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Allgemeinverständliche

Zusammenfassung

Wenn sich eines der kompaktesten Objekte unseres Universums, ein Schwarzes Loch,
im Wirkungsbereich eines anderen Schwarzen Lochs befindet, kommt es zu einem spek-
takulärem Schauspiel. Durch die gegenseitige Anziehung, oder Gravitation, beginnen
beide sich zu umkreisen, immer schneller und näher, bis sie am Ende zu einem einzigen
Schwarzen Loch verschmelzen.

Bei diesem Prozess wird der umgebende Raum und die Zeit derart stark gekrümmt,
dass die Auswirkungen, sogenannte Gravitationswellen, selbst hier auf der Erde im Prinzip
messbar sind. Dafür benötigt man unvorstellbar sensible Detektoren und ein Netzwerk
dieser Gravitationswellendetektoren ist bereits in Betrieb, um solche Signale erstmals direkt
zu messen.

Ein wichtiger Beitrag, um tatsächlich Binärsysteme von Schwarzen Löchern zu „hören”,
sind theoretische Modelle der Signale, schließlich lässt sich ein bekanntes Geräusch deutlich
leichter und genauer aus dem Rauschen der Detektoren herausfiltern als das völlig Unbekan-
nte. Ausgehend von Einsteins Allgemeiner Relativitätstheorie, die zu kompliziert ist, um sie
direkt zu lösen, wurden in dieser Arbeit sowohl analytische Näherungen auf dem Papier
als auch numerische Simulationen mit Supercomputern vereint, um erstmals das gesamte
Signal von einspiralenden und verschmelzenden Schwarzen Löchern vorherzusagen.

Die Resultate geben nicht nur einen Einblick, was von Gravitationswellenmessungen
zu erwarten ist, sie ermitteln auch die Ungenauigkeiten, die in den analytischen und
numerischen Lösungen vorhanden sind, und die im schlimmsten Fall zur Nichtentdeckung
oder Fehlinterpretation von Signalen führen könnten. Die Schlussfolgerungen der vor-
liegenden Arbeit sind dabei positiv: Die theoretischen Vorhersagen von verschmelzenden
Schwarzen Löchern sind genau genug, um eine neue Ära der Astronomie einzuleiten. Für
fundamentale Fragen, z.B. ob Einsteins Theorie wirklich allumfassend unser Universum
beschreibt, sind die Gravitationswellenmodelle womöglich noch zu ungenau, aber bis
die ersten Daten mit einer neuen Generation von Detektoren erhoben werden, sind auch
noch ein paar Jahre Zeit, um auch auf theoretischer Seite alles für den wissenschaftlichen
Durchbruch vorzubereiten.
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Abstract

One of the most exciting predictions of Einstein’s theory of gravitation that have not yet
been proven experimentally by a direct detection are gravitational waves. These are tiny
distortions of the spacetime itself, and a world-wide effort to directly measure them for
the first time with a network of large-scale laser interferometers is currently ongoing and
expected to provide positive results within this decade. One potential source of measurable
gravitational waves is the inspiral and merger of two compact objects, such as binary black
holes. Successfully finding their signature in the noise-dominated data of the detectors
crucially relies on accurate predictions of what we are looking for.

In this thesis, we present a detailed study of how the most complete waveform templates
can be constructed by combining the results from

(A) analytical expansions within the post-Newtonian framework and

(B) numerical simulations of the full relativistic dynamics.

We analyze various strategies to construct complete hybrid waveforms that consist of a post-
Newtonian inspiral part matched to numerical-relativity data. We elaborate on exsisting
approaches for nonspinning systems by extending the accessible parameter space and
introducing an alternative scheme based in the Fourier domain. Our methods can now be
readily applied to multiple spherical-harmonic modes and precessing systems.

In addition to that, we analyze in detail the accuracy of hybrid waveforms with the
goal to quantify how numerous sources of error in the approximation techniques affect the
application of such templates in real gravitational-wave searches. This is of major impor-
tance for the future construction of improved models, but also for the correct interpretation
of gravitational-wave observations that are made utilizing any complete waveform family.
In particular, we comprehensively discuss how long the numerical-relativity contribution
to the signal has to be in order to make the resulting hybrids accurate enough, and for
currently feasible simulation lengths we assess the physics one can potentially do with
template-based searches.
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Acronyms and symbols

BH black hole
EOB effective one body
FFT fast Fourier transform
GW gravitational wave
IMR inspiral-merger-ringdown
NR numerical relativity
PN post-Newtonian

SNR signal-to-noise ratio

Frequently used symbols

h+, h× plus and cross polarization of the gravitational wave
h gravitational-wave strain, h= h+ − i h×
Ψ4 Newman-Penrose scalar, Ψ4 = ∂

2h/∂ t2

A, φ amplitude and phase of h, h= A eiφ

φorb orbital phase of a binary inspiral
ωorb time-domain frequency of the orbital movement, ωorb = |dφorb/dt|

v relative velocity in an orbiting black-hole binary
h̃ Fourier transform of h

Ã, φ̃ amplitude and phase of h̃, h̃= Ã eiφ̃

R, rex distance between source and observer, also extraction radius

m1, m2 individual masses of the black holes in a binary
M total mass of the binary, M = m1+m2

q mass ratio of the binary, q = m1/m2

η symmetric mass ratio of the binary, η = m1 m2/M2

S1, S2 individual spins of the black holes
L angular momentum of the binary

LN Newtonian angular momentum of the binary
L̂N unit vector of the Newtonian angular momentum, L̂N =LN/‖LN‖

χ1, χ2 dimensionless spin projections, χi = Si · L̂N/m
2
i

χ mass-weighted total spin of the binary, χ = (m1χ1+m2χ2)/M

〈h1, h2〉 inner product between two waveforms, see (2.47)
O overlap, inner product maximized over time and phase shifts
M mismatch,M = 1−O
FF fitting factor, fully optimized inner product
MFF fully optimized mismatch,MFF = 1− FF

Sn noise spectral density of a detector
Λ likelihood ratio
Γi j Fisher information matrix
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Chapter 1

Introduction

Our current understanding of the weakest of all fundamental forces, gravity, is based on
Einstein’s theory of General Relativity. The interaction of space, time, matter and energy
is described in a geometrical picture that not only explains why Newton’s apple falls to
the ground, it also predicts phenomena that go well beyond the classical perception of
an attracting force. All experimental and observational tests of General Relativity were
passed successfully so far, from the perihelion advance of Mercury, the time dilation of
global-positioning satellites to the bending of light around massive astrophysical objects.
One prediction, however, could not be directly detected so far: gravitational waves (GWs).

This will (hopefully) change in the near future. Kilometer-size detectors, based on the
design of a Michelson laster interferometer, have been built to pick up tiny oscillations of
spacetime itself [7–9, 19, 99, 127, 173, 174]. A network of these instruments, distributed
all over the globe, is already in operation or in an upgrade phase to reach a sensitivity that
should be good enough to detect several signals per year [4].

What are we looking, or rather “listening”, for? Although every accelerated mass
distorts the spacetime and, in principle, emits GWs, the effects are so inconceivably weak
for any human or even planetary movements, that we have to aim for the most violent
processes in the universe. One prominent candidate of a first detection is the inspiral and
merger of the most compact objects that exist: black holes (BHs). If a binary forms and
spirals inwards, the heavy masses move with a velocity close to the speed of light at their
final encounter, which should produce a very energetic burst of gravitational radiation. This
signal originates directly at the core of the process; it is not obscured on by stars, stellar
medium or other obstacles along its way to earth, so detecting GWs will open an entirely
new window to the universe, complementing what we can infer today from electromagnetic
radiation and other observations.

Despite these gravitationally violent processes, the signals are still extremely weak when
they arrive at the detector on earth, and it is a theoretically and computationally challenging
problem to identify such weak signatures in the noise-dominated data of GW detectors.
However, a theoretically predicted model of the waveforms we are looking for greatly
aids the search. In fact, the most sensitive search strategies are based on a comparison of
theoretical waveform templates with the data to assign a statistical confidence about how
likely the signal in question is buried in the noise. In addition, the characteristics of the
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2 CHAPTER 1. INTRODUCTION

system that emitted the GW are encoded in the signal, and to extract such information we
first have to understand how different physical parameters affect the GW signature.

Unfortunately, modeling GWs from coalescing BHs is a difficult problem by itself. To
elicit the corresponding signal from Einstein’s equation, we have to solve a nonlinear
system of partial differential equations, which cannot be done exactly. Therefore, we
have to make use of the most accurate approximations, either of analytical origin within
the post-Newtonian (PN) approach [38], or solve the full equations numerically. Both
fields have advanced tremendously over the past years, and each can provide a reliable
description of a different part of the entire signal. PN methods are based on expanding
relevant quantities in terms of a small parameter, such as the relative velocity of the bodies
as a fraction of the speed of light. The results thus become more inaccurate the closer
the binary is to merger, which means that the last part of the inspiral, the merger and the
“ringdown” to the final BH have to be modeled differently. Here, numerical relativity (NR)
can provide reliable data, but performing the simulations in full generality is a very time
consuming process. Hence, only relatively short NR waveform parts can be generated.

The subject of this thesis is the combination of both approaches to obtain a complete
and accurate picture of the entire GW signal emitted by coalescing BHs. When our studies
started, there were already first approaches to describe the complete waveform by a
combination of analytical and numerical data [14, 15, 60, 61, 80, 81], but these were
restricted to nonspinning systems, and only a few NR simulations were available at that
time. The aim of the present work is therefore to elaborate on the construction of complete
waveform models, extend their validity range, and, most importantly, develop a general
framework to assess their reliability and gauge the physics that can actually be done with
them.

After a general introduction to the relevant topics in Chapter 2, we devote Chapter 3
to the question of how well PN and NR results agree, and we develop strategies to match
both waveform parts to a complete hybrid waveform. Our studies demonstrate that a
robust matching is indeed possible, and apart from time-domain procedures that have been
applied by several groups [15, 45, 46, 49, 102, 128], we introduce a novel alternative that
is based in the Fourier domain. Advantages and disadvantages of these techniques are
discussed, and for the first time we provide a detailed receipt how multiple harmonic modes
of PN waveforms have to be set up in order to connect them to a given NR simulation of
precessing binaries. Chapter 3 is concluded by a description of two “phenomenological
models” for binaries with aligned spins that describe the entire waveform in a closed form.
Particularly the Fourier-domain based model was greatly supported by the work presented
in this thesis.

Chapter 4 goes beyond the question of simply constructing templates. Here we ask how
useful current models actually are. What is the main weakness that needs to be improved?
We develop an algorithm that allows us to evaluate the error and ambiguities of current
hybrid waveforms even without having NR data at hand. We take care that our error
assessment is as close as possible to the strategy actually employed in GW searches, so that
we can make meaningful statements about the loss of information we have to expect by
using current waveform models as templates in search algorithms.
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A central question of the modeling community to prepare for the era of advanced
detectors is how the limited computer resources should be spent most efficiently. One
could either perform few very long simulations or explore the parameter space with more,
but shorter runs. Here we address this question by evaluating the error of our complete
waveform model as a function of the available length of the NR signal. Other authors
have explored the same idea [45, 82, 128], but the idealistic requirements imposed on
individual hybrids led to the conclusion that much longer NR simulations than currently
feasible are needed in order to make complete waveform models accurate enough. We
show that our efficient approach to estimate errors agrees with those results if we impose
the same restrictions, but we extend the analysis to waveform families instead of individual
waveforms and calculate the appropriate “fitting factor” and parameter uncertainties in
that case.

The results we find are much more optimistic. We show that the parameters of the
source can be inferred from the signal to an accuracy of ∼ 1% for total mass and symmetric
mass ratio and about 0.1 (absolute error) for the total spin magnitude, assuming a currently
achievable length of NR simulations (∼ 10 orbits before merger). This is in many relevant
cases smaller or comparable to the statistical biases one has to accept in any case due to the
presence of detector noise. The number of signals that may be lost due to an inexact model
is less than 3% of the detectable events for most parts of the parameter space. Only models
of systems with very high spin magnitudes and mass ratios ¦ 4 are still rather uncertain,
but this is the regime where improvements in the analytical treatment is expected in the
near future.

We conclude with a discussion of our results in Chapter 5, where we point out that the
model errors we find are potentially good enough for the first detections and interpretation
of signals whose amplitude is close to the detection threshold. In that sense, the prospects
of being prepared for immediate astrophysical applications of GW detections are rather
good, provided that our models are subsequently refined once higher PN corrections are
determined and more NR simulations become available. A reliable method to address
more fundamental questions, such as testing General Relativity or determining the nature
of matter in neutron stars from GW observation, however, requires much more accurate
models than those we can construct today.

The research for this doctoral thesis resulted already in several publications which are
listed below.

[141] F. Ohme, M. Hannam, S. Husa, N. Ó Murchadha, Stationary hyperboloidal slicings

with evolved gauge conditions. Class. Quant. Grav. 26 175014 (2009)

[162] L. Santamaría, F. Ohme, P. Ajith, B. Brügmann, N. Dorband, M. Hannam, S. Husa,
P. Mösta, D. Pollney, C. Reisswig, E. L. Robinson, J. Seiler, B. Krishnan, Matching

post-Newtonian and numerical relativity waveforms: systematic errors and a new

phenomenological model for non-precessing black hole binaries. Phys. Rev. D82 064016
(2010)

[104] M. Hannam, S. Husa, F. Ohme, D. Müller, B. Brügmann, Simulations of black-hole

binaries with unequal masses or nonprecessing spins: Accuracy, physical properties, and

comparison with post-Newtonian results. Phys. Rev. D82 124008 (2010)
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[102] M. Hannam, S. Husa, F. Ohme, P. Ajith, Length requirements for numerical-relativity

waveforms. Phys. Rev. D82 124052 (2010)

[16] P. Ajith, M. Hannam, S. Husa, Y. Chen, B. Brügmann, N. Dorband, D. Müller, F. Ohme,
D. Pollney, C. Reisswig, L. Santamaría, J. Seiler, Inspiral-merger-ringdown waveforms

for black-hole binaries with non-precessing spins. Phys. Rev. Lett. 106 241101 (2011)

[140] F. Ohme, M. Hannam, S. Husa, Reliability of complete gravitational waveform models

for compact binary coalescences. Phys. Rev. D84 064029 (2011)

[146] F. Pannarale, L. Rezzolla, F. Ohme, J. S. Read, Will black hole-neutron star binary

inspirals tell us about the neutron star equation of state? Phys. Rev. D84 104017
(2011)

[139] F. Ohme, Analytical meets numerical relativity – status of complete gravitational wave-

form models for binary black holes. Class. Quant. Grav. 29 124002 (2012)

[12] P. Ajith et al., The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity

waveforms for non-precessing black-hole binaries. Class. Quant. Grav. 29 124001
(2012)

This thesis constitutes a summary, discussion and extension of only the results that are
associated with GW models for BH binaries. The comparison of PN and NR data presented
in Sec. 3.2 was published in [104] and my contribution was to prepare the different PN
approximants (including the subtle discussion of spin effects) and analyze their agreement
with NR data. The phenomenological waveform models [16, 162] presented in Secs. 3.5.1
and 3.5.2 were supported by my analysis of PN approximants, particularly in the frequency
domain. The Fourier-domain PN/NR hybridization scheme introduced in Sec. 3.3.2 and the
discussion based on it in Sec. 3.4 were partly published in [161, 162], and they represent
my original contribution to this analysis. Studies about the required length of numerical
simulations were started in [102], where I contributed to the error analysis of various
hybridization procedures, presented here in Sec. 4.3, and the PN-induced error analysis
for spinning systems. The refined study of PN errors, without NR data and also in terms
of fully optimized fitting factors, was published in [140], and it is one of the main results
presented in this thesis (see Secs. 4.4 and 4.5). As such, it was developed and carried out
by myself.



Chapter 2

Foundations

2.1 A geometrical theory of gravity

More than 200 years after Isaac Newton explained gravity as a force that accelerates
every body with nonzero mass through the attraction of another mass, Albert Einstein
published a very different, geometrical theory of gravitation [85, 86]. According to it, the
acceleration that causes bodies to move on a curved path is not a characteristic of the
bodies themselves, but of the spacetime they move in. Masses warp this spacetime, so
that an observer experiences the effect of matter as an attracting force. However, General

Relativity goes beyond these empirically well-proven facts. It predicts, for example, that
even massless light can be affected on its path from source to observer by the warped
spacetime, and there are objects so heavy and compact, that nothing can escape their
immediate vicinity. So far, General Relativity has passed all experimental tests, and both
the bending of light and the existence of black holes (BHs) are established phenomena in
our current view of the universe.

Mathematically, the spacetime is described by a differentiable four-dimensional man-
ifold with a smooth metric gµν whose signature is (−,+,+,+). The line element then
reads

ds2 = gµν dxµ dxν , (2.1)

where we sum over all indices that appear twice (once as subscript, once as superscript).
We can interpret (2.1) as an infinitesimal distance ds2 that is the result of infinitesimal
changes along the coordinates xµ. The simplest example is the flat space, or Minkowski

space, that reads in terms of the time coordinate t and Cartesian coordinates (x , y, z)

ds2 = −dt2+ dx2+ dy2+ dz2 . (2.2)

Note that we have adopted a unit system where the speed of light c and the gravitational
constant G are set to unity, and we shall stick to this convention throughout this thesis.

In flat space, infinitesimal movements in one and then in another direction commute,
but this is no longer true in curved spacetime. In fact, the curvature can be defined in terms
of the Riemann tensor Rρσµν by the difference of successively acting derivatives. It satisfies

∇µ∇νVρ −∇ν∇µVρ = RρσµνVσ (2.3)

5



6 CHAPTER 2. FOUNDATIONS

for every smooth vector field Vρ. The operator ∇µ is the covariant derivative (or Levi-Civita
connection) which is uniquely defined as a linear, metric compatible and torsion-free
connection. Using the Christoffel symbols Γσµν , is reads explicitly

∇µV ν = ∂µV ν +ΓνµσVσ , with (2.4)

Γνµσ =
1

2
gνλ
�

∂µgσλ + ∂σgµλ − ∂λgµσ
�

. (2.5)

With these definitions, the Riemann tensor can be written as [66, 134, 192]

Rρσµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ +Γ

ρ

µλ
Γλνσ − Γ

ρ

νλ
Γλµσ , (2.6)

and in combination with (2.5) we see that Rρσµν is a function of the metric, its first and
second derivatives.

To relate these geometrical quantities to gravity, we first have a look at the Newtonian
case, which can be described as a second-order differential equation of the Newtonian
potential Φ that is related to the mass density ρ via

∆Φ = 4πρ . (2.7)

There is a similar construction in General Relativity where the mass density is represented
by the energy momentum tensor Tµν and the left-hand side is replaced by the Einstein
tensor

Gµν = Rµν −
1

2
R gµν . (2.8)

Here we used the contractions of the Riemann tensor, Rµν = Rλ
µλν

(Ricci tensor) and

R= Rµµ (Ricci scalar). Finally, the Einstein equations can be written in a compact form as

Gµν = 8πTµν , (2.9)

where the constant 8π was fixed to correctly recover the Newtonian limit. Just like
Newton’s description, (2.9) relates derivatives up to second order of “a field” (here the
metric gµν) to a mass distribution. However, the energy momentum tensor Tµν generally is
a function of gµν itself, and (2.9) is a coupled system of nonlinear differential equations.

Note that the trace of (2.9) yields R = −8πT , where T = T µ
µ , which leads to the

equivalent form of the Einstein equations

Rµν = 8π

�

Tµν −
1

2
T gµν

�

. (2.10)

From (2.10) we see that in the vacuum case, where Tµν = 0= T , we have

Rµν = 0 . (2.11)

In this thesis we shall employ different approaches to solve the vacuum Einstein
equations approximately, either through analytical approximations or numerically. Let us,
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however, conclude this section with an important exact solution of (2.11). The unique
nontrivial spherical symmetric solution [37] reads

ds2 = −
�

1−
2M

R

�

dT 2+

�

1−
2M

R

�−1

dR2+ R2 dΩ2 , (2.12)

where dΩ2 = dθ2 + sin2 θ dϕ2, and (R,θ ,ϕ) can be interpreted as standard spherical
coordinates. This solution was found by Karl Schwarzschild in 1916 [168] and it describes
a one-parameter family of spacetimes that we today identify as isolated, nonspinning black

holes (BHs) with mass M . The generalization to axially symmetric solutions – spinning BHs –
was found later by Kerr [117]. They constitute the most compact objects in the universe as
the entire mass is formally contained in the origin. There is strong observational evidence
that BHs indeed exist (see, e.g., [159]), for instance in the center of our galaxy. In addition,
other compact objects such as neutron stars (for an overview of observations, see [120])
are well approximated by the Kerr solution outside their dense matter core.

2.2 Gravitational waves

2.2.1 Weak field limit

Another exciting prediction of Einstein’s theory of General Relativity will become the main
subject of this thesis: gravitational waves (GWs). These are ripples in spacetime itself that
propagate at the speed of light (which we set to unity). Their existence and properties can
be derived from a weak-field approximation, and we shall briefly outline this derivation
following closely the textbook by Schutz [167].

We assume the spacetime to be “almost flat”, i.e., there exists a coordinate system
where

gµν = ηµν + hµν , with |hµν | ≪ 1 . (2.13)

We denoted the flat Minkowski metric (2.2) by ηµν and hµν satisfies the properties of a
tensor field on a flat background, or equivalently in the framework of Special Relativity.
To maintain the form (2.13), we can only allow Lorentz transformations and small gauge

transformations of the type

xµ′ = xµ+ ξµ , (2.14)

where ξµ are functions of the coordinates xν . Demanding that the coordinate transforma-
tions are small in the sense |∂µξν | ≪ 1, we find from (2.13) that hµν transforms to linear
order in ξµ as

hµν → hµν − ∂µξν − ∂νξµ . (2.15)

To expand the Einstein equations (2.9) to linear order in hµν we note that

Rρσµν =
1

2

�

∂σ∂µhρν + ∂ρ∂νhσµ− ∂ρ∂µhσν − ∂σ∂νhρµ
�

, (2.16)
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Rσν = Rλσλν =
1

2

�

∂σ∂
λhλν + ∂ν∂

λhλσ − ∂ λ∂λhσν − ∂σ∂νh
�

, (2.17)

R= Rρρ = ∂
ρ∂ λhρλ − ∂ λ∂λh (2.18)

(to linear order in hµν), where h = hλ
λ
. These expressions can be simplified further by

using the trace reverse

h̄µν = hµν −
1

2
ηµνh (2.19)

and imposing ∂ λh̄λν = 0. This condition, which is commonly referred to as the Lorentz

gauge, can always be satisfied by an appropriate coordinate transformation (2.15). With
these simplifications, we find that the Einstein equations read to first order

�h̄µν = ∂
λ∂λh̄µν = −16πTµν , (2.20)

which is a simple wave equation for h̄µν on a flat background. The general complex
solutions reads

h̄µν = Aµν ei kλxλ with kλkλ = 0 . (2.21)

To satisfy the gauge we have chosen, we also need kλAλν = 0, so the general solution are
plane waves that travel along null vectors, i.e., with the speed of light.

The coordinate transformation that led to this result was not unique. In particular,
any transformation (2.14) that fulfills �ξµ = 0 maintains the Lorentz gauge, and we can
exploit this remaining freedom to identify the independent components of h̄µν . In vacuum,
we can impose without violating the Lorentz gauge h̄ = 0 (which makes the distinction
between hµν and its trace reverse superfluous) as well as h0i = h00 = 0 (i = 1, 2, 3). If we
further choose the direction of wave propagation along the z-axis, we find h3ν = 0. Hence,
we are left with only two independent components (or polarizations) which are commonly
denoted by h+ and h×,

hµν =









0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0









. (2.22)

The set of gauge conditions we employed to obtain (2.22) is commonly referred to as the
transverse-traceless (TT) gauge.

The effect of a GW on test masses can be seen by the deviation of their geodesics.
Consider two free falling particles. In the local TT frame of one particle, the connection
vector to the other particle be expressed by xµ. The acceleration of xµ is then given by

d2 xµ

dt2 = Rµ00λ xλ . (2.23)

With (2.16) we can express the Riemann tensor in terms of hµν ,

d2 xµ

dt2 =
1

2

d2hµλ

dt2 xλ (2.24)
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y

Figure 2.1: Effect of a GW traveling in z-direction on a ring of test particles. The left panel assumes a pure
plus polarization, the right panel a cross polarization. The ring, initially at rest (dashed), is warped periodically
(shown in different colors) with the frequency of the GW.

(we were free to lower the index µ, because hµν has only spatial nonvanishing components),
from which we see that a passing GW acts like a force one the second body, provided we
are in the inertial frame of the first free falling body. To leading order, we can solve (2.24)
by

xµ(t) =

�

δ
µ

λ
+

1

2
hµλ(t)

�

xλ0 , (2.25)

from which we can deduce a clear picture how the plus and cross polarizations affect free
falling particles.

Imagine a ring of test bodies in the x-y-plane (we are still in the transverse-traceless
gauge). In our derivation, the GW travels perpendicular to this ring in the z-direction, and
now we further assume h× = 0. The remaining polarization h+ is an oscillating function
that periodically stretches and shrinks the distance between the particles in x-direction
and opposite in y-direction. The cross polarization h× has a similar effect, but rotated to
the plus polarization by 45◦. An illustration of these effects is provided by Fig. 2.1. It is
this periodic change of the distance between test masses that builds the basis of measuring
GWs with laser interferometers, as we shall explain in Sec. 2.3.1.

2.2.2 Generating gravitational waves

We have introduced GWs as weak perturbations of the metric on a flat background. Ac-
cording to Einstein’s equations, they fulfill the wave equation (2.20), but how are these
waves generated in the first place? We shall review the basic principles here, following the
explanations in [65, 66, 167, 192].

The general solution of (2.20) can be written in terms of the retarded integral

hµν(t, x i) = 4

∫
Tµν(t − |x i − y i |, y i)

|x i − y i |
d3y , (2.26)

where we have split four-dimensional vectors in their time and spatial part, xµ = (t, x i),
and the integral is performed over the past light cone of the event (t, x i). We now assume
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that the source is far away from the observer and does not move too fast, so that |x i − y i |
can be approximated by the constant distance R. The Fourier transform of (2.26) with
respect to the time reads then

h̃µν(ω, x i) =
4eiωR

R

∫

T̃µν(ω, y i) d3y . (2.27)

The energy-momentum tensor satisfies the conservation law ∂µTµν = 0, which translates
in Fourier space into −∂ j T̃

jν = iωT̃0ν . Integration by parts yields

∫

T̃ i j(ω, y i) d3y = −
∫

y i ∂k T̃ k j d3 y , (2.28)

where the surface integral vanished because we assumed a localized source. Applying
this manipulation twice, together with the conclusion from the conservation law and the
symmetry of the energy momentum tensor finally yields

h̃ jk(ω, x i) = −2ω2 eiωR

R

∫

y j yk T̃00(ω, y i) d3y , or equivalently (2.29)

h jk(t, x i) =
2

R

∂ 2

∂ t2

∫

y j yk T00(t − r, y i) d3y . (2.30)

The spatial components determine hµν entirely, as we assumed the Lorentz gauge which
implies −iωh̃0ν = ∂ j h̃

jν .

The solution in form of Eq. (2.30) is instructive in several ways. First, notice that for our
assumptions T00 ≈ ρ, where ρ is the mass density. Hence, GWs are triggered by the second
time derivative (acceleration) of the mass-density distribution. We further see form (2.30)
that the radiation falls off inversely with the distance to the source; thus, astrophysically
triggered GWs are indeed very weak when they reach the earth. Furthermore, the radiation
is quadrupolar at leading order. This is a direct consequence of the conservation law for
energy and momentum, which bans any mono- or dipolar gravitational radiation.

In the remainder of this thesis, we shall focus on orbiting binary BHs, so we use them
as an example to illustrate (2.30). In the context here, we can treat them approximately as
two point particles orbiting around each other. For circular orbits we find in the Keplerian
case

v2 =
M

r
, ωorb =

r

M

r3 =
v

r
, (2.31)

with v and r denoting the relative velocity and distance between the two bodies, respec-
tively; M is their total mass (M = mA+mB), and ωorb is the orbital frequency. We put the
two BHs in the x1-x2 plane, with their locations given in the center-of-mass frame by

x i
A =

Mηr

mA

�
cos(ωorb t), sin(ωorb t), 0

�
, x i

B = −
mA

mB
x i

A , (2.32)

where we used η = mAmB/M2 to denote the symmetric mass ratio. The mass distribution
is now constructed from the corresponding δ-distributions, and in this particular form, it is
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easy to solve the integral (2.30) explicitly. It reads

h jk =
4Mηr2ω2

orb

R







− cos[2ωorb(t − R)] − sin[2ωorb(t − R)] 0
− sin[2ωorb(t − R)] cos[2ωorb(t − R)] 0

0 0 0







, (2.33)

and the “amplitude” can also be written through (2.31) as 4Mηv2/R. This is a very useful
result. We see that orbiting compact objects emit GWs at quadrupole order with a frequency
that is twice their orbital frequency. Of course, to obtain the entire evolution of the binary,
we have to include an estimate of the emitted energy, which will be the starting point of
post-Newtonian approximants that we shall summarize in Sec. 2.4.

2.3 Detecting gravitational waves

2.3.1 Laser interferometers

Because a GW changes the proper distance between objects, its effect should in principle
be measurable by a thoroughly designed experiment. There have been several attempts
to do so, pioneered by Weber’s [194] and subsequently developed bar detectors, that
were designed such that a passing GW, if strong enough, would excite the bar’s resonant
frequency. Despite Weber’s claim in 1969 [195, 196], however, no significant signals could
be detected conclusively so far, mainly because the expected GW amplitudes h® 10−21 are
too weak for the sensitivity of the detectors.

The most promising effort today to detect these weak signals for the first time directly is
a world-wide network of large-scale laser interferometers. Figure 2.2 shows their locations.
The network consists of the 4 km-size detectors from the Laser Interferometer Gravitational-
wave Observatory (LIGO) [7, 173, 174], VIRGO with 3 km arm length [8, 9], GEO 600
[99, 127] and TAMA [19]. The latest developments include an upgrade to Advanced LIGO
[108], the construction of the Large-scale Cryogenic Gravitational-wave Telescope (LCGT)
in Japan [187] and a possible commissioning of a LIGO detector in India (IndiGO).

