,b;) and the &, ,b;) [which is easily
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derived either by integratindR, /R, = yBs(Rs)dRs/Rg or
by using the algebraic linRs=R,vB,(R)) ]:

51=al, Blzbl, (316)
1 U T
aZZaZ_Ealbla b2=§b2—§b1,
53: ag_a2b1+ albl albz.

16

Finally, solving iteratively Eq(3.13 with respect taS)~
we find the analogue of Eq2.15), i.e. the explicit formula

giving the effective “energy levels.” It is convenient to

write it in terms of N\p=13+7,, of the coupling constant

(3.17

where M, is defined by Eqg. (3.5, and of the
(GMy)-rescaled, dimensionless expansion coefficiefts

andb; , of the Schwarzschild gauge:

CYOEG Momo,

a,=a,/(GMo), bj=b;/(GM,), (3.18
We find
1 moa(z) a(z) Ci1 Cyuo
_ 2_ = 0%0 -0 ’ =40
Eo(No,Jo) =mgC 2 Nc2> c? |\ NoTo /\/‘g
ag [ Cgs Cs2 Cs1  Cepo
+— stz 2t R T ]|

c ./\/()jo NOJO NOjO NO

(3.19

where the coefficient€,
tions < — 3 (ag/c)PTIN P T, % to £ /myc?] are given by

Cy1=2D, Cuo=-B,

C3'3:2'E, C4’2:3f)2,

AAoa 1 . A
C5‘1: - (4BD+ E), C6’0:Z(582+ 2C) (32@

Here, the dimensionless quantitid®,C,D,E,F are the
GMy-rescaled versions of the coefficients of E.13),
g|ven by replacmg the;'s by &; in Eqs.(3.14). For instance,

B= b1 7/8a1—b1+7/4 etc.

IV. RELATING THE “REAL” AND THE “EFFECTIVE”
ENERGY LEVELS, AND DETERMINING
THE EFFECTIVE METRIC

[which parametnze the contribu-

PHYSICAL REVIEW D 59 084006

quantized in units ofi. It is therefore very natural to require
the identification

N:No, \.7:L70!

between the real action variables and the effective ones, and
we will do so in the following. What i1 priori less clear is
the relation between the real masses and enengigsm,,

ER = (my+my)c?+ ENR . and the effective onesng, Mo,
8o—moc2+€ R. The usual non-relativistic definition of an
effective dynamics associated with the relative motion of a
(Galileo-invariant two-body system introduces an effective
particle whose positiory, is the relative positiongy=q;
—@,, whose inertial massny" is the “reduced” massu
=mym,/(m;+m,), and whose potential energy is the po-
tential energy of the systenVq#(qg) = Viea(d1— 0p)- In the
present case of a gravitationally interacting two-body sys-
tem, with ViR=—Gmym,/|q,— |, this would determine

4.9

my=u, and My=m;+m,=M, 4.2)
such that aea=Gmm,=ae=GMy"myR. The non-
relativistic identifications(4.2) are, however, paradoxical

within a relativistic framework, even if they are modified by
“relativistic corrections,” so that, saymy=pu+O(c?),
Mo=M+ O(c?), because the reference leyahd accumu-
lation point for N, J— =) of the real relativistic level$2.15
will be the total rest-mass-enerdyc?, and will therefore be
completely different from the reference levahc?= uc? of
the effective relativistic energy levels. This difference in the
relativistic reference energy level shows that, while it is very
natural to require the straightforward identificatig@dsl) of
the action variables, the mapping betwe®g, and &, must
be more subtle.

One mighta priori think that the most natural relativistic
generalization of the usual non-relativistic rules for defining
an effective one-body problem consists in requiring that

SO(NO !jo) = 5rea(Mj) —Co,

with a properly chosen constagg= Mc?—myc? taking care
of the shift in reference level. The ru(d.3) is equivalent to
requiring the identification of the “non-relativistic” Hamil-
tonians(with subtraction of the rest-mass contribution

4.3

HNR

Ho (a',p’) =Ha(a.p), (4.4)

where the canonical coordinates in each problem must be
mapped because of the identificatiof@.1)] by a canonical
transformation

Z |oidq‘=2i p/dg’ +dg(a,q"), (4.5

with some “generating function'y(q,q’).
We have explored the naive identificatioh3), or (4.4),

We still have to define the precise rules by which we wishand found that it was unsatisfactory. Indeed, one finds that it
to relate the real two-body problem to the effective one-bodyis impossibleto require simultaneously thdt) the energy
one. If we think in quantum terms, there is a natural corredevels coincide modulo an overall shi#.3), (ii) the effec-

spondence betweeN and N, and 7 and [, which are

tive massmg coincides with the usual reduced mags
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=mym,/(my+my,), and(iii ) the effective metri¢3.3) depends Here, we assume that the standard identificat®B) holds
only onm; andm,. [This impossibility comes from the fact [together withmy= u+ O(c™2)] in the non-relativistic limit
that the requiremen.4) is a very strong constraint which c—oo,

imposes more equations than unknowré.one insists on We are going to show that thee priori arbitrary function
imposing the naive identificatiod.3), there is a price to f, i.e. the parameter®,,as,,..., can bainiquely selectedat
pay: one must drop at least one of the requireméintsor  the 2PN level by imposing the following physically natural
(ii ). Various possibilities are discussed in the Appendixes ofequirements(a) the mass of the effective test particle coin-
this paper. One possibility is to drop the requirement thatides with the usual reduced mass,

mo= w. As discussed in Appendix A, we find that there is a

unique choice of masses in the effective problem, namely, Moo= u, (4.12
mo=ué 2, GMy=GM¢&, (4.6) and (b) the linearized (“one-graviton-exchangey’ effective
metric coincides with the linearized Schwarzschild metric
with with massM=m;+m,, i.e.

1 a;=—2GM, b;=2GM. (4.13
§2=§[2\/1OO+30V+4V2—15+ v], 4.7

Note that the requiremend.12) is actually imposed by di-
mensional analysis as soon as one requireg= u
+0O(c™?). Indeed, as we bar any dependence on the energy,
it is impossible to write any correction ternd(c2) in the
link betweenm, and u. The requirement4.13) is very natu-
dral when one thinks that the role of the effective metric is to
reproduce, at all orders in the coupling const&ntthe in-
teraction generated by exchanging gravitons between two
massegn; andm,. The “one-graviton-exchange” interac-
tion (linear in Gmym,) depends only on theglLorentz-

which is compatible with the requiremerit$ and(iii ) above.
However, we feel that it is quite unnatural to introduce an
effective massamy which differs from u even in the non-
relativistic limit c— +o. We feel also that this possibility is
so constrained that it is only available at the 2PN level an
will not be generalizable to higher post-Newtonian orders.

A second(formal) possibility is to introduce some energy
dependence, either img, say

EQR EQR 2 invariany relative velocity and corresponds to a linearized
mo= 1+Bllu—cz+,82 e +eee, (4.8  Schwarzschild effective metric in the test-mass limit-0.

As the coefficient- 3 a, is fixed (by dimensional analysis, as
above to its non-relativistic value —3a;my=GMym,
=Gmym,, it is very natural not to deform the coefficiemt
by v-dependent corrections.

or in the effective metrid3.3). Namely, the various coeffi-
cientsa;,b;,a,,bs,a3,... in Eq.(3.4) can be expanded as

ENR NR |\ 2 Let us now prove the consistency of the requirements
a(&)=aP+aP—5+a® —%5| +---, (49 (4.12, (4.13 and determine the energy mappiigWe can
MoC MoC start from the result3.13, in which one replace§{~ by the

I . expansion(4.11). This leads again to an expression of the
etc. These possibilities are discussed, for completeness, *Brm (3.13, with &R replaced bySNR One can simplify
. ’ 0 real*

Appendix B. . . ! . ; .
Though the trick of introducing an energy dependence inthls expression by working with scaled variables:

(both) my and the effective potential has been advocated, and 0 [real £NR £NR

used, in the quasi-potential approach of Todorov and cofo= R f§alzlzir' EOEL, Erealzia'a

workers[3,4], we feel that it is unsatisfactory. Conceptually, @o a Mg M

it obscures very much the nature of the mapping between the

two problems, and, technically, it renders very difficult the. _ Jo . J a1

generalizatior(we are interested jrto the case where radia- %~ ay’ 1= a’ (4.14

tion damping is taken into accou(d@nd where the energy is

no longer conserved We find much more satisfactory to Here ag=GMgmy, and a=GMu=Gm;m, as above. We
drop the naive requiremeri4.3), and to replace it by the use also the scaled metric coefficieatandb; of Eq.(3.18.
more general requirement that there exist a certain one-ta-et us note, in passing, that, very generally, the dimension-
one mapping between the real energy levels and the effectiiggg quantity€, /c?=E,/(moc?)=1+c 2E, is expressible

ones, say entirely in terms of the dimensionless scaled action variables
20/n_ (0 : . - 3
Eo(Nor To) = F[Eraa No D] (4.10 I /c=13/(aoc) and of the dimensionless scaled metric coef

ficients &;,b;. [This scaling behavior can be proved very
In explicit, expanded form, the requiremeit10 yields a  easily by scaling from the start the effective actiSgp=

deformed version of Eq4.3): — Imocd<=—aqcfd€" with d&=(GMy) 2ds?, and by
NR R \R R\ 2 using scaled coordinateR=R/GM,, t=t/GM,.]