The basis of these instruments is a Michelson interferometer, in which laser beams are
sent in orthogonal directions. The principle layout is shown in Fig. 2.3. We have seen in
Sec. 2.2 that a passing GW will stretch and shrink the proper distance between the end
test masses, and the proper length of the arm, say in x-direction while a GW is traveling in
z-direction (we are still in the TT gauge), is given by

L +∆L =

∫ L

0

p
gx x dx =

∫ L

0

p

1+ h+ dx ≈ L

�

1+
h+
2

�

. (2.34)

This approximation is only valid in the long wavelength regime, where the wavelength of
the GW λ≫ L. In the cases we shall consider, however, this is always true, because the
detectors turn out to be most sensitive around∼ 100 Hz, which corresponds to λ ≈ 3000 km.
Note that a rigorous derivation of the detector response does not just assume that the light
beams measure the proper length of the detector arms, their paths and frequencies are
affected by the distortions of spacetime themselves. The final result for the frequency shift
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LIGO Hanford

LIGO Livingston

VIRGO

GEO600 TAMA

? IndiGO

Figure 2.2: Network of large-scale laser interferometers.
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Figure 2.3: Basic layout of a GW laser interferometer. The laser power and sensitivity is enhanced by a power
recycling mirror and Fabry-Pérot cavities between the input test masses and the end test masses. The phase
difference (thereby length difference) of both arms is measured at the photo detector.
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Figure 2.4: Angles between detector and
source in the detector frame. The sky lo-
cation is defined by (θ ,ϕ), ψ is used to
specify a reference frame orthogonal to the
line of sight. The GW propagates along k̂.
Figure adapted from [54].

k

φ

φ

of the light that traveled along the spatial unit vector ξ̂i is

∆ω

ω
=

1

2

ξ̂iξ̂ j ∆hi j

1− k̂ jξ̂
j

, (2.35)

where k̂ j is the propagation direction of the GW, and ∆hi j denotes the difference of the
metric perturbation at the beginning and end point of the light travel.

We now consider the total effect at the beam splitter (see Fig. 2.3) caused by light rays
that were sent in x̂ i and ŷ i direction, respectively, and reflected by the end mirrors. Again,
we apply the long wavelength approximation, which enables us to simplify (2.35) by a
Taylor expansion of ∆hi j . The final result reads

∆Φ̇

ω
= L

�

ŷ i ŷ j − x̂ i x̂ j
�

ḣi j , (2.36)

where we have used the abbreviation ∆Φ̇ = ∆∂Φ/∂ t = ∂ (∆Φ)/∂ t to replace the frequency
shift by the time derivative of the phase shift. Integrating (2.36) relates the phase difference
at the beam splitter to the GW

∆Φ =
2π

λ
L
�

ŷ i ŷ j − x̂ i x̂ j
�

hi j , (2.37)

just as we would have concluded from the mere change of the proper distance between the
test masses.

The detector response hresp = x̂ i x̂ jhi j can be expressed in terms of the angles (θ ,ϕ,ψ)
that define the source location with respect to the detector frame [54, 163],

hresp(t) = F+(θ ,ϕ,ψ) h+(t) + F×(θ ,ϕ,ψ) h×(t)

F+(θ ,ϕ,ψ) =
1

2

�

1+ cos2 θ
�

cos 2ϕ cos2ψ− cosθ sin 2ϕ sin2ψ (2.38)

F×(θ ,ϕ,ψ) =
1

2

�

1+ cos2 θ
�

cos 2ϕ sin 2ψ+ cosθ sin 2ϕ cos 2ψ .

For an illustration, see Fig. 2.4. Note that, for a compact binary on circular orbits, we found
in (2.33) that h+(t) = h0 cosφ(t) and h×(t) = h0 sinφ(t), which can be easily generalized
to the case where the orbital plane is inclined to the plane perpendicular to the line of
sight. Denoting this inclination angle by ι, we find

h+ =
h0

2

�

1+ cos2 ι
�

cosφ(t) , h× = h0 cos ι sinφ(t) . (2.39)
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The detector response (2.38) then can be reduced to the form

hresp = A(θ ,ϕ,ψ, ι) h0 cos
�
φ(t) +φ0(θ ,ϕ,ψ, ι)

�
, (2.40)

where the time-independent geometrical quantities A and Φ0 can easily be deduced from
(2.38) and (2.39), see [163] for explicit expressions.

2.3.2 Detector noise sources

As we have just sketched, a laser interferometer can in principle measure the GW strain
by a phase shift of two destructively interfering laser beams. However, the signal is still
extremely weak. For a GW amplitude h∼ 10−21, the length change L h in a km-size detector
is of the order of 10−18 m, and although the light is sent back and forth multiple times
between the input and the end test masses (Fig. 2.3) to extend the light path, the typical
length change will still be of the order of ∼ 10−16. Many other physical effects can cause
such small vibrations which then could be mistaken as a GW signal, and we shall review
some of those noise sources below. We closely follow the overviews in [112, 163].

Seismic noise are ground vibrations caused by the cultural and natural environment. The
detector, particularly the mirrors, have to be carefully shielded against these vibra-
tions, which is achieved by suspending the optical elements from pendulums that act
as mechanical filters above their own resonance frequency.

Thermal noise describes the thermal vibrations of the mirrors and their suspensions. The
LIGO detectors are operated at room temperature, so the confusion by thermal
fluctuations has to be reduced by using materials with a very high quality factor Q,
i.e., the resonant vibrations are confined to a small band width.

Shot noise originates from the statistical nature of detecting light quanta at the photo
detector. The number of arriving photons fluctuates, and the variance of this random
process can be reduced by increasing the power of the laser beam. As the output
power of a laser is limited technologically, power recycling mirrors are introduced to
increase the power in the cavity.

Radiation pressure noise is the conjugated quantum noise to shot noise. When the laser
power increases, the confusion due to momentum transfer to the mirrors increases as
well. As we are interested in measuring a classical quantity (the GW) with a quantum
field (light), however, there is the opportunity to reduce the uncertainty in one part
of the quantum field at the cost of increasing it in a for our purposes nonsignificant
part. This “squeezed light” [5] has been tested already in GEO600 [188] and will be
incorporated in the advanced detectors.

Gravity gradient noise is caused by fluctuations of the Newtonian gravitational field both
from man-made sources and the natural environment (seismic waves, changes in the
air density etc.). The detector cannot be shielded from this noise (apart from the
choice of the location), and although it did not affect the initial detectors considerably,
gravity gradient noise is expected to become the limiting factor at low frequency for
more advanced detectors.
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Figure 2.5: Left panel: Summary of typical noise sources in GW interferometers, here for initial LIGO. Figure
adopted from [112]. Right panel: Anticipated noise curves of Advanced LIGO as detailed in [171] and the
analytical formula from [15, 163]. “BH-BH” is a configuration optimized for detecting BH binaries with a total
mass of 60M⊙, whereas “NS-NS” targets neutron star binaries with individual masses of 1.4M⊙. The “zero
detuned, high power” configuration is the overall most sensitive setup.

There are many more sources of noise in the detectors and subtle details involved
in dealing with them. The sum of all noise contributions defines the sensitivity of the
interferometer, and the left panel of Fig. 2.5 provides a summary for the initial LIGO detector.
Advanced LIGO will considerably improve upon this, and since one main motivation of the
work presented in this thesis is to prepare for the advanced detector era, we shall in the
following calculations assume a noise curve Sn( f ) for Advanced LIGO. Reference [171]
provides anticipated shapes for several detector configurations, and we show some of them
in the right panel of Fig. 2.5 together with an analytical fit that was made before the these
data were available. This fit reads [15, 163]

Sn( f ) = 10−49

�

f̂ −4.14−
5

f̂ 2
+ 111

1− f̂ 2+ f̂ 4/2

1+ f̂ 2/2

�

, (2.41)

with f̂ = f /215 Hz. We shall show in the next section, how this quantity enters the search
for GWs in detector data. To be consistent with earlier work [15, 102, 104, 107, 162] we
will mostly stick to the analytical fit (2.41) in our calculations, and although the numbers
we shall present depend on this choice, the order of magnitude and conclusions based on
relative changes of the computed quantity are fairly robust with respect the details of the
noise curve. Furthermore, all of these predictions are idealized estimates of the detector
performance, and working with real data involves additional difficulties that go beyond the
ambiguity of our choice of Sn( f ) in theoretical studies.

2.3.3 Matched-filter search for compact binaries

As we have just outlined, the data stream s(t) that is taken by the detector is corrupted by
various noise sources, and the problem of actually detecting a GW signal in s(t) essentially
becomes a statement about the statistical significance of hypotheses. Particularly for signals
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from inspiraling compact objects such as BHs or neutron stars, the theoretical knowledge
of the GW signature can be used to test the hypothesis H1 : the signal h(λ) is buried in
the noisy data stream, against the null hypothesisH0 : there is no signal present. Here we
introduced the vector λ to collect all parameters of the waveform model h.

Through different ways (see, e.g., [114]), one can argue that the optimal way to decide
whether one should accept or rejectH1 is to look at the likelihood ratio

Λ =
P(H1|s)
P(H0|s)

, (2.42)

where P(H |s) is the probability thatH is true given that the data s was measured. The
Neyman-Pearson criterion is to accept H1 if Λ exceeds some pre-defined threshold. This
threshold is based on fixing a tolerated false alarm probability (i.e., a detection is declared
although no signal was present), and the Neyman-Pearson criterion ensures that the test
has a maximal probability of detection (or minimal false dismissal probability).

Let us now write the data stream as a linear superposition of the noise n(t) and, if
present, a GW signal h0,

s(t) = n(t) + h0(t) . (2.43)

Assuming n is stationary Gaussian noise with zero mean, we can find explicit expressions
for the probability of a particular realization. Before we express the result in a convenient
way, we have to introduce the Fourier transform of any function x(t) as

x̃( f ) =

∫ ∞

−∞
x(t) e2πi t f dt . (2.44)

It turns out, that the noise spectral density Sn( f ) that we have already seen in Fig. 2.5 is
related to the Fourier transform of the noise autocorrelation by

ñ( f ) ñ∗( f ′) =
1

2
Sn(| f |) δ( f − f ′) , (2.45)

where the overline indicates the expectation value, ∗ denotes the complex conjugation and
δ( f − f ′) is the δ-distribution. As outlined for instance in [88], expressing the probability
of a particular Gaussian noise realization naturally leads to

Λ =
e−〈s−h(λ),s−h(λ)〉/2

e−〈s,s〉/2
(2.46)

with the inner product defined by



s, h
�
= 4 Re

∫ ∞

0

s̃( f ) h̃∗( f )

Sn( f )
df . (2.47)

The results can be interpreted rather intuitively. The likelihood ratio (2.46) assesses
whether s− h(λ) or s alone are more likely realizations of stationary Gaussian noise with
the specified spectrum. The inner product (2.47) can also be understood as an optimal
linear filter of the data that maximizes the correlation with the GW signal if h is indeed
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present in s [163]. The integrand is weighted with the sensitivity of the detector such
that 〈n, n〉 = 1, as we can see from (2.45). (Note that the factor 4 in (2.47) comes from
the definition of the one-sided noise spectral density and the integration over positive
frequencies instead of the entire real axis.)

We shall extensively use the inner product (2.47) in this thesis to quantity the agreement
of different waveforms. It is therefore beneficial to elaborate on its applications in data-
analysis search strategies. Let us assume that the data indeed includes the GW signal h0 as
in (2.43). The logarithm of the likelihood ration (2.46) reads

lnΛ = −
1

2



s− h(λ), s− h(λ)

�
+


s, s
�

=


s, h(λ)

�
−

1

2



h(λ), h(λ)

�
−→



h0, h(λ)

�
−

1

2



h(λ), h(λ)

�
. (2.48)

We have simply used the linearity of the inner product and the arrow indicates the transition
to the expectation value, where all inner products of noise-independent quantities with n

vanish.

According to the Neyman-Pearson criterion, we should set a threshold for Λ, or equiv-
alently for lnΛ to decide whether h(λ) is a possible candidate of a real GW signal. To
understand the influence of h onto this detection claim, let us split the freedom in our
template signal into its norm ‖h‖ =

p

〈h, h〉 and the normalized waveform ĥ= h/‖h‖. It is
easy to show that (2.48) is maximized if ‖h‖= 〈h0, ĥ〉. Inserting this into (2.48) yields

max
‖h‖

lnΛ =
1

2

�

‖h0‖


ĥ0, ĥ

��2
. (2.49)

We interpret (2.49) in the following way. The signal h0 can only be detected, if lnΛ is large
enough for any h(λ) in our template bank, and assuming at least an optimal norm of the
template led to (2.49). The value of this expression has two contributions: the optimal

signal-to-noise ratio (SNR) ρ = ‖h0‖ and the normalized inner product, or match, between
template and signal,

m[h0, h(λ)] =


ĥ0, ĥ(λ)

�
=



h0, h(λ)

�

‖h0‖‖h(λ)‖
, (−1≤ m≤ 1) . (2.50)

No matter how bad the match is (unless it is exactly zero), if the signal is loud enough, i.e.,
‖h0‖ is large enough, then we will detect it. However, very loud events are expected to
occur extremely rarely with the current sensitivities of ground-based detectors, and the
success of these instruments crucially depends on the ability to detect as many signals as
possible, particularly close to the detection threshold (which is commonly given as ρ ≈ 8).
Therefore, good waveform models that resemble the true GW signals with a very high
match are invaluable, and it is this understanding that forms the basic motivation for this
thesis.

Let us introduce some more, closely related quantities. The effectualness of a template
bank can be quantified by the best match over the entire family of waveform models. This
fully optimized match is called the fitting factor, and it reads

FF=max
λ



h0, h(λ)

�

‖h0‖‖h(λ)‖
. (2.51)
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A fitting factor of unity is the ideal case, where the signal h0 can be extracted from the data
without any loss in SNR. For any FF< 1, (2.49) tells us that signals have to have an optimal
SNR that is greater than the detection threshold by a factor of 1/FF to still be detected.
Thus, the deviation of the fitting factor from unity is a quantitative measure of how many
signals are missed due to a not perfectly matching template bank. More specifically, we
have seen in Sec. 2.2.2 that the GW amplitude, and with it the SNR, depends on 1/distance.
If the effectively detectable distance is reduced by a factor x , then the volume is reduced
by x3, and, assuming uniformly distributed sources, the number of detectable sources
decreases similarly by a factor of x3. With this in mind, we can interpret the fitting factor
schematically as

FF= 3

r

detected signals

ideally detectable signals
, (2.52)

where we understand the denominator as the number of signals that could be detected
with an exact waveform model. A commonly used criterion is to accept a maximal loss of
10% of the signals, which demands a fitting factor not less than 3p0.9≈ 0.965.

Having an effectual template bank does not ensure that the parameters of the source
are extracted accurately. Again, we have two effects that may spoil the parameter estimation

accuracy. First, even if the waveform templates are perfect and there is indeed a set of
parameters with h(λ0) = h0, the presence of noise can confuse the estimate, and the
‘best-fitting’ parameters λ̄ that maximize (2.51) not necessarily coincide with λ0. The
typical bias λ̄ − λ0 can be estimated in the high SNR regime within the Fisher-matrix

approach. We simplify refer to [190] and Sec. 4.6 for more details, and give the final result
here:

�

λ̄i −λi
0

�

stat.
=
Æ

Γ−1
ii with Γi j =

�
∂ h

∂ λi
(λ0),

∂ h

∂ λ j
(λ0)

�

. (2.53)

The inner product of the first derivatives is called the Fisher-information matrix Γi j , and its
inverse provides the statistical parameter biases on the diagonal, as well as the correlation
between the parameters in the other components.

The systematic biases, on the other hand, are due to the fact that the template waveforms
generally do not represent the real signal h0 perfectly, and deviations in the waveform
model lead to a misinterpretation of the parameters. Under the same assumptions as before,
i.e., to linear order, these errors can be estimated by [69, 90]

�

λ̄i −λi
0

�

sys.
= (Γ−1[λ̄])i j

�
∂ h

∂ λ j
(λ̄),δh

�

, (2.54)

where δh accounts for the difference between the template models and the true waveform.
The total parameter error is simply the sum of statistical and systematic bias.

Note that Γi j scales quadratically with the SNR, so the statistical bias (2.53) drops
linearly with increasing SNR of the signal. In contrast, the model-induced systematic bias
(2.54) is independent of the SNR, and for sufficiently strong signals, these will be the
dominant source of error. A sufficient (but not necessary) condition, that the systematic
errors are smaller than the statistical errors is that the waveform difference δh is below the
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noise level. Thus, if

‖δh‖< 1 (2.55)

the difference between target and model signal is indistinguishable by the detector [125].
Recently [82], it was argued that the model-induced uncertainty should be reduced even
below this level to

‖δh‖< ε2 , (2.56)

with ε® 1/2. Often, demanding FF> FFmin (for suitably high FFmin) is associated with the
effectualness of a waveform family for detection, whereas if (2.55) or (2.56) are satisfied,
the templates are sometimes referred to as faithful. Here, however, we want to understand
faithfulness as having a sufficiently small systematic bias, as it was originally introduced in
[73].

While the strategy we presented here is optimal for stationary Gaussian noise, we have
to keep in mind that real detector data mostly do not fulfill this assumption, and glitches
are an additional source of confusion that has to be excluded by other techniques, such as a
set of vetoes, χ2-tests and sophisticated estimates of the background noise. See [17] for a
detailed discussion of the algorithm employed by the LIGO Scientific Collaboration [183].

2.3.4 Implementation of the overlap

As the inner product is the main tool in this thesis to make quantitative statements about
the quality of waveform models, we devote this short section to lay out explicitly how we
calculate variants of it efficiently.

One simplification we always employ is to leave the specification of a particular sky
location and the construction of the detector response (2.38) aside and only consider h+
and h×. We can do so, because given the GW polarizations for a particular binary system,
we can always construct the detector response for arbitrary sky locations with (2.38). Our
goal to produce accurate waveform templates is therefore independent of the orientation
and position of the source and detector.

In addition, note that the inner product (2.47) is most conveniently formulated in
terms of the Fourier-domain representations of h+ and h×, and since they are real-valued
functions of the time, their Fourier transforms satisfy h̃+/×(− f ) = h̃∗

+/×( f ). Thus, the
nonnegative frequencies alone define the waveform polarizations. We can manifestly
confine the information to only those frequencies by dealing with a particular complex
combination of h+ and h×,

h= h+ − i h× . (2.57)

Often, we shall refer to h simply as the GW signal. We have learnt in Sec. 2.2.2 that the
signal of a binary-BH system is characterized by h+ = Acosφ and h× = Asinφ, where both
A and φ may be time-dependent functions. When we now expand these expressions into
the complex form

h+ =
A

2

�

eiφ + e−iφ
�

, h× = −i
A

2

�

eiφ − e−iφ
�

(2.58)
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⇒ h= A e−iφ , (2.59)

we find that the Fourier spectrum of h consists of only “half” of the spectrum of both h+
and h×. We do not lose information, however, as we can reconstruct the time-domain
polarizations simply through (2.57), and their Fourier transforms are given by

h̃+( f ) =
h̃( f ) + h̃∗(− f )

2
, h̃×( f ) =

h̃∗(− f )− h̃( f )

2i
. (2.60)

Considering h instead of individual polarizations has another advantage when calculat-
ing the inner product of two such combinations h1 and h2. In most applications, we are not
interested in a particular time or phase scale of the waveform, i.e., signals that are equal
except for an overall shift in time or phase are considered the same. The natural way to
compare them is therefore the inner product, maximized over time and phase shifts, and
this quantity is commonly called the overlap

O (h1, h2) =max
t0,φ0

4

‖h1‖‖h2‖
Re

∫ ∞

0

h̃1( f ) h̃∗2( f )

Sn( f )
ei(2πt0 f +φ0) df . (2.61)

We have explicitly written out the effect of a relative time and phase shift in (2.61), and we
can now perform the maximization simply in two steps.

1. For any value of t0, the phase shift that maximizes the real part of the integral is the
one that rotates the complex number on the real axis. Thus, maximizing with respect
to φ0 is equivalent to taking the magnitude of the complex number.

2. The remaining freedom in t0 can be expressed by the inverse Fourier transform F−1,
so that (2.61) becomes

O (h1, h2) =
4

‖h1‖‖h2‖
max

t0

�
�
�
�
�
F−1

�
h̃1h̃∗2
Sn

�

(t0)

�
�
�
�
�

. (2.62)

This is a computationally very useful interpretation, as there are very fast algorithms to
calculate the inverse Fourier transform numerically for large arrays of possible time shifts.

Let us conclude this section with some comments on the numerical fast Fourier trans-
form (FFT). Although this is a very well understood and vastly applied technique, it is
useful to recall some properties of the discretization in order to avoid spending computer
resources unnecessarily on too fine grids while increasing the resolution might be essential
in other regimes. Consider the example of a numerically calculated GW h of a coalescing
BH binary. As we shall show later in this thesis, the Fourier spectrum is dropped by several
orders of magnitude for frequencies above Mf ≈ 0.2. If the signal actually had a compact
support in the frequency domain in f ∈ [− fN , fN ] ( fN is called the Nyquist frequency), we
could represent it exactly through a sinc-interpolation of discrete points sampled at

∆t =
1

2 fN
. (2.63)

However, this also implies that the time-domain signal cannot have compact support (see,
e.g., [98]). Here we usually deal with simulated signals of finite length that, conversely,
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cannot have a compact support in the Fourier domain, so the above statement is not
applicable exactly. If we sample the data nevertheless according to (2.63), frequencies
| f |> fN are aliased into the interval [− fN , fN ]. If their contribution, however, is small, we
may still accept the discrete Fourier transform as an accurate representation of the signal.
For our example of a typical signal from a BH binary, we could approximate MfN ≈ 0.2
which leads to time steps of ∆t/M = 2.5.

This result might be surprising as, for instance, numerical codes need a much higher
timing accuracy to predict the GW signal correctly. One should, however, keep in mind that
the post processing of the waveforms often requires much less data points. Indeed, we can
check that the Fourier transform of a typical numerical waveform, sampled for example
at ∆t/M = 0.144 differs from the FFT of the same waveform with a 15 times sparser
sampling only by a relative factor of < 0.2%, which is much less than the numerical error
of the original waveform. One source of confusion sometimes stems from the calculation
of the overlap (2.61), which often requires a very fine sampling of the inverse FFT (see
for instance [12]). However, we can achieve the required accuracy either by sampling the
original time-domain waveforms accordingly dense, which can be very time consuming in
large parameter studies; or we calculate h̃ efficiently with a lower sampling rate and then
interpolate later by simply adding a long null stream to the FFT. This interpolation is fast
and very accurate as long as we approximately fulfill the above discussed condition that
the spectrum of h̃ is confined to the properly calculated frequency range.

2.4 Post-Newtonian waveform models for coalescing compact

binaries

After a detailed motivation why we need good models of the gravitational radiation emitted
by astrophysically relevant systems, we shall now outline how such models can be obtained.
The focus lies on signals from coalescing binary BHs as they constitute one of the most
promising sources of a first direct detection of GWs. In addition, the analytical treatment
that we shall present in this section generally applies to compact objects including neutron
stars (without, however, taking tidal effects into account that have also been calculated
[78, 79, 89, 111, 191]).

2.4.1 Energy and flux

Let us start with the compact binary on a circular orbit that we calculated at the end of Sec.
2.2.2. We have seen that the signal satisfies the form

h(t) =
4Mηv2

R
e−i(2ωorb t+φ0) , (2.64)

where v is the velocity, M is the total mass of the system, η is the symmetric mass ratio, R

is the distance between source and observer and ωorb is the orbital angular frequency. The
Newtonian energy of this circular movement is given by

E = −
Mη

2
v2 . (2.65)
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Of course, locally defining an energy is difficult in General Relativity, because it has to be
extracted from the curved spacetime itself, and there is no unambiguous way to separate
it from some “background” metric. Here, however, we introduced the GW as a small
perturbation of the Minkowski spacetime, and pursuing this strategy, we can construct
an equivalent of the GW’s energy-momentum tensor from second-order terms in hµν
[66, 167, 192]. This also enables us to define the flux of energy that is radiated away from
the source through GWs. Averaged over all directions and extracted at infinite distance
from the source, it reads [147]

dE

dt
= −L (2.66)

with L =
1

5

d3Q jk

dt3

d3Q jk

dt3 and Q jk(t) =

∫

ρ(t, x i)

�

x j xk −
1

3
δ jk x l x l

�

d3x .

Here,L abbreviates the total luminosity, ρ is the mass distribution and δi j is the Kronecker
symbol. For our example of two point particles on a circular orbit, we find

L =
32η2

5
v10 . (2.67)

The post-Newtonian (PN) approximation provides an elaborate extension of these
quantities by expanding the metric and derived quantities in terms of the small parameter
v/c [38] (note that we use units with c = 1, so v itself can be interpreted as the expansion
parameter). We shall collect the explicit expressions below, restricting ourselves to the
systems we study in detail throughout this thesis: BH binaries with spins aligned to the
orbital angular momentum L. Although this does not capture the entire parameter space
(we do not consider precessing spins except in Sec. 3.4.4), modeling aligned spins is the
natural extension of nonspinning models, and recent studies [10, 16] indicate that the
inclusion of this dominant spin effect already allows for the detection of a large fraction of
generic systems.

The binary systems we consider are defined by the masses of the BHs, denoted by mi ,
and the individual spins Si (i = 1, 2). In agreement with previously used definitions, let us
summarize the notation we employ:

M = m1+m2 , η =
m1 m2

M2 ,

δ =
m1−m2

M
, χi =

Si ·L
‖L‖m2

i

(2.68)

χs =
χ1+χ2

2
χa =

χ1−χ2

2
.

The energy is currently determined up to 3PN order, i.e., the expansion is carried out
up to v6-corrections above the leading order. The form we show here is derived for quasi-
circular orbits, and the explicit expressions can be found for instance in [38, 41, 53, 76]
and references therein. We closely follow the presentation of [13]. Leading-order and
next-to-leading order spin-orbit effects [20, 39, 118] are included as well as spin-spin
effects that appear at relative 2PN order [70, 118, 133, 148]; note that the square terms in
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the individual spins are valid only for BHs (and not, e.g., for neutron stars) as discussed in
[53, 70, 148]. The energy reads

E(v) = −
Mηv2

2

�

1− v2
�

3

4
+
η

12

�

+ v3
�

8δχa

3
+

�
8

3
−
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3
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− 2δχaχs −

η2

24
+ (4η− 1)χ2

a −χ
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(2.69)

The flux is determined up to 3.5PN order, and in addition to the spin effects listed
above we add a 2.5PN correction that is due to the energy flow into the BHs, as calculated
in [18]. The final result reads
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32
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η2 v10
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(2.70)

where γ≈ 0.5772 is the Euler constant.

With these expressions for energy and flux, we can construct the inspiral phase of the
GW by assuming that the energy changes slowly due to outgoing radiation. Several slightly
different methods to obtain the phase evolution are discussed in the next sections.

2.4.2 Time-domain PN approximants

Starting from the energy-balance law (2.66) we can solve for the time evolution of the
expansion parameter v(t), assuming that the system evolves as an adiabatic sequence of
quasi-circular orbits with instantaneous energy (2.69) and flux (2.70). A simple application
of the chain rule yields

dE

dt
=

dE

dv

dv

dt

(2.66)
= −L (v)
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⇒
dv

dt
= −

L (v)
dE(v)/dv

. (2.71)

The phase evolution of the binary is given by the integral of the orbital frequency ωorb

φorb =

∫

ωorb dt , Mωorb = v3 . (2.72)

There are various ways to solve these equations, and each strategy defines a particular
PN approximant. The TaylorT1 approximant, for example, is obtained by numerically
integrating (2.71) and (2.72) in consideration of (2.70) and the derivative of (2.69).

We can also construct the inverse of (2.71) and re-expand (dE/dv)/L in terms of v to
3.5PN order. This has the advantage that we can now analytically integrate t(v), and the
resulting TaylorT2 approximant reads
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(2.73)

Note that the formal re-expansion also yields contributions to higher orders than those in
(2.73). However, since 4PN and higher terms in flux and energy are not fully determined,
the expressions one could compute are incomplete. The same applies to spin contributions
at relative orders higher than 2.5PN. However, we decided to keep those incomplete
contributions, and we shall discuss implications of that in Sec. 3.2.

The TaylorT2 approximant is completed by calculating the phase in a similar way. We
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use

dφorb

dv
=

v3

M

dt

dv
(2.74)

and expand the right-hand side. The analytical integration yields
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Both t(v) and φorb(v) together define φorb(t) implicitly.

The TaylorT3 approximant is derived from the TaylorT2 expressions by inverting the
Taylor series t(v) analytically and plugging v(t) into (2.75). The final result can be written
as an closed-form Taylor expansion φorb(t). Since we never employ this approximant in
this thesis, we omit the explicit expressions here and refer to the literature [48, 58].

The TaylorT4 approximant goes back to the energy-balance law (2.66) and re-expands
the right-hand side in terms of v. The resulting differential equation is truncated at the
appropriate PN order (3.5PN), and it reads
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The equations (2.76) and (2.72) are then integrated numerically.

2.4.3 PN strain and spherical harmonics

Having calculated φorb(t) and v(t) with any PN approximant, we can express the corre-
sponding quadrupole GW strain as

h(t) = A(t) e−i2φorb(t) , (2.77)

where the amplitude A(t) is given, to lowest order, by A(t) = 4Mηv2(t)/R, see (2.33).
Higher-order corrections to (2.77) have been calculated in [24, 42], and with the connec-
tion to numerical waveforms in mind, we shall use the decomposition of these expansions
in terms of spin-weighted spherical harmonics.

Specifically, we introduce basis functions on the sphere sY
ℓm that depend on the

standard spherical coordinates (θ ,ϕ). These spherical harmonics with spin weight s are
defined as [93]

−sY
ℓm(θ ,ϕ) = (−1)s

r

2ℓ+ 1

4π
dℓms(θ ) e

imϕ , (2.78)

where dℓms is the Wigner matrix. The GW can now be expanded in terms of these spherical
harmonics (with spin weight −2), i.e.,

h(t;θ ,ϕ) =
∞∑

ℓ=2

ℓ∑

m=−ℓ
hℓm(t) −2Y ℓm(θ ,ϕ) . (2.79)

The quantity h(t;θ ,ϕ) is very similar to the detector response (2.38), only that here it
is still a combination of h+ and h× as the real and imaginary part, respectively. Let us
illustrate this explicitly. At leading order, we find

h(t;θ ,ϕ) = h22(t) −2Y 22(θ ,ϕ) + h2−2(t) −2Y 2−2(θ ,ϕ) (2.80)
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with h22 = A22 exp(−2iφorb) , h2−2 = (h22)∗ and

−2Y 22 =

r

5

64π
(1+ cosθ )2 e2iϕ , −2Y 2−2 =

r

5

64π
(1− cosθ )2 e−2iϕ . (2.81)

Combing the expressions above we can expand (2.80) to

h(t;θ ,ϕ) = A22
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,

which is nothing but the complex equivalent of (2.38). By comparing to (2.77) we also
find the leading-order amplitude

A22 =

r

64π

5

Mηv2

R
. (2.82)

Incorporating higher PN expansion orders extends the amplitude A22 to a Taylor series
in v, but we also find a more complex angular dependency of the full waveform due to
nonvanishing hℓm beyond the leading-order contributions. Their general form (neglecting
precession) satisfies

hℓm(t) = Aℓm(t) e−imφorb(t) . (2.83)

Explicit expressions for Aℓm can be found in [42] up to 3PN order, and spin contributions
up to 2PN order are provided in [24]. For completeness, let us only give the dominant
mode here:
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Following [162] we used χ = (χ1m1+χ2m2)/M in the equation above.