€0 _ el N Ereal N Ereal fol 41 Let us now make use of the assumptiomg= . and

moc?®  uc? tuc? " 72 uc? ' GMy=—2%a;=GM (so thatag=GMomy=GMu=a). But
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let us not yet assume the second equatwi3d); i.e., let us
assumed; = — 2, but let us not yet assume any value far

PHYSICAL REVIEW D 59 084006

b,, &, a;. In this section we shall consider only the first
(*BC") subsystem, leaving theD'EF" system to the next

=b,/GMy=b,/GM. Within these assumptions, the scaled section.

version of the resul(3.13, with £)R replaced by Eq(4.11),
reads

10 ; : 1 ~ A,Ereal
|R(E0(EreaD,Jo):_Jo+\/T A+B ?—
- real
2 Ereal2
+ !
CZ
Y
o ¢ c*io
(4.15
where
A=—la-1, B=l4p,- O
_—Eal— s _Z+ 1—?,
2, 19 bl al ~ 7 3 2 az
3—2+ yl > (bl Z +§a1—7,
(4.19

and whereD, E and F are obtained from the expressions

(3.14) by the replacementa;—a;, b;—b; (with a;=—2).

Finally, identifying[1R(Eo,J0) 12~ with 1 &(Ereat, Jreal

or, equivalently,12(Eqo(Erea) jo) With Tr(Ereanjo) Yields

five equations to be satisfied, namely the equations stating"®"

thatB’, C', D, E andF coincide with the corresponding
coefficients in Eq.(2.14). The explicit form of these equa-
tions is

7 6 011_15 14 41
ittt (417

19 by ayf, 7\ 3, @ 35 15 3
327 7(1 z) 8" 2 3 16" R
(4.19

a, k31_

2-5+5=3, (4.19
4—a,+b IE)%+E)2—15 3 4.2
a,t Dy g7 7% (4.20

o as as A, : 1AB bi b, 35 5

B R L TR RV
(4.21

Note that the subsystem made of the two equati@ns?),
(4.18 (corresponding td’ andC’) contains the three un-
knownsb;,a;,a,, while the three equationgt.19—(4.21)
(corresponding td, E and F) contain the unknown$,,

It is easily seen that thBC subsystem would admit no
solution inb; if we were to imposer; = a,=0. This proves
the assertion made above that one needs a non-trivial energy
mapping&y= f(&ea). ON the other hand, if we introduce the
two free parameterg,,a,, the BC subsystem becomes an
indeterminate system of two equations for three unknowns.
As argued above, it is physically very natural to impose that
the linearized effective metric coincide with the linearized
Schwarzschild metric, i.e. that

b,=2. (4.22

Then theB C system(4.17),(4.18 admits the unique solution

14
a1=§, CYZ:O. (423
This solution corresponds to the link
SQR _ reF;I v gr’\elgl (4.24
mec® uc? 2 uc?)’ :
which is equivalent to
& Erea—Mic* —m3c? 4.2
mec? 2m;m,c* 4.29

Remarkably, the ma@#.25 between the real total relativistic
gy Erea= M2+ ENR, and the effective relativistic en-
ergy £,=mec?+ QT coincides with the one introduced by
Brezin, Itzykson and Zinn-Justifil], which maps very sim-
ply the one-body relativistic Balmer formula onto the two-
body one(in quantum electrodynamigsThe same map was
also recently used by Damour, lyer and Sathyaprakash
There it was emphasized that the functip(s) of the Man-
delstam invarians= 2, appearing on the right-hand side
(RHY) of Eqg. (4.25 is the most natural symmetric function
of the asymptotit 4-momentap¥ ,p4 of a two-particle sys-
tem which reduces, in the test-mass limy<m,, to the
energy ofm, in the rest-frame ofn;. Indeed(setting here
c=1 for simplicity),

s—mj—mj ~ —(pat P2)®—mi—m3 _ PP
2mm, 2mm, o omm,’
(4.26
Finally, we have twoa priori independent motivations for
using the functionp(s), i.e. the link(4.25, to map the real
two-body energy onto the effective one-body ofig: the

simplicity, and the symmetry, of the expressi@n26) which
generalizes the test-mass conserved eneggymy=

p(s)=

Iwe consider here scattering states. By analytic continuatisn in
the functione(s) is naturally expected to play a special role in the
energetics of two-body bound states.
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—K,p§/mg (whereK , is the Killing vector defined by the
time direction of the background figlgsee[21]), and(ii) the

fact that it corresponds to a linearized effective metric coin-

ciding with the linearized Schwarzschild metric. Actually,
these two facts are not really independent, becdaseis-
cussed irf1] and[2]) they correspond heuristically to saying
that the “effective interaction” is the interaction felt by any
of the two patrticles in the rest frame of the other particle.

Summarizing, the rules we shall assume for relating th

real two-body problem to the effective one-body one ar
Egs.(4.1) [or equivalently the conditiof¥.5) that the phase-
space coordinates be canonically magpatd Eq.(4.25.

V. EFFECTIVE ONE-BODY METRIC AND THE
DYNAMICS IT DEFINES

Having specified the rules linking the real two-body prob-

PHYSICAL REVIEW D 59 084006

2
4.

2GM G
B(R):1+ ?2?+(4_6V)(CTR
5.7

(5.9

2
D(R)=1—6v<ﬁ) T

eel'he simplicity of the final result§5.6)—(5.8) is striking. The

effective metric (5.2) is a simple deformation of the
Schwarzschild metridAg(R)=1—2GM/c?R, D(R)=1]

with deformation parameter. Note also that there are no
v-dependent corrections t&(R) at the 1PN level, i.e. no
v(GM/c?R)? contribution toA(R). The first »-dependent
corrections enter at the 2PN level. Remembering that the
(2PN effective metric fully encodes the information con-

lem to the effective one-body one, we can now proceed tdained in the complicated 2PN expressi¢as4 or (2.15), it

the determination of the effective metriat the 2PN level
We shall work in Schwarzschild coordinates:

ds2s=— A(R)c2dt?+ B(R)dR?+ R%(d¢? + sir? 6d¢?),
(5.1)

is remarkable that the metric coefficief&6)—(5.8) are so
simple. The previous approach of Rpf] led to much more
complicated expressions at the 1PN lew® which it was
limited).

In this paper, we propose to trust the physical conse-
quences of the effective metr(6.2), with A(R) given by Eq.

with A(R) andB(R) constructed as expansions of the form (5.6) andD(R) given by Eq.(5.9), even in the region where

(3.4). 1t will be useful to rewrite also the effective metric in
the form

D(R)

ds=— A(R)c?dt?+ AR)

dR?+R%(d 6%+ sir? 6d¢?),
(5.2
in which we factorize, in the manner of Schwarzschijg,'

in front of thedR? term, and consider that, besid&éR), the
second function constructed as an expansion ig/

d, d,
D(RI=ARIB(RI=1+ Zo+ amzt+, (5.3

where

d1=al+b1, d2:a2+a1b1+b2. (54)

To determine the effective metric, i.e. the coefficieats
andb; or, equivalentlyd; andd,=d;/(GM), we insert the
known values ofb;, a; and a, (hamelyb,;=2, a;=v/2,
a,=0) into the remaining equation@.19—(4.21) (“ DEF

R is of order of a few timessM/c2. Note that even in the
extreme case wherer=1/4 and R=2GM/c? the
v-dependent additional terms entering the effective metric
remain relatively small: indeed, in this casé,A(R)
=2p(GM/c?R)3=1/16 and —§,D(R)=6v(GM/c’R)?
=3/8. We expect, therefore, that it should dodortiori pos-
sible to trust the predictions of the effective metfc2) near
the innermost stable circular orbit, i.e. arouRe-6GM/c?
[where §,A(R)=2x103 and — §,D(R)=4x 10 2]. Note
that this nice feature of having only a small deformation of
the Schwarzschild metric, even whenr-1/4, is not shared
by the “hybrid” approach of Kidder, Will and Wiseman
[22]. Indeed, as emphasized in RE21], the v deformations
considered in the hybrid approach are, for some coefficients,
larger than unity wherv=1/4. This is related to the fact
pointed out by Wex and Scfea [23,24] that, by applying the
hybrid approach of22] to the Hamiltonian, instead of the
equations of motion, one gets significantly different predic-
tions.

Let us note also that, if we decide to write the effective
metric in the form(5.2), the existence of a simple zero in the
function A(R), say A(Ry)=0, implies[if D(Ry)#0, and

system’). This yields three equations for the three unknownsD (R) >0 for R>Ry] that the hypersurfac®= Ry, is (like in

a,, b, and a;. The unique solution of thiDEF system
reads

a,=0, a;=2v, b,=4-6v. (5.5
In other words, our natural assumptio%12,(4.13 have
led us uniquely to the simple energy méh25 and to an

effective one-body metric given by

3
EEP

GM
——+2v CZ_R

2GM
c’R

AR)=1— , (5.6

the undeformed Schwarzschild caseregular(Killing) ho-
rizon. As usual, one can define Kruskal-like coordinates to
see explicitly the regular nature of the horizRs Ry (made

of two intersecting null hypersurfacesin our case, one
checks easily that the functiof,p\(R) defined by the first
three terms on the RHS of E¢5.6) admits a simple zefoat
someRy(»), when Osv<3. The positionRy(v) of this

2We consider here only the zero Afpp(R) which is continuously
connected to the usual horiz&,=2GM/c? when v—0.
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“effective horizon” smoothly, and monotonically, evolves
with the deformation parameterr between Ry(0) vo=ta
=2GM/c? and 1o O\

Ry(1/4)=0.92772GM/c?). (5.9

This relatively small change of the horizon toward a smaller w
value, i.e. a smaller horizon aré@® quote an invariant mea-

sure of the location of the horizprsuggests that the dynam-
ics of trajectories in the effective metric will also be only a

09
—— j,=3.988

small deformation of the standard Schwarzschild case. — J,=3762
One of the main aims of the present work is indeed to — j.=3.404
study the dynamicgand the energetigén the effective met-
ric (5.2). In particular, as gravitational radiation damping is %0 e0 100  1ag 180 220 260 300

known to circularize binary orbits, we are especially inter- ¢ RIGM

ested in studying the stable circular orbits in the effective Fig 1. The effective radial potential/;(R) (at the 2PN level
metric. A convenient tool for doing this is to introduce an ang fory=1/4) versus the dimensionless radial variabth&/ (G M)
effective potential[28,29. Note that the Hamilton-Jacobi for three different values of the dimensionless angular momentum

equation(3.9) yields i=CJea/ (GMu). Note that the effective radial potential tends to
2 2 1 for R— . The stable circular orbits are located at the minima of
i =W, (R)+ A(R) Rl =w_ (R the effective potential and are indicated by the solid circles. The
MoC? Jo B(R) Jo innermost stable circular orbit corresponds to the critical v@jue

(5.10 In the case of thg, curve the orbit of a particle with energifg

. . . =&, is an elliptical rosette.
where Pr=0dS./dR is the effective radial momentum, and 0 P

where the “effective radial potentlaIWJO(R) is defined as =T /(GMu), @y=GMuaw/c® (in our caseMo=M and

2 my=u), the effective potential and the orbital frequency
W, (R)=A(R)| 1+ M (5.12)  (along circular orbitsare quite simple:
jo( )_ ( C(R)Rz . :
i2
We read also from Ed5.10 the relativistic effective Hamil- W, (R)=AR)| 1+ Jo
tonian lo 52
HG(R.Pr.P,) A
~Jo VAR (5.15
P2 P2 wo= "_2 —2 .
= mqc? R — ¢ R
MoC \/A(R) 2B ®) mSCZC(R)Rz ! 1420
R2

A(R)
=mgC \/WP (R)+ B(R) | moc (5.12 I we define the 2PN-accurat®(R) by the straightforward
truncation of Eq.(5.6), namely

The coordinate angular frequency along circular orbits is ob-

tained by differentiating the Hamiltonian, that is Ao R) = 1— 2 N 2v. (5.16
2P = ST .
5 B3
de IHE(R,Pg,P,) R R
wo=|gr] T\ ap , (513 )
circ ¢ Pr=0 Wi, is a fifth-order polynomial iru=1/R=GM/(c’R). As

the analytical study of the extrema Wio is rather compli-

which gives, explicitly(usingP ,= J,), . .
g plicitty( 9Pe=J0) cated, we have used a numerical approach. Whearies

To ~/A(R) bet\/\{een 0 and 1/4Wj0 evolves into.a smoo?hly deformed
0= R (5.14  version of the standard Schwarzschild effective potential. To
0 \/ n Jo illustrate this fact, we plot, in Fig. 1WJ'o(R) for v=% and

m(%CZC(R)R2 for various values of the dimensionless angular momentum

jo. Note that the latter quantity coincidém view of our
Equations(5.11) and (5.14 are valid in an arbitrary radial rules with the corresponding real two-body dimensionless
coordinate gauge, but we shall use them in the Schwarzsingular momentuny:
child gauge where the metric coefficied{R)=1. Note that
W(R) and wq then depend only on the metric coefficient . Ch Clreal

A(R). In dimensionless scaled variablBs=c?R/(GM), j, 1= GMem;  GMu

(5.17

084006-10



EFFECTIVE ONE-BODY APPROACH TO GENERA. . .

(Note that our definition of the’s differs by a factor ofc
from the one used in the previous sectjon.

As usual, because of the inequalify.10, whenj and
E’OESO/ (moc?) are fixed, the trajectory of a particle follow-
ing a geodesic in the effective metr{.2) can be qualita-

tively read in Fig. 1. For instance, in the case illustrated for

the j; curve (ESE@O line), the orbit will be an elliptical

rosette, with the radial variable oscillating between a mini-

mum and a maximungsolid line in Fig. 3. The stable cir-

cular orbits are located at the minima of the effective poten

tial (the maxima being unstable circular orbit¥he 1ISCO
corresponds to the critical valyg of the angular momen-

tum where the maximum and the minimum of the effective .
potential fuse together to form an horizontal inflection point: re€ quantitiesug™,

IW; W,
=0=

IR?

- (5.18
IR,

Let us, for comparison with our deformed case, recall th
standard results for circular orbits in a Schwarzschild space

time [28,29. With the notation u=GM,/c?R (for a
Schwarzschild metric of masM,), the location, orbital
frequency and energy of circular orbits are given, whgn
varies, by

1 12
u=g|1- ~ 7z (5.19
GM
o= — w=032 (5.20
g b0 S—'1 2u)u2 5.2
o= gz =i(1-20u2 (5.20

The ISCO corresponds to the critical values

- 8
(Sf = \/%
(5.22

In the deformed Schwarzschild case defined by GdL6),
the ISCO for the extreme case= is numerically found to
correspond to the values

~ S
Wy

_ 1
J;Q'Z V12, Ufzg,

1
_6@'

cJ

-ipNE(ﬂ) =3.404=0.983 3, (5.23
CMu/ seo
GM

udh=| %=| =0.1749=1.049:%, (5.24
cR ISCO

SHere, as well as in Eqg5.25 and (5.31) below, w denotes the
angular frequencyde/dt on a circular orbit(in the equatorial

plane.

PHYSICAL REVIEW D 59 084006

GMw
a)ngz(—ro) =0.07230-1.06%° , (5.2
C
ISCO
S2PN_ o £S
2| 21 =0.94040-0.99744S . (5.26
ISCO

Note that the Schwarzschild-coordinate radius of the effec-
tive ISCO is(whenv=1/4) R'S¢®=5.718M/c?, i.e. lower
than the standard Schwarzschild valug@M/c? correspond-
ing to the total masM=m;+m,. This is consistent with
the fact that the effective horizon was drawn in below
2GM/c? when v was turned on. Note, however, that the
2PN 03PN and £2PN entering equations
(5.24—(5.26 are mathematical quantities defined in #fe
fective problem, and not physical quantities defined in the
real problem(hence the subscript 0 added as a wanifigy
contrast,j 2PN, Eq. (5.23 is directly related to the real, two-
body angular momentuhFor physical(and astrophysical
urposes, we need to transform the information contained in
E0s.(5.24—(5.26) into numbers concerning physical quanti-
ties defined in the real, two-body problem. For the energy,
this is achievedby definition by using Eq.(4.25 to com-
pute the real, two-body total enerdy.,. Explicitly, the so-
lution of Eq. (4.29 is (see alsd21])

Eo— MoC?

moc?

(5.27

Erea=MC? \/1+ 2v

We need also to transform the effective orbital frequency
wg. This is easily done as follows. We know that the Hamil-
tonians of the real and effective problems are related by a

mapping

Hreal 12 =h(Ho(12), (5.28
wherea=R, 6, ¢ (for the 3-dimensional problemand where
the functionh [the inverse of the functioh of Eq. (4.10] is,
in our case, explicitly defined by E¢5.27. On the other
hand, we know that the action variables are identically
mapped onto each othdf=1% (canonical transformation
The frequency of the motion of any separated degree of free-
dom is given by the general formulas2=aHq(1%)/412,
o= 9H ,(13)/1" where the Hamiltonians are con-
sidered as functions of the canonically conjugate action-
angle variables I,6,) (remembering that for such inte-
grable systems the Hamiltonian does not depend o'the
Therefore the frequencies of the real problem are all obtained
from the frequencies of the effective one by a common,
energy-dependent factor
w;eal_ dto _ dHreal_ ﬁh(HO)
oy dt® dH,  dHy

(5.29

In our case this “blueshift* factor reads

4For bound statesy"2> 0.
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FIG. 2. Variation withv (at the 2PN levelof the ISCO values of the real non-relativistic eneBy,=ENR=(Eea— M ¢2)/uc? (on the
left) and of the real angular momentuje ¢ J,.,/GMpu (on the righy, divided by the corresponding Schwarzschild val{igg =|ENR|

=1-/8/9=0.05719 and s= /12, respectively.

real
(l)a d to

waii - dtreal -

1
1+ 20(Eg—myc?)/myc?