2.4.4 Frequency-domain PN approximant

Apart from the time-domain approximants, we can use the assumption of “stationarity”
that we employed to construct a series of circular orbits also to find a closed-form solution
in the frequency domain. The resulting approximant is commonly referred to as TaylorF2

[25, 72, 74]. It can be derived within the stationary phase approximation, and we shall
outline the important steps below.

We assume a slowly varying amplitude, Ȧℓm/Aℓm ≪ mφ̇orb, and expand the phase
around a fixed point in time t f ,

φorb(t)≈ φorb(t f ) + φ̇orb(t f ) (t − t f ) +
φ̈orb(t f )

2
(t − t f )

2 (2.85)
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⇒ h̃ℓm( f ) =

∫ ∞

−∞
hℓm(t) e2πi f t dt =

∫ ∞

−∞
eln Aℓm+i(2π f t−mφorb) dt (2.86)

≈
∫ ∞

−∞
eln Aℓm+i[2π f t f −mφorb(t f )]ei[2π f −mφ̇orb(t f )](t−t f ) e−i(t−t f )

2mφ̈orb(t f )/2 dt .

Under our assumptions, variations in Aℓm can be neglected, so the first factor in the
integrand is not time-dependent. The second exponential term vanishes, because we now
specify the time we expand around by

mφ̇orb(t f ) = 2π f . (2.87)

Expressed in words, we expand around the time when the phase derivative of the time-
domain GW mode equals the actual Fourier frequency. This is one origin of sometimes
referring to the derivative of the time-domain phase simply as the “frequency”.

The remaining integral in (2.86) can be solved analytically

∫ ∞

−∞
e−i(t−t f )

2mφ̈orb(t f )/2 dt =

È
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mφ̈orb(t f )
e−iπ/4 . (2.88)

Collecting all terms finally yields

h̃ℓm( f ) = Aℓm(t f )

È

2π

mφ̈orb(t f )
ei[2π f t f −mφorb(t f )−π/4] , (2.89)

which is evaluated using the TaylorT2 expressions for time (2.73) and phase (2.75). This is
trivial, as they are given as functions of v, and we have

v(t f ) = [Mφ̇orb(t f )]
1/3 =

�
2πM f
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�1/3

. (2.90)

As for the other approximants, let us conclude this section with the explicit expression
of the TaylorF2 phase. Distinct from the time-domain versions, however, different spherical
harmonic modes do not simply differ in their phases by the factor m, and we only provide
the dominant mode here. It reads
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where v has to be replaced according to (2.90) by v = (πMf )1/3.

2.4.5 Precessing systems

We have provided a detailed collection of the equations we employed to perform the pa-
rameter study later presented in this thesis. These are, however, restricted to nonprecessing
systems, and we briefly outline the missing pieces here that are needed for the general
description of arbitrary spin configurations. We closely follow the collection of expressions
recently provided by Ajith [10].

The spin-dependent contributions to the PN energy and flux were actually derived
in a more general form than given in (2.69) and (2.70). In particular, they contain
scalar products of the 3-dimensional spin vectors Si (i = 1, 2) and the Newtonian angular
momentum LN . The latter is perpendicular to the constantly changing orbital plane, and
we usually refer only to the normalized vector L̂N . With these more general terms, we could
simply re-derive all time-domain approximants, but we omit those lengthy expressions
here.

The three vectors {S1,S2, L̂N} are only constant in the nonprecessing case, generally
they change their directions continuously (the spin magnitudes are constants, however).
An additional set of equations has to be introduced that governs these dynamics, and the
most recent PN expansions read [39, 54]

dSi
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=Ωi ×Si , i = 1, 2 , (2.92)
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and Ω2 is obtained by exchanging the indices 1↔ 2 in Si and mi in (2.93). Finally, the
set of equations for precessing adiabatic PN approximants is completed by the evolution of
L̂N ,

M2η

v

�
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�
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+
η

6

�

v2
�
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dt
= −

d
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�
S1+S2

�
. (2.94)

All equations have to be solved simultaneously in order to obtain v(t), S1(t), S2(t) and
L̂N (t).
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Having solved the coupled system of differential equations, calculating the emitted
GW signal is also more complicated than the nonprecessing case. We have to account
for the motion of the orbital plane, which leads to a modulation of the GW strain. The
corresponding corrections for arbitrary inclination angles have been calculated by Arun et

al. [24], and we can simply plug the phase evolution and the coordinates of all relevant
vectors into those equations. Note in particular that the equivalent of the orbital phase
that enters the waveform modes ∼ e−imΦ has an additional term that originates from the
precession of LN . It reads

Φ(t) =

∫ �

ωorb−
dα

dt
cos ι

�

dt , (2.95)

where α and ι are the spherical coordinates of LN , i.e., the angles measured from the x-
and z-axis, respectively.

2.4.6 Other inspiral descriptions

Our overview of PN waveform approximants is not meant to be complete, we merely
wanted to collect the equations we shall use to calculate the analytically modeled inspiral
as part of our “complete” models. For a more detailed overview of various analytical
inspiral descriptions, we refer to [58].

Let us at least mention some other approaches that originated in PN calculations. The
TaylorEt approximant [94, 181] is motivated by the fact that the standard approximants are
based on assuming exact circular orbits, whereas TaylorEt employs a truncated expansion
along “PN-accurate” circular orbits. However, it is very close in spirit to the TaylorTn

approximants, except that the expansion parameter is the energy instead of the velocity.
Different studies have shown that, compared to other approaches, TaylorEt does not
exhibit the same agreement with different PN approximants or numerically generated data
[43, 58, 95].

A very successful and sophisticated transformation of the standard Taylor-expanded PN
results is the effective-one-body (EOB) formalism [56, 57, 73, 75]. It relies on mapping the
two-body problem to an effective one-body Hamiltonian with appropriate energy levels.
Re-expanding and re-summing various quantities that enter the EOB metric are aimed
at improving the convergence properties also closer to the merger of the two compact
objects. Most prominently, recent studies extended the PN-derived EOB description of
the inspiral by introducing additional parameters that were determined by comparison
with independent, numerical simulations of the very late inspiral, merger and ringdown
[60, 61, 77, 80, 81, 144, 145, 180, 201]. We shall briefly return to this in Sec 3.5.3. This
thesis is concerned with a similar in spirit, but on a technical level alternative approach to
the construction of full waveforms.

A third technique we shall briefly mention here are effective-field-theory calculations of
moving particles in curved spacetime. These have been very successful in calculating PN
spin contributions through an approach entirely different from standard PN expansions.
See, e.g., [151, 152].
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Figure 2.6: Illustration of the spacetime
foliation employed by NR. Proceeding
from one time slice Σt to the the next
Σt+δt , points of fixed spatial coordinates
x i move along the vector field ∂t . The di-
rection can be split into the contribution
perpendicular to the slice (= αn, where
n is the unit normal vector) and another
parallel to the slice (= β i); α and β i are
called lapse and shift, respectively. Fig-
ure adapted from [96].

α

2.5 Numerical relativity

The analytical waveform models we presented in Sec. 2.4 are very convenient because
they are formulated as ordinary differential equations that are fast to solve with standard
numerical techniques. In some cases (e.g., TaylorF2) the GW signal is even given in a
closed form. However, all PN models have an obvious limitation: they are analytical
approximations of solutions to the Einstein equations and their range of validity is restricted
to small relative velocities and weak gravity. To solve the entire problem, we have to deal
with the full equations at some point, and the only way to solve the system in full generality
is by integrating it numerically.

The field of numerical relativity (NR) contributes to various research areas, from
mathematical relativity over BH science to astrophysics. In our context, it is invaluable to
simulate the last stages a coalescing BH binary undergoes and to predict the GW signal
of the late inspiral, merger and ringdown. It is beyond the scope of this introduction
to review the history and developments of NR comprehensively. We merely summarize
selected aspects of numerically treating the Einstein equations in vacuum and refer to
[67, 100, 110, 131, 177] for recent overviews of the field.

To recast the Einstein equations (2.9) into an evolution system that can be integrated
forward in time, the 4-dimensional spacetime is split into 3-dimensional hypersurfaces
Σt that are characterized by an induced metric γi j. The coordinates are defined by two
additional gauge quantities: the lapse α that specifies how much time elapses from one
hypersurface to the next along the normal nµ, and the shift vector β i that fixes the
corresponding spatial coordinates. Figure 2.6 illustrates the setup.

This “3+1” split of the spacetime allows for a separation of the Einstein equations
into two constraint and two evolution equations, known as the ADM equations due to by
Arnowitt, Deser and Misner [21]. In the form introduced by York [199] they read

R+ K2− Ki jK
i j = 16πρ , (2.96)

DkKk
i − DiK = 8π ji , (2.97)

∂tγi j = −2αKi j + Diβ j + D jβi , (2.98)

(∂t −Lβ)Ki j = −Di D jα+α(Ri j − 2KikKk
j + KKi j)− 8πα

�

Si j −
1

2
γi j(S −ρ)

�

. (2.99)

Therein, Di is the covariant derivative induced in the 3-dimensional hypersurfaces, Kµν =
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Figure 2.7: Representation of a single BH in a moving-puncture simulation. The embedding diagrams show
the wormhole topology (left panel) of the initial time slice that quickly evolves to the stationary trumpet
representation (right panel). (Published in [103])

−∇µnν − nµnρ∇ρnν is the extrinsic curvature, K = Kµ
µ is its trace, Ri j is the Ricci tensor,

Lβ is the Lie derivative along β i , and the energy density ρ, the momentum density ji and
Si j are projections of the energy-momentum tensor. The latter vanish in the vacuum case
that we consider here. Note that the Hamiltonian constraint (2.96) and the momentum
constraint (2.97) are elliptic equations that have to be fulfilled on every time slice, whereas
(2.98) and (2.99) are evolution equations for the spatial metric and the extrinsic curvature.
We see that the second-order Einstein equations have been transformed to a first-order-in-
time system, just as a standard wave equation can be reduced to first order by introducing
the first time-derivate as an independent variable. Here, the extrinsic curvature is related
to the time-derivative of the spatial metric γi j in (2.98).

The ADM equations are numerically unstable, and most of todays codes use the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) reformulation [32, 170] which evolves
similar quantities, but rescaled by a conformal factor ψ. However, the system of equations
is not complete unless the lapse and the shift are specified by a set of gauge conditions.
They ensure that the singularities of the simulated BHs do not interfere with the numerical
integration, and a very successful approach is the moving puncture gauge. Therein, the
initial slice represents each BH by a wormhole geometry with one end compactified at a
single point: the “puncture”. The extrinsic curvature is deduced from the initial parameters
for momentum and spin [200], and the corresponding conformal factor can be constructed
following [50]. However, assuming conformal flatness (i.e., the initial metric equals flat
space scaled with a conformal factor) introduces additional radiation in the simulation, the
junk radiation, which quickly leaves the system once the simulation has started to evolve.
In addition, the moving puncture gauge then drives the BH representation to a “trumpet”
topology [103, 105]. See Fig. 2.7 for an illustration. Once these gauge artifacts have
passed, the punctures freely move through the numerical grid according to the physical
motion of the BHs, and multiple levels of spatial resolution are adapted to this movement.

An alternative approach to moving-puncture simulations is the generalized harmonic
formulation where the coordinates fulfill the condition �xµ = Hµ with some specific
source function Hµ [91, 154]. Furthermore, instead of avoiding the singularity of BHs
automatically through some appropriate gauge choice, one can leave out a portion inside
the event horizon from the computational domain [185]. The technique, called “excision”,
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should not effect the physical properties of the system as no information can travel out of
the excluded region. However, care has to be taken that the system remains numerically
stable, and finding appropriate boundary conditions is far from trivial.

With both methods just outlined a breakthrough was achieved in 2005 [31, 62, 153],
and stable NR simulations of a few orbits plus merger and ringdown to a final Kerr
black hole have become a standard tool to consistently predict the last stages of a binary
BH coalescence [107]. The exploration of the whole parameter space, however, has
just begun and, for instance, long simulations of systems with mass-ratios higher than
q = m2/m1 ∼ 5 are still exceptionally time-consuming. Nevertheless, the waveforms
that can be extracted from the available NR simulations provide valuable hints on how
to complete our understanding of the emitted GW signal, and Chapter 3 in this thesis is
devoted to the combination of analytical and numerical results.

Before, let us briefly review how the GW signal is commonly extracted in NR simulations.
Instead of measuring some small perturbation on a flat background, a less ambiguous way
to calculate the outgoing transverse gravitational radiation is provided by the Newman-
Penrose scalar Ψ4 [137], which is a component of the Weyl tensor in a particular complex
tetrad. In NR, it is a convenient object to extract the GW content, because it is related to
strain by two time derivatives

Ψ4 =
∂ 2h

∂ t2 =
∂ 2

∂ t2

�
h+ − i h×

�
. (2.100)

To obtain h, one has to integrate Ψ4 twice, which can lead to unphysical drifts in h. As
detailed in the study by Reisswig and Pollney [157], these amplified errors in the numerical
GW strain are not only due to undetermined integration constants (which can be removed
by a linear fit) but also originate in the small numerical error of Ψ4 whose amplitude is
enlarged by the integrations.

There are several procedures to reduce the error in Ψ4 and h. Similar to the treatment of
the GW strain in PN, Ψ4 is commonly decomposed into spin-weighted spherical harmonics,
see Sec. 2.4.3. The calculation of the individual modes Ψℓm4 involves integrals over a sphere
of constant extraction radius rex, and this integration smooths out some numerical noise
that is otherwise present at fixed points in the coordinate system. Gauge ambiguities that
are introduced by the integration over a fixed coordinate radius can be minimized by
extracting the GW signal at several extraction radii and extrapolate the results to infinity.
With recent developments, it also became possible to measure the signal directly at null
infinity via Cauchy-characteristic extraction [28, 156].

One very elegant way to perform the time integrations in order to get h out of a
relatively clean Ψ4 is to first transfer it to the Fourier domain. Here, integrations become
simple divisions [as can readily be verified from the definition of the Fourier transform
(2.44)], and we find

h̃( f ) = −
Ψ̃4( f )

(2π f )2
. (2.101)

The problem we are faced with now is that the numerically generated signal is of finite
length, and discretely Fourier-transforming it leads to other artifacts. These can in turn be
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reduced by filtering the signal appropriately, and [157] suggests multiplying Ψ̃4 with f / f0
(for f < f0) in every integration step. The parameter f0 is the lowest physically relevant
frequency in the signal, so these filter methods rely on a localized physical content of the
GW signal some distance away from the origin. However, for the systems we study here,
this assumption is well justified by the fact that the orbital frequencies solely define the
range of relevant f , and any numerical simulation will start at some finite frequency that
then increases over the course of the inspiral. This may change, however, for strongly
precessing systems where multiple frequencies are present, and further studies are needed
to find the best integration method for these systems.



Chapter 3

Combining analytical and numerical

waveform data

3.1 Motivation to connect complementary waveform pieces

The world-wide effort to directly detect gravitational waves (GWs) for the first time is an am-
bitious project that unites the expertise from various fields in experimental and theoretical
physics. A network of instruments, containing the Laser Interferometer Gravitational-wave
Observatory (LIGO) [7, 173, 174], VIRGO [8, 9] and GEO600 [99, 127], will soon reach
a sensitivity where the signatures of coalescing compact binaries are expected to be seen
above the noise level of the detectors a few times to hundreds of times per year [4]. In
the case of binaries that consist of black holes (BHs) and/or neutron stars, the correct
interpretation of the GW signals crucially depends on the quality of theoretically predicted
template waveforms that have to be used to identify the physical properties of the source.

Here we focus on waveform families of binary BHs as they constitute one of the most
promising sources of a first direct detection of GWs. Their modeling typically combines two
very different approximation procedures. One describes the early inspiral of both objects
through an asymptotic expansion in terms of the relative velocity v/c, where c is the speed
of light. As long as this quotient is small, the resulting post-Newtonian (PN) equations
are an adequate representation of the dynamical evolution of the binary [38]. Because of
the simple form of PN approximants that provide the GW signal in terms of differential
equations or, in some cases, even in a closed form, they have long been the favorite tool for
data-analysis applications.

However, as the two BHs orbit around each other, they lose energy through the emission
of GWs, and their distance shrinks along with an increase in velocity. Consequently, PN
predictions become more and more inaccurate the closer the binary gets to merger. One
coarse, yet commonly used limit of how far one may trust standard PN approximants is the
last stable circular orbit of a test particle around a Schwarzschild black hole. The velocity at
this point is vLSO = 1/

p
6 (recall that we use units where c = 1) which leads to a dominant

GW frequency of

fLSO =
v3

LSO

Mπ
=

1

Mπ63/2
≈

0.022

M
. (3.1)

35
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Figure 3.1: The sky-averaged GW strains h̃( f )
p

f of
two nonspinning binary-BH systems with masses as
indicated. The assumed distance from the source is
100Mpc. The red curve shows the analytical fit of the
Advanced LIGO noise curve,

p

Sn( f ), as given in [16].
Red dots indicate fLSO, given in (3.1), which constitutes
a coarse estimate of how far PN templates alone could
be used in a GW search.

Beyond this point, standard PN formulations alone do not give a reliable prediction of
the GW signal, which becomes particularly problematic for heavier binary systems (i.e.,
with higher values of the total mass M) where frequencies above fLSO may well be in the
sensitive region of the detector. Fig. 3.1 illustrates this issue for two examples of binary
systems in the Advanced LIGO detector band. Different analytical modifications are known
that try to enhance the convergence of the PN series, even close to merger, and one of the
most successful methods is the effective-one-body (EOB) approach [56, 57, 73, 75].

Without further information, however, all these analytical schemes break down at
some point prior to the merger of both BHs, and a second approach has to be used to
model the dynamics from the late inspiral through the merger: numerical relativity (NR).
In NR, the full Einstein equations are usually solved discretely on a finite grid that is
adapted to the movement of the two bodies, and the resolution in space and time is chosen
fine enough to obtain a converging result. The GW content is extracted at finite radii
and then extrapolated to infinity, or it is directly extracted at null infinity via Cauchy-
characteristic extraction [28, 156]. For current overviews of the field see for example
[67, 100, 110, 131, 177].

Both numerical and analytical approaches have their limitations. The PN-based formu-
lations are, by construction, not valid throughout the entire coalescence process; NR relies
on computationally very expensive simulations that become increasingly challenging (and
time-consuming) with larger initial separations, higher spin magnitudes of the BHs and
higher mass-ratios q = m1/m2 (mi are the masses of the individual BHs and we use the
convention m1 ≥ m2). Thus, to build models of the complete inspiral, merger and ringdown
signal, one has to combine information from both analytical and numerical approximations.
See Fig. 3.2 for an illustration of the dominant harmonic mode of a nonspinning binary.

These “complete” waveforms are indispensable to perfect current search strategies.
They constitute our best and most complete approximation of the real signals that we are
trying to detect, which makes them ideal target waveforms in a simulated search to test
existing analysis algorithms. The Numerical INJection Analysis (NINJA) project [12, 27]
is dedicated to that question. The other important application of complete waveforms is
to derive an analytical model from them which leads to an improved template bank in
the search. The improvement manifests itself, e.g., in a wider detection range and a more
accurate extraction of the physical information encoded in the signals. Ongoing searches
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Inspiral Merger Ringdown

post-Newtonian (PN) theory no analyt. model perturbation theory

Effective-one-body (EOB)
Numerical Relativity (NR)

Figure 3.2: The dominant spherical harmonic mode of the GW signal of two coalescing (nonspinning) BHs as
a function of time. The different approximation schemes and their range of validity are indicated. Wavy lines
illustrate the regime close to merger where analytical methods have to be bridged by NR.

with such templates in LIGO data are summarized for instance in [6].

This chapter describes the methodology to combine PN and NR data into individual
hybrid waveforms. We shall first analyze the agreement of analytical and numerical results
and then provide detailed information on how to smoothly connect the two waveform
parts. We conclude with a discussion of waveform families that can be derived from a set of
complete hybrids. Most results presented here are already published in [16, 104, 139, 162].

3.2 Comparison of PN and NR waveforms

In the late inspiral regime, a few orbits before merger, both PN and NR predict the GW signal
of a coalescing BH binary. This shall become our starting point to connect both descriptions.
An important question that has to be answered first is whether both approaches give a
consistent picture of the late inspiral dynamics. If they would not agree well, either PN or
NR or both descriptions cannot be trusted, and we cannot proceed with building a complete
waveform model on this basis. Furthermore, it will become clear later in this chapter that a
reasonable matching of two complementary waveform parts requires an overlapping region
where both approaches yield the same data, at least to some extent.

3.2.1 NR and PN setups

The numerical data we use here are described in detail in [104] and we recall the basic
parameters of the simulations in Table 3.1. We separate them into two series of simulations:

• Equal-mass binaries where each BH has the same spin aligned with the orbital angular
momentum L. The spin magnitudes are characterized by χi = Si ·L/(m2

i |L|), and
χi ranges from −0.85 to 0.85.

• Nonspinning binaries with mass ratio q ranging from 1 to 4.

The GW content was extracted in terms of the Newman-Penrose scalar Ψ4 = d2h/dt2 at
rex = 90M in each case. We can see that every simulation covers at least 10 GW cycles of
the dominant ℓ = 2, m = 2 mode, where we define the number of cycles simply by the
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q χi Dini/M e Mωini NGW tpeak/M MωRD M f /M a f /M f

1 -0.85 13.0 0.0025 0.040 16 1868 0.457 0.969 0.412
1 -0.75 13.0 0.0016 0.0395 17 2036 0.466 0.968 0.446
1 -0.50 12.5 0.0029 0.042 18 2065 0.490 0.965 0.531
1 -0.25 12.0 0.0025 0.044 18.5 1955 0.519 0.959 0.609
1 0 12.0 0.0018 0.044 19 1939 0.553 0.951 0.686
1 0.25 12.0 0.0061 0.043 21.5 2129 0.595 0.942 0.760
1 0.50 11.0 0.0061 0.049 20 1739 0.650 0.936 0.832
1 0.75 10.0 0.0060 0.055 19 1432 0.728 0.921 0.898
1 0.85 10.0 0.0050 0.055 20 1492 0.770 0.895 0.915
2 0 10.0 0.0023 0.058 12.5 1069 0.522 0.962 0.623
3 0 10.0 0.0016 0.058 14.5 1240 0.489 0.972 0.540
4 0 10.0 0.0026 0.057 16 1396 0.467 0.978 0.471

Table 3.1: Summary of the configurations simulated. The table indicates the initial coordinate separation Dini

of the punctures and the eccentricity e of the resulting coordinate motion. The initial GW frequency is Mωini,
and the ringdown frequency of the final merged black hole is MωRD. The simulation includes NGW cycles before
the peak of the GW amplitude, which occurs at tpeak. The final black hole has mass M f and spin a f .

phase evolution up to the maximum modulus of the GW, divided by 2π. These ten GW
cycles will be the range where we compare to analytical approximations.

The PN approximations we consider were given explicitly in Sec. 2.4, but let us recall
the basic derivations here to highlight an important subtlety. The starting points of all
standard PN approximants are the energy E and the GW flux (or luminosity) L of a BH
binary on quasi-circular orbits. Both quantities are given in the PN framework as expansions
in v/c, up to (v/c)7 (3.5PN order), where v is the relative velocity and c the speed of light.
We work in units where c = 1, so v is our expansion parameter and it is related to the
orbital phase φorb via

v = (Mωorb)
1/3 ,

dφorb

dt
=ωorb . (3.2)

The energy-balance law dE/dt = −L can be transformed to an evolution equation for v,

dv

dt
= −

L
dE/dv

(3.3)

which in turn leads to the ℓm-mode of the gravitational wave strain

hℓm(t) = Aℓm(t) e−imφorb(t) . (3.4)

The amplitudes Aℓm are given as expansions in v to 3PN order in the non-spinning case
[42] and up to 2PN order in spinning contributions [24]. When we compare to the NR Ψ4

in this section, we calculate the second time-derivative of the PN strain numerically.

As we have introduced in Sec. 2.4.2, a direct (numerical) integration of (3.3) and (3.2)
is referred to as the TaylorT1 approximant. If instead the right-hand side of Eq. (3.3) is
re-expanded as a Taylor series in v before integrating, the resulting approximant is called
TaylorT4. This re-expansion is truncated at the same order as the energy and flux (i.e.,
3.5PN); all higher powers in v are incomplete and therefore neglected.
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If we apply the same strategy to the spin contributions that enter at 1.5PN (leading
order spin-orbit coupling), 2PN (spin-spin) and 2.5PN order (next-to-leading order spin-
orbit), we should neglect all spin-dependent terms in the re-expansion of (3.3) that appear
at 3PN and 3.5PN order. We denote the resulting approximant that was used for instance
in [101] as TaylorT4 (truncated). If we instead disregard the distinction of spinning and
non-spinning terms and use the “full” re-expansion up to 3.5 PN order, thereby keeping
incomplete spin contributions at 3 and 3.5PN order, we denote the resulting approximant
simply as TaylorT4.

3.2.2 Phase comparison

We now compare the PN and NR phase (denoted by φ), each defined as the argument
of the complex scalar Ψ4, respectively. Our procedure is to consider the phase for the N

GW cycles up to the matching frequency Mωm = 0.1. We line up the PN and NR phase
functions so that they agree when dφ/dt = ω(t) = ωm, and relabel this event as t = 0.
We then calculate the phase disagreement as it accumulates over N cycles back in time.
Note that although our comparison is over a fixed number of GW cycles, it is not over
a fixed frequency range, due to the different frequency evolution in each configuration.
In the same way, the comparison is also over different lengths of time between different
configurations. However, we have found that the qualitative behavior of the comparison
results does not depend on whether we compare over a fixed range of cycles, frequency, or
time.

One way to quantify the disagreement is simply through the phase difference ∆φ(t) =
φPN(t)− φNR(t), and previous studies [101, 106] quoted ∆φ(tN ) as the accumulated
phase difference, where tN is the time N cycles prior to the point where ω = ωm. This
procedure gives consistent results, but we may worry in general that ∆φ(t) is not a
monotonic function, and so a more robust procedure is to consider instead

∆φ(tN ) =
1

p

−tN





∫ 0

tN

�

φNR(t)−φPN(t)
�2

dt





1/2

. (3.5)

This gives us a measure of the average rate of increase of the phase disagreement. A similar
procedure was also used in [49], although in that study the alignment of the waveforms
was adjusted to minimize ∆φ. An elegant alternative measure of the accumulated phase
disagreement is given in Eq. (3.15) of [130]. We instead wish to evaluate how well the PN
phase evolution agrees with the fully general relativistic NR results. For comparison with
previous results in the literature, we will also show the results of a direct calculation of
φPN(t)−φNR(t).

Fig. 3.3 shows the disagreement between the PN and NR phase for the equal-mass
configurations with non-precessing spins over N = 10 GW cycles. Three PN approximants
are used: TaylorT1, TaylorT4, and TaylorT4-truncated, as described in the previous section.

We see that in both calculations of the accumulated phase disagreement, TaylorT1 is the
most robust. It performs best in the nonspinning case (which is to be expected, since the
nonspinning contributions are known to higher PN order than the spinning contributions),
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Figure 3.3: Phase disagreement between NR and PN results for three choices of PN approximant, for
configurations that consist of equal-mass binaries with equal spins oriented parallel or anti-parallel to the
orbital angular momentum. The first panel shows the accumulated phase disagreement for the ten GW cycles
up to Mωm = 0.1. The second panel shows the integrated square of the phase disagreement, Eq. (3.5).
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Figure 3.4: Phase disagreement between NR and PN results for two choices of PN approximant, for configura-
tions that consist of nonspinning black holes of unequal mass, with mass ratio q.

and for all spinning cases the accumulated phase disagreement is between 1.0 and 2.0 rad,
while the square-averaged phase disagreement is between 0.5 and 1.0 rad. We see also that
TaylorT4-truncated performs worse as the spin is increased, and for large anti-aligned spins
performs very poorly. The full TaylorT4 approximant performs better for most spin values,
although it is again poor for large anti-aligned spins.

Fig. 3.4 shows a similar plot, but this time for the unequal-mass nonspinning config-
urations. The q = 2 simulations consist of less than ten cycles before Mω = 0.1, so we
consider only N = 8 cycles in the phase comparison. In this case we see that TaylorT4
continues to perform well for unequal-mass configurations. We expect that at higher
mass ratios the performance of all PN approximants will deteriorate, but up to q = 4 this
deterioration cannot be clearly measured; the performance of TaylorT1 and TaylorT4 shows
some variation with mass ratio, but this is not monotonic.

We note that the numerical phase error caused by finite numerical resolutions can
be measured in a similar way, i.e., by aligning the finite-resolution data to Richardson-
extrapolated data at Mω = 0.1. The accumulated phase error over 10 NR orbits back in
time is then 0.1 rad and less for all simulations, which leads us to the conclusion that the
PN disagreement shown in Figs. 3.3 and 3.4 is not considerably spoiled by numerical errors.
More details on the assessment of the numerical error can be found in [104].
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From our phase comparison analysis, we conclude that the TaylorT1 approximant is
most robust over the entire subset of the BH-binary parameter space that we have studied.
The TaylorT4 approximant performs well for all nonspinning cases. The performance
of TaylorT4 for spinning cases varies greatly between our two choices of treatment of
the higher-order spin contributions, but for both choices shows poor agreement for large
anti-aligned spins. We caution, however, that the performance of the approximants over a
relatively small number of numerical cycles does not tell us how well they perform before
at lower frequencies, and we will discuss this point at great length in Chapter 4.

3.2.3 Amplitude comparison

We now compare the PN prediction for the inspiral wave amplitude with numerical results,
for the (ℓ = 2, m = 2) mode. It was found before in [106] that in the equal-mass
nonspinning case the quadrupole PN amplitude was larger than the full general relativistic
amplitude during inspiral by about 7%. It was later shown in [48] that the amplitude
agreement could be improved to within 2% if corrections up to 3PN order were used. For
equal-mass binaries with aligned spins, it was then reported in [101] that the quadrupole
PN amplitude disagreement rose to about 12% in highly spinning cases.