(5.30

As indicated in Egs.5.29 and (5.30 the same energy-
dependent “blueshift” factor maps the effective and the rea
times(along corresponding orbjtsNote that we have here a
simple generalization of the spatial canonical transformatio
(dpOdg=dpydqgy) to the time domain dHOdt

Applying the transformation&.27) and(5.29, we obtain
the physical quantiti@spredicted by our effective 2PN met-
ric, still in the extreme case=1/4,

~ 2PN GM IS
o =| - orea]  =1.07%5=0.07340, (531
ISCO
gZPN_ MCZ R
’ea'—z) ~1.05Q85—1)=—0.06005.
,LLC ISCO

(5.32

We represent in Figs. 2 and 3 the variation witlof the
ISCO values of the real non-relativistic energﬁ/rems%{g'

=(Eea—Mc?)/uc?, the real angular momentum,
=cJea/ GMu, and of the quantity
GM —2/3
= (? (,()rea|) y (533

which is an invariant measure of the radial position of the
orbit, and which coincides with the scaled Schwarzschild

5In Eq. (5.31), 0ea= d&eal/d e is again the angular frequency
on a circular orbit. It should not be confused with the radjsri-
astron to periastrgrfrequencywg for non-circular, rosette orbits.

radius R=c?R/(GM) in the test-mass limitv—0. One
checks that our ISCO values respect the “black hole limit”
Trea<GEZ,{c®, so that the system does not need to radiate

a lot of gravitational waves in the final coalescence before

Ibeing able to settle down as a black hole.

Let us now briefly compare our predictions with previous

pnes in the literature. The first attempt to address the ques-

tion of the ISCO for binary systems of comparable masses
was made by Clark and EardI¢$0]. They worked only at
the 1PN level, and predicted that the ISCO should be signifi-
cantly more tightly bound than in the Schwarzschild case
(with Mog=M=m;+m,): E/uc?=—0.1 when v=1/4,
compared ta€8n . Moc?= \/8/9— 1= —0.0572. Blackburn
and Detweile31] used an initial value formalisrtwhich is
only a rough approximation, even in the test-mass )irtut
predict an extremely tight ISCO when=1/4: £/ uc?=
—0.7. Kidder, Will and WisemafkKWW) [22] were the first

to try to use the full 2PN information contained in the
Damour-Deruelle equations of motigh.1) to estimate ana-
lytically the change of the ISCO brought by turning on a
finite mass ratiov. They introduced a “hybrid” approach in
which one re-sums exactly the “Schwarzschild(v-

1.000

0990 |
0.980 |
z/zg

0.970 |

0.960 |

0.950
0.0

0.4 06 0.8
4v

sz 1.0

FIG. 3. ISCO values(at the 2PN level of the quantity z
=(GMuw,eq/c®) ~?3 divided by the Schwarzschild value==6,
versusv.
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FIG. 4. ISCO valuegfor v=1/4) of the real non-relativistic energ&zé‘h‘aﬁh divided by the corresponding Schwarzschild vake
ESQR, versusz/zg. On the left we have compared our predictions at the 1PN id@iiebnd 2PN level 4 ) with the results obtained if21]
(») and[22] («). The(*) indicates the Schwarzschild predictions. The right panel is a magnification of the part of the left one in which we
analyze the robustness of our method by exhibiting the pé@jsobtained by introducing in the effective metric reasonable 3PN and 4PN
contributions: @,,ag)=(*=4,—4), (£4,0) and ¢4,+4) in the notation of Eq(5.34).

independentterms in the equations of motion, and treats the Numerical methods have recently been used to try to lo-
vr-dependent terms as additional corrections. In contrast witcate the ISCO for binary neutron st4&6,27. However, we

our present 2PN-effective approat@nd also with the less do not think that thdruncation of Einstein’s field equations
reliable previous studig80,31)), they predict that, whenr  (to a conformally flat spatial metrizised in these works is a
increases, the ISCO becomes markedly less tightly boundjood approximation for close orbits. Indeed, at the 2PN ap-
e.g.SE@W/Mczz —0.0377 whenw=1/4. If their trend were proximation, some numerically significant terms in the inter-
real, this would imply that, except for the very stiff equationsaction potential come from the transverse-traceless part of
of state of nuclear mattéreading to large neutron star ragii  the metric[13,7,10. Moreover, the(unrealistig assumption

the final plunge triggered when the ISCO is reached by amised in these works that the stars are corotating has probably
inspiraling (1.M,+1.4M) neutron star binary would also a significant effect on the location of the ISCO by add-
probably take place before tidal disruption. However, bothing both spin-orbit and spin-spin interaction terms.

the robustness and the consistency of the hybrid approach of This large scatter in the predictions for the location of the
[22] have been questioned. Wex and Seh#23] showed ISCO for comparable masses poses the question of the “ro-
that the predictions of the hybrid approach were not “ro-bustness” of our new, effective-action approach. The main
bust” in that they could be significantly modified by apply- problem can be formulated as follows. Assuming that the
ing this approach to the Hamiltonian, rather than to the equaeffective-action approactior the time-symmetric part of the
tions of motion. Schier and Wex[24] further showed that dynamic$ makes sense at higher post-Newtonian levels, the
the predictions of the hybrid approach were not robust undefexact” effective functionA(R) will read

a change of coordinate system. Moreover, R&fl] has

guestioned the consistency of the hybrid approach by point- GM\3 GM\4
ing out that the formal ‘¥ corrections” represent, in several AR =1-2| 5= | +2v| == | +rvay ==
o c‘R c‘R c‘R
cases, a very largdarger than 100% modification of the
corresponding-independent terms. This unreliability of the 5
hybrid approach casts a doubt on the ISCO estimates of Ref. +vag =R T (5.39

[25] which are based on hybrid orbital terms, and which use
only 1PN accuracy in most terms.

Damour, lyer and SathyaprakaghlS) [21] have intro- ~ The question is then to know how sensitive is the location of
duced(at the 2PN levélanother analytical approach to the the ISCO to the values of thestill unknown coefficients
determination of the ISCO, based on the Pagproximants @j,as,... . Oneshould have soma priori idea of the rea-
of some invariant energy functidelosely related to the en- sonable range of values af,az,... . Arationale for decid-
ergy transformatiort4.25]. Their trend is consistent with the ing upon the reasonable valuesajfis the following. At the
one found in the present paper, namely a more tightly boun@PN level, it is formally equivalent to usdwith u
ISCO: for v=1/4, the Padepproximant approach predicts =GM/c?R) A,pp=1—2u+2vu® or the factorized form
Epiy/ mC?=—0.0653. Abon=(1—2u)(1+2vu®). However, A)p\=Apn—4vu’

which corresponds ta,= —4. This suggests that 4<a,
<+4 is a reasonable range. We shall also considér
SWe use here the values read in Figs. 3 and 4 of R&]: for £NR <as<+4 as a plausible range. Note that both choices cor-
and (mf)=0.00963, which refer to a static ISCO without radiation respond to having coefficients aof which vary betweenr-1
damping. and+1 whenv=1/4. The robustness of our effective-action
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TABLE I. Summary of the ISCO values used in Fig. A<1/4). Note that we give her€iy/Mc?, that
is the ratio between the energy that can be radiated in gravitational waves before the final plunge and the total
mass-energy initially available. The first row refers to the naive estimate defined by a test particle pf mass
in a Schwarzschild spacetime of magls We show also in the last column the solar-mass-scaled orbital
frequencyfy defined byf o= Wreal (2m)=fo(Mg/M).

Method ENRIMc? z Oreal fo (KH2)

“Schwarzschild” —0.01430 6 0.06804 2.199
Eff. action 1PN —0.01440 5.942 0.06904 2.231
Eff. action 2PN —0.01501 5.704 0.07340 2.372
Eff. action (@},a%)=(—4,—4) —0.01462 5.801 0.06994 2.260
Eff. action (@} ,al)=(—4,0) —0.01469 5.854 0.07061 2.267
Eff. action (@},a%)=(—4,+4) —0.01476 5.815 0.07131 2.304
Eff. action (@} ,al)=(+4,—4) ~0.01530 5.583 0.07582 2.450
Eff. action (@},a5)=(+4,0) —0.01540 5.531 0.07688 2.484
Eff. action @) ,al)=(+4,+4) —0.01551 5.475 0.07806 2.522
DIS [21] —0.01633 5.036 0.08850 2.860
KWW [22] —0.00943 6.49 0.0605 1.96

predictions against the introduction&f anda; is illustrated ~ a certain deformed Schwarzschild spacetime. The latter dy-
in Fig. 4. The numerical values used in Fig. 4 are exhibitechamics can be solved exactly by means of quadrafees
in Table I. by using the Hamilton-Jacobi method: see E@3.7)—
Figure 4 plots the ratioE/|Eg where Ezgﬁ\(‘;mcz (3.12]. Note that this exact solution defines a particular re-
=(&ea— Mc?)/uc? at the ISCO (for v=1/4) and Eg summation of the original 2PN-expanded dynamics. The
=/(8/9)—1=—0.05719 is the corresponding “Schwarzs- hope(which we tried to substantiate in Sec) ' that this
child” value, versusz/zs wherez is defined in Eq(5.33, é-summation captures, with sufficient approximation, the
and wherezg=6. This figure compares the predictions of crucial non-perturbative aspects of the two-body dynamics,
Ref. [22], of Ref.[21] and of our new, effective-action pre- Such as the existence of an ISCO. _ .
diction (at the 2PN level We have also added what would ~ AS all the current work about the equations of motion
be the prediction of the effective-action approach at the 1pNgnd/or the gravitational-wave radiation of binary systems is
level. Note that, at the 1PN level, the functié(R), Eq. done in some specific coordinate systef@rmonic or
(5.6), exactly coincides with the Schwarzschild one, but that*DM), we need to complete theoordinate-invariantwork
the energy mapping#.24) introduces a slight deviation from done in the previous sections by explicitly constructing the

the test-mass limit. Figure 4 exhibits also the points obtainedf@nsformation which maps the variables entering the effec-
when considering d},a)=(*4,—4), (+4,0) and (-4 tive problem onto those of the real one. We have already

mentioned that the transformation between harmonic and

+4). We see in this figure that the main prediction of the , - .
) g P ADM coordinates has been explicitly worked out in Refs.