Here we extend these previous analyses of the quadrupole amplitude to anti-aligned
and unequal-mass cases. We also compare with the PN amplitude that results from using all
currently known amplitude corrections (up to 3PN order nonspinning [42, 119] and up to
2PN order spinning contributions [24, 197]). We have taken care when combining results
for amplitude functions from different sources in the literature, in particular regarding
different conventions for the choice of relative phase factors. In our implementation we now
follow the convention of [24], which differs from that of [42], from which we originally
took our nonspinning amplitude contributions. We have checked for consistency with the
amplitude of the ℓ = |m| = 2 modes as given in [34], and we have compared with an
independent code as part of the NINJA project [1]. In addition, we have also checked that
inconsistent choices of the relative phase factors (e.g., caused by misprints in the literature)
significantly increase the deviation of the NR and PN amplitudes; the correct choices lead
to the best agreement with results from full general relativity.

An unambiguous time-domain analysis of the amplitude is difficult, because the appar-
ent amplitude difference between PN and NR is in fact a combination of both the amplitude
and phase disagreement – if the amplitude were measured with no error by the code, but
two waveforms are out of phase, they will appear to have a non-zero amplitude error when
compared in the time domain. This point was discussed in some detail in [106], where they
used a parametrization of the NR amplitude in terms of GW phase to reduce the effects
of dephasing on the amplitude analysis. This works well if the phase error as a function
of GW frequency is small, but this will not always be true. We expect (from the PN and
perturbation theories) that the GW amplitude is a function of the GW frequency, and so the
ideal method to measure the amplitude accuracy would be to reparametrize the amplitude
as a function of GW frequency.

This procedure also presents problems: the GW frequency from NR is a numerically
noisy function during the early and late parts of the simulation; it is certainly not the
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smooth monotonically increasing function that we expect it to be on physical grounds. We
can partially circumvent this difficulty by producing a smooth analytic fit of the frequency
function, and considering the GW phase and amplitude as parametrized by that function.
The smoothing process may itself introduce numerical artifacts, and either mask or exagger-
ate the PN-NR differences. But in general it is sufficient to allow us to calculate reasonably
clean PN-NR deviations.

Our method for modeling the NR GW frequency is as follows, based on an earlier
version that was used (for equal-mass, nonspinning waveforms) in the work for the
Samurai project [107]. For the inspiral, we start with the analytic TaylorT3 approximant
for the frequency, as given in [55]. We neglect the highest-order (3.5PN) nonspinning term
and replace it by a free parameter that will be fit to our data. In addition, following [55],
we do not specify the value of the spin, but also treat it as a free parameter – remember
that our goal is to produce a clean analytic fit to the frequency, and we are not interested
in whether all of the parameters have their usual physical interpretation. The modified
TaylorT3 frequency function is then

ΩPN(τ) =
1
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where η= m1m2/M2 is the symmetric mass ratio, S = S1+ S2 is the total spin parallel to
the orbital angular momentum, Σ = M(S2/m2−S1/m1), δM = m1−m2 and γ is the Euler
constant. In the cases we consider here, the spins are nonzero only in the equal-mass case,
and the spins are always equal to each other, so the (δM Σ) terms do not contribute. The
function τ is usually given by τ = η(tc − t)/(5M), and tc is interpreted as the “time of
coalescence” in standard PN theory, although a more appropriate term would be “time of
divergence”.

In order to produce a formula that can be fit through our data, we redefine τ as

τ2 =
η2(tc − t)2

25M2 + d2, (3.7)

where both tc and d are free parameters that are fit to the data. This modification of τ
prevents ΩPN from diverging at t = tc. In the form that we have written it, ΩPN is now
symmetric about t = tc , which is certainly not physically realistic, but beyond this point we
can make a smooth transition to a different function, which models the ringdown [104].

For completeness, let us mention that that the model of the ringdown phase is a
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Figure 3.5: Analytic fit to the GW frequency for the χi = 0.5 case. The right panel shows the fractional
difference between the fit and numerical data. For this configuration, the error in the fit is dominated by the
residual eccentricity in the simulation.

modified ansatz suggested in [30], and we write the full frequency as

Ω(t) = ΩPN(τ) +
�

Ω f −ΩPN(τ)
�
�

1+ tanh[ln
p
κ− (t − t0)/b]

2

�κ

. (3.8)

The constants {tc , t0, S,κ, a, b,Ω f } are parameters that are determined to produce the best
fit to the numerical data. The constant Ω f corresponds to a fit of the ringdown frequency,
but the other parameters have no clear physical interpretation. (Even the “spin” parameter
S really amounts to no more than a modification of the 1.5PN and 2.5PN terms in the
description of the inspiral frequency.)

Fig. 3.5 shows a typical frequency fit, in this case for χi = 0.5. We see that the dominant
error in the fit is due to the residual eccentricity in this simulation; the aligned-spin cases
are based on quasi-circular parameters and have the highest eccentricity of all the cases we
studied. The procedure does not work quite so well in cases with high spin; the frequency
evolution is not captured so well during the early inspiral, or in the 200M before the peak
GW amplitude. The fitting formula (3.6) could be modified to address this, and indeed
the model of the transition to ringdown (3.8) has since been improved by the authors of
[30]. These issues, and the masking of eccentricity effects, mean that this frequency fit is
far from ideal, and cannot be used for a convergence study of the amplitude. However, it
is adequate for the purpose of providing a rough estimate of the amplitude disagreement
between NR and PN.

Another issue we had to deal with is that the NR amplitude shows variations with
numerical extraction radius that are comparable to the level of disagreement with the PN
predictions. However, the error in the amplitude seems to fall off as 1/r2

ex (see [106] for a
discussion of this effect), and allows us to perform an accurate extrapolation to rex→∞.
Having obtained the accurate amplitude of rexΨ4, we then express the amplitude as a
function of frequency, which allows us to easily compare with the PN amplitude, which is
always expressed as a function of frequency. Note that for this comparison we perform a
frequency fit to our data during only the inspiral, which allows us to much more accurately
capture the amplitude evolution.

Fig. 3.6 shows the average disagreement between the PN and NR amplitudes over
the 10 cycles up to Mω = 0.1, for the equal-mass spinning cases. The results using both
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the quadrupole and 3PN order amplitudes are shown. As seen in [101] the quadrupole
amplitude disagreement rises to just over 12% for the highly spinning cases. The increase
in disagreement is approximately linear with respect to the spin, and we predict that the
maximum disagreement for extreme-spin black holes would be around 14%. For large
anti-parallel spins, the quadrupole amplitude performs much better, and drops to around
3% for χi = −0.85.

When PN amplitude contributions up to 3PN (nonspinning)/2PN (spinning) order
are used, the agreement with NR results is much better. In the nonspinning case it is
3%, consistent with the results in [48]. (Note that the uncertainty in the extrapolated
NR amplitude is around 1%.) The variation with spin is small, rising to only 4% in the
high-spin hang-up cases, and falling to 2.5% in the high-spin anti-hang-up cases. We find
similar results for the unequal-mass cases, where the average disagreement is around 3%.

3.2.4 Conclusions from this study

From the study of the disagreement between analytical approximations and numerical
late-inspiral data, we can draw important conclusions that already indicate the issues we
have to address in the construction of complete signals. These are in detail:

• Analytical and numerical predictions of the GW reasonably agree in the portion of
the inspiral that is captured by both approaches.

• Although a good agreement in this short part of the final waveform is desirable
and useful for an unambiguous matching of analytical and numerical data, it is no
guarantee that the long complete waveform accurately represents the true signal,
or that the PN approximant that agrees best in the late inspiral is also the favorite
description of the entire inspiral.

• The “amount of disagreement” highly depends on

1. which specific PN approximant is used, and

2. how PN and NR data are aligned with each other.

• Given that there is no perfect agreement between PN and NR, we cannot expect
any complete waveform to truly represent the final waveform predicted by General
Relativity. However, there will be a way to estimate both the best way to combine PN
and NR waveforms and the uncertainty that is introduced in this process.
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In the light of these conclusions we understand that it is hard to conclusively define a priori

the optimal combination of an analytical approximation with NR data. In fact, it will be of
major importance to explore the variety of possible combinations and deduce from it an
estimate of the uncertainty inherited in the waveform model from the individual ingredients.
Chapter 4 is devoted to that question. Now we shall turn to the actual construction of
hybrid PN+NR waveforms and examine a few different hybridization strategies.

3.3 Constructing hybrid waveforms

3.3.1 Time-domain variants

In the following, we shall consider the GW strain as predicted by a PN approximant, hPN,
and its complement calculated by NR, hNR. Each h is understood as a complex function of
time that combines the + and × polarization,

h(t) = h+(t)− i h×(t) = A(t) eiφ(t) . (3.9)

We are not concerned with the specific detector output, which would involve additional
geometrical functions of the sky position [see (2.38)]. In addition, h is commonly decom-
posed into spherical harmonics with spin weight −2, and we will implicitly refer to the
dominant mode with ℓ= 2, m= 2 if not stated otherwise.

Let us start with the simplest case. Although h is generally a function of all parameters
of the BH binary, we assume that all of them are fixed, except for a free translation in phase
and time. Specifically, we assume a given total mass, mass ratio and spins of the system;
the “initial” time and phase, often also reformulated as time and phase “at coalescence” are
unspecified. We denote the latter as t0 and φ0. The problem of aligning and matching hPN

and hNR now essentially becomes a problem of finding the, in some sense, optimal values
for t0 and φ0. (Note that the final waveform will still be characterized by a free time and
phase translation, so a PN-NR matching procedure actually determines the relative time
and phase shift, tPN

0 − tNR
0 and φPN

0 −φNR
0 , respectively. For brevity, we will refer to these

differences simply as t0 and φ0.)

How do we aligned the two waveform parts? We have seen in Sec. 3.2 that neither the
PN/NR phases nor the amplitudes agree perfectly, so we would not expect that imposing

hPN(tm) = hNR(tm) (3.10)

at a single “matching” time tm leads to a robust procedure. Also note that the phase shift
only affects φ, whereas the time shift affects both phase and amplitude,

φ(t) 7→ φ(t − t0) +φ0 , A(t) 7→ A(t − t0) . (3.11)

Since (3.10) implies APN(tm) = ANR(tm), we see that matching the complex waveforms at
a single point defines t0 solely through the amplitudes and φ0 follows from preserving
continuity.

The more important quantity both from the data-analysis perspective and from the
analytical modeling is, however, the phase of the GW and its derivative, which we casually
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call the frequency

ω(t) =

�
�
�
�

dφ(t)

dt

�
�
�
�

(3.12)

(not to be confused with the frequency in Fourier space). The variables t0 and φ0 can
also be solely determined through φ and ω, as ω(t) does not depend on φ0 and we can
determine t0 by demanding ωPN(tm) = ωNR(tm). The relative phase shift then follows
through φPN(tm) = φNR(tm). The obvious drawback of this method is that the amplitudes
are not required to agree at tm or anywhere else.

These point-matching procedures introduce one additional free parameter: the matching
time tm. Its choice, however, is guided rather strongly by considerations about the quality
of the PN and NR data at different points in time. PN approximants are expected to become
more and more inaccurate with later times (the expansion parameter is a monotonically
increasing function of time). In NR, on the other hand, junk radiation caused by imperfect
initial data has to leave the systems first before a relatively clean GW signal can be extracted.
This is the regime where tm should lie, as early as the NR data permits. One has to keep in
mind, however, that φNR and ωNR are noise functions and slightly different choices of tm

may lead to considerably different hybrids.

The reduce the impact of numerical noise, it is beneficial to calculate t0 and φ0 not at
a single point but determine them over an entire interval (t1, t2). The relative time and
phase shift can then be found by a minimization of, e.g.,

∫ t2

t1

�
XPN(t; t0,φ0)− XNR(t)

�2 dt , (3.13)

where X could be the GW strain or phase or any other suitable function. Ajith et al. [14, 15]
introduced this alignment procedure for X ≡ h and originally included an additional scaling
factor of the NR amplitude. Since the PN amplitude description advanced since then and
the agreement with NR is now much better (recall Fig. 3.6), we refrain from using an
additional scaling factor and preserve all quantities as they come out of the respective
approach.

This interval-matching strategy introduces two additional parameters, t1 and t2, and
their choices are not as obvious as in the case of only one parameter tm. In fact, the
considerations for tm apply to t1 as well, but it is not clear how long the interval should be.
It should certainly be long enough so that numerical errors average out to some extent,
and the more pronounced the frequency evolution is from t1 to t2 the more accurate one
can fix t0. On the other hand, when t2 becomes larger, we extend the interval towards the
region where standard PN approximants become more unreliable. A compromise has to be
found, and we shall look at this question in more detail in the case of a frequency-domain
matching procedure. Let us just point out that time-domain hybridization methods, as the
ones described here, were analyzed by MacDonald, Nissanke and Pfeiffer [128], and they
suggest that the matching interval should at least cover a 10% frequency increase from t1

to t2.

Illustrations of matching PN and NR data either at a single point or over an interval are
provided in Figs. 3.7 and 3.8, respectively (the lower panels are inspired by similar plots in
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Figure 3.7: Time-domain matching of the TaylorT1 PN inspiral (green) to ❇❆▼ NR data (red dashed) for an
equal-mass binary system with aligned spins of magnitude χi = 0.5. We show the phase φ and the amplitude
A of the GW h as well as its real part Re h= h+. The matching is performed at a single point (marked in blue),
demanding a continuously differentiable phase transition. Here we chose Mω(tm) = 0.055.
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Figure 3.8: The same configuration as in Fig. 3.7, only here the matching is performed over an entire
interval where the square difference of the phases is minimized. We employed the interval (t1, t2) defined by
Mω(t1) = 0.055 and Mω(t2) = 0.07.
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the literature [12, 14, 15]). The data we show correspond to an equal-mass binary with
two spinning black holes, where each spin is aligned to the orbital angular momentum
and has a dimensionless magnitude of χi = 0.5 (i = 1, 2). The point-matching procedure
(Fig. 3.7) was carried out to ensure continuity in frequency and phase, and we chose tm by
Mω(tm) = 0.055. The matching interval in Fig. 3.8 uses the same moment of time for t1,
and t2 was chosen to satisfy Mω(tm) = 0.07. The integral (3.13) we minimize is simply
the phase difference, i.e., X = φ therein. We see that both approaches hardly differ in the
way they align the two signal parts. However, they do lead to slightly different numbers,
and for completeness we note that the optimal relative time shifts that were found differ
by 7.6M , the phase shifts disagree by 0.45 rad. What effect such ambiguities have to the
entire waveform and how relevant this is in data-analysis applications will be discussed in
detail in Chapter 4.

After aligning hPN and hNR, we now have to express the full waveform as some combi-
nation of the two parts. In principle, this is a separate step in the hybridization process, but
there is often a natural way to do it suggested by the alignment procedure. For instance, if
(3.10) is satisfied we could simply define the full waveform as a piecewise combination
of hPN(t) for t ≤ tm and hNR(t) for t > tm. This would ensure a continuous function.
Performing the point matching only in terms of the phase and frequency (as in Fig. 3.7), we
obtain a piecewise function that has a continuously differentiable phase but most likely a
discontinuity at tm in the amplitude. An interesting option to cure this problem is to define
the transition from PN to NR separately for phase and amplitude, i.e.,

h(t) = A(t) eiφ(t) with φ(t) =

¨

φPN(t), t ≤ tm

φNR(t), t > tm

and A(t) =

¨

APN(t), t ≤ tA
m

ANR(t), t > tA
m

, (3.14)

where tm 6= tA
m is allowed, and a reasonable way to define tA

m is to demand a continuous
transition in the amplitude as well. The existence of such a point in time is of course
not guaranteed when the alignment is only based on the phase (again, see Fig. 3.7), but
then one could perform a smooth transition from one amplitude to the other to maintain
differentiability.

Evidently, it can become very useful (even necessary) to carry out the transition from
the PN to the NR part of the waveform over an interval, instead of at a single point. This
usually follows the pattern

X (t) = XPN(t) [1−T (t)] +T (t) XNR(t) , (3.15)

where X denotes some quantity related to the GW signal (like strain, phase or amplitude)
and T is a taper function that smoothly goes from zero to unity, either on a compact
interval [(t1, t2) would be a natural choice in that case] or over the entire real axis. Usually,
T is a function of additional free parameters that model its steepness. Examples are a
simple linear increase as used in [14, 15], a tanh-function [162], the Planck taper [129]
or properly adjusted cosines [128].

To conclude, a good way to represent the final hybrid waveform in our examples,
Figs. 3.7 and 3.8, would be to use (3.14) only for the phase. The “matching” or “transition”
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time tm is given trivially in the point-matching case, but it has to be determined separately
by a root-finding algorithm when the phase differences are minimized over an interval.
However, a least-square fit of the phase ensures that there is indeed a suitable tm ∈ (t1, t2).
The amplitudes in our example, on the other hand, cannot be matched smoothly at a single
point. We need to employ a blending function to connect them, which could have the form

A(t) =







APN(t), t < t1

APN(t) (t2− t)/(t2− t1) + ANR(t) (t − t1)/(t2− t1), t1 ≤ t ≤ t2

ANR(t), t > t2 .
(3.16)

The parameters t1 and t2 could actually be the boundaries of the fitting interval, although
in principle they can be defined independently of that.

3.3.2 Frequency-domain matching

An interesting variation of the hybridization methods we have just discussed is to match PN
and NR data in the Fourier domain instead of the time domain. This approach is inspired
by three observations. (1) The final complete waveform should resemble its original
ingredients as accurate as possible, but in what sense do we define this agreement? In the
end, we aim at using the waveforms in data-analysis applications, which suggests to use
the appropriate inner product defined in this context (see Sec. 2.3.3). This naturally leads
us to the conclusion that, if PN data accurately predicts the signals of low-mass binaries
and NR is the right description for sufficiently high masses, a complete waveform should
necessarily resemble the two parts correctly in the Fourier domain. (2) We use analytical
approximations that rely on expansions in terms of the velocity v, and it would be useful to
represent the waveforms in terms of this or directly related quantities. Consistent with the
adiabatic evolution that we assume from the outset, we can relate v to the orbital frequency
ωorb and the dominant GW frequency fGW by

v = (Mωorb)
1/3 = (Mπ fGW)

1/3. (3.17)

Thus, h̃( f ) (we drop the subscript “GW” again, as it is clear what f refers to in this context)
is also a useful representation from a purely theoretical point of view. (3) The numerical
data is usually not extracted in terms of h, but rather as its first or second derivative.
Integrating in time adds a source of error to the result, but if we perform the integration in
the frequency domain, it becomes a simple division by 2πi f . In that sense, hybridizing h

or, e.g., the Newman-Penrose scalar Ψ4 = ḧ makes no difference in the Fourier domain. In
addition to that, numerical data always contains noise which shows up on top of the signal
we want to measure. In the Fourier domain, however, we can identify a local region that
contains the physical information we are interested in. By dropping the rest, we can hope
to reduce the numerical error (we practically apply a filter), which is not so simple in the
time domain where the entire data set contains physical information.

There is also an important caveat. Connecting two signal parts in time or frequency
domain is generally not commutable, as the Fourier transform is a global transformation.
In other words, we have to check explicitly that the late inspiral and merger signal does
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not significantly affect the frequency range of the early inspiral and vice versa. We shall
comment on this while we describe the construction process in detail below, and again in
Sec. 3.4.4. Note, however, that this issue potentially limits the applicability of a Fourier-
domain matching to waveforms with clearly separable frequency content, and precessing
spins might not allow for this.

We shall now focus on the majority of waveforms we have access to, which are non-
precessing, and describe the construction process in analogy to time-domain algorithms.
Let h̃( f ) be the Fourier-domain representation of h(t), defined by

h̃( f ) = Ã( f ) ei φ̃( f ) =

∫ ∞

−∞
h(t) e2πi f t dt . (3.18)

Note that we use the convention with a positive sign in the exponent in order to put the
support of the ℓ = 2, m = 2 mode of the GW to positive frequencies. The principle strategy
to produce a hybrid waveform h̃ from h̃PN and h̃NR follows very closely the receipt detailed
for time-domain hybrids, with only a few distinctions.

Preparing the data requires slightly more effort. We use the direct output from the
NR simulation, which in our case is always the Newman-Penrose scalar Ψ4, and Fourier
transform it discretely by a standard FFT algorithm. Thereby, we found it useful to apply a
window function that smoothly suppresses the NR waveform at the beginning of the data
stream and, although less essential, after the ringdown signal has dropped significantly in
amplitude. This way, we ensure that the Fourier spectrum is only minimally affected by the
finite length of the NR signal and by numerical artifacts, such as the early burst of junk
radiation. Following the suggestion of McKechan, Robinson and Sathyaprakash [129] we
use a form of the Planck taper function

T (t; t1, t2) =







0, t ≤ t1
h

exp
�

t2−t1

t−t1
+

t2−t1

t−t2

�

+ 1
i−1

, t1 < t < t2

1, t > t2

(3.19)

to taper the data before Fourier transforming. The other modification that becomes very
useful is to interpolate the frequency-domain data simply by adding a long null stream
to the original Ψ4 data. This does not add physical information, but it leads to a higher
resolution of the discrete Fourier spectrum, which in turn can become useful, e.g., when
unfolding the phase of the signal.

The NR GW strain is finally calculated by means of

h̃NR( f ) = −
Ψ̃NR

4 ( f )

(2π f )2
, (3.20)

and we are free to dismiss the f = 0 contribution, because the physical information is
confined to a region with exclusively positive or negative frequencies, some distance away
from the origin.

The PN data can be prepared in a similar manner if it has to be calculated in the
time domain first. Here, however, we want to fully exploit the advantage of working in
the frequency domain and assuming an adiabatic evolution by employing the TaylorF2
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Figure 3.9: Different variants of constructing the
PN Fourier amplitude in the stationary-phase ap-
proximation for the equal-mass, nonspinning case.
The labels explain how (2π/|φ̈|)1/2 is treated in
(3.22). The thick curve shows data obtained
by a numerical simulation with the ❇❆▼ code
[52] which begins at Mf ≈ 0.008. The straight
gray line illustrates the restricted PN amplitude,
rex Ã/M2 = |h̃22|DL = π
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approximant. This is based on the stationary-phase approximation and yields the GW signal
in a closed form directly in the Fourier domain (see Sec. 2.4.4 and [72, 74]). The phase
satisfies the form

φ̃PN( f ; t0,φ0) = φ̃F2( f ) + 2π f t0+φ0 , (3.21)

where φF2 is the PN expansion in powers of f , Eq. (2.91), and t0 and φ0 represent the free
time and phase shift of the waveform.

In contrast to that, the amplitude does not depend at all on either t0 or φ0. We still
have to make a choice here, because in the stationary-phase approximation, Ã can be
related to the time-domain quantities of the GW, A and φ, by

Ã( f ) = A(t f )

È

2π
�
�φ̈(t f )

�
�

with
�
�φ̇(t f )

�
�= 2π f . (3.22)

There are many ways to express |φ̈| = ω̇ in PN theory, notably each PN approximant
finds a slightly different treatment of the frequency evolution. Especially convenient are
those approximants that provide ω̇ = 2ω̇orb analytically in terms of ωorb = π f itself,
and we could simply insert the appropriate expressions of, e.g., the TaylorT1 or TaylorT4
approximant [cf. (2.71) and (2.76)] into (3.22). A different way to treat (3.22) is to

re-expand 1/
p

|φ̈| in terms of v, which can be related to f through (3.17), and explicit
expressions can be found for instance in [24]. Here we simply use whatever choice follows
most closely the NR prediction of the amplitude, and in Fig. 3.9 we illustrate that this is
the TaylorT4 variant of ÃPN. The same choice was employed, e.g., in [155].

Having prepared both h̃NR and h̃PN, we can now proceed with matching them. We
have already described different possibilities of doing so in Sec. 3.3.1, and many of those
time-domain procedures can easily be adapted to the Fourier domain. Let us highlight once
more, however, that in the Fourier space, only the phase is affected by linear phase and
time translations of the waveform. Thus, it is natural to base the matching procedure on
aligning φ̃PN( f ; t0,φ0) and φ̃NR( f ). As an interval matching is more robust to numerical
artifacts, we choose to define t0 and φ0 by the values that minimize the square-difference
of the PN and the NR phase, see (3.13) with X = φ̃ and the integration runs from f1 to f2
over f instead of t.

When we apply this strategy to the nonprecessing NR waveforms we have access to, we
find that it works as good as the time-domain procedures with some additional features. We
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Figure 3.10: The same configuration as in Figs. 3.7 and 3.8, but here the matching is performed in the
frequency domain. The upper panel show PN (green solid) and NR (red dashed) data, the lower panel
compares the NR data with the full hybrid, transformed to the time domain. PN and NR waveforms are aligned
by minimizing the square of the phase difference in the interval Mf ∈ (0.01,0.02) ⇒ Mω ∈ (0.063,0.126)
(illustrated as blue dots/vertical dashed lines). The complete hybrid is a piecewise function with transition
points for phase and amplitude at Mfm = 0.012, Mf A

m = 0.020, respectively (indicated by red dots).

shall explain them by an illustration in Fig. 3.10, which is the frequency-domain equivalent
of Fig. 3.8. Compared to our earlier choice, where we defined the matching interval in
terms of the “frequencies” Mdφ/dt ∈ (0.055, 0.07), we now had to use higher frequencies
2πMf ∈ (0.063,0.126) for the matching interval in Fourier space in order to avoid the
corruption by edge effects of the numerical Fourier transform. Note, however, that this is
just an illustrative comparison (also used in the lower panel of Fig. 3.10 to transform the
matching interval to the time domain) and generally, dφ/dt and the Fourier variable 2π f

are not exactly the same. One should also keep in mind that the TaylorF2 approximant
does not diverge “close to the merger” in the Fourier space, which results in a more flexible
frequency range for the fitting procedure. A more detailed discussion of the length of the
matching interval in the Fourier space will follow in Sec. 3.4.1.

Another useful difference between a time and a frequency-domain hybridization is that
in the latter case we find that the PN/NR amplitude differences often oscillate around
zero. Thus, we can not only perform the transition from PN to NR at a single point in
phase but also in amplitude, i.e., we can fully apply the frequency-domain equivalent
of (3.14). In our example, Fig. 3.10, we picked a relatively low transition frequency
for the phase (Mfm = 0.012⇔ Mωm = 0.075) but a high frequency for the amplitude
(Mf A

m = 0.020⇔ MωA
m = 0.126). The latter could have been chosen smaller, too, but this

would only mean to include unphysical oscillations of the NR data in the hybrid.

Finally, we have obtained a piecewise description of the entire IMR waveform in the
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Fourier domain, which perfectly resembles our PN approximant at low frequencies and the
FFT of the NR data at high frequencies. As we have pointed out at the beginning of this
section, we have to make sure that this “stitching” procedure in the frequency space does
not introduced severe artifacts in the time domain. (Note that the inverse should hold for
time-domain matching procedures as well, although this is often not explicitly considered.)
We can check this now by performing an inverse Fourier transform of a portion of our
hybrid, and compare this data to its original time-domain ingredients. Since we have not
used a time-domain PN approximant in our example here, we can only reasonably compare
to the NR data, which are transformed from Ψ4 to h via the Fourier domain as well, see
(3.20), Sec. 2.5 and [157]. The agreement between the full hybrid waveform and the NR
data is striking, as shown in the lower panel of Fig. 3.10. In fact, we find a maximal phase
disagreement between the hybrid and hNR of 0.1 rad during the last 7 orbits (14 GW cycles)
and through merger and ringdown. The amplitudes agree within 3% in this range, and
within 1% from 5 orbits before merger on. These numbers are comparable to the numerical
errors reported in [104], and they are below the uncertainties we inevitably have due to
the disagreement between numerical and analytical approximations, cf. Figs. 3.3, 3.6 and
3.8. This is a strong reassurance that the assumptions underlying our frequency-domain
approach are valid in the region where we combine both waveform parts.

To conclude, we have presented various strategies of matching PN and NR data to
a complete hybrid signal. Over the last years, such algorithms became more and more
standard tools of the waveform modeling community, and they will remain essential pieces
in future studies of GW-search capabilities [12]. Time-domain hybridization procedures are
used most commonly today [15, 45, 46, 49, 102, 128], but in the course of this dissertation,
we introduced the Fourier-domain hybridization as a complementary alternative with many
useful applications [140, 162]. We shall in depth analyze various aspects of these methods
in the remainder of this thesis, and often the results will be conveniently obtained in either
the time or frequency domain, but they are generalizable to the overall hybridization issue.

3.4 Further aspects of matching PN and NR data

3.4.1 Matching interval

One crucial freedom of the matching procedures we presented above is the point or interval
where the PN and the NR part of the waveform are aligned. Through choosing it we define
the relative time (t0) and phase shift (φ0) between both signal segments, and this has an
effect not only in the small region where both waveform descriptions overlap, but on the
entire GW. In contrast, the actual transition from PN to NR after the alignment can also be
accomplished in many different ways, but this ambiguity only affects the direct transition
region which is a small portion of the entire signal.

Here we shall consider the frequency-domain hybridization procedure introduced in
Sec. 3.3.2 and address the question of how a “good” matching interval ( f1, f2) can be
defined quantitatively. Recall that in this interval, we minimize the square difference
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between the PN and NR phase, i.e., we calculate

min
t0,φ0

∫ f2

f1

�

φ̃PN( f ; t0,φ0)− φ̃NR( f )
�2

df (3.23)

together with the values of t0 and φ0 that achieve this best phase agreement. So far,
we motivated the choices of f1 and f2 only vaguely by the quality of the waveform data.
The matching should be performed in a relatively low frequency regime, because PN
approximants are expected to become progressively less accurate descriptions towards
higher frequencies. On the other hand, NR data restricts the accessible range to frequencies
close to the merger, and we should use an interval that is not (or hardly) spoiled by junk
radiation, edge effects etc. These considerations already severely limit the range of possible
choices for f1 and f2.

Within this reasonable range, one still finds that different matching intervals lead to
slightly different best-fit values of t0 and φ0. In addition to that, one should keep in mind
that even for a fixed matching interval, small deviations in t0 could be compensated by
a phase shift φ0, and the difference (3.23) might be nearly as small as the minimum for
a nonoptimal relative waveform shift. In short, the alignment is an ambiguous process,
and we can indeed use this ambiguity to quantify the goodness of our matching window.
Our idea is to analyze the 1-σ parameter uncertainties of the fit (3.23), which we denote
by ∆t0 and ∆φ0, respectively. The matching interval that yields the smallest errors and
therefore allows the most accurate determination of t0 and φ0 shall become our favorite
choice.