present approacha prediction already clear from the fact .
that the 2PN contribution tAA(R) is fractionally small, L0l and[11]. Here, we shall explicily relate the ADM

namely that the ISCO is only slightly more bound than in thephase—space varia}.bIQF.ql— gz andP= ‘?S/ag of the rgla—
test-mass limit, is robust under the addition of higher PNUVE motion(as defined in Sec. Il aboyeo the coordinate

contributions. The sensitivity ta, of the binding energy is gﬁg"";gnmsetpjgt (t);:;hriaeffectwe problem. More precisely, we
only at the~3% level(for a,= *=4), while its sensitivity to P

the 4PN coefficieng; is further reduced to the-0.6% level = Qi(glp. "D (d D 6.1

(for a,=+4). Still, it would be important to determine the q (a.py),  pi=Pid.p), (6.0

3PN coefficienta, to refine the determination of the ISCO transforming thereduced ADM relative position and mo-

quantities. menta @',p;), defined in Eq.2.4), into the corresponding
reduced Cartesian-likgosition and momentaq(',p/) ca-
VI. EXPLICIT MAPPING BETWEEN THE REAL nonically defined by théSchwarzschild-gaugesffective ac-
PROBLEM AND THE EFFECTIVE ONE tion (3.2). In other words,
The basic idea of the effective one-body approach is to i P’
map the complicated and badly convergent PN expansion of q,i:Q_ ot (6.2
the dynamics of a two-body system onto a simpler auxiliary GM™ ™o

one-body problem. We have shown in the previous sections

that by imposing some simple, coordinate-invariant requirewith Q’*=Rsin#cose, Q'?=Rsinésing, Q'3=Rcosé,
ments, we could uniquely determine that the one-body dyand P/=dS«/0Q"". Here, the “effective” coordinates
namics was definetht the 2PN levelby geodesic motion in R, 6,¢ are those of Eq(5.1) (in Schwarzschild gaugeand
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Se=—Jfucdsg. The corresponding effective Hamiltonian form appropriate for determining, by successiegation, q'
(with respect to the coordinate tineof the effective prob- andp’ in function ofq andp. If needed(e.g. for applica-
lem) is easily found by solvingggf?(Q’)Pl’LP’y+nﬁc2=0 in tions of the present wqu to the di_re.ct numericql calcu_lation
terms of the energgl,= — Pj. Transforming the usual polar- ©Of the effective dynamics in the originglp coordinate} it
coordinate resulfequivalent to Eq.(5.10] into Cartesian 1S humerically fast to iterate Eqe5.8) to get Egs(6.1). For

coordinates leads to our present purpose we need an explicit analytical approxi-
mation of Eqs.(6.1) at the 2PN level. Remembering that
He#(Q',P") starts at order t?, one easily finds that
N T WL 0 U
=puc p , (6.
a p2C’BQ) T pic? qrimg i 2C@P)  9G(ap) #G(a.p) w( 1)
- - - T i T R

whereQ'=15,;Q"'Q"'=R, wheren''=Q"'/Q’ is the unit Ipi aq Ip;Ip; c

vector in the radial direction, and where the scalar and vector
products are performed as in Euclidean space. When scaling

the effective coordinates as in E(f.2), we need to scale , 9G(q,p) 9G(q,p) #°G(q,p) 1
correspondingly the time variable, the Hamiltonian and the  Pi =Pi— aq + aq ap.oq o o6
action of the effective problem: ! 6.9
o b et g Set o N
YR of =~ 1 ef= L GM" . In the terms linear inG(qg,p) one needs to use the full

(1PN+2PN) expression 0o6(q,p), while in the quadratic
Note that the effective Hamiltonia(6.3) contains the rest- terms it is enough to usépy/c?.
mass contribution. The scaled version of B3 simplifies To determine the generating functi®(q,p) we need to
to write the equation stating that, under the canonical transfor-
A mation(6.8), the effective Hamiltoniai .«(g’,p’) is mapped
He(q',p") into a function ofg and p which is linked to the realrela-
p'? (n-p)% 1 write this link in terms of the reduced effective Hamiltonian
1+ ?+ ) ' (6.5, and of the reduced, non-relativistic real Hamiltonian
where q'=/5,;0’'q"’=R/IGM and n''=q''/q’. As was (25,26 abovg, it reads
mentioned above the identification of the action variables in

tivistic) Hamiltonian Hf;a(q,p) by our rule (4.25. If we
=c? \/A<q'>
(6.5  HANR=(HR_ —Mc?)/u [the same ad$l appearing in Egs.

the real and effective problems guarantees that the two prob- ﬂ?éﬁ(q,p) v Hiﬁ(q,p)
lems are mapped by a canonical transformation, i.e. a trans- 1+ c2 + 2 c?
formation such that Eq4.5) is satisfied. It will be more
convenient to replace the generating functign,q’) of Eq. 1. , ,
~ =—H P), P)1. 6.1
(4.5 by the new generating functio(q,p’)=9(q,q’) c? el 4°(0.P).P"(q.P)] 610

+p/q'" such that
i = , Actually, we found it more convenient to work with the
pidg'+q"'dp; =dG(q,p’). (6.6)  square of Eq(6.10, so as to get rid of the square root in
We can further separatd(q.p’) into éid(q,p’)fqip{. He, EQ. (6.5. Hence, writing (half) the square of Eq.

which generates the identity transformation, and an addi(6-10, and Taylor-expandingies{d'(a,p),p’ (0,p)] using Egs.
tional (perturbativé contributionG(q,p’): (6.7—(6.9), we get, at order &f, the following partial dif-
’ ferential equation folG1pp(q,P):

G(g.p")=9'p/ +G(q.p"),

I newt IG I nout IC 2

1 1 N:ewt 1PN OFNewt 1IPN:gp4_(1+V)p_

G(qvp,)zgelPN(q-p,)"_ gezpw(q,p')- (6.7) aq Ipi api Iq a

v\ (n-p)? v\ 1
Equations(6.6),(6.7) yield the link + 1—5 q + 1+§ e (6.11)
i i, 96(a,p") , dG(q,p") _ o
= +—ﬁp-’ b PIERT (6.8  where we have denoted the Newtonian Hamiltonian as
I

Hyew=Ho=p?/2—1/q [see Eq.(2.6a]. At order 1t8, a
Note that Egs(6.8) are exact and determing’ and p in more complex calculation gives the partial differential equa-
function ofq andp’. We have, however, written them in a tion for G,p\(Q,p),
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IH ewt anpN_ I newt IG2pn
aq Ip; p; g

14

14

al_Bl:_l_V, 2a1+ﬁl=1—2 (617}

are identically satisfied by the solutidf.16).

- NN
=5 Hot (1+v)HoH,+Hy Using these 1PN results we can go further and evaluate
the 2PN-source teri,(q,p) in Eq. (6.14):
(n' p)Z 14 R &Gle IR &Gle
—(2+3v)—7—— 239 a0 9o aqd v v p?
@ 9 b db Ka(@,p)=—g(1+30pf+ g(~1+8»)
IG1pn °G1pn MHnewt  IG1pn 9°Cipn IHnewt - 4
i T i i v (n-p)p 3 (n-p)
Jdq°  dpjIp;  dq Jdq°  dpjdq  Ip; —Z(9+V)T+§V(8+3V)
1 9G1pn IGypn et 1 02
2 dp;  dp; d99'9q’ +§(—2+lﬁv—7vz)?
1 9G1pn IG1pN P Hnewt 1 2 q 1
—Z , (6.1 1 (P 1 N
2 aql (gql aplapj +8(4+3V ) q2 +4(1 7V+V )q3
whereH, andH, are given by Eqs(2.6b),(2.69, while (6.18
1 By looking at the structures in E6.18 we deduce that the
R= a[(n. p)2+p?]. (6.13 most general form 06G,py is
The partial differential equation®.11) and (6.12 have the 1 5,
general form G2pN(aP)=(0- P)| aop*+ a(ﬁzp2+ v2(n-p)A)+ 2|
IFlnewt Gy Mnewt G @ 9G,  IG, (6.19
e = —Ppi——=Kx(q,p),

Inserting the ansaté®.19 and the 1PN results in E¢6.12),
(6.14 we get again more equations than unknowns:

a9 ap ap eqd qdap o

where, at each PN ordar=1PN or 2PN, the RHS is a
known source ternmK,(q,p). Note that the LHS of Eq.