Before we present an example, let us elaborate on the concept of parameter uncertain-
ties in a discrete least-square fit, which shows many similarities to the maximum likelihood
estimation (Sec. 2.3.3) and the Fisher-matrix approach. Assume that the function ζ(x ,λ) is
fitted through the data d(xk) to determine the parameters λ = (λ1,λ2, . . .) by minimizing

∑

k

h

d(xk)− ζ(xk,λ)
i2

. (3.24)

We further assume that the data is a superposition of ζ with a fixed set of parameters λ̂
and stationary Gaussian noise with zero mean and variance σ2,

d(xk) = ζ(xk, λ̂) + n(xk) , p(n)∝ e−n2/(2σ2) . (3.25)

In the proximity of the best-fit λ = λ̄ we now approximate (3.24) by a Taylor expansion to
second order in λ (note that the first derivatives vanish because we expand around the
parameters that minimize the sum),

∑

k

h

d(xk)− ζ(xk,λ)
i2
≈
∑

k

h

d(xk)− ζ(xk, λ̄)
i2

+∆λi∆λ j
∑

k

�

[ζ(xk, λ̄)− d(xk)]
∂ 2ζ

∂ λi∂ λ j
+
∂ ζ

∂ λi

∂ ζ

∂ λ j

�

. (3.26)

The 1-σ parameter errors are now those where the sum differs by σ2 (i.e., the noise level)
from the best fit. This takes into account that the best-fit parameters do not necessarily



3.4 FURTHER ASPECTS OF MATCHING PN AND NR DATA 55

Figure 3.11: A contour plot of the fitting error
∆φ0 that is obtained in a least-square fit of the
numerical and the PN phase in the interval ( f1, f2).
The waveform comes from a nonspinning binary
with mass ratio 2; the NR data is calculated with
the ▲❧❛♠❛ code, and we employ the TaylorF2 PN
approximant.

coincide with λ̂, because the noise can confuse the estimate. In practice, one would
first estimate σ through the mean residual (3.24) itself, then calculate the second-order
contribution in (3.26) and inverse this matrix. The square-roots of the diagonal elements,
multiplied by σ, yield the desired parameter uncertainties. We use the built-in functions
of MATHEMATICA [198] to obtain the parameter errors directly from the least-square-fit
routine.

Of course, in our case we align the PN phase to the NR phase, and the disagreement
originates from a systematic discrepancy between both descriptions, rather than Gaussian
noise. The concept of 1-σ errors is still useful to quantify the ambiguity of the fitting
process. It takes into account how well both phases agree in the fitting interval, because
the smaller the square difference is, the smaller are the estimated variance σ and thus the
errors of t0 and φ0. Also, by considering these errors we quantify how much the phase
actually depends on the fitted parameters in the considered interval, which is a formal way
of expressing the need that φ̃PN has to be sufficiently sensitive to time and phase shifts in
( f1, f2) to allow for a good fit. The last caveat we should mention is that the numbers for
∆t0 and ∆φ0 are resolution-dependent. They roughly scale with 1/

p
N , where N denotes

the number of discrete points used to evaluate (3.23). In principle, we can increase the
resolution in the Fourier space almost arbitrarily, which would lead to smaller and smaller
fitting errors. However, the conclusions we are going to draw from this study are based on
relative comparisons of the parameter errors, and those are independent of the resolution.

After this theoretical preface, let us now analyze a concrete example. We consider a
nonspinning binary with mass ratio q = 2. The numerical data was calculated by the ▲❧❛♠❛
code [150] and details about this simulation can be found, e.g., in [162]. After Fourier
transforming the data, we find that it is reasonably clean for GW frequencies Mf ¦ 0.01
(similar to Fig. 3.10), but instead of choosing a fitting interval “by eye”, we now perform
the phase fitting for multiple intervals ( f1, f2) and analyze the corresponding 1-σ fitting
errors. As before, we use the TaylorF2 approximant as the PN model.

Figure 3.11 shows the result of ∆φ0 as a function of the lower boundary and the length
of the fitting interval (for completeness: we used a resolution of the NR data in frequency
space of M∆ f = 3.125×10−5). We discussed before that the parameter uncertainty should
increase with a decreasing number of data points to fit, and indeed we see that very short
fitting intervals are not a good choice. However, when the interval becomes too long, it
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reaches into a frequency regime where PN and NR differ considerably, which leads to an
increased σ estimate and larger parameter errors as well. Similarly, if we start at too low
frequencies, where our NR waveform does not describe the physical signal correctly, we
find that the fitting errors are also large. It is the power of this approach to balance all
these considerations automatically.

There are clearly multiple best-fit islands in Fig. 3.11 but we see that the optimal
interval choice turns out to be a long frequency width starting at low frequencies, or a
relatively short interval starting closer to the merger. Regarding the increasing error PN
most likely introduces towards higher frequencies, we prefer using an early and long
matching interval. In Fig. 3.11 we find the optimal choice to be Mf ∈ (0.0108,0.0203).
The result is similar if we analyze the uncertainty of the time shift t0. In principle, one
should repeat this analysis for every waveform one wishes to hybridize, although similar
data (in particular, if similar frequency ranges are covered by NR) lead to similar results,
and a generalization to a set of waveforms should be possible. However, different PN
approximants have different divergence properties, particularly in the time domain, and
with this method we have proposed a quantitative way to find an optimal matching interval
in all of these cases.

3.4.2 Physical parameters in PN and NR

One implicit assumption we have made so far is that the intrinsic, physical parameters of
the PN and NR waveform are the same. This is certainly a reasonable assumption as we
want to model an exsisting physical scenario that is merely described by two different
approaches. However, we shall dedicate this section to a brief discussion of the level of
confidence we should have in this perception. More detailed explanations can be found for
instance in [162].

Analytical and numerical approximations are not independent from each other, mostly
because the initial data for NR is constructed with guidance from PN approximations
[59, 113, 116, 186, 193]. There are, however, fundamental differences how each approach
simulates the desired system. The PN framework models BHs as point particles, whereas NR
defines them by their apparent horizons and either excites the spacetime inside the horizons
[153, 172, 176] or the singularities are tracked in an adapted coordinate representation
[31, 62, 103, 105]. Consequently, the definitions of masses and spins differ between the
two frameworks, and although the point-particle approximation is often a very useful
representation of the system, there may be systematic deviations from measures that are
defined on the apparent horizon (which is itself a gauge dependent quantity [138]).

As long as we are dealing with just the numerical or PN waveforms by themselves, these
small effects in the definitions of mass and spin are not important for most applications.
In fact, we can treat them as just convenient parameterizations of the waveform without
worrying about their detailed physical interpretation. However, when we wish to compare
the results from frameworks as different as PN and NR this may no longer work. Depending
on the details of the matching procedure, systematic differences between the various
definitions might need to be taken into account, or at the very least they should be
quantified. Note that even a small variation in the intrinsic parameter of, say, the inspiral
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Figure 3.12: Contour plots of the fitting errors obtained in a Fourier-domain PN/NR matching procedure. The
data are the same as used for Fig. 3.11, only here, a variation of the symmetric mass ratio η is also taken into
account.

part can translate to a considerably different entire waveform over possibly hundreds of
cycles in the detector band.

In the absence of a thorough theoretical understanding of the disagreement in physical
parameters originating from distinct definitions in PN and NR, one alternative approach
would be to simply dismiss the nominal values of the parameters in one framework and
determine them through a fit of the waveform (just as we always vary the time and phase
scale). As we have access to a discrete number of NR waveforms but a continuous analytical
description of the inspiral, we consider the fitting of the PN parameters to given NR data.
This, of course, risks being spoiled by the inaccurate PN description of the late inspiral, but
we shall nevertheless explore the idea here.

The NR waveform we use for our example is the ▲❧❛♠❛ waveform of mass ratio 2
that we used already in Sec. 3.4.1. We keep the total mass and spins in both PN and NR
at the same values, respectively, and add only one additional degree of freedom to the
phase fit: the variation of the symmetric mass ratio η. We may be worried that this entails
already so much flexibility of the PN phase that it can basically match any section of the
NR waveform, each with different values of (η, t0,φ0). When we repeat the 1-σ error
analysis of the parameters that was introduced in the previous section, however, we find
that we actually gain more structure in the plane of possible fitting intervals. Specifically,
Fig. 3.12 illustrates that we now find a uniquely localized optimal fitting interval that is
roughly common for all parameters. We can unambiguously conclude that the NR data in
our example permits a sensible PN comparison starting at Mf1 ≈ 0.0093, and the fitting
interval should not extend further than Mf2 ≈ 0.023. Note that the latter is remarkably
close to the frequency of the last stable circular orbit (3.1), which is a commonly used point
indicating how far PN can be trusted. At this optimal choice of the fitting interval, bearing
in mind that we use an NR resolution of M∆ f = 3.125× 10−5, we see that we can fit η,
φ0 and t0 to better than 10−3, 0.06 and 0.15M , respectively.

Apart from the errors, the actual best-fit value of η is also of great interest. Fig. 3.13
shows this value as a function of the start frequency of the matching interval. In addition,
the color bar indicates the width of the interval. We see that there is indeed a large variation
in the value of the symmetric mass ratio that leads to the best phase agreement between PN
and NR. Very short matching intervals yield a monotonically decreasing η with increasing
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Figure 3.13: Best-fit value of η as a function of the
start frequency f1 of the matching interval for the
waveform which corresponds nominally to a mass
ratio of 2, i.e., ηNR = 2/9 = 0.222 . . .; this is shown
by a horizontal dashed line. The vertical dashed
line at Mf1 = 0.009 is the start frequency of the
NR waveform. A rectangle highlights the region of
minimal fitting errors from Fig. 3.12. We see that the
best determined values of η are clearly less than ηNR.

frequencies, very long intervals show an oscillating behavior. The most trustworthy values
are those that are reasonably robust to small changes of the matching interval and which
are accurately determined in the respective range ( f1, f2) (as determined in Fig. 3.12).
Consequently, if we had to define the PN parameter η from a phase-fitting study like
Fig. 3.13, we should look at moderately long matching intervals that start shortly after the
NR data becomes reliable. In our example, we find η ≈ 0.205 which is 8% less than the
nominal NR value for a mass ratio 2.

For completeness, let us note that we repeated the same exercise with a variable relative
total mass while keeping the mass ratio fixed. The total mass M itself is a trivial scale
factor and does not have to be specified, but we can, by convention, keep the NR total
mass MNR as the overall scale and fit the (relative) mass of the PN waveform. The results
we find for the parameter errors are very similar in structure to Fig. 3.12, and the best-fit
value obtained with the optimal fitting interval was MPN/MNR ≈ 0.97. When we accept
this difference in the total mass and then employ another least-square fit of the PN phase,
now with a variable η, we find that the best-fit value differs from the nominal symmetric
mass ratio of a 2:1-binary only by 0.3%. One could take this as an indication that a
multiple fitting indeed allows for a consistent determination of the relative differences in
physical parameters, but we caution that systematic uncertainties, e.g., coming from the
truncated PN series and their representation in different approximants, most likely exceed
the uncertainties in the physical parameters that originate from different definitions in the
NR and PN frameworks.

Therefore, further studies are necessary to estimate the order of magnitude one has to
consider for possible deviations in physical parameters between PN and NR. The discussion
in this section merely introduced these additional sources of errors that may become
significant in future constructions of complete waveform models. For the remainder of this
thesis, however, we shall always assume the same values for the total mass, mass ratio and
spins both in PN and NR.
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3.4.3 Higher modes

So far we always employed two important simplifications: (1) The GW can be decomposed
into spin-weighted spherical harmonics, and we have only considered the dominant ℓ = 2,
m = 2 mode. (2) We only assumed BHs that have spins parallel to the orbital angular
momentum, which reduces the significant dynamical processes to the evolution of the
orbital frequency. No precession effects were present. In the following two sections, we
shall briefly comment on generalizations of the hybridization methods presented before, so
that both simplifications can successively be dropped.

Let us start with the simpler issue: the inclusion of higher spherical harmonic modes.
Advances in numerical techniques and improved wave-extraction algorithms allow for an
accurate determination of higher modes in NR data, in the best cases up to ℓ = 8 [150].
On the PN side, the phase scales trivially with m through φℓmPN (t) = −mφorb(t). In addition,
Blanchet et al. [42] provide explicit expansions of the amplitudes for every mode AℓmPN(t)

up to 3PN order (spin-dependent terms up to 2PN order are given in [24]), which gives us
access to spherically decomposed PN waveforms hℓmPN up to ℓ= 8 as well.

The procedures we have introduced in Sec. 3.3 can now be applied individually to every
mode of the GW. With the most dominant waveform modes hybridized that way, one can
proceed with reconstructing a more accurate detector response that is an orientation- and
location-dependent sum of the individual modes of the GW. Note, however, that matching
the individual waveform modes cannot be done entirely independent of each other, because
both in PN and NR the evolution of the modes is coupled to each other, and we should not
break this correlation by allowing arbitrary time and phase shifts for individual modes.

We discuss the practical implications of this restriction for the case of our novel
frequency-domain matching here. The example NR data we shall use to illustrate our results
are again obtained from the ▲❧❛♠❛ simulation of a nonspinning binary with mass ratio 2.
The TaylorF2 PN approximant has to be generalized to different modes by calculating the
amplitudes via (3.22) for every mode,

ÃℓmPN = AℓmPN(t f )

È

2π

mφ̈orb(t f )
with mφ̇orb(t f ) = 2π f . (3.27)

Similarly, the Fourier-domain phase is m-dependent through

φ̃ℓmPN = 2π f t f −mφorb(t f )−
π

4
= 2π f t0+φ

ℓm
0 −

π

4
+ φ̃ℓmF2 ( f ) , (3.28)

where we have to express t f and φorb(t f ) as functions of the frequency f by using the
respective TaylorT2 expressions, see e.g., [49, 58] and Sec. 2.4.2. Note that the final result
contains the mode-specific PN Taylor expansion φ̃ℓmF2 and the free parameters t0 and φℓm0 ,
where only the latter actually changes with changing m (it is, however, ℓ-independent).

Our procedure of a consistent PN/NR matching in Fourier space is now as follows. We
determine the free relative time and phase shift by a least-square fit of the phases of the
dominant ℓ = 2, m = 2 mode. The parameters of all other modes are then uniquely defined
by the best-fit values we found for the dominant mode. In particular, the time shift t0 is the
same for all modes, and the phase shift satisfies

φℓm0 =
m

2
φ22

0 +φ
ℓm
amp . (3.29)
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Figure 3.14: Fourier-domain hybrid-waveform
amplitudes for various spherical harmonic modes,
all belonging to a nonspinning system with mass
ratio 2. The blue solid lines show the m = ℓ

modes for ℓ = 2,3,4,5,6 (from top to bottom).
The red dashed lines illustrate the corresponding
m= ℓ− 1 modes.

The second term in (3.29) becomes necessary by our treatment of the PN amplitude. We
conveniently use

h̃ℓmPN( f ) =
�
�ÃℓmPN( f )

�
� ei φ̃ℓmPN ( f ) , (3.30)

although in general the PN amplitude is a complex expansion. However, we can recast
it into its modulus and a phase correction, and since frequency-dependent contributions
to this additional phase are formally of higher order (the appropriate expansion of the
tan function shows that they enter at relative 5PN order for the dominant mode) we can
neglect them [3]. The remaining constant phase term φℓmamp is an integer multiple of π/2,
depending on the leading factor of the corresponding PN amplitude in [42], which is either
±1 or ±i.

In Figs. 3.14 and 3.15 we present the results for our example of a nonspinning binary
with mass ratio 2. The Fourier-domain amplitudes of the hybrid are constructed with
no freedom in the alignment, and we deliberately stick to our method of switching from
PN to NR at a single frequency in order to visualize the (dis)agreement we find for
the amplitudes without smoothing it away with a blending function. As we can see in
Fig. 3.14, a number of modes match almost perfectly, whereas others disagree considerably
[in particular, (ℓ, m) = (6,6), (5,5), (5,4)]. The disagreement of higher modes is not
unexpected, considering the fact that their amplitudes are determined to lower relative
order (i.e., the expansion contains fewer contributions). Consequently, our sanity check
of transforming the hybrid back into the time domain and comparing to the original NR
data only works satisfactory with the strongest modes, m = ℓ and m = ℓ− 1 with ℓ ≤ 4.
These are shown in Fig. 3.15 and we add for completeness that the phase disagreement
for all displayed modes is less than 0.1 rad (less than 0.05 rad for the most part); the
amplitude differences are below 5% for ℓ = 2 and (ℓ, m) = (3, 3), they reach up to 10% for
all ℓ = 4 modes and are even above 10% during the inspiral for the (3,2) mode. We see
that the quality of the higher modes of complete GWs is mainly limited by the available PN
expansion, but generalizing hybridization procedures to the most important subleading
modes with currently established techniques should pose no major difficulties, as we have
just demonstrated.
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Figure 3.15: The leading contributions of the GW decomposed into spin-weighted spherical harmonics. The
▲❧❛♠❛ NR data of the nonspinning binary with mass ratio 2 are shown as red dashed lines. The green solid
curves are obtained from the TaylorF2 Fourier-domain hybrid. The numbers in brackets specify the (ℓ, m)

mode.
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3.4.4 Precession

A slightly more involved issue is the construction of complete waveforms for precessing

binaries. Compared to the simpler case of BHs with spins aligned to the orbital angular
momentum, precession dynamics have to be described by a lot more quantities that
evolve in time. Apart from the phase within the orbital plane, one has to track the
movement of the plane itself as well as the evolution of each spin vector [20, 68, 118]. This
makes the construction of complete waveform models more involved, and accurate and
robust approaches that merge analytical and numerical results into a simple description
are still missing. Here, however, we are concerned with the construction of individual
hybrid waveforms. We employ the time-domain TaylorT4 approximant for arbitrary spins
(sometimes dubbed “Spin-Taylor”), that is still based on the adiabatic evolution of quasi-
circular orbits, but now we have to solve a system of coupled differential equations for
the orbital frequency ωorb (measured in the orbital plane), the spin vectors S1 and S2 as
well as the Newtonian angular momentum LN . For a collection of explicit equations, see
Sec. 2.4.5 and [10, 24, 39].

Integrating these equations can be performed reasonably fast, and we use MATHEMATICA

[198] routines to accurately calculate the time evolution of all above mentioned quantities.
Given an NR simulation of a precessing binary, however, one difficulty is to find the
appropriate PN initial data. The spins and the orbital plane constantly change their
orientation, and it is not clear a priori which PN initial conditions evolve to the same
setup as assumed by NR. One could of course approach the problem the other way around,
namely start with some PN initial data, evolve the system up to a smaller separation and
let the NR code ‘take over’ by feeding in the appropriate quantities from the end of the
PN evolution. This idea was explored already by Campanelli et al. [63], who found that
although the results from PN and NR agree reasonably in the early inspiral, they quickly
differ considerably with progressing simulation time. The cause of this disagreement is
manifold. Apart from the fact that a truncated PN series will always deteriorate close to the
merger, the disagreement potentially stems from the different frameworks used in PN and
NR to define physical quantities (see Sec. 3.4.2), and in particular from the transition from
Bowen-York initial data [44, 50] to the actually modeled system in the NR simulation.

Here we explore an alternative approach that is close to our treatment of nonprecessing
binaries. We already discussed the idea of determining both the relative waveform shift and

physical parameters by a fit of NR data. We shall do something similar now for precessing
binaries by extracting “initial parameters” from NR data and plugging those into a PN
system of equations that is integrated backwards and forwards in time. All parameters that
are time-independent will be assumed to be the same in PN and NR, i.e., the total mass,
the mass ratio and the magnitudes of the spins are not determined by any fit, but simply
defined with the same values in the respective frameworks. The initial directions of the unit
vectors Ŝ1, Ŝ2 and L̂N , however, are read off the NR simulation at a fixed time during the
inspiral. Measuring the spins in NR typically employs the formalism of quasilocal horizons
[26], and determining the spin direction is a coordinate-dependent process [64, 115].
When combining PN and NR descriptions for precessing binaries, however, we are anyway
forced to relate different coordinate systems with each other, and if the BHs are still far
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Figure 3.16: Evolution of the spin S1 and the Newtonian orbital angular L̂N =LN/|LN | as measured from
NR (red dashed curves) and calculated from the TaylorT4 approximant (green solid lines). The PN results
are obtained by extracting the initial data from NR, here at t = −531M , and the initial orbital frequency is
obtained by a least-square fit of S1, here in the range t/M ∈ (−531,−181). The simulated binary system has
a mass ratio of 4, with χ1 = 0.6, the smaller BH is not spinning and the angle between LN and S1 is ≈ 110.7◦.

enough separated in the simulation, we can hope to sensibly identify the NR measures with
the PN parameters, in due consideration of the appropriate spin supplementary condition
in PN that entails constant spin magnitudes [87, 118]. The direction of the Newtonian
orbital angular momentum is estimated simply through the motion of the punctures and
the vector product of the separation and the relative velocity. Again, this is a coordinate-
dependent measure, but we merely extract from the NR simulation that the modeled system
is (approximately) characterized at some instant by the measured Ŝ1, Ŝ2 and L̂N .

To complete the set of initial parameters we need to specify the corresponding instanta-
neous orbital frequency. We could deduce this from the orbital motion of the punctures as
well, but as ωorb is the most crucial quantity entering the GW signal, we find that better
results are achieved if ωorb is determined by a fit. Ideally, we would base this fit on a
quantity directly related to the GW (such as its phase), but since the transformation from
{L̂N (t),S1(t),S2(t),ωorb(t)} to hPN(t) is again a nontrivial process that introduces further
coordinate ambiguities, we decided to separate the integration of the PN evolution from
the calculation of the GW. Consequently, our fit of the initial ωorb is based on the evolution
of a physical quantity, and we found it convenient to fit the spin of the heavier BH for a
few hundred M of evolution time. In summary, we picked an early time tini in the NR
simulation, extracted L̂N (tini), Ŝ1(tini) and Ŝ2(tini) and additionally calculated the value
of ωorb(tini) that yields the smallest difference

∫ tend

tini

�
�ŜNR

1 (t)− ŜPN
1 [t;ωorb(tini)]

�
�
2

. (3.31)

With all initial conditions defined, we can proceed with integrating the orbital frequency
within the instantaneous orbital plane (we use the TaylorT4 approximant) and the three
vectors S1(t), S2(t) and L̂N (t) by employing the evolution equations (2.92) and (2.94).
In Fig. 3.16 we demonstrate the efficacy of our approach for a highly precessing binary
with mass ratio 4. The NR simulation was performed at the Albert Einstein Institute in
Golm with the ▲❧❛♠❛ code. With our way of defining the PN initial data, we obtain a PN
system that resembles the NR data very well. The small oscillations of the NR L̂N that
are visible in the right panel of Fig. 3.16 might be due to some residual eccentricity in the
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simulation, coordinate effects of the puncture motion or indeed physical affects that are
not captured by the adiabatic PN model. Since the effects on the waveform, however, are
small, we neglect these oscillations for now and continue with our introduction of the basic
strategy to build precessing hybrids.

Even with assuming that we have modeled the same system analytically and numerically,
we cannot immediately combine the two waveform parts due to various complications.
Firstly, there is another initial parameter, the initial phase, which does not enter the
waveform simply as eiφ0 (this is just the lowest order effect); there are higher order
amplitude corrections that depend on φ0 [24]. Knowing them analytically, however, we can
still fit for an optimal φ0 between the PN and NR part of the waveform. Secondly, although
finding the initial parameters also relates the time between the PN and NR evolution,
there is the problem that the physical quantities affect the PN waveform immediately

whereas if we consider a waveform extracted at some finite radius in NR, there is a time lag
between the spin evolution and the observed GW. As already discussed in [63], this time
lag approximately corresponds to the travel time between source and observer, but gauge
effects will spoil this relation, and we shall determine both φ0 and t0 by an additional
least-square fit of the GW phase, just as in the nonprecessing case.

Another issue we should to take into account when matching the PN and NR waveforms
are possible rigid rotations between the respective coordinate frames. These rotations do
not affect the evolution of ωorb, LN and the spins, but they can considerably alter the
spherical harmonic modes of the GW [93]. See also the recent discussions of an optimal
choice of the coordinate frame [47, 142, 143, 166]. Here we use the explicit expressions
provided in the appendix of [24] to translate the integrated PN quantities into hℓmPN(t),
which include up to 2PN spin-dependent amplitude corrections. As before, we employ a PN
phase with 3.5PN nonspinning/2.5PN spinning corrections and incomplete spin terms up
to 3.5PN order. The amplitude expressions were derived in a particular coordinate system
proposed by Finn and Chernoff [88] which is characterized by the initial total angular
momentum J0 ≈ LN (t i) +S1(t i) +S2(t i) pointing along the z-axis. We can specifically
change into this frame after the PN integration by picking an early time (t i ≈ −109M

before the merger), calculating J0 at this instant and rotating the entire system such that
J0 points along the z-axis. The spherical harmonic modes we obtain in this rotated system
are denoted by h′

ℓm, and we rotate back to the original NR frame by [24, 63, 93, 166]

hℓm =
ℓ∑

m′=−ℓ
Dℓm′m(0,θJ ,−φJ ) h′

ℓm′ =

ℓ∑

m′=−ℓ
dℓm′m(θJ ) e−im′φJ h′

ℓm′ . (3.32)

Here, θJ and φJ are the spherical coordinates of J0 about which we rotated the system
initially; D and d are Wigner matrices (in the sign convention adopted by MATHEMATICA).
We checked that these twice rotated waveform modes reasonably agree with those obtained
by directly plugging the unrotated PN quantities into the formulas given by Arun et al. [24],
provided that the integration constant φ0 is modified accordingly.

With this, we have almost completed our preparation of the PN inspiral. Since the
numerical waveform data is provided in terms of the Newman-Penrose scalar Ψ4 = ḧ in
our case, we decided to hybridize Ψ4 instead of h. We could also try to transform Ψ4 to h

first, but although Reisswig and Pollney [157] suggest that a frequency-domain integration
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Figure 3.17: Hybrid spherical harmonics (in terms of Ψ4 = ḧ) for the precessing system described in Fig. 3.16.
The PN (green) and NR (red dashed) waveform parts are aligned by a least-square fit of the ℓ = 2, m = 2
phase within t/M ∈ (−531,−261). The coordinate frame is defined by the NR simulation.

potentially works for precessing waveforms as well, we are cautious not to remove physical

information from the waveform by filtering out lower frequencies. For the same reason,
we do not hybridize in the Fourier domain but match the ℓ= 2, m= 2 modes of ΨNR

4 and
d2hPN/dt2 in the time domain. The results for the example introduced in Fig. 3.16 are
shown in Fig. 3.17. Note that the burst of radiation in NR shortly after t = −700M is the
already mentioned junk radiation that stems from imperfect initial data. Again, we can
clearly see how aligning one mode automatically aligns all the other modes properly. In
addition, the (almost arbitrary) NR coordinate frame in which we represent the Ψ4 hybrids
here exhibits large contributions in the ℓ = 2, m = ±1 and even m = 0 modes. For a use in
data-analysis applications, it is crucial to express the GW signal with its multiple harmonics
in this case, or find an appropriate coordinate frame that is tailored such that one dominant
mode carries the bulk of radiated energy [47, 142, 143, 166].

For completeness, we mention that the modes shown in Fig. 3.17 exhibit a phase
disagreement between PN and NR of |∆φ| < 0.1 rad for ℓ = 2 and |∆φ| < 0.2 rad for
(ℓ, m) = (4, 4) in the matching interval. The amplitudes differ by less than 5% for the ℓ = 2
modes, up to 20% for ℓ = 4 and to even more than 50% for ℓ = 3 (although |∆φ|< 0.1 rad
holds here as well). We suggest that the main cause for these large discrepancies are only
few known spin-dependent PN amplitude corrections. We can check that our hybridization
procedure did not introduce additional artifacts by transforming the Ψ4 hybrid back to
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h. Now we can employ the frequency-domain integration (3.20) because we can extend
the data to almost arbitrarily low frequencies. A meaningful way to confirm that this
transformation is allowed is to compare the original PN solution hPN to the hybrid hhyb that
was constructed in terms of Ψ4, and we find for our example

�
�
�
�
�

h22
PN(t)− h22

hyb(t)

h22
hyb(t)

�
�
�
�
�
< 1% (3.33)

for all t less than the matching region. Note that is is not a pure statement about the
amplitude accuracy, it also ensures that the phases agree very accurately over thousands of

M in evolution time. We find similar values for all other modes.

3.5 Complete waveform models

In the previous sections we discussed strategies for connecting any given NR waveform
with an appropriate analytical inspiral model. The resulting hybrid describes the entire
inspiral-merger-ringdown signal of one particular BH-binary system with given parameters.
These waveform data are very useful as state-of-the-art target signals that could be used,
e.g., in a simulated search to test existing search algorithms and entire pipelines. The
NINJA project [1] explores this idea, first only with NR data [27] and currently also with
complete hybrids [12].

In this section, we shall present another very important application of hybrid waveforms:
they can build the basis of an entire family of template signals that can be used in GW
searches for unknown signals from coalescing binaries. The main difficulty we have to
address here is the interpolation from a discrete set of complete waveforms to an analytical
model that allows arbitrary physical parameters, at least in a certain range. Discussing
all details of this interpolation procedure would be out of the scope of this thesis, and it
would exhibit some conceptual repetitions of what we have explained for hybrid waveforms
already. Instead, we shall summarize the most important results here and refer to the
literature for more details.

3.5.1 Time-domain hybrids – Fourier-domain phenomenological model

One very successful approach to build complete phenomenological models was promoted by
Ajith et al. The first version of that model [14, 15] (“PhenomA”) employed the TaylorT1
approximant with restricted (Newtonian) amplitude as the inspiral description and matched
it in the time domain to NR data from ❇❆▼ [52] and ❈❈❆❚■❊ [149]. Only the dominant
modes (ℓ= 2, m= ±2) of nonspinning binaries with mass ratio q ≤ 4 were considered.

The successive and most recent model by Ajith et al. [16] (“PhenomB”) is improved
by the inclusion of 3PN nonspinning [42] and 2PN spinning [24] corrections to the PN
amplitude. In addition to the nonspinning configurations, spins aligned to the orbital
angular momentum are considered. NR waveforms are obtained from ❇❆▼, ❈❈❆❚■❊
and ▲❧❛♠❛ [150], although the latter are used solely for testing purposes. Only the
❇❆▼ waveforms actually contribute to the construction of the model. These in total 24
simulations cover the parameter space in the following series:
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1. equal-mass binaries with equal, nonprecessing spins χi = ±{0.25,0.5,0.75,0.85},
described in [101, 104],

2. nonprecessing, equal-spin binaries with q = {2, 2.5,3} and χi = {±0.5,0.75},
3. nonspinning binaries with q = {1,1.5, 2,2.5, 3,3.5, 4}.
After constructing TaylorT1 hybrids in the time domain (by minimizing the waveform

differences over an interval) with each of those NR waveforms, Ajith et al. [16] proceed
by Fourier transforming this set of hybrids. Every complete waveform in its frequency
representation is then fitted by a phenomenological model which is inspired by the Tay-
lorF2 approximant, but instead of fixing all expansion coefficients by PN theory, they are
determined by a least-square fit. The amplitude is described by a piecewise function that
bridges the PN inspiral and the quasi-normal ringdown with a purely empirical middle part.