(6.14) is the Poisson brackef$d yewt, G} OF, equivalently,
minus the time derivative o6, along the Newtonian mo-
tion. It is easily checked that the solution of E§.14) is 9 2 9
unique modulo the addition of terms generating a constaraz+ B>—3y,+ ZVJF ZZO, 3y,—3v— §V2=0,
time shift or a spatial rotation.Indeed, the homogeneous

scalar solutions of Eq6.14 must correspond to the scalar 1 7

constants of motion of the Keplerian motidf;,{d,p) and 2 +Bo— 6,—2v+ 3 v?=0,

(g% p)2.] If we require(as we cahthatG(q,p) change sign

whenq or (separatelyp change sign, the generating function 3

is uniquely fixed. In particular, at 1PN level, by looking at _ ~ 4 23,1 25,+3y,— = 12=0,

the structure of the source terms, i.e. the RHS of Bdl1), 2 8

we can prove in advance th&; p must be of the form

—a+z+§1}2=0 a—,B-I—Z—VZ:O
'8 8 $ T2 P2 ’

sl ¥ g 6.2
, B Tttt gm0 6.20
alp+_

2| (6.19

GipNaP) = (0 P)

As it should(in view of the work of the previous sections
Inserting Eq.(6.15 into the equation to be satisfied, Eq. one finds that all the redundant equations can be satisfied.
(6.11) gives a system of four equations for the two unknownThe final, unique solutions for the coefficients, B,, v,
coefficientsa; and3;. Two of these equations give directly andé, are
the valuesa; and 84,

_V+3V2 _21/—51/2
. a=—g IBZ_T,
a1= — 35, Bl:l+_1 (616)
2 2
_8v+3V2 s _1—71/-1- v? 6.2
while the two redundant equations Y2=Tg 0 %27 4 ' (6.2
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Finally, we give the explicit form of the canonical transformation between the coordirg@tgsdnd @',p’) at the 2PN level
[see Eq(6.9]:

1 Ni— 1 1+Z il__ — i( -p)
q'-q'== 2 5d'P’=vp'(q-p
1 v\ d'(g-p? v v\ g'p? 3 v\ p'(g-p)
ralirg ¢ Ta\°2)q T2t 2 g
1 q v . v .
+—(1-Tv+1%) 5+ 5 (1-v)g'p*+ 5 (1L+v)p'p?(q-p) |, (6.22
4 P 8 2
1 p v\ di(g-p)
PI—Pi= 2 —<1+2)E'+—p.p (1+§> 'q3
1 3 v\ pip?
( l+3V)p|p + — (3+11V) 2 ZV 3+§ T

L1 ( 18yt 2)q((? p) (10_ )q(qqp)p
2 (A.m)3
——(16+5v) Pia p) gv(8+3v)ql(q P) } (6.23

Note that thev—0 limit of Eq. (6.22 givesq’'=[1+1/(2c?q)]?q' which is (as it should the relation between “Schwarzs-
child” (q') and “isotropic” (q) quasi-Cartesian coordinates in a Schwarzschild spacetifire. this case,
ADM =isotropic) As a check on Eqg6.22),(6.23 we have verified thatat the 2PN level g’ X p’ coincides withgXx p.
[They should coincide exactly, when solving exactly E§s8) with any (spherically symmetricgenerating functios(q,p). ]
Let us quote, for completeness, the partial derivatives of the generating fuction 2G, py+ ¢~ *G,py, Which must be used
to solve by successive iterations the exact equati6r® and determing’ andp’ in terms ofq andp:

dGipNaP) v, v\ Pi v\ 0i(9-p)
—(w;———ipip'f' 1+§ E— 1+§ —qr, (624)
dGipNd,P) v v g i
&—pi——qu+ 1+3 E‘VP(Q'D), (6.29
dGopNQ,p) 1 WV pip® pi(q: |f>)2
—aql——gv(l-i-Bv)pip +§(2—5 )T+_ (8 +3v )
3 q'(q-p)3 1 qi(g-p)p?
—gv(8+3y) —5 7 (1-Tv+ 2) (2 5,) 2 d PP 7
——(1 Tv +v2)q(c? P (6.26
G , 1 2
—ZZ“rfq P) gv(1+3v)d’pt g (2 5v)—qp +—v(8+3v)q(q P
i
1 q v - v p'(9-p)
- _ 2y 1 _ i~20~. _ _
+ 3= Tves?) ot S (L 30)PIP(A P+ 7 (2-5) ——. (6.27)
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VII. INCLUSION OF RADIATION REACTION EFFECTS where the “improved 2PN” Hamiltonian is that defined by
AND TRANSITION BETWEEN INSPIRAL solving Eq.(4.25) for &ea=Hyey, i.€.
AND PLUNGE
. . o ) |mprove(tQ P)
In the preceding sections we have limited our attention tQ real
the conservativétime-symmetri¢ part of the dynamics of a Mc?
two-body system, i.e. the one defined, at the 2PN level, by
neglectingA*in Eq. (1.1). We expect that the separation of \/ He(Q'(Q,P),P'(Q,P))
the dynamics in a conservative part plus a reactive part =\Vi+t2v uc? -1, (79

makes sense also at higher PN ordétough it probably

gets blurred at some high PN leyetowever, there exists, at on the RHS of which one must transform, by the canonical
present, no algorithm defining precisely this S_eparatlon' Anytransformation discussed in Sec. VI, tiexac) effective
way we shall content ourselves here to Worklng at the 2.5PN—|ami|t0nian defined by Eq63) In the latter, we propose to

level where this separation is well defined, as shown in Equse our current best estimates of the effective metric coeffi-
(1.2). When dealing with the relative motion we find it con- cientsA(Q’),B(Q’), namely

venient to continue using an Hamiltonian formalism. $eha
[20,14,18 has shown how to treat radiation reaction effects
within the ADM canonical formalism. His resulfat the 2GM
2.5PN level is that it is enough to use as Hamiltonian for the A(QH)=1- 2 +2v
dynamics of two masses tane-dependeniamiltonian ob-
tained by adding to the conservative 2PN Hamiltonian
H,pn(01,02,P1,P2) the following “reactive” Hamiltonian:

2

GM
B(Q’)EAl(Q’)[l—fSrf(Cz—Q

PiPL PP}
Hread A8 P P2t = — 0| 5+ 5 (7.6
1 (9L —ab) (gt —qb) On the other hand the “reactive” contribution to the total
- EGmlmZ PErAE , Hamiltonian(7.4) is the center of mass reductidp, = — p»
=P, Q=q.—q,) of Eq. (7.1).
(7.9 In terms of reduced variablgs}=Q/GM, p=P/u) and
where of the non-relativistic reduced HamiltoniamN\R=(HR
—Mc?)/u, our proposal reads
4 G d’Q;(t)
TTrea __ = 1 ~
=5 s g (72 ANR(q.p;t) = ANR ™ot g, p) + A2 g, pit), (7.7)

Qj; denoting the quadrupole moment of the two-body syswith

tem,
H NR improve

real (tqa p)

1
\/1+2V

gzﬂeﬁ(q’(q,p),p’(q,p))—l) —1},

o1 y
Qij<t>=a212ma(q;q;—§q§6” : (7.3

C2

Note thath/;"™**®in Eq. (7.1) should be treated as a given,
time-dependent external field, considered as being indepen- (7.9
dent of the canonical variableg ,p,. In other words, when ~ y o ' . . .
writing the canonical equations of motidn= dHy;/dp, p= \(%hg)reaiaﬁf/eitﬁ ) is defined by inserting Eq7.6) into Eq.
— dH /99, one should consider only the expligitp depen- "

dence appearing in the square brackets on the RHS of Eq. 1qq

(7.1). After differentiation with respect tg andp one can H"™q,p;t)= _hngeaf(t)[ p'pl—= T} (7.9
insert the explicit phase-space expression of the third time 2q

derivative of Q;;(t) [obtained, with sufficient precision, by

using the Newtonian-level dynamics, i.e. by computing a re- TTrea 4 v ST P

peated Poisson bracket @;(q,p) with Hyewiod d.P)]- hij 0 = - 5¢° g2 —4(p'n’+p'n')+6n'n'(n-p)
Finally, we propose to graft radiation-reaction effects onto

the non-perturbatively re-summed conservative dynamics de- z (n-p) &' (7.10

fined by our effective-action approach in the following way. 3 P '

The total Hamiltonian for the relative motid@,P in ADM o
coordinates is wheren'=q'/q. As explained above, the quantity, "**{t)

imorove should not be differentiated with respect qgoand p when
Hio Q.P;) =HEh*"*{Q,P) + H™Q,P;t), (7.4  writing the equations of motion
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FIG. 5. Inspiraling circular orbits ind’,p’) coordinates including radiation reaction effects for 0.1 (left pane) and v=1/4 (right
pane). The location of the ISCO and of the horizon are indicated.

g GANR improveq g 1) aﬂrea%q,p;hrre“(t)) the Euc_lidean m_etrigﬂ = i5” apipeairing in the lowest order
= . + A ) Newtonian Hamiltonian ,,=09,—qy)
Ipi Ipi
. . < 90PaiPaj Gmym,
. 0HrNe§I mprovettq,p) B (9Hrea‘\(q,p;hi—ETreat(t)). Hnewtoniad da s Pa) = ; 2m, = (gﬂq;bng)llb
' aq aq (7.12

7.1

(71D by taking into account the near zone radiative field:
When inserting, after differentiation, E¢7.10, the equa- o o
tions of motion (7.11) become an explicit, autonomous gij=gj+h{", g'=gf-hlu(t). (7.13
(time-independent evolution equation in phase spack:
=f(x) wherex=(q',p;). From the study in Sec. V above of
the circular orbits defined by the exact, non-perturbativ
Hamiltonian H¢, we expect that the combined dynamics
(7.12 will exhibit a transition from inspiral to plunge when
g=|q (which decreases under radiation dampingaches
the image in the-p phase space of the ISCO, studied above
in q’,p’ coordinates. We have in mind here quasi-circular
inspiraling orbits(circularized by radiation reactignthough,
evidently, our approach can be used to study all possibl
orbits. We further expect that, when<1, the inspiral will
be very slow{the reaction Hamiltonian being proportional to

v; see Eq(7.10] and therefore the transition to plunge will 4 <t o¢a : .
i gy proposed in E(y.4), graft this improvedper-
be quite sharp and well located at the ISCO. Whenl/4 v ahive reactive force onto the non-perturbatively im-

the radiation reaction effects are numerically smallish, bubroved conservative force defined by mapping back our ef-
not parametrically small at the ISCO, and the transition tofecftive dynamics onto thg coordinates

plunge cannot be expected to be very sharp. These expecte
behaviors are illustrated in Fig. 5.
For simplicity, we have computed the orbits exhibited in VIil. CONCLUSIONS

these figures iy’ space, neglecting théormally 3.5PN We have introduced a novel approach to studying the late
effect of the §,p)—(q’,p’) transformation on the reactive gynamical evolution of a coalescing binary system of com-
part Of the equations Of motiOIﬁThankS to the Canonical pact Objects_ Th|S approach iS based on mapph)ga ca-
invariance of the Hamilton equations of motion, the crucialponical transformationthe dynamics of the relative motion
conservative part of the evolution oy,p” space is simply  of a two-body system, with comparable massgsm,, onto
obtained from the Hamiltoniafi iy, ™P*®{q’,p’) defined the dynamics of one particle of mags=m;m,/(m;+m,)
by keeping the variableg’ andp’ on the RHS of Eq(7.8).] moving in some effective metrids.¢. When neglecting ra-
Let us finally mention another possibility for incorporat- diation reaction, the mapping rules between the two prob-
ing radiation reaction effects directly in the effective one-lems are best interpreted in quantum ter(msapping be-
body dynamics. In thg-p coordinates th€2.5PN reaction  tween the discrete energy spectrum of bound stafsey
Hamiltonian (7.1) can be simply seen as due to perturbinginvolve a physically natural transformation of the energy

By mapping bacKthrough our ¢p)<(q’'p’) link] the met-
dic perturbatiorhﬁ“eaconto the effective problem, one might
try to incorporate reaction effects by defining a suitable “re-
active” perturbation of our effective metric:

9,.(a)=050(a")+ 595 (q"). (7.14

"This approach might be useful for trying to go beyond the

2.5PN level discussed here and to define a “re-summed”

Gersion of reaction effects. Alternatively, if one has at one’s

disposal a more complete PN-expanded reactive force ex-
pressed in the original coordinate$32], one can, following
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axis between the two problems, stating essentially that theery sensitive to the nuclear equation of state, so that LIGO
effective energy of the effective particle is the energy ofand VIRGO observations might teach us something new
particle 1 in the rest frame of particle(@r reciprocally; see  about dense nuclear matter.
Eq. (4.26. The usefulness of this energy mapping was pre- Finally, we have proposed two ways of adding radiation
viously emphasized both in quantum two-body probl¢fis reaction effects to our effective one-body dynamics. The
and in classical ong1]. most straightforward one consists in directly combining ra-
Starting from the currently most accurate knowledge ofdiation effects determined in the real two-body problem with
two-body dynamicg6,7], we have shown that, when ne- the non-perturbative conservative dynamiasich, in par-
glecting radiation reaction, our rules uniquely determine thdicular, features a dynamical instability at our ISCGb-
effective metric g,effy(q’) in which the effective particle tained by mapping the effective dynamics onto some stan-
moves. This metric is a simple deformation of a Schwarzsdard (ADM or harmonig two-body coordinate system: see
child metric of massM =m; +m,, with deformation param- Eq.(7.7). A more subtle approach, which needs to be further
eterv=u/M. Our suggestion is then tefine(as is done in  developed, would consist in adding radiation reaction effects
quantum two-body problemdg1,3]) a particular non- at the level of the effective metric itself; see £@.14. We
perturbative re-summation of the usual, badly convergenthave illustrated in Fig. 5 the transition from inspiral to
post-Newtonian-expanded dynamics by considering the dyplunge implied by(an approximation toEg. (7.7). In prin-
namics defined by the effective metric as exact. This definiciple, this transition, and in particular the frequency at the
tion leads, in particular, to specific predictions for the char-ISCO, will be observable in gravitational wave observations
acteristics of the innermost stable circular orbit for of systems containing black holes.
comparable-mass systems. In agreement with some previous We hope that the approach presented here will also be of
predictions(notably one based on Padeproximantg21]),  value for supplementing numerical relativity investigations.
but in disagreement with the predictions of the “hybrid” Indeed, our mainthopefu) claim is that the effective one-
approach of Ref[22], we predict an ISCO which is more body dynamics is a “good” non-perturbative re-summation
tightly bound than the usual test-mass-in-Schwarzschild onef the standard post-Newtonian-expanded results. Therefore,
The invariant physical characteristics of our predicted ISCOt gives a simple way of boosting up the accuracy of many
are given in Eqgs(5.31) and(5.32); see also Table I. Note in PN-expanded result§We leave to future work a more sys-
particular that the binding energy at the ISCO is robustlytematic analysis of the extension of our approach to higher
predicted to be«;i\é@l: —1.5%Mc? (for equal-mass systems, post-Newtonian ordersEffectively, this extends the validity

v=1/4), while the orbital frequency at the ISCO is numeri- of the post-Newtonian expansions in a new weyg. differ-
cally predicted to béagain forv=1/4) ent from Padepproximant§. In particular, our results could

be used to define initial conditions for two-body systems
very near, or even at, the ISCO, thereby cutting down sig-
_ (8.1) nificantly the numerical work needed to evolve fully relativ-
istic 3D binary-system simulations.
As a final remark, let us note that many extensions of the
Note that this corresponds te847 Hz for (1.M,1.4M)  @pproach presented here are possible. In particular, the addi-
neutron star systems. tion of the(classical spindegrees of freedom to the effective
We have argued, by studying the effects of higfiene- ~ one-body problentin the effective metric and/or in the ef-
symmetrig post-Newtonian contributions, that our predic- fective particle suggests itself as an interesting isguath
tions for the characteristics of the ISCO are rather robusP0Ossibly important physical consequences
(especially when compared to the scatter of previous predic-
tiong). See Fig. 4 and Table I. We note, however, that knowl-
edge of the 3PN dynamic&urrently in progres$19,33) ACKNOWLEDGMENTS
W(_)uld significantly reduce the prese_(ﬁPN-ba_\se)j uncer- We thank Gerhard S¢Fer for useful comments.
tainty on the knowledge of the effective metric.
The coordinate separation, in effective Schwarzschild co-

Mo
ISCO_
f 2372 Hz( v

ordinates, corresponding to the ISCO i®Q'=R APPENDIX A
~5.72GM/c?, i.e.~23.6km for a (1.Mo,1.4M ) neutron _ _ _ _
star system{from our canonical transformatiot6.8), this In this appendix we determine, at the 2PN level and in the

corresponds to an ADM-coordinate relative separatio@of Schwarzschild gauge, the effective metric

=4.79GM/c?]. This value is near the sum of the nominal

radii of (isolated neutron stars for most nuclear equations of s > oo )
state[34]. This suggests that the inspiral phase of coalescing dsiy=—A(R)c?dt*+ B(R)dR?+ R*(d6°+sir’ d¢?),
neutron star systems might terminate into tidal disruptmm (A1)

at least tidally dominated dynamjosithout going through a

well-defined plunge phase. Fully relativistic 3D numerical

simulations are needed to investigate this question. We note’|t should be, however, possible to combine the effective one-
that a positive aspect of haviri@s predicted hejea rather  body approach with Padapproximants, thereby defining an even
low ISCO is that the end of the inspiral phase might well bebetter scheme.
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a a, as by b,
AR =1+ g+ e T coger BIRI=1H g+ e
(A2)

when requiring simultaneously thé) the energy levels of
the “effective” and “real” problems coincide modulo an
overall shift, i.e. E(Ny,Jo)=Ereal N, J) —Co, With cq
=Mc?—myc?, Jo=J andNy=N and(b) the effective met-
ric depend only oimm; andm, . In this case, as anticipated in
Sec. IV, we will see that it not possible to satisfy the condi-
tion my= .