The final model developed in [16] reads1

h̃( f ) = Ã( f ) eiΨ( f ) , with

Ã( f ) = C f −7/6
1







f ′−7/6
�

1+
∑3

i=2αi v i
�

if f < f1

wm f ′−2/3
�

1+
∑2

i=1 εi v i
�

if f1 ≤ f < f2

wrL ( f , f2,σ) if f2 ≤ f < f3,

(3.34)

Ψ( f ) = 2π f t0+φ0+
3

128η v5

 

1+
7∑

k=2

vkψk

!

,

where f ′ = f / f1, v = (πMf )1/3, ε1 = 1.4547χ − 1.8897, ε2 = −1.8153χ + 1.6557
(estimated from hybrid waveforms), C is a numerical constant whose value depends on
the sky-location, orientation and the masses, α2 = −323/224 + 451η/168 and α3 =

(27/8−11η/6)χ are the PN corrections to the Fourier domain amplitude [24]. In addition,
the Lorentzian function L is defined by

L ( f , f2,σ) =
1

2π

σ

( f − f2)
2+σ2/4

, (3.35)

and wm,r are normalization constants to ensure continuity of Ã( f ).

The independent physical parameters of the model are φ0 and t0 (that correspond to
the global phase and time shift of the signal), the symmetric mass ratio

η =
m2 m2

(m1+m2)
2 (3.36)

and a mass-weighted total spin

χ =
m1χ1+m2χ2

m1+m2
, where χi =

Si · L̂
m2

i

(3.37)

(mi are the individual masses). The reduction of the number of independent spin parame-
ters from two (χ1, χ2) to only one (χ) is motivated by the observation that the dominant

1Note that, depending on the definition of the Fourier transform, the phase of h̃ can have a different sign.
In this thesis, we consistently use the definition that puts the support of the ℓ = 2, m = 2 mode to positive
frequencies. We therefore differ in the sign from the original publication [16].
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x (10) x (11) x (12) x (20) x (21) x (30)

ψ2 -920.9 492.1 135 6742 -1053 -1.34×104

ψ3 1.702×104 -9566 -2182 -1.214×105 2.075×104 2.386×105

ψ4 -1.254×105 7.507×104 1.338×104 8.735×105 -1.657×105 -1.694×106

ψ6 -8.898×105 6.31×105 5.068×104 5.981×106 -1.415×106 -1.128×107

ψ7 8.696×105 -6.71×105 -3.008×104 -5.838×106 1.514×106 1.089×107

y (10) y (11) y (12) y (20) y (21) y (30)

f1 0.6437 0.827 -0.2706 -0.05822 -3.935 -7.092
f2 0.1469 -0.1228 -0.02609 -0.0249 0.1701 2.325
σ -0.4098 -0.03523 0.1008 1.829 -0.02017 -2.87
f3 -0.1331 -0.08172 0.1451 -0.2714 0.1279 4.922

Table 3.2: Phenomenological parameters of the Ajith et al. model [16]. The left column specifies the auxiliary
parameters entering (3.34), and the coefficients define their value as a function of the physical parameters η
and χ; see (3.38) and (3.39).

spin effects in PN are governed by χ , and this almost degenerate relation was also observed
in NR equal-mass waveforms [158].

All remaining parameters are determined by least-square fits of the hybrids, and the
fitting range is adjusted so that systems are best modeled whose merger and ringdown
actually fall into the Advanced LIGO frequency band. Of course, introducing an arbitrary
(yet as small as possible) number of parameters to fit a relatively small number of hybrids
is not difficult. In the next step, however, these auxiliary parameters have to be mapped
smoothly to the physical parameters (notably symmetric mass ratio and spin) in order to
allow for an interpolation in the parameter space. With guidance from PN, [16] defines

ψk =ψ
0
k +

3∑

i=1

N∑

j=0

x (i j)
k ηiχ j , (3.38)

πMµk = µ
0
k +

3∑

i=1

N∑

j=0

y(i j)
k ηiχ j , (3.39)

where N =min(3− i, 2) and µk = { f1, f2,σ, f3}. To allow for a reasonable extrapolation,
particularly towards higher mass ratios, results from the test-mass limit (η→ 0) are also
included in the fit. The final coefficients x (i j)

k and y(i j)
k are provided in Table 3.2.

As a confirmation that these multiple fits do not lead to an inaccurate description of the
original waveforms, we can calculate the fitting factor (i.e., the normalized inner product
optimized over all parameters of the model, see Sec. 2.3.3) between the set of construction
hybrids and the final model. As reported in [16], the values of the fitting factor are always
above 0.98 for total masses between 10M⊙ and 400M⊙. Equally important, hybrids in
different points of the parameter space that were not in the construction set are detected
with almost the same efficiency. We shall discuss the accuracy of this and other waveform
families in more detail in Chapter 4.
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3.5.2 Alternative Fourier-domain phenomenological model

Another phenomenological model was introduced by Santamaría et al. [162] (“PhenomC”)
as an alternative description of binaries with aligned spins. The construction of this model
is in some aspects similar to the previously discussed approach, but there are distinct
features we shall highlight below.

The same NR waveforms that were used by Ajith et al. [16] are also used here for
constructing hybrids, but [162] decides to to employ the Fourier-domain hybridization
with the TaylorF2 approximant that was detailed in Sec. 3.3.2. The set of hybrids is then
again fitted in the frequency domain to a phenomenological model. Here, however, the
model directly incorporates the known PN inspiral. The idea promoted in [162] is to use
the analytical descriptions of the inspiral and the ringdown without modifications in their
respective validity range and smoothly bridge them by a phenomenological middle part.

The complete phase φ̃( f ) = arg h̃( f ) (again, only of the dominant mode) reads

φ̃( f ) = φ̃22
F2( f ) T

−
f1
( f ) +ψ( f ) T +f1 ( f ) T

−
f2
( f ) + φ̃22

RD T
+
f2
( f ) , (3.40)

where φ̃22
F2 is the TaylorF2 phase-expansion given in the appendix of [162].2 The blending

function is defined as

T ±f0 ( f ) =
1

2

�

1± tanh

�
4( f − f0)

d

��

, (3.41)

where d = 0.005/M was found experimentally as the optimal value. The transition
frequencies f1 and f2 roughly correspond to the points where our NR simulations start and
where the merger happens, respectively, and the best match between the phenomenological
model and the hybrids was obtained with f1 = 0.9 fRD and f2 = fRD. The ringdown
frequency fRD, in turn, is determined by an analytical fit provided in [36],

fRD(a, M) =
1

2πM

�

k1+ k2(1− a)k3
�

, ki = {1.5251,−1.1568, 0.1292} . (3.42)

Here, aM2 is the spin magnitude of the final black hole, and we employ another fitting
formula from the literature that maps the spin parameter χ (3.37) and the symmetric mass
ratio η (3.36) of the binary to a [160],

a =
�
�
�χ + k1ηχ

2+ k2η
2χ + k3ηχ + 2

p
3η+ k4η

2+ k5η
3
�
�
� , (3.43)

ki = {−0.129,−0.384,−2.686,−3.454,2.353} .

Finally, φ̃22
RD is simply the Fourier transform of a damped sinusoidal oscillation (to leading

order), which motivates the linear ansatz

φ̃22
RD( f ) = β1+ β2 f . (3.44)

2The TaylorF2 phase-expansion given in [162] misses one self-spin term at 2PN order that was derived in
[133], see also the comment in [13]. Since the phenomenological fit is defined with respect to the expressions
in [162], however, one has to retain them in the model, even if the actual PN contributions are updated in the
literature. In that sense, also φ̃22

F2 is part of a “phenomenological” description in (3.40) [3].
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The βi parameters are not fitted, but obtained from the pre-merger ansatz by taking the
value and slope of ψ at the transition point f2 = fRD. The only phenomenological part in
(3.40) is this pre-merger phase ψ that we write in a PN-inspired form as

ψ( f ) =
1

η

�

α1(Mf )−5/3+α2(Mf )−1+α3(Mf )−1/3+α4+α5(Mf )2/3+α6Mf
�

. (3.45)

All coefficients αk are determined by least-square fits of the hybrid phases between f1 and
f2.

The phenomenological amplitude |h̃( f )| = Ã( f )M2/R (R is the distance from the source)
does not need a purely phenomenological middle piece. Instead we can write it as

Ã( f ) = ÃePN( f ) T −f0 ( f ) + ÃRD( f ) T +f0 ( f ) . (3.46)

The transition function is defined in (3.41) and we now employ d = 0.015/M and f0 =

0.98 fRD. The first amplitude part is an extended PN description

ÃePN( f ) =
�
�ÃPN( f )

�
�+ γ1(Mf )5/6 , (3.47)

where ÃPN( f ) is the stationary-phase PN amplitude in its TaylorT4 version (see Fig. 3.6),
and the formally next undetermined contribution in a re-expansion is added with the fitting
parameter γ1. The amplitude of the ringdown can be motivated by perturbation theory
[182] that yields h22

RD(t)∝ exp(−π fRD t/Q− 2πi fRD t). Our ansatz in the Fourier domain
is therefore3

ÃRD( f ) = δ1L ( f , fRD,δ2 fRD/Q) f −7/6 (3.48)

with the Lorentzian

L ( f , f0,σ) =
σ2

( f − f0)
2+σ2/4

. (3.49)

The factor f −7/6 in (3.48) is introduced to correct the Lorentzian at high frequencies, since
the hybrid data shows a faster falloff, and δ1 accounts for the overall amplitude scale of
the ringdown. In principle, the phenomenological parameter δ2 should not be necessary
because the width of the Lorentzian for the ringdown should be given by the quality factor
Q, which is predicted by [36]

Q(a) = q1+ q2(1− a)q3 , qi = {0.7000, 1.4187,−0.4990} . (3.50)

However, recall that here we estimate the final spin from the initial configuration using
the fit given in [160]; δ2 accounts for the errors in this fit and other ambiguities in our
construction.

In total, we have introduced nine phenomenological parameters that have to be defined
by a map from the physical parameters of the binary, and [162] finds

Λk =
∑

i+ j∈{1,2}
ζ
(i j)
k ηiχ j , (3.51)

with the coefficients provided in Table 3.3.
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Λk ζ(01) ζ(02) ζ(11) ζ(10) ζ(20)

α1 −2.417× 10−3 −1.093× 10−3 −1.917× 10−2 7.267× 10−2 −2.504× 10−1

α2 5.962× 10−1 −5.6× 10−2 1.52× 10−1 −2.97 1.312× 101

α3 −3.283× 101 8.859 2.931× 101 7.954× 101 −4.349× 102

α4 1.619× 102 −4.702× 101 −1.751× 102 −3.225× 102 1.587× 103

α5 −6.32× 102 2.463× 102 1.048× 103 3.355× 102 −5.115× 103

α6 −4.809× 101 −3.643× 102 −5.215× 102 1.87× 103 7.354× 102

γ1 4.149 −4.07 −8.752× 101 −4.897× 101 6.665× 102

δ1 −5.472× 10−2 2.094× 10−2 3.554× 10−1 1.151× 10−1 9.64× 10−1

δ2 −1.235 3.423× 10−1 6.062 5.949 −1.069× 101

Table 3.3: Phenomenological parameters of the Santamaría et al. model [162]. The left column specifies the
auxiliary parameters entering (3.45), (3.47) and (3.48). The coefficients define their value as a function of the
physical parameters η and χ; see (3.51).

Figure 3.18: The phenomenological ampli-
tudes (normalized by the distance R and total
mass M) described in Secs. 3.5.1 (red dashed)
and 3.5.2 (blue solid). The chosen parame-
ters of the binaries are q = 1, χ = 0.6 (upper
curves) and q = 4, χ = −0.6 (lower, darker
curves), respectively.
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Santamaría et al. [162] prove that their model is effectual in detecting the waveforms it
was constructed from and also in detecting other signals that were not in the construction
set. In that sense, both phenomenological models summarized here achieve the same
goal. However, they are not identical. Fig. 3.18 illustrates that there are small differences,
which should not surprise us, given that both approaches start with a different set of target
hybrids (with distinct matching procedures and PN approximants), they employ different
phenomenological descriptions that are eventually fitted in slightly different frequency
intervals. The uncertainty caused by this ambiguous modeling has to be quantified, but
instead of proceeding with a detailed comparison of both models, we shall address the
questions of reliability of waveform models from a broader perspective in Chapter 4.

3.5.3 Other complete waveform models

For completeness, let us mention other models that provide an analytical description of
the complete GW signal. One very successful approach that has already undergone several
iterations is to incorporate additional information from NR in a refined effective-one-body
(EOB) [56, 57, 73, 75] formalism. Depending on the number of available NR waveforms as
well as the modifications introduced to the EOB description, various versions of such EOBNR

3In (3.48) we correct a typo in the literature where the last argument of L misses fRD.
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models have been developed [60, 61, 77, 80, 81, 144, 145, 180, 201]. It is beyond the
scope of this thesis to repeat the technical details of the EOB formalism and its extensions.
For the sake of comparison to other approaches, however, we shall summarize the general
strategy towards complete IMR EOBNR models below.

The main additions that allow for the description of the entire GW signal are (a) a
generalization of the EOB formalism which introduces free parameters to be calibrated by
NR simulations and (b) attaching a series of damped sinusoidal oscillations (quasinormal
modes) representing the final stage of the BH ringdown (see, e.g., [35]). The proposed
variants of EOBNR mainly differ in the way the original EOB description is modified and
which free parameters are introduced. Two of the most recent versions by Damour and
Nagar [77] and Pan et al. [144] extend the standard EOB form through the following steps:

• Two unknown parameters representing the 4PN- and 5PN-order contributions are
added to the radial potential [commonly referred to as A(u)] that enters the Hamil-
tonian. As for many quantities in the EOB framework, using Padé resummation
[73] proves to be superior to the Taylor-expanded form (which is, however, not
always true, see the discussion about a generalization to spinning BHs [145] and
also [135]).

• The radiation-reaction force and the waveform modes are written in a resummed,
factorized manner [71]. Additional coefficients are introduced in the waveform,
accounting for further, undetermined PN contributions and next-to-quasi-circular
corrections.

• A sum of quasi-normal modes is attached to the inspiral-plunge EOBNR waveform
over a certain time interval around the peak of the waveform mode.

The impact of NR on the above strategy is manifold. Some parameters (like the
EOB-dynamical parameters introduced into the radial potential) are directly determined
through minimizing the phase difference between the analytical and numerical GW. Other
parameters are derived from independent (i.e., not EOB-related) fits of the numerical data,
such as predictions of the final spin of the remnant BH or the maximum of the modulus of
the GW. Note, however, that for a direct comparison (and thereby calibration), analytical
and numerical waveforms have to be aligned, i.e., a relative shift in time and phase has
to be fixed by some minimization procedure. We found the same need in all construction
algorithms for complete GW signals.

In short, the characteristics of EOBNR constructions are that a well-adapted analytical
description is extended and informed by NR data, so that finally a time-domain description
based on a set of differential equations provides the entire inspiral to plunge signal that is
completed by attaching the ringdown waveform.

It should be noted that, although the procedure of combining PN and NR data in
a first step and analytically modeling them in a second step is clearly divided only in
the phenomenological constructions, they are not entirely different from the EOBNR
approach. If the inspiral model used in the hybrid would be EOB and an extended EOB
description is chosen as the “phenomenological model”, then we would recover the EOBNR
construction. Likewise, if the EOBNR construction would calibrate its model against a
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complete hybrid signal instead of pure NR data, it would be conceptually no different from
phenomenological constructions (which does not imply that one construction cannot be
superior to the other). The important question ultimately is how flexible and accurate each
individual strategy (with all its detailed distinctions) can predict the unknown real GW
signal. We shall touch this question in Chapter 4.

Finally, let us mention another phenomenological family that was constructed by
Sturani et al. [178, 179] as a first step to model waveforms of precessing binaries. In this
approach, a Taylor-expanded time-domain approximant (TaylorT4) is extended and finally
fitted to NR data. Just like EOBNR (although less sophisticated), the resulting model is
given in form of time-domain differential equations with quasinormal ringdown modes
attached.

3.5.4 Physical range of waveform models

Understanding the concepts underlying the construction of complete waveform models
is mainly interesting when we want to to compare various approaches, deduce why
they lead to slightly different waveforms and, most importantly, assess the quality of
individual families. Before we turn to that question, however, we summarize the facts
that are interesting for the actual usage of the waveforms in data-analysis applications.
In particular, before applying the model to a set of physical parameters, one should have
a clear perception of where in the parameter space these models have been constructed.
Although this range does not necessarily coincide with the range of parameters the model
can be used with, it nevertheless is a good indication where it can be trusted most.

The waveform models that have been introduced in the previous sections are tailored
to model binary BHs with comparable masses inspiralling on quasi-circular orbits. There
are successful efforts to exploit the synergy of analytical methods and NR also for other
scenarios, like the extreme mass-ratio regime [201, 202] or binary neutron star coalescences
[29, 80]. Here we focus on binary BHs in the comparable-mass regime only, as they are the
most promising sources for the upcoming generation of ground-based GW detectors whose
detection and interpretation may require information both from PN and NR.

In Table 3.4 we provide an overview of selected, recent models for this regime. Apart
from an alias (partially adopted from the LIGO-Virgo collaboration [183, 184]) we indicate
the inspiral model which is either based on the EOB approach or derived from Taylor-
expanded PN quantities. The NR codes that contributed to the construction of the given
models are the Spectral Einstein Code (❙♣❊❈ [164, 175]), ❇❆▼ [52] and ▼❛②❛❑r❛♥❝ [189],
where the few ❙♣❊❈ waveforms are notably long and accurate, the ❇❆▼ simulations provide
the largest diversity in parameter space with moderately long waveforms, and the data
calculated with ▼❛②❛❑r❛♥❝ are the only precessing simulations used to calibrate analytical
models to date.

Other distinctive features of the models listed in Table 3.4 are for example as follows:

• PhenomB/C are closed-form frequency-domain representations of the GW; EOBNR
and PhenSpin provide the signal in terms of time-domain differential equations.

• EOBNR models can readily be extended beyond the dominant spherical harmonic
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Alias Ref. Inspiral NR code Calibration range Calibrated parameters

EOBNR [77] EOB ❙♣❊❈, ❇❆▼ q ≤ 4 & q→ 0 2 dynamical from q = 1
no spins + fits from q ∈ {1, 2,4}

EOBNR [144] EOB ❙♣❊❈ q ≤ 6 & q→ 0 2 dyn.+4 waveform par.
no spins 5 modes from 5 NR runs

PhenomB [16] T1 ❇❆▼ q ≤ 4 & q→ 0 6 phase, 4 amplitude
aligned spins from 24 NR simulations

PhenomC [162] F2 ❇❆▼ q ≤ 4 6 phase, 3 amplitude
aligned spins from 24 NR simulations

PhenSpin [178] T4 ▼❛②❛❑r❛♥❝ q = 1,χi = 0.6 2 phase param.
precession 24 NR sim.+4 PhenomB

Table 3.4: A selection of recent complete waveform models for BH binaries with comparable masses on
quasi-spherical orbits. We summarize the reference where the model was described, the approximate inspiral
waveforms and NR codes that were employed, the parameter range in which each model was calibrated (q is
the mass ratio) and the number of parameters and NR simulations used to build the model.

of the GW, whereas the phenomenological models and PhenSpin solely provide the
signal in terms of the ℓ= 2, m= ±2 spin-weighted spherical harmonic modes.

• The PhenSpin model is a first attempt to model generic precessing spin configura-
tions, but it is so far only calibrated to equal-mass systems and dimensionless spin
magnitudes of 0.6. All other models in Table 3.4 are only applicable to nonspinning
systems or systems where the spin of each BH is aligned (or antialigned) with the
total orbital angular momentum.

In the aligned-spin case, both phenomenological waveform families reduce the two spin
parameters to one “total” spin (3.37). As recently shown by Ajith [10], this degeneracy in
the spin parameters can be further optimized, and it will be an important goal for future
models to describe as many physical effects as possible with the smallest possible number
of parameters. In the nonspinning case, all waveforms presented here are parametrized
in terms of the physical parameters total mass and symmetric mass ratio (plus initial time
and phase) but it may be useful both from the modeling and the search point of view to
refrain from this parametrization strategy once all additional spin dynamics are included.
Note that very recently, an EOBNR prototype was proposed that includes aligned-spin
configurations [145, 180], but this first exploratory study only employed two equal-mass
simulations (performed with ❙♣❊❈) with equal spins χ1 = χ2 ≈ ±0.44.

Apart from the listed facts, there are many more procedures involved in checking the
validity of proposed models. Most importantly, it has been shown to some extent that
the models mentioned here all agree to reasonable accuracy with the waveforms they
were derived from, but also with waveforms that were not in the construction set. Thus,
with an increasing number of available numerical simulations, all these models can not
only be extended and refined, they can also be cross-checked extensively until, ideally,
one can confidently interpolate over the entire parameter space independent of the set of
waveforms actually used to calibrate the model.



Chapter 4

Reliability of hybrid waveforms

4.1 Basic approach to quantify errors

4.1.1 Motivation

This chapter is devoted to the question of how confident we can be with a final hybrid
PN+NR waveform. After all, we demonstrated in Chapter 3 that one can find a smooth
connection between the two parts of a (supposedly common) GW signal, but the use of this
waveform in actual analysis algorithms of GW interferometers requires a much deeper error
analysis with a quantitative understanding of the uncertainty introduced in the modeling
process. Most results presented here have been published in [139, 140].

Let us recapitulate the choices that had to be made along the way outlined in Chapter 3.

• Which PN formulation should be employed?

• What physical parameters in PN and NR are consistent with the other framework?

• Which NR resolution, extraction formalism etc. is sufficient?

• How long do the NR waveforms have to be?

• What is the appropriate way to match analytical and numerical data?

When constructing a complete waveform, each of these questions has to be answered
and different choices lead to slightly different results. The important conclusion we shall
draw from this is that none of the complete IMR waveforms is based on an unambiguous
construction, and the spread of possible results that different reasonable choices yield is a
measure of the uncertainty within the modeling process.

The following sections are devoted to quantifying the different sources of uncertainty.
One after another, we shall vary an ingredient of the waveform construction slightly (i.e.,
we will compare slightly different choices) while keeping the others unchanged. The
basic mathematical scheme for this comparison is introduced in Sec. 4.1.2 and it is then
subsequently applied to errors in the NR regime, hybridization errors and finally errors
coming from the PN part of the signal. The latter will turn out to dominate the error budget
by far, and we shall refine the error estimate to allow for realistic accuracy requirements
that are meaningful for GW data-analysis applications.

75
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4.1.2 Defining an error measure

Particular for the PN inspiral part of the signal, we lack a well-defined notion of error.
Hence, we shall quantify the waveform uncertainty in the following sense. Let

h= h+ − i h× (4.1)

be the complex GW strain that combines the plus and cross polarization of the GW as the
real and imaginary part, respectively. (We omit the superscript ℓ= 2, m= 2 here, but we
implicitly refer to this particular dominant mode, if not stated otherwise.) It is subject to
several errors, and we account for these errors here simply by the fact that one could have
taken slightly different ingredients hPN and hNR for the same physical scenario. These could
be different post-Newtonian approximants and numerical data from different codes or
different resolutions. Denoting the different waveform models by h1 and h2, we calculate
the mismatch

M = 1−O (h1, h2) = 1−max
φ0,t0

〈h1, h2〉
‖h1‖‖h2‖

(4.2)

= 1−max
φ0,t0



4Re

∫ f2

f1

h̃1( f ) h̃
∗
2( f )

Sn( f )

df

‖h1‖‖h2‖



 , (4.3)

whereφ0 and t0 are relative phase and time shifts between the waveforms and ‖h‖2 = 〈h, h〉.
Sn is the noise spectral density of the assumed detector, ∗ indicates the complex conjugation
and ( f1, f2) is a suitable integration range. O is called the overlap (or match) of the two
waveforms. In the following, we will consistently use f1 = 20Hz and Sn is given by the
analytic fit of the design sensitivity of Advanced LIGO [15]. The upper integration bound
f2 is given by our waveform model, and we use f2 = 0.15/M , although the results do not
depend sensitively on this value (M is the total mass of the binary).

We use this formulation to quantify the agreement of h1 and h2, because it is directly
adopted from the matched-filter detection strategy, as we have outlined in Sec. 2.3.3.
Broadly speaking, the mismatch indicates here how “close” h1 and h2 are. Smaller values for
M represent smaller errors in the waveform model, given that h1 and h2 are approximations
of the same signal. Direct conclusions can be drawn from calculating the mismatch. IfM
is less than some threshold, we regard the final hybrid as accurate enough for the purpose
in question. If, for example, up to x = 10% of the detectable signals may be missed due
to a mismatch of real and modeled waveform, we can allow this mismatch to be at most
M = 1− 3p1− x ≈ 3.5%, disregarding the addition from a discrete template spacing. If we
account for the latter, one may decrease the accepted mismatch in the waveform modeling
to 1.5% (see a similar discussion in [102]) or even 0.5% as suggested in [125].

A generally more stringent requirement is that the uncertainty we have in the modeling
is indistinguishable by the detector. Such a statement is obviously dependent on how “loud”
the signal is in the detector. As discussed in [125] and further detailed in [82, 123] we can
write the indistinguishability criterion as

‖h1− h2‖2 < ε2 , (4.4)

where the waveforms are optimally aligned in the sense of (4.3) and ε parametrizes the
effective noise-increase due to model uncertainties. The minimal requirement for h1 and
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h2 to be indistinguishable is ε = 1, although [82] argues that ε ∼ 1/2 and probably less
are more reasonable thresholds. Manipulating (4.4) under the assumption of equal norms1,
‖h1‖= ‖h2‖= ‖h‖, leads to the equivalent inequality (see a similar calculation in [132])

‖h1− h2‖2 = 〈h1− h2, h1− h2〉= ‖h1‖2+ ‖h2‖2− 2〈h1, h2〉

≈ ‖h‖2
h

2− 2O (h1, h2)
i

= 2‖h‖2M (4.5)

⇒ (4.4) ⇔ M <
1

2ρ2
eff

, (4.6)

where ρeff = ‖h‖/ε is the effective SNR of the signal.

When we later calculateM as a measure of the error in hybrid waveforms, we can set
various thresholds based onM <Mmax or Eq. (4.6) to evaluate the reliability of current
models. Defining a threshold forM is commonly associated with the problem of signal
detection whereas the criterion (4.6) is often used to quantify the performance in estimating
parameters of an unknown signal. However, the quantities as we have introduced them
here miss additional optimizations that are performed in actual searches and we shall
elaborate on the implications of that below. Let us just point out here that the mismatch in
the form of Eq. (4.3) (i.e., without further optimizations over physical parameters) assesses
the quality of a single waveform, but not of a waveform family.

4.2 Errors in the NR regime

We start quantifying the uncertainties in hybrid waveforms by analyzing the NR contribution.
Quantifying errors is an important and very natural process for numerical integrations, and
the uncertainty of NR waveforms is usually given in terms of phase and amplitude errors.
Through some additional assumptions, these can be related to quantities like the mismatch
(4.3) [123–125], but we shall directly calculateM here and show phase and amplitude
errors only for illustrative purposes.

The examples we choose are two nonspinning configurations with mass ratios 1 and 2.
NR data were obtained for each case with the ▲❧❛♠❛ code [150] and Table 4.1 summarizes
the information that is relevant for a hybridization of these data with PN inspiral waveforms.
The simulations were performed at different resolutions to verify the convergence of the
code. The lower-resolution runs we consider here employed a finest grid spacing of 0.025M

(q = 1) and 0.02M (q = 2) and the high-resolution grid spacing was 0.02M (q = 1) and
0.016M (q = 2), respectively. Since we aim at matching the NR waveforms in the frequency
domain to a frequency-domain PN approximant, we first Fourier transform the NR GW
signal and then use Richard extrapolation (assuming 8th order convergence for the phase
and 4th order for the amplitude) to obtain an estimate of the “exact” data in the frequency
domain.

The differences of the data sets obtained at different resolutions are first illustrated in
terms of phase and amplitude errors, see Fig. 4.1. We show the shape of each function and

1Instead of equal norms, we may also consider ‖h2‖/‖h1‖ = 1+ δ, which leads at linear order in δ the
following approximation: ‖h1 − h2‖2 ≈ 2‖h1‖‖h2‖M .
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q Dini [M] rex [M] Mωini (GW) GW cycles length [M]

1 11 ∞ 0.05 15.6 1350
2 10 500 0.05 12.7 920

Table 4.1: ▲❧❛♠❛ simulations of coalescing binary BHs with mass ratio 1 and 2. We provide the initial
separation Dini of both BHs, the extraction radius of the GW (Cauchy-characteristic extraction was used in
the equal-mass case [156]), the earliest “usable” GW frequency ωini (3.12), the number of GW cycles before
merger and the length (after removing the junk radiation) of the simulation. All GW-related quantities refer to
the ℓ= 2, m= 2 mode. These waveforms have been submitted to the NINJA project [27].

the difference

∆ζ = ζlow res.− ζhigh res. (4.7)

(where ζ denotes either phase or amplitude, both in the time and frequency domain). In
the time domain, we only compare the high with the low resolution data, whereas in the
frequency domain, we also include the Richardson-extrapolated data. As any practical use
of the waveforms (e.g., in a search algorithm or hybridization scheme) possibly employs
a free global time and phase translation, we exploited this freedom as well through a
minimization of the phase difference over an interval in time or frequency, respectively.
The results presented in Fig. 4.1 depend on this choice, and we performed the least-square
fits over t/M ∈ (−1235,112) (q = 1), t/M ∈ (−770,−72) (q = 2) and Mf ∈ (0.02,0.09)
for both cases.

Particularly due to this freedom of aligning the waveforms, phase and amplitude
comparisons are ambiguous and it is hard to find a well-defined notion of the error, see a
detailed discussion in [104]. There are still some conclusions we can draw from Fig. 4.1.
First, the numbers obtained in the time and the frequency domain can differ considerably,
and a specific accuracy goal (e.g., a phase error of at most X rad) does not mean very much
if the alignment procedure and the domain are not prescribed (see also the discussion
about the waveform length in [126]). Note that we show the originally extracted Newman-
Penrose scalar Ψ4 (see Sec. 2.5) in the time domain, but the strain h in the frequency
domain. However, due to our conversion from Ψ4 to h (2.101), the errors shown for h̃ are
the same as for Ψ̃4. The other observation we can clearly make from a relative comparison
of the errors shown in Fig. 4.1 is that the q = 2 case exhibits larger errors than the q = 1
case, and we anticipate these to originate from the generally more demanding treatment of
two BHs with unequal masses, but also from the extraction of the GW signal which is done
only in the q = 1 simulation by Cauchy-characteristic extraction [156], recall Table 4.1.

Having illustrated the discrepancies between different resolutions of the same inte-
gration, we shall now turn to the computation of the mismatch between the resulting
waveforms. We are interested in the effect of finite-resolution errors on the entire hybrid
waveform, hence we hybridize each NR waveform with the appropriate TaylorF2 inspiral
(see Sec. 3.3.2), matched over Mf ∈ (0.01,0.02). We then calculate M between the
Richardson-extrapolated version and a finite-resolution variant of the full waveform. Our
result is shown in Fig. 4.2, from which we conclude that current state-of-the-art techniques
used for the equal-mass waveforms lead to errors in the hybrid waveform that are negligible.
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Figure 4.1: The two NR simulations summarized in Table 4.1 performed with different resolutions. The left
column presents the amplitude and phase in the time domain, the right column shows the equivalent quantities
in the frequency domain. The low-resolution data (and its difference to the Richardson extrapolation) is shown
in green, the high-resolution data is drawn in red. The blue lines show the difference between low and high
resolution, the gray lines in the Fourier domain are the Richardson-extrapolated data.
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Figure 4.2: The mismatch (4.3) of hybrid wave-
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Figure 4.3: The mismatch (4.3) of hybrid wave-
forms that employ NR data from either the
▲❧❛♠❛ or the ❇❆▼ code. The black solid line illus-
trates the equal-mass case, the blue dashed curve
compares simulations of a binary with mass ratio
q = 2. Horizontal red lines show the threshold
of indistinguishability according to (4.6).

Even the low-resolution data cause a mismatch error indistinguishable for events as loud
as effective SNR 100. In agreement with the time-domain behavior, Fig. 4.1, the q = 2
simulations exhibit larger discrepancies, which serve as a conservative estimate of the NR
resolution error. The high-resolution run we would use to construct waveform templates,
however, leads to mismatches that are still not greater than 1.9× 10−4, which is below the
noise confusion up to SNRs of 50.

Similar plots have been published in [128, 162] for partly different numerical sim-
ulations, but with comparable numbers. In addition, the joint efforts of the “Samurai”
project [107] proved the consistency of NR waveforms by comparing numerical simulations
of equal-mass, nonspinning binaries from five different NR codes. No completion of the
waveforms with PN inspiral signals was considered as the focus laid primarily on the
NR data and their errors. Therefore, the mismatches reported in [107] are restricted to
high frequencies, thus high masses of the system (total mass > 180M⊙), and values of
M < 10−3 are found.

In the future, such consistency checks have to be repeated in different parts of the
parameter space to ensure that the relatively small errors found so far can be assumed
generally. As we have access to numerical simulations from two different codes, ▲❧❛♠❛
and ❇❆▼ [52], we can conclude our estimates here by calculating the mismatch of hybrids
with NR data from these different codes. This does not only quantify the effect of finite
resolutions, but takes into account a mixture of various additional features of the codes,
such as the grid setup, the gauge, the wave extraction formalism and many other details.
The result we present in Fig. 4.3 is very satisfactory. Although the disagreement between
different codes is greater than the finite-resolution error of the respective “best” run
(highest resolution for ❇❆▼ and Richardson extrapolation for ▲❧❛♠❛), we still find that the
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additional ambiguities do not cause deviations of the waveform that would considerably
affect the search for GW signals with low and moderate SNR.2 Of course, in the rare
occasion of an extremely loud event, one would have to investigate the accuracy of the
waveform templates further and maybe consider performing dedicated, highly accurate NR
simulations for that case. For the most urgent goal of preparing full waveform templates
for “every-day use” in Advanced LIGO, however, current NR simulations are good enough
to be incorporated in hybrid waveforms.

4.3 Hybridization errors

The next source of uncertainty we shall discuss in this section is related to the fact that
there are different strategies to combine two parts of supposedly the same waveform into
one signal. As we have shown in Sec. 3.2, one is forced to overlap analytical and numerical
results in the late merger regime (as early as the NR simulation permits), so one cannot
expect that they agree perfectly, and there is some ambiguity about the way an “optimal
alignment” of both waveform parts is defined. Most common in the construction process is
to decompose the GW h into phase φ and amplitude A by h= Aeiφ . The alignment of the
inspiral and NR parts is then carried out by minimizing a phase difference, either over an
entire interval or at discrete points, utilizing the frequency ω = dφ/dt as well.

A detailed analysis of various aspects involved in such procedures was already discussed
in Sec. 3.4 and also published in [128, 162]. For example, we calculated in our example of
a frequency-domain matching that the relative time shift between both waveform parts can
be determined, in the best case, up to an uncertainty of ∆t0/M ≈ 0.15 (Fig. 3.12) [162].
Ref. [128] complements this statement by estimating that ∆t0/M ® 1 is required for an
accurate matching withM < 2× 10−4. In addition, the recommended matching interval is
formulated in terms of the frequency evolution ω1→ω2 within this interval, and [128]
suggest (ω2−ω1)/ωm ¦ 0.1 (where ωm is the transition frequency from PN to NR).

We shall pursue a direct comparison of various hybridization procedures here and
express their differences again in terms of the mismatch. We consider three hybridization
strategies, each connecting a nonspinning equal-mass simulation performed with ❇❆▼ with
the corresponding TaylorT4 PN approximant.

Time-domain matching 1: After choosing a matching frequency ωm, the relative time
shift t0 between NR and PN waveform is determined by enforcing

dφNR

dt
(tm) =ωNR(tm) =ωm =ωPN(tm+ t0) =

dφPN

dt
(tm+ t0) . (4.8)

The waveforms are then matched at the moment in time where the frequency reaches
ωm, and the relative phase shift is obtained by demanding continuity in the phase,

φNR(tm) = φPN(tm+ t0) +φ0 . (4.9)

As a result, the transition from the PN phase to its NR complement is carried out at a
single point. A similar transition is also realized for the amplitude, but there is no

2Note that a similar plot was published in [162]. Fig. 4.3 is an updated version of this previous analysis.
We now find smaller errors due to an improved post-processing of the waveforms.
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Figure 4.4: The mismatch (4.3) of hybrid wave-
forms for nonspinning, equal-mass BHs. The dif-
ference that is measured here originates solely
from different hybridization procedures, where
the solid black line indicates the mismatch
between two time-domain methods, and the
blue dashed curve is a comparison between
a frequency-domain matching and the time-
domain method 1 (see text).

freedom left to align the waveforms. Instead, we simply search for the point in time
where the PN and NR amplitudes agree and match them there. Note that we chose
to hybridize the Newman-Penrose scalar Ψ4 instead of the strain h, and the latter
was calculated afterwards in the frequency domain by dividing Ψ̃4 by −(2π f )2.

Time-domain matching 2: A different time-domain matching procedure was used in
[14, 15], and we adapt it here for Ψ4. The specific method is to choose again
a matching frequency, ωm, and to then locate the time in both the PN and NR
waveforms when that frequency is reached. We then combine the two waveforms
over a 200M -long window, aligning the waveforms such that the quantity

∆Ψ=

∫ t2

t1

�
�Ψ4,NR(t)− a eiφ0Ψ4,PN(t + t0)

�
�
2

dt (4.10)

is minimized, where t1 and t2 are respectively 100M before and after the time tm

at which the NR waveform reaches ωm, a is a scale factor, t0 and φ0 are time and
phase offsets. The hybrid is constructed by making a linear transition between Ψ4,PN

and Ψ4,NR over the matching window.

Frequency-domain matching: The third hybridization method to compare is a variant of
the frequency-domain matching described in Sec. 3.3.2 and [162]. We produce an
FFT of the time-domain TaylorT4 approximant and an FFT of the numerical Ψ4 data.
The phase of the frequency-domain PN and NR signals is then matched in the interval
ω ∈ (ω1,ω2), and the points where the Fourier-domain phases and amplitudes agree,
respectively, are taken as the transition frequencies from PN to NR.

For the results we show in Fig. 4.4 (which is an updated version of Fig. 1 in [102]) we
used a matching frequency of Mωm = 0.07 for the time-domain procedures and a matching
interval of Mω ∈ (0.0566,0.113) in the Fourier domain, which lead to a phase matching
frequency Mωm = 0.068.

We see that the maximum mismatch is about 0.015% between the two time-domain
hybrids3 and 0.02% between the time-domain and frequency-domain hybrids. Clearly the
error due purely to the hybridization procedure is, like the mismatch error of the numerical

3The numbers we present here are slightly less than the published ones in [102], because a more efficient
mismatch routine now allows for a more accurate minimization with respect to the time shift.
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Figure 4.5: The mismatch (4.3) of hybrid wave-
forms for nonspinning, equal-mass BHs, each
employing the same NR data, but the inspiral in
obtained either with the TaylorT1 or TaylorT4
approximant. The matching frequency between
NR and PN is indicated next to each curve.
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waveforms, negligible. If we consider the indistinguishability criterion (4.6), then these
hybrids would be indistinguishable for SNRs of ρeff < 50. However, let us point out that
these results are calculated in the equal-mass, nonspinning case with and the TaylorT4
approximant that accidentally agrees extremely well with later merger NR data.

We further note that the difference between hybrids constructed with ostensibly the
same numerical waveforms and PN approximants may have larger differences than those
shown here. For example, if we compare either of the hybrids we have just described, with
hybrids constructed using the integrated wave strain, as in [14, 15], then the mismatch can
be as high as 0.8%. This is due not to the hybridization process, but to artifacts introduced
in the time-domain integration of Ψ4 to h. For a more detailed discussion of this integration
see Sec. 2.5 and [157].

4.4 Uncertainty of the inspiral waveform – NR length require-

ments

So far, we applied the strategy outlined in Sec. 4.1.2 to estimate the uncertainty in the NR
part of the waveform and the hybridization process. Both error sources turned out to be
tolerable. Now we consider the long PN inspiral part of the hybrid waveform, where it
is particularly difficult to find a well-defined notion of error. As a practical criterion, we
shall compare different PN approximants, all consistently constructed to highest available
PN order and completed with common NR data. The result is that the mismatch of such
hybrids is orders of magnitude greater than what we calculated so far.

As an example, Fig. 4.5 shows the mismatch of hybrid waveforms that were constructed
with the NR waveform of a ❙♣❊❈ equal-mass, nonspinning simulation [2, 165], but with
inspiral waveforms either from the TaylorT1 or TaylorT4 approximant. The matching
frequencies are chosen as Mωm = 2πMfm ∈ {0.04, 0.06, 0.08}, and the stitching procedure
is carried out in the Fourier domain as explained in Sec. 3.3.2 and [162]. The mismatch
errors we obtain are of the order of a few percent, whereas those from Figs. 4.2 to 4.4 are
a factor of 100 or more smaller.

Having realized that the dominant source of error in the full waveform is the PN part,
particularly at high frequencies not yet covered by NR, one simple solution to reduce its
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Figure 4.6: Full IMR waveforms (constructed from the phenomenological model [162]) for equal-mass BHs
with spins aligned to the orbital angular momentum and dimensionless spin parameter −0.8, 0 or 0.8 (from
top to bottom). The vertical lines show the moment in time when a particular instantaneous frequency
Mω = Mdφ/dt is reached. The indicated frequencies are the same for each case; the time when they are
reached differs, however, due the highly spin-dependent frequency evolution.

influence is to employ longer NR signals and use accordingly smaller matching frequencies.
This effect is also illustrated in Fig. 4.5. Indeed, reducing ωm does reduce the mismatch
error everywhere (i.e., for all values of the total mass), but the computational costs are
immense. If we would require a mismatch not greater than, say, 1.5%, then not even
Mωm = 0.04 would be good enough in the nonspinning case, and the situation is most
likely worse for spinning and unequal-mass systems.

To demonstrate what such matching frequencies mean in terms of simulation length,
Fig. 4.6 illustrates how many GW cycles of the ℓ= 2, m= 2 mode are required to reach a
certain frequency. Evidently, NR waveform length requirements depend not only on the
desired Mωm but also on the physical parameters to be modeled. A system with BHs that
highly spin parallel to the orbital angular momentum is characterized by a decelerated
frequency evolution of the binary. Thus, a particular matching frequency means more orbits
to be simulated numerically than in the nonspinning or the anti-aligned spin case.

With these issues in mind, it is very important to carefully estimate the PN-induced
error of hybrid waveforms throughout the parameter space. This will not only complete the
error assessment of full waveforms, it will also lead to very important conclusions about
how long NR waveforms actually have to be to allow a meaningful combination with PN
data. This is a major input to be provided by the waveform modeling community, otherwise
the limited computational resources are in danger to be spent inefficiently.
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We shall address these issues in the following sections, starting with deeper insights
into the structure and the calculation of the mismatchM . The results of our first parameter
study will be that far more NR orbits are required than currently possible to reduce the
mismatch to an acceptable level. CalculatingM in the form of (4.3), however, only allows
for limited conclusions due to the following restriction: the efficacy of a model in a search
is determined by the best match between the true waveform and any waveform in the
search model. This best match (called the fitting factor, see Sec. 2.3.3) should be calculated
not only by comparing two candidates but by maximizing the match over all of the physical
parameters of the model. With access to hybrids from discrete points in the parameter
space, we are only able to maximize the match over the total mass of the binary, which
should lead to (possibly very) conservative estimate of waveform length requirements. Only
an enhanced error estimate based on the generalization of (mis)matches to fitting factors
will lead to data-analysis relevant statements about the accuracy of waveform families, and
we shall introduce the appropriate concept in Sec. 4.5.

4.4.1 Refined mismatch calculations

To simplify our calculations, recall that the full hybrid is is constructed from a PN description
hPN and the NR part hNR. We assume that the transition from hPN to hNR is enforced at a
single frequency

h̃( f ) =

(

h̃PN( f ) , for f ≤ fm

h̃NR( f ) , for f > fm

, (4.11)

where h̃ denotes the Fourier transform of h and fm is the matching frequency. Such a
procedure can be employed in a direct Fourier-domain construction of the hybrid [162],
but it is also approximately true for time-domain hybrid constructions (see the detailed
description in Sec. 3.3). In the latter case, the transition is carried out at a time tm, where
the instantaneous frequency is ω(tm) =

d arg h
d t
= 2π fm. Then, for (4.11) to be true, we

have to assume that

1. the transition frequency in the Fourier domain is equal to the instantaneous matching
frequency calculated in the time domain;

2. the signal at times t < tm only significantly affects the Fourier domain for f < fm

and t > tm correspondingly determines the wave for f > fm.

These assumptions are not trivial since the Fourier integral is a “global” transformation.
However, it was shown that assuming such a stationarity is reasonable in a regime where
both PN and NR are valid [162]. In addition, we just showed in Sec. 4.3 that time- and
frequency-domain construction methods lead to very similar results.

To gain some insights on the structure of Eq. (4.3) and simplify the mismatch in the
case where only the PN-inspiral parts of the waveforms differ, we further assume:

3. Following our earlier findings and [107, 162] we regard the error on the NR side
as small, negligible compared to the uncertainties PN introduces up to currently
practical matching frequencies.
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4. Independent of the PN approximant that is used, the norm of the waveforms are to
high accuracy the same (i.e., only the phase is affected). This is reasonable to take as
a good approximation, because the amplitude description in PN is usually formulated
as a function of the orbital frequency [24, 34, 42] (which we again identify with
the content on the Fourier side as well) and the mismatch is much more sensitive to
phase differences than to amplitude discrepancies.

Let us now consider a binary BH system with fixed physical parameters. Our error
measurement assumes the construction of two hybrid waveforms that differ in the PN part
only. Their overlap reads

O (h1, h2) = 1−M (h1, h2)

=max
φ0,t0



4Re

∫ f2

f1

|A1A2|
Sn

ei(φ1−φ2) ei(2π f t0+φ0)
df

‖h1‖‖h2‖



 , (4.12)

where Ai = |h̃i | and φi = arg h̃i . The effect of a time and phase shift of one waveform with
respect to the other is explicitly written out in the second exponential term.

Assuming two PN models (PN1 and PN2) combined with the same NR waveform we
trivially obtain the phase difference

φ1−φ2 =

¨

φPN1−φPN2 , f < fm

0 , f ≥ fm .
(4.13)

Note that (4.13) is only true for one particular alignment of the two waveforms, any other
relative shift in time or phase leads to an additional dephasing, also beyond fm. Since we
have separated this effect explicitly in (4.12), we are, however, free to write φ1−φ2 as in
(4.13). The open question is the functional form of the PN phase-difference (or simply the
PN phase error) in the case where the NR part of h1 and h2 are perfectly aligned. Here we
have to apply an actual matching procedure, although we can use any preferred method
without having NR data at hand. The key property of (4.13) we are exploiting is that only
PN-PN differences are taken into account, and a direct PN-NR comparison is not necessary.
The only input we need from NR simulations is the amplitude |h̃| = A1 = A2 for f > fm.
A good estimate for that can be taken from phenomenological models, such as the ones
introduced in Sec. 3.5 and [16, 162], where the Fourier-domain amplitude is approximated
by a closed-form analytic description. A similar approach was recently suggested by Boyle
[45] who realized that it is sufficient to combine PN approximants with ersatz NR data
which he takes from the EOBNR model [56, 57, 61, 145]. We independently derive an
algorithm here that is based on the same perceptions but highlights that no NR phase
information at all is needed.

The final global time and phase shift used in (4.12) to maximize the overlap is simply a
(phase shifted) inverse Fourier transform of the remaining integrand. Its maximal real part
is obtained by choosing φ0 (for any t0) such that the generally complex number lies on the
real axis.

Based on that, our final algorithm for estimating hybrid mismatch errors caused by the
uncertainty in the PN model is the following:
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Figure 4.7: Hybrid mismatches in the equal-
mass, nonspinning case. Black solid lines are
mismatches of actual TaylorT1/T4+NR hybrids,
whereas the red dashed lines are our estimates
obtained without directly using any NR data
(NR amplitude taken from a phenomenological
model). The gray dotted lines describe the PN
mismatch contribution derived in (4.14) that
does not include a possible dephasing of the NR
part. The matching frequencies for each set are
from bottom to top Mωm = 0.04,0.06, 0.08.
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1. Calculate the two PN waveforms expressing the uncertainty to be quantified.

2. Apply the matching procedure such that one PN approximant is matched to the other
at fm (as if it were the NR waveform).

3. Fourier transform the aligned PN waveforms and keep the data for f ∈ [ f1, fm].

4. Complete the waveforms in the Fourier domain by using an existing expression for
the amplitude in the range f ≥ fm, e.g., from phenomenological models [16, 162] or
from a short NR simulation. Set the phase in this regime to 0 (or any other function,
but equal for both h̃1 and h̃2).

5. Calculate the overlap of h̃1 and h̃2 by maximizing the magnitude of the inverse
Fourier transformation.

To test the efficacy of our approach, we return to the nonspinning, equal-mass example
of Fig. 4.5 and superimpose the results of our simplified calculation. The agreement
illustrated in Fig. 4.7 is excellent in all cases. As expected by the relatively small effect of
the amplitude on the mismatch calculation, our method proves to be fairly robust with
respect to the chosen amplitude description in the NR regime. In fact, the dashed lines in
Fig. 4.7 use the phenomenological model detailed by Santamaría et al. in [162] but there
is no noticeable difference when we use the model presented by Ajith et al. in [16].

4.4.2 Mismatch contributions

The method presented above can readily be applied to estimate the inspiral uncertainty of
hybrids with the caveats mentioned in the introduction to Sec. 4.4, and we shall do so in
Sec. 4.4.3. For now, however, let us manipulate the mismatch (4.3) further to separate the
various contributions to it. We make this important aside to point out that, although only
the PN contribution is considered as ambiguous here, its influence on the final waveform
error is twofold: directly through the (power-weighted) PN mismatch and in terms of an
additional dephasing, also of the “exact” high-frequency part.

We can see these two effects separately through the following instructive lower bound
onM which is obtained under the list of assumptions detailed in Sec. 4.4.1.

M = 1−
4

‖h‖2 max
φ0,t0



Re

∫ fm

f1

h̃1 h̃∗2
Sn

df +

∫ f2

fm

|h̃|2

Sn
df




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Χ = 0.9

Χ = -0.9 Figure 4.8: Power contribution of an NR wave-
form containing 10 orbits before merger to the
complete signal. The solid line indicates a non-
spinning binary with mass ratio q = 4, the
dashed lines are the corresponding binaries with
spins (anti)aligned to the orbital angular mo-
mentum. For comparison, the area enclosed by
q = 2,χ = ±0.9 systems is included in gray.

≥ 1−max
φ0,t0

〈h1, h2〉
‖h‖2

( f1, fm)

‖h‖2
( f1, fm)

‖h‖2 −
‖h‖2

( fm, f2)

‖h‖2

=
‖h‖2

( f1, fm)

‖h‖2 MPN . (4.14)

Here we introduced the notation ‖h‖2
(a,b) to specify the integration range. MPN is the

mismatch of the PN part only, restricted to f < fm. In the first line of (4.14) we use
the fact that the amplitudes agree (in fact, we do not require pointwise agreement, only
the norm is assumed to be the same) and that h1 = h2 for f > fm. The second line is a
lower estimate because the maximization was originally carried out by shifting the entire
waveforms relative to each other, whereas now we allow the maximization over the PN part
alone. The final step involves the obvious relation ‖h‖2 = ‖h‖2

( f1, f2)
= ‖h‖2

( f1, fm)
+ ‖h‖2

( fm, f2)
.

The interpretation of (4.14) is straightforward: the mismatch of hybrids is determined
by the uncertainty of PN [restricted to the frequency range ( f1, fm)] multiplied by the
fraction of power that is coming from the PN part of the wave signal. This fundamental
error, independent of the actual PN/NR fitting, is directly inherited from the differences
of standard PN approximants and any PN/NR matching cannot be better than the result
of (4.14). Put differently, the maximally achievable reduction of the PN mismatch error
is given by the relative power contributed by the NR waveform. In Fig. 4.8, we show
‖h‖2

( fm, f2)
/‖h‖2, where fm is chosen such that 10 NR orbits before merger are assumed

for each set of physical parameters (data obtained through the phenomenological model
[162]). In agreement with our previous discussion (see, e.g., Figs. 4.6 and 4.7) we see that
modeling antialigned spins and large total masses requires a smaller number of NR orbits
than large aligned spins (hangup case) and smaller masses.

In view of the simple form of (4.14), one might be tempted to conclude that analyzing
the overlaps or fitting factors (or whatever strategy is appropriate) of different PN approx-
imants directly leads to conclusions of how reliable the hybrid is for a particular choice
of fm. When we compare, however, the mismatch of actual hybrid waveforms with the
estimate (4.14) we find that the latter is considerably less thanM . An illustration of that is
included in Fig. 4.7, where we show the lower bound (4.14) in comparison with the actual
(and accurately estimated) mismatches.

Why is the hybrid disagreement that much greater than what is expected from PN in
the given frequency range? The reason can be identified from the derivation of (4.14),
where we effectively allow an optimal alignment (for each M) of both PN models while



4.4 UNCERTAINTY OF THE INSPIRAL WAVEFORM – NR LENGTH REQUIREMENTS 89

independently keeping the NR part perfectly aligned. In a true hybrid mismatch calculation,
one the other hand, a time and/or phase shift always affects the entire PN+NR hybrid, and
an optimal alignment of one part leads to a dephasing of the other. This effect is not caused
by an erroneous matching, but an illustration of the fact that the optimal choice of t0 and
φ0 in the sense of Eq. (4.3) is mass (frequency)-dependent for the PN models we consider.

Finally, by considering the obvious generalization of (4.14),

M ≥
‖h‖2

( f1, fm)

‖h‖2 MPN+
‖h‖2

( fm, f2)

‖h‖2 MNR , (4.15)

we can identify the three main contributions to the hybrid uncertainty: The PN and NR
error, each weighted by the power they contribute to the signal, and the misalignment
caused by the fact that in the hybridization procedure the PN wave is aligned at high
frequency which is potentially different from the optimal alignment for lower frequencies.
The procedure introduced in Sec. 4.4.1 automatically takes the dominant PN error and
possible misalignments (also of the NR part) into account.

4.4.3 PN errors, part I (mismatches)

Now that we have established an algorithm to predict mismatches of full waveforms with
an ambiguous inspiral part, we can exploit the computationally cheap procedure and
calculateM for many different physical scenarios. Our aim is to show how “reliable” the
final combination of PN and NR waveforms is in different points of the parameter space,
assuming that the physical parameters are fixed from the outset.

First, let us highlight again that ideally, we are interested in the mismatch of the
approximate waveform model to the true one. Since we cannot calculate the latter (which
would also make the whole discussion pointless), we estimate the PN uncertainty by
calculating the mismatch between different approximants. This can certainly be no more
than a rough estimate since we are not aware of any principle that would guide us to which
approximants at which PN order should be compared in order to obtain a well-defined
notion of the PN error.

To still reach some understanding of the uncertainty in currently used high-order PN
models we present the anticipated hybrid mismatches when the approximants TaylorT1,
TaylorT4 and TaylorF2 are used. Recall that TaylorT1 and T4 are solutions of ordinary
differential equations in the time domain describing the adiabatic inspiral of the BBH on
quasicircular orbits, whereas TaylorF2 is a frequency-domain description based on the
stationary phase approximation. Details on these approximants can be found in Sec. 2.4.2
as well as, e.g., in [48, 58] and references therein. Throughout this thesis, we always
employ the highest currently determined PN order, i.e., 3.5PN accurate phasing with spin
contributions up to 2.5PN (and incomplete terms at higher order) and the 3PN amplitude
expansion [42] including up to 2PN spinning corrections [24].

As in the construction of phenomenological models, we restrict the parameter space
to black holes with comparable masses and spins aligned or antialigned with the orbital
angular momentum of the binary L (with its unit vector denoted by L̂). Then, each spin
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can be parameterized by just one dimensionless quantity,

χi =
Si · L̂

m2
i

, i = 1, 2, (4.16)

where mi and Si are mass and spin of the individual black hole, respectively. By exploiting
a degeneracy in the spins, as observed in [158, 189], the parameter space can be further
reduced, and we only use the mass-weighted total spin

χ = χ1 m1/M +χ2 m2/M (4.17)

and the symmetric mass-ratio

η =
m1m2

M2 (4.18)

to label the different physical setups. (In fact, in the following analyses, each point with
fixed χ is represented by χ1 = χ2 = χ .)

To assess how the accuracy of currently feasible hybrid waveforms varies in the param-
eter space, we apply the algorithm outlined in Sec. 4.4.1 for different mass-ratios ranging
from equal masses to 4:1, with spin magnitudes from −0.9 to 0.9 in each case. For every
pair (η,χ) one obtains mass-dependent mismatches in the form of Fig. 4.7 that generally
increase with increasing matching frequency Mωm.

Several plots illustrating this behavior can already be found in the literature. Contour
plots of the mismatch as a function of mass and matching frequency are the main result of
Boyle [45], and we obtain similar results by continuously varying Mωm, e.g., in Fig. 4.7.
Taking the maximum mismatch with respect to the total mass instead (i.e., only considering
the peaks in Fig. 4.7), Fig. 4 by Damour, Nagar and Trias in [82] shows the inaccuracy
of TaylorF2 hybrids compared to EOBNR as a function of the matching frequency. Fig-
ure 11 by MacDonald, Nissanke and Pfeiffer in [128] presents a similar study with Taylor
approximants and actual NR data. Given some slightly different choices in our approaches
(especially lower cutoff frequency and detector noise curve) the results we obtain are fully
consistent with the numbers presented in the articles mentioned.

Generally, the conclusions [45, 82, 128] draw are sobering regarding GW detections
and parameter estimation. The mismatches found are too high, current numerical relativity
waveforms are by far too short and hybrids are consequently too inaccurate. In the
following, we illustrate the basis of these statements and expand the existing knowledge by
exploring the parameter space. To reduce the dimensionality of the problem, we calculate
the maximum of the mismatch with respect to the total mass and fix Mωm = 0.06 (which
corresponds to approximately 10 GW cycles before the maximum of |h(t)| in the equal-mass
case, see Fig. 4.6).

In Fig. 4.9 we show contour plots that compare either TaylorT1 with TaylorT4 hybrids or
TaylorT1 with TaylorF2 hybrids. The matching frequency is fixed at Mωm = 0.06. Certainly,
we could include many more variants of PN approximants (including different versions
of EOBNR), but we find it sufficient to present some general conclusions that become
already clear from the examples chosen here. As reported before [82, 102] we see that
deviating from equal-mass cases, the disagreement generally becomes larger. This effect
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Figure 4.9: Contour plots of the mismatch (in %) between different fictitious hybrids, as a function of the
symmetric mass-ratio η and equal aligned spins with dimensionless magnitude χ. Left panel: PN part either
defined by the TaylorT1 or TaylorT4 approximant. Right panel: Comparison of TaylorT1 and TaylorF2 in the
PN part.

is even more pronounced when increasing spin magnitudes are considered. Heuristically
we can understand the worse performance for increasing spins by the simple fact that spin
contributions are only included up to 2.5PN order, whereas nonspinning terms are known
up to relative 3.5PN order. Surprisingly, the ‘island’ or ‘band’ of minimal mismatch does not
occur strictly around vanishing spin magnitudes, indicating that different approximants can
by chance agree extremely well in some portions of the parameter space. For completeness,
let us report that the TaylorT4/TaylorF2 mismatch yields a pattern similar to the right panel
of Fig. 4.9 but with minimal values moved to weakly positive spins.

The conclusions suggested by Fig. 4.9 and results from previous work [45, 128, 162]
are indeed disappointing. If the mismatches caused by different PN approximants actually
represent a reasonable estimate for the uncertainty in currently practical hybrid waveforms,
then values up toM ≈ 50% are certainly unacceptable. Reducing the matching frequency,
thereby demanding longer NR waveforms, does reduce the mismatch everywhere, but it
leads to unrealistic requirements in many portions of the parameter space.