The radial action %(So,jo) of the “effective” descrip-
tion is

19(E0, o) = @y Aral é( EQR)Z—j
R\¢0,J0 \/_253|R moC mOCZ 0
- % D+E o +a—gf: (A3)
A mec?|  c*75
where&y =& —mgC =GMgmg,
Ae- o, Bobla, 6= %
= 53-1, =Dy 53-1' vy aal,( )
a2 A P P N2 i~
f):i_%_al_bl AZQZ_é_al_bl_ﬁ %
2 2 4 r %2 2 g 2
- 1 a4 A24 a2 A A a30 PP
= a[24a1— 48a1a2+ 8a2+ 16a.1a3_ 8a1b1+ 8a1a2b1

a1b1+4a bz]
and we have introduced the dimensionless coefficients

b.
(GMg)"’

a
(GMp)"”’

aj= 6

(A5)

We define the mashl, used to scale the coefficieras and
b; by requiringd;=—2 (i.e. a;=—2GMy). ldentifying Eq.
(A3) with the radial action 3(£NR,7) of the “real” prob-

lem, i.e.
IR(£NR,m=—iZ:1R +(?—£)i—$+(2—2+ i—zv
3 ) SNR 2
+3—2v )( 2

- J+ —— o ES—311) e
.7 ,LLC

35 5 o

T EV)CTﬁ’ (AB)

wherea=GMu andENR=¢£,.,—Mc?, yields six equations
to be satisfied. The requireme(@ above implies the simple
identification of the variables entering Eq#3) and (A6):

PHYSICAL REVIEW D 59 084006

EQR=ENR 7=, 1%=1g. The explicit form of the equa-
tions stating thatAmy?a, (OPN leve), Bm, Y2y, Da?
(1PN leve) andCmj 320y, Ea’/my andF ag (2PN leve) in
Eq. (A3) coincide with the analogous coefficients in E46)
yields

1/2

mO apg= ,LL 0[ (AY)
7 1
by+ 7| Mo YPao=7 (15— v)u™ e, (A8)
(4—a,+b;)a3=6a?, (A9)
19 b,| 3% 15 3 -
3—2+Z 03/2a0—<3—2 167 3—2V2)/.L 32, (A10)
(4—a +E>—ﬁ %ig:(l—s—sv)iz (A11)
2'7 g8 2/mp |\ 2 ’
35 5
ag=(z—§1/)a4. (A12)

It is to be noted that if we imposey=ux andGMy=GM
(so thatag= a), we get an incompatibility at the 2PN level.
Indeed, Eq(A7) is satisfied and we can solve E@48),(A9)

in terms of the 1PN coefficients, anda,, but then the 2PN

equation (A10), which contains onlyb,, is not satisfied.
(This problem is due to the fact that we have more equations
than unknowns. Hence, we are obliged to relax the con-
straintmy= w. Let us introduce the parametérdefined by
mo=pué 2. Equation(A7) then givesGMy=GM&3. Note
that we are crucially using here the fact that the Newton-
order energy levelsNR= —mgya3/(2Np) + O(c?) do not
depend separately ono and ao GMgmg, but only on the
combinationmyai= G?M3m3. Solving the 1PN-level equa-
tions (A8),(A9) we then get

1
b= T (—9+98— ),

1 2 A —
22 (15-78-0), 8=
(A13)

4¢

while the 2PN-level equatiofA10) gives a quadratic equa-
tion in €2 which fixes uniquely its valu¢as well as that of
the positive parametef), namely

2_

—[ 15+ v+ 2v2\/50+ 160+ 212]. (A14)

el
Mo

Finally, the remaining 2PN equatiorid11) and (A12) de-
termine the coefficients of the effective metric at the 2PN
level:

1
b,= 6T§2(118& 9782+ 4984 — 414y + 14E% v+ 12),
(A15)
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1
a3= 6764(_ 289+ 402¢%— 113¢*+ 158y + 5082y — 1?).
(A16)

The complexity of the resultd13)—(A16), compared to the
simplicity of our preferred solutio(b.6)—(5.8), convinced us

PHYSICAL REVIEW D 59 084006

~(GMp)"”’

q;

Bi:

b;
(GMp)"’

(B4)

Identifying T%(Eo,jo) with the analogous expression for the

“real” problem,

that the requirementa) above should be relaxed. Also, it 1 15 »\E 35 15
seems suspicious to have an effective mmagsvhich differs IR(Erean) = 1+( ) = ( + oz
R reals I T n _2 29 1A
X AR ) . = 4 32 16
from w even in the non-relativistic limit—oco. Finally, it is 2 Ereal ¢
not evident that this method can be generalized to higher 3 E eall 2
post-Newtonian order§where more redundant equations +3—2v2)(?) }
will have to be satisfied
. 1 15 Ereal
APPENDIX B Tt |3t 7 Y
In this appendix we describe an alternative, more formal 35 5 1
method to map the “effective” one-body problem onto the +|——5v|=Z3, (B5)
4 2 )c%j

“real” two-body one. We work in the Schwarzschild gauge.

Here we require simultaneously th@ the energy levels of

overall shift, i.e. E(Ny,Jo)=Ereal N, J) —Co, With ¢q
=Mc?—myc?, Jo=JandNy=N and(b) the effective mass
my be equal to the reduced mags=m;m,/(m;+m,). In-
troducing the dimensionless quantities

R O’ R a ' 0 mO’ real ’
(B1)
Y/ RV
Jo—a—o- J—;,

where ¢g=GMgmy and a=GM =G m;m,, we can re-
write the radial action for the “effective” problem, Eq.
(3.13, in the form

(Egvjo)= | A+ B2 48 E")z |
rR(E0s]o \/TEO c C2 Jo
- |5+EE°+ ! F (B2)
c’o c?] iy
where
Ao 1. - 7. (:—61 19
=T 54 =017 g, =2 s
A2 A .o~ o~ fo a
L ay a aby, ., . &by by b
D=5 -5~ E-dia— g7,

(B3)

and where we have used, as above, the scaled metric coeffi-

cients

- oy = and imposingeg=E o, Mp=u, @p= a, we get more equa-
the “effective” and “real” descriptions coincide modulo an isns to be satisfied than unknowns

1;\
-sa=1, (B6)
b - 15 B7
1_531—2( — ), (B7)
a,b
a2-8,— —— =6, (B8)
19 +61_35+15 . 3, 59
Mt TR R (B9)
A a,b, b? b, 15
-8~ ———gt5 =5 3 (B10)
. 3 5
F=g—5v (B11)

Note that Eqs(B7) and(B9) depend only ord,; andb;, and
cannot both be satisfied. To solve this incompatibility we
consider here the possibility that the various coefficients that
appear in the effective metric depend on the energy. Namely,
at the 2PN level we consider the following expansions:

A A(0) , a(2
a;(Eq)=a"+4a

A A A(2
a,(Ep)=a+ay

83(Eg) =2y,

and
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2

Eo
CT i)

~ ~ ~ E ~ ~
b1(Eg)= b(lo)“‘ b(lz) (Cﬁg) , by(Ep)= b(zo) :

Eo\?
+a® =z (812

(B13)

(B14)

(B15
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The introduction of an energy dependence in the coefficients
a;,b; reshuffles the =2 expansion of Eq(B2) and modifies
Egs. (B6)—(B11) which are to be satisfied. It is easy to see
that the flexibility introduced by the new coefficierst&™ o o

Again this solution is more complex than our preferred so-

b@n ' i . . .
bi™” allows one to solve in many ways the constraints to beIutlon (5.6)—(5.8). Moreover, we think that the assumption of

satisfied. The simplest solution is 9_btained by requiring tha%m energy dependence in the effective metric introduces a
the energy dependence enter onhai(Eo) and only at the conceptual obscurity in the entire approach: Indeed, one

2PN level, should introduce two separafeffective energies: the en-
ergy parameteE(”) appearing explicitly irg%', and the con-
served energ;E((Jl) of some individual geodesic motion in
because in this case only E&®9) gets modified. Indeed, it is g'fofV(EE,O)). They can only be identifiedy posteriorj for each

E(O)=i(256— 400v+ 1?) (B19)
2 64 '

ap-0, aZ-0, BP-0, (81§

straightforward to derive the new equation replaciBg): specified geodesic motion. This makes it also quite difficult
R to incorporate radiation reaction effects.
19 b® a® 35 15 3 Finally, one can require that the effective metric does not

0
- aag '+ 2 T2 T3ttt 3_2V2- (B17)  depend on the energy, but that the effective nmagglepends

on Ey. One then finds the solution
Hence, from Eqs(B6)—(B8) we obtain the effective metric
coefficients at the 1PN level:

v Eo\2
y 1 Mo(Eq)= | 1+ 75(32+3 ) (C—S) } (B20)
a’=-2, a=-7, b"=7(8-»), (B1Y
while the 2PN equationé817) and (B11),(B12) give with a corresponding effective metric defined by the energy-

independent pa@(® ,b(®” of the solution above. The objec-
tions of complexity and conceptual obscurity raised above

NG 50_" o0g-
! 16(32+3V)’ a3 64(208 v), also apply to this energy-dependent effective-mass solution.
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