To illustrate this, Table 4.2 addresses two important questions by analyzing the Tay-
lorT1/TaylorF2 hybrid mismatches in selected points in the parameter space. First, what
is the required matching frequency if a desired accuracy has to be fulfilled? Note that
due to our algorithm we overcome the restriction of currently available NR waveform
lengths that the authors in [128, 162] were facing. We also do not rely on assuming a
particularly promising “candidate waveform” to act as a long NR waveform as was done
in [45, 102]. In fact, phase information above Mωm is not required and does not enter
the result; we can simply apply our algorithm to arbitrarily small matching frequencies.
For each set of parameters we take the maximal mismatch with respect to the total mass
M (which we, however, restrict to M ≥ 5M⊙ for computational reasons) and thus obtain
the monotonically increasing function maxMM (Mωm). By demanding eitherM < 3% as
the most relaxed requirement or the more stringent case of indistinguishable differences
for effective SNRs of at most 20 [see (4.6)] we obtain the values given in Table 4.2. In
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q χ
Mω

m
[×10−2] Mmin/M⊙ (Mωm = 0.06)

M < 3% ρeff < 20 M < 3% ρeff < 20

1 0.0 3.93 (23) 1.15 (212) 15 40
2 0.2 2.40 (68) 0.99 (313) 25 49
3 0.5 1.70 (155) 0.84 (499) 33 57
4 0.8 1.38 (268) 0.75 (730) 38 61

Table 4.2: Faithfulness of hybrid waveforms based on a TaylorT1/TaylorF2 comparison for selected physical
parameters. The required matching frequency is reported if either a 3% maximal mismatchM can be tolerated
or if the error should be indistinguishable for SNRs less than 20, see (4.6). The parentheses indicate the
number of GW cycles to the maximum of |h(t)|. The two right columns assume Mωm = 0.06 and give the
minimal mass, where the waveforms are accurate enough in the sense described above.

parentheses we also give the number of GW cycles from dφGW/dt =ωm to the maximum
of |h(t)| as predicted by the phenomenological waveform model [162].

It is unlikely that the typical length of “long” numerical waveforms will change by
an order of magnitude before the advent of Advanced LIGO, and so a more practical
question is: given a currently achievable NR waveform length, in which mass-range is the
PN+NR hybrid accurate enough? As an example we assume again a matching frequency of
Mωm = 0.06 and show on the right-hand side of Table 4.2 the minimal masses the hybrid
is accurate for in the sense detailed above. For comparison, the pure NR part occupies the
entire frequency band down to 20Hz for masses M ≥ 97M⊙. Note that, distinct from [82],
we do not consider errors above Mωm here, since we have shown that the errors of hybrid

waveforms are dominated by an ambiguous PN part. Additional effects have to be taken
into account when possibly fitted closed-form waveform models are considered. Therefore,
our values for Mmin are less than the corresponding results in [82] that are based on the
comparison of EOBNR and the phenomenological model of [16].

The obvious message from Table 4.2 is that in general extremely long NR simulations
would be needed to overcome the intrinsic uncertainty in standard PN formulations for
given physical parameters. For NR waveforms containing so many cycles our assumption
that their intrinsic error can be neglected is possibly no longer valid, which would lead
to even higher modeling errors. Anyway, the numbers presented are only an “order of
magnitude” estimate in this most conservative approach. The reader should always keep
in mind that our notion of error is based on comparing different, at highest available
order consistent PN descriptions and especially concrete statements for particular points in
parameter space may be spoiled by an (un)fortunate choice of approximants (see a similar
discussion in [102]). More importantly, as we shall show in the next section, fixing the
physical parameters of the waveforms from the outset greatly overestimates the uncertainty
for signal detection.
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4.5 PN errors, part II (fitting factors)

4.5.1 Estimating fitting factors for hybrid waveforms

The accuracy assessment presented in Sec. 4.4 only allows for very limited conclusions about
the actual utility of hybrid waveforms in various applications. Apart from the restrictions
coming from our limited understanding of the PN error there is also an important fact we
have neglected so far: in astrophysically relevant applications the knowledge of physical
parameters like total mass, mass ratio and spin is never exact. If a set of hybrid waveforms
constitutes a waveform family which is used to extract information from an unknown signal,
then the standard matched-filter procedures rely on varying (and maximizing with respect
to) such parameters. The accuracy of the predicted “best-fit” parameters is once again
limited by the detector noise and the modeling error and even if the latter exceeds the first,
one may still argue that a tolerated bias does not significantly reduce the scientific output
from GW detections.

In this section we shall therefore consider combinations of NR data with a particular
PN approximant as the ingredients of an entire manifold of waveforms, parametrized by an
absolute time and phase scale (t0 and φ0) as well as the physical parameters introduced
before: M (total mass), η [symmetric mass-ratio (4.18)] and χ [spin combination (4.17)].
The efficiency of detecting a signal defined by t0,φ0, M ,η and χ is properly quantified
through the fitting factor

FF= max
M ′,η′,χ ′

O
h

h1(M
′,η′,χ ′), h2(M ,η,χ)

i

. (4.19)

Note that the maximization with respect to t0 and φ0 is already included in the definition
of the overlap O , see (4.12).

The accuracy threshold for detection we quoted before is indeed defined including this
additional maximization, i.e., in terms of

MFF = 1− FF . (4.20)

If a waveform family {h1} satisfies MFF(h1, h2) <Mmax (with sufficiently small Mmax)
then it is said to be effectual in the detection of the target signal h2 [73]. The results in
Sec. 4.4.3 are only a lower bound on this effectualness.

The accuracy requirements for parameter estimation are naturally more demanding
than those for detection. In the recent literature [82, 125, 128, 162] the faithfulness of
waveforms was usually defined by the criterion (4.4) (without optimization with respect to
physical parameters), thereby demanding that the maximal information can be extracted
from the data without being restricted by the model itself. Here, however, we want to
understand faithfulness in the original sense introduced in [73] that is based on the
difference of the target waveform parameter λ with the recovered model parameter λ̄ for
which (4.19) is maximal. If this bias ∆λ= λ̄−λ is small enough, we can still accept the
waveform model family as sufficiently accurate, even for parameter estimation. Therefore,
by analyzing MFF and the corresponding parameters we can sensibly make analogous
conclusions as before, but based on the actual optimization strategy that is employed in
current template-based GW searches.
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Because of the additional freedom of varying physical parameters we now have to
calculate the ambiguity function

A (λ′,λ) = O
�

h1(λ
′), h2(λ)

�
(4.21)

between hybrids constructed from the same set of NR waveforms but members of different
PN approximants. It depends on the parameters of the waveforms, λ′ and λ, as well as the
waveform models themselves.

Since the phase difference above Mωm in the overlap integral (4.12) does not vanish
generally for λ′ 6= λ, we have to slightly modify the algorithm presented in Sec. 4.4.1. In
particular, we now need an estimate of how small changes in physical parameters affect
the phase difference in the assumed NR regime. (The PN regime is affected as well, but
there is no qualitative difference to the PN comparison incorporated before.) One possible
strategy to quantify phase changes along variable physical parameters is to perform a
number of numerical simulations and interpolate between the data obtained. Depending
on the density of samples in the η and χ directions (the scaling with M is given trivially by
a single simulation), such a procedure can be very time- and resource-consuming. However,
the phenomenological fittings performed in [14–16, 162] (and also described in Sec. 3.5)
have utilized exactly this type of interpolation, and we conveniently use the result of [162]
here because the fitting there is localized to frequencies close to and in the NR regime.

Finally, to ensure the proper relative alignment, our algorithm to calculateA for arbi-
trary (in practice small) variations in all parameters is to match different PN approximants
to a phenomenological waveform (phase and amplitude) that is used above Mωm resulting
in a hybrid h̃( f ; M ,η,χ , t0,φ0).

Let us highlight that although we are now building PN+phenomenological hybrids our
analysis is not assessing how accurate individual waveforms describe the entire coalescence
process. Note for instance that we could have introduced this hybridization concept already
in the previous section, but, as we have shown, the phase above the matching frequency did
not enter the overlap calculation. Similarly now, we use the phenomenological phase de-
scription merely to model the M -, η- and χ-dependence at higher frequencies. Figure 4.10
illustrates what kind of information we are using by plotting slices of the ambiguity function
of the phenomenological model with itself for the case η = 0.2 (mass-ratio ≈ 2.6), χ = 0.3
and M/M⊙ ∈ {10, 50, 100}. In Sec. 4.4 we only exploitedA = 1 for λ′ = λ whereas now
we need an estimate of the shape ofA also for λ′ 6= λ (although for small |λ′−λ|).

We can make two immediate observations from Fig. 4.10. Especially for small masses
we see that relatively small changes in, for instance, symmetric mass-ratio or total mass
(the other parameters are kept constant, respectively) modify the waveform considerably,
so that the high mismatches for equal parameters (reported, e.g., in Figs. 4.7 and 4.9)
could potentially be reduced drastically by only small variations in the physical parameters
of one model waveform. Although the formal criterion (4.4) for faithfulness (or better
indistinguishability) failed, the fitting factor could still be extremely close to unity with a
minimal bias in the parameters. The second interesting observation from Fig. 4.10 is that
the width around the maximum of the ambiguity function increases towards higher masses
so that a comparison of two waveforms is increasingly insensitive to parameter changes at
higher frequencies. This in turn endorses our assumption that the fitting factors and biases
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Figure 4.10: The ambiguity function (4.21) between two phenomenological waveforms [162], where h2 is
fixed with η = 0.2, χ = 0.3 and the total mass as indicated in the plots. The parameters of h1 are varied
individually while the others are kept constant at the values of h2, respectively.

Figure 4.11: The mass-optimized mismatch between
equal-mass, nonspinning TaylorT1/TaylorT4+NR hy-
brids (black solid lines) compared to our NR-free
estimate (dashed lines). The matching frequencies
are Mωm ∈ {0.04,0.06,0.08} from bottom to top.
The gray lines show the results of nonoptimized mis-
matches for comparison, see also Fig. 4.7. The inset
illustrates the relative bias in the total mass (match-
ing frequencies in reverse order).
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we shall calculate are dominated by PN effects (and not the choice of data above Mωm) for
small masses, where the accuracy requirements turned out to be hardest to satisfy.

4.5.2 Comparison with previous results

Before exploring fitting factors across the parameter space, let us present two examples
that illustrate the general conclusions we shall draw in this section. We first come back
to the canonical equal-mass, nonspinning case and the TaylorT1/TaylorT4 comparison
that was employed before (see Fig. 4.7 and [102]). To test the validity of our approach
we again compare our estimate to hybrids constructed with actual NR data (matched at
Mωm ∈ {0.04,0.06,0.08}, respectively). Because of the unavailability of NR data with
arbitrary η and χ , we for now only optimize with respect to the total mass M . Note that the
results shown in Fig. 4.11 fully agree with the analysis of Hannam et al. [102] (see Fig. 6
therein). They not only confirm that our combination of PN and phenomenological data
accurately predicts the disagreement of the “true” PN+NR hybrids, one can also observe
the striking improvement when the additional maximization with respect to M is taken
into account. The peak mismatch without optimization was approximately 8.8%, 4.5% or
2.2%, depending on Mωm. With mass optimization we instead findMFF < 3.2%, 2.0%
and 1.5%, respectively. The relative bias in the total mass, (M̄ −M)/M , is always less than
0.8% and the earlier the matching is performed the smaller the bias becomes.

A subsequent question that has not been answered so far is to what extent further
optimizations, say along the symmetric mass-ratio and the spin(s) of the model system,
improve the agreement between the waveform families even more. Full fitting factor
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Figure 4.12: Mismatch between TaylorT1- and TaylorF2-based waveforms for mass ratio 4:1, χ = 0.5 and
matching frequency Mωm = 0.06 (left panel). The mismatch is not optimized (top solid line), mass-optimized
(dashed line) or optimized with respect to all physical parameters of the TaylorF2-based model (lowest dotted
line). The bias in the parameters are provided on the right panel.

calculations are commonly used to compare waveform models (see, e.g., [58, 82]), but
they have not been employed in the context of hybrid waveforms and studies of the
required length of numerical waveforms. Reference [102] only applied a crude estimation
of the effect an additional mass-ratio optimization has, and concluded that a (total) mass-
optimization alone serves as a sufficient assessment of the full fitting factor. We now find
that this conclusion was incorrect. We illustrate the effect of further optimizations through
the comparison of TaylorT1- and TaylorF2-based waveforms (matched at Mωm = 0.06)
in Fig. 4.12. The TaylorT1 target signal is fixed as a system with mass-ratio 4:1 and spin
χ = 0.5, a point in parameter space that clearly fails all accuracy requirements when
looking at Fig. 4.9. By maximizing with respect to M , however, the maximal mismatch
drops from 32.2% to 10.4%. Varying all three considered physical parameters finally yields
a curve withMFF ≈ 1.6% at maximum, making the TaylorF2-based family accurate enough
for detection. The relative bias in the parameters are less than 1% for M , of the order of
1% for η and ® 10% for χ .

Note that a faithfulness analysis, as in Sec. 4.4 and [45, 128], would conclude that
NR waveforms with many hundreds of cycles are necessary to produce hybrids (and
consequently waveform models) that are sufficient for parameter estimation purposes.
Here we see that waveforms that we might at first sight regard as far too inaccurate, in fact
may yield relatively small parameter biases when embedded in a waveform family.

After this insightful study of a selected example, let us extend our analysis to a set of
target waveforms, distributed in parameter space. The optimization algorithm with respect
to physical parameters is computationally more challenging than maximizing the inner
product with respect to t0 and φ0 only. For each set of test parameters (η,χ) we have to
construct a new waveform. Since TaylorF2 is an analytical closed-form PN description that
is fast to evaluate and our matching to the phenomenological model is performed directly
in Fourier space [162] we only consider TaylorF2 hybrids as test waveforms h1. For the
fixed target waveforms h2 we chose to employ the TaylorT1 approximant, because it was
shown in Sec. 3.2 and [104] that its (dis)agreement to premerger NR data is most robust
over the considered parameter space and [45] noted that a maximal uncertainty estimate
involves comparing to TaylorT1 inspirals.
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Figure 4.13: The maximum of the optimized mis-
match (in %) for hybrids constructed either with
TaylorT1 (target signal) or TaylorF2 (template sig-
nal) and a matching frequency of Mωm = 0.06.

Starting with equal parameters λ′ = λ, we search for the nearest local maximum of the
overlap O (h1, h2) by varying λ′ along the gradient of the overlap. Thus, we ensure a quickly
converging improvement after a relatively small number of iterations. The results we
present, however, do not take into account the entire distribution of the ambiguity function
and are still only a lower bound on the fitting factor. Given the tremendous decrease in
mismatch for relatively small changes in physical parameters we argue nevertheless that
this local extremum should serve as a reasonable estimate of the error one has to assume
in terms of the fitting factor.

We repeat the exploration of the parameter space with a study similar to the one
presented in Fig. 4.9. The matching frequency is again fixed at Mωm = 0.06 and we
calculateMFF, Eq. (4.20), for masses 5M⊙ ≤ M ≤ 20M⊙. We checked that the mismatch
decreases towards the boundaries of this interval, so that the enclosed maximum can indeed
be regarded as the global extremum. After performing this maximization of the mismatch
with respect to M for fixed (η,χ), we present our results as a contour plot in Fig. 4.13.
The structure is very similar to the pattern of the nonoptimized mismatch, cf. the right
panel of Fig. 4.9. The obvious difference is, however, that calculating the detection-relevant
quantityMFF instead of the diagonal mismatch 1−A (λ,λ) results in numbers that are
∼ 10 times less than what was considered before as error estimates.

This allows for very different conclusions: Even a moderate matching frequency like
the one considered here leads to hybrids that are accurate enough for detection in a large
portion of the parameter space. Simulating NR waveforms with few (< 10) orbits should
hence be good enough for many applications considering systems with moderate spins and
mass-ratios. Although this is a very broad statement, it is clearly distinct from previous
analyses [45, 82, 128] that concluded much longer NR waveforms are needed to sensibly
connect them to standard PN approximants.

Of course, Fig. 4.13 only shows the optimal agreement between the two considered
waveform families and one might fear that the difference between simulated and recovered
parameters is large in some parts of the parameter space. However, as anticipated by
Fig. 4.12, the bias in total mass and symmetric mass-ratio are small, approximately ±1%
and ±1.5% at most, respectively. The spin parameter χ is uncertain by −0.15≤∆χ ≤ 0.05.
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Figure 4.14: The fully optimized mismatch
MFF as a function of the matching fre-
quency Mωm for equal-mass systems (solid
lines) and mass-ratio 4:1 (dashed lines).
The considered spins in each case are χ ∈
{0,0.2, 0.4,0.6, 0.8} from bottom to top.

A deeper analysis of these biases is beyond the scope of this paper and results are likely
more model-dependent than the general conclusions we present here.

For completeness, we note that for increasing values of the simulated spin, ∆η and ∆χ
generally decrease from positive to negative values, ∆M increases at the same time. This
correlation is expected from the form of the PN expansion, where modifications of M can be
compensated at lowest order by changing η inversely. Studies of PN approximants in [58]
show similar tendencies, although the biases reported there are considerably higher due to
the absence of a common NR part at high frequencies. The same holds for the comparison
of complete models (including uncertainties in the NR regime) [82]. The modeling biases
we find should be compared to statistical errors of full waveform families. In the case of the
nonspinning phenomenological model [15] a Fisher matrix study as well as Monte-Carlo
simulations were presented in [11], and the uncertainties found for Advanced LIGO and
signals of SNR 10 are ∆M/M ® 3% and ∆η/η ® 8% (M < 100M⊙). These values are of
the same order of magnitude as our results, and we take this as an indication that modeling
errors do not vastly dominate the parameter estimation uncertainty. However, a deeper
study of Fisher-matrix estimates in Sec. 4.6 shall rank the modeling errors properly.

4.5.3 Model accuracy for spinning systems

These new results constitute much brighter prospects for currently feasible NR simulations
than the conclusions drawn in Sec. 4.4 and [45, 82, 102, 128]. In certain parts of the
parameter space, however, the mismatch error presented in Fig. 4.13 is still too high,
particularly if one keeps in mind that gaining sensitivity of GW detectors is extremely
difficult on the hardware side and theoretical considerations should reduce this sensitivity
as little as possible [82]. Therefore, MFF > 3% for highly spinning systems should be
improved by considering lower matching frequencies. Equally important is the question of
whether numerical simulations for systems with moderate spins and mass ratios can be
considerably shorter than Mωm = 0.06 which we assumed so far.

In Fig. 4.14 we analyze the dependence of the mismatch error by showing the maximum
ofMFF as a function of Mωm. We consider equal masses and mass-ratio 4:1 with spins
χ ∈ {0,0.2,0.4,0.6,0.8} in each case. Note that we do not include negative values of χ
here, because the fact that the mismatch error for χ < 0 is smaller and not monotonic in
χ (see Fig. 4.13) is likely an artifact of our choice of PN approximants (recall the obvious
differences in Fig. 4.9). As expected, Fig. 4.14 illustrates that reducing the matching
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orbits equal-mass mass-ratio 4:1

5
1.5%: −0.76< χ < 0.60 3.0%: −0.95< χ < 0.55
0.5%: −0.37< χ < 0.31 1.5%: −0.52< χ < 0.39

10
1.5%: −1.00≤ χ < 0.70 3.0%: −1.00≤ χ < 0.68
0.5%: −0.45< χ < 0.39 1.5%: −0.56< χ < 0.48

20
0.5%: −0.97< χ < 0.57 3.0%: −1.00≤ χ < 0.79
0.2%: −0.28< χ < 0.22 1.5%: −0.92< χ < 0.55

Table 4.3: Range in spin parameter χ where a given accuracy requirement (MFF < 3%, 1.5%, 0.5% or 0.2%)
is fulfilled. Each row specifies the assumed number of orbits before merger for the NR waveform (= number of
GW cycles divided by 2).

frequency, e.g., from Mωm = 0.08 to Mωm = 0.02, leads to an improvement in mismatch
by a factor of 2 to 10, depending on the spin.

Larger values of the spin generally yield larger mismatches which in turn leads to
stronger requirements for Mωm, assuming a given accuracy goal. This is unfortunate
because the orbital hangup configuration of positive aligned spins decelerates the frequency
evolution in the inspiral of the binary, demanding even longer simulations for a given
frequency range.

As such extremely long NR waveforms may not be available in the near future (including
the Advanced LIGO era), we continue with a slightly different application of our results:
How reliable is a set of complete waveforms constructed with standard PN approximants
and NR simulations covering 5 (10, 20) orbits before merger (i.e., 10, 20 or 40 GW cycles
prior to the maximum of |h(t)|)? To quantify these uncertainties we have to combine
an estimate of the minimal matching frequency allowed by such NR waveforms with
the resulting mismatch error from Fig. 4.14. We calculate the first from the inverse
Fourier transform of the phenomenological model [162] and the time derivative of the
phase, Mωm ≈ |d arg h(tn)/dt|, where |arg(tn)| = |arg h(tmax)| − n2π (n = 10,20,40,
respectively), and tmax is the time of the maximum amplitude |h|. This spin- and η-
dependent value is then taken into the results presented with Fig. 4.14 to estimateMFF

for each configuration. Note that we use a more pessimistic error estimate for antialigned
spins (χ < 0) by assuming the mismatches of |χ| due to the reasons discussed above.

One kind of possible conclusion one can then draw is summarized in Table 4.3 for
equal masses and mass-ratio 4:1. Given an accuracy goal (which we take as either 3%,
1.5%, 0.5% or 0.2%) we provide the range of spins in which hybrids with the specified
number of NR orbits fulfill this goal. Note that the asymmetry in the spin parameter is
only caused by the different matching frequencies waveforms with constant length permit.
Again, we can very clearly see that even relatively short waveform are good enough for
detection. In fact, mismatches of 0.5% are below the noise level for SNR 10, and differences
of 0.2% are indistinguishable for SNR ® 16 according to (4.6). However, one can also see
from Table 4.3 that doubling the number of orbits does not enlarge the accuracy range
dramatically in many cases, although such simulations would take far more computer
power and time.
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Figure 4.15: The fully optimized mismatch
of nonspinning target signals employing either
the TaylorT1 or TaylorT4 approximant with
model waveforms constructed with TaylorF2 in-
spirals. The assumed matching frequency is
always Mωm = 0.06. The bias in parameters
is |∆M |/M ® 0.6% (0.16%), |∆η|/η ® 1.0%
(0.3%), |∆χ|< 0.04 (0.017), where the values
in brackets indicate the restriction to q ≤ 4.

4.5.4 Nonspinning unequal-mass systems

So far, we refrained from explicitly calculating mismatches for mass-ratios > 4:1 here
because our underlying phenomenological model was only calibrated to numerical simula-
tions with mass-ratios ≤ 4:1. Pushing the model beyond these values would add another
uncertainty in addition to the way we estimate PN errors already, and more elaborate
studies (possible including different models such as [16] and variants of EOBNR) are
needed to reach sound conclusions.

Nevertheless, numerical simulations of higher mass ratios are potentially interesting,
and we shall try to estimate their reliability on the basis of our (extrapolated) knowledge
here. We restrict this study, however, to nonspinning target signals. These are the systems
where we do not expect the PN errors to drop significantly on the timescale of Advanced
LIGO (in contrast to spinning binaries, where higher-order PN terms may well be calculated
in the next few years). We find that the agreement between TaylorT1- and TaylorF2-based
hybrids is exceptionally good along χ = 0 (see Figs. 4.13 and 4.15). In contrast, the
TaylorT4/TaylorF2 uncertainty increases towards higher mass-ratios (smaller values of η)
as we would expect from the form of the PN expansion. Therefore, we shall conservatively
base our statements on comparing TaylorT4 and F2 approximants in this section.

To illustrate our argument, we plot in Fig. 4.15 the maximum of the fully optimized (i.e.,
with respect to M , η and χ) mismatches between TaylorF2 and either TaylorT1 or TaylorT4
hybrids, all matched to fictitious NR data at Mωm = 0.06. The fixed target parameters
are chosen as χ = 0 with the mass ratio q varying from 1 to 4 in steps of 0.5 as well
as q = 10 and q = 20. While the comparison with TaylorT1 yields weakly η-dependent
mismatches below 0.3%, TaylorT4 target signals exhibit a steeply increasing divergence
from the model signals towards higher mass ratios. Its approximately exponential behavior
is well described by the following fitting formula

log10MFF ≈ −0.29− 14.1η (4.22)

which is included as a straight line in Fig. 4.15. A conservative estimate of the general
model uncertainty would be the maximum of both data series for each η, i.e., (4.22) for
small η and roughly constantMFF ≈ 0.12% for η > 0.1866 (q < 3).

Evidently, a matching frequency of Mωm = 0.06 is only good enough for η > 0.081
(q < 10.2) if a mismatch of at most 3% is tolerated. Again, reducing the matching frequency
helps to increase the accuracy of the final waveform, and we systematically analyze how
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orbits mass ratio q = 20

5
3.0%: q < 8.9 maxMMFF ≈ 15% (19M⊙)
1.5%: q < 6.8 21M⊙ : 12%, 63M⊙ : 0.3%

10
3.0%: q < 11.4 maxMMFF ≈ 8.2% (13M⊙)
1.5%: q < 8.6 21M⊙ : 3.0%, 63M⊙ : 1.6× 10−5

20
3.0%: q < 14.8 maxMMFF ≈ 5.7% (11M⊙)
1.5%: q < 10.7 21M⊙ : 0.8%, 63M⊙ : 6.4× 10−6

Table 4.4: Accuracy of nonspinning hybrid waveforms, based on combining PN TaylorT4 or TaylorF2 data
with NR waveforms of specified length (defined by the number of orbits before merge = number of GW cycles
divided by 2). Left column: Range in mass-ratio where a given accuracy requirement (maxMMFF < 3% or
1.5%) is fulfilled. Right column: Mismatch error for q = 20, both at maximum of all masses (location indicated
in parentheses) and at astrophysically motivated minimal values of the total mass (see text).

useful numerical simulations of 5, 10 or 20 orbits before merger are in the nonspinning
unequal-mass regime. For that, we calculate maxMMFF as a function of the matching
frequency and the symmetric mass ratio, similar to what was done for Fig. 4.14. The
matching frequency is then converted to orbits before merger as explained in the previous
section.

In Table 4.4 we present our results in analogy to Table 4.3, where we provided the range
of the spin parameter χ in which the waveform model meets certain accuracy requirements.
Now we complement the picture by restricting ourselves to the nonspinning case; our error
estimates are based on optimized TaylorT4/TaylorF2 hybrid mismatches, and we present
the accuracy range in terms of the mass ratio. Note that, although only five orbits of NR
data before merger are sufficient for detection for most of today’s standard simulations
(q ® 6), even the computationally very challenging goal of 20 orbits before merger is not
enough to reliably model mass ratios as high as 15 or more for arbitrary total masses of the
binary.

It should be pointed out, however, that we report the worst disagreement between
the considered hybrids in the left column of Table 4.4, i.e., we demand that the assumed
accuracy requirement is satisfied for all values of the total mass. As discussed in [45]
already, one should rather understand the mismatch error and the accuracy requirement as
functions of the total mass. After all, binaries with larger total mass have higher SNR in the
detector (for constant distance of the source). More important for us here is that some of
the considered astrophysical scenarios may not even exist or be extremely unlikely, and if
the modeling error exceeds accuracy thresholds in these regions, we do not have to bother.

We illustrate this argument with a concrete example: The (fictitious) waveform of
a binary with mass-ratio 20:1 exhibits the largest uncertainty at total masses less than
20M⊙, depending on the matching frequency (the values for NR simulations covering 5,
10 or 20 orbits before merger are given in parenthesis in the right column of Table 4.4).
If we only consider black holes as objects in the binary and follow observational [92] and
theoretical [33] evidence that their individual masses are > 3M⊙, then the lowest total
mass to consider in our error analysis is instead 63M⊙. With our idealized assumptions,
this is a regime where the mismatch drops monotonically with increasing total mass (due
to the dominating amount of exact high-frequency data), and the maximal uncertainty
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at 63M⊙ proves to be more than sufficient for detection purposes, even with only a few
NR orbits; see Table 4.4. In this sense, modeling higher mass-ratios is more accurate than
comparable masses, as [45] noted already for diagonal (nonoptimized) mismatches.

One the other hand, one could argue that the smaller object in the 20:1-binary could
also be a neutron star. If the companion is a much heavier black hole, tidal effects are
extremely weak [146] and the plunge is hardly affected from finite size effects of the
neutron star [169]. Thus, we may hope to accurately capture these systems with a binary-
BH template family as well, and smaller total masses have to be considered. According
to [97], (proto)neutron stars are expected to have masses > 1M⊙, which is in agreement
with current observations (see [120] for an overview). Assuming the lower bound of 1M⊙
for the mass of a single compact object, we consequently have to consider total masses
down to 21M⊙ (for q = 20) which leads to higher modeling uncertainties in the waveform.
However, as Table 4.4 shows, 10 NR orbits before merger would be virtually good enough
for detection purposes, 20 orbits already yield a mismatch of only 0.8% at 21M⊙. Hence,
even the theoretically and numerically difficult unequal-mass regime may well be modeled
with only a few NR orbits, given the astrophysical expected properties of such systems.

Of course, these astrophysical limitations are highly uncertain, and the conservative
error analyses are the ones presented in Table 4.3 and the left column of Table 4.4. However,
given that caveat, we conclude that currently feasible numerical simulations are potentially
good enough to model in combination with PN approximants an important fraction of the
parameter space.

4.6 Fisher-matrix estimates

4.6.1 Relation to previously used error measures

The issues we have addressed particularly in Sec. 4.5 can be summarized in the following
way: Given two waveform families h1(λ) and h2(λ), where λ is the vector of parameters
characterizing the waveforms, we have estimated how different the waveforms are if they
were constructed from slightly different ingredients. These uncertainties were quantified by
either the distance ‖h1(λ)− h2(λ)‖2 or equivalently the mismatchM

�
h1(λ), h2(λ)

�
. The

conclusion that the PN errors heavily dominate the error budget was put into perspective by
considering fully optimized mismatches minλ′M

�
h1(λ), h2(λ

′)
�

that lead to considerably
smaller differences of the waveform families at the cost of an additional uncertainty in the
parameters, denoted by ∆λ.

How do we interpret such parameter ambiguities? In the case of waveform errors, we
had the well-defined criteria (4.4) and (4.6) that told us if a particular model uncertainty
is below the noise level so that we do not have to worry about it. The equivalent question
to ask for the accuracy of the model parameters is how their determination is corrupted
by the presence of noise, and how these noise-induced uncertainties compare to the
model-induced errors we found in Secs. 4.5.3 and 4.5.4.

To answer these questions in detail, we would need to employ proper parameter-
estimation algorithms and run GW searches with many realizations of the noise and various
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injected sources. This is beyond the scope of this thesis, and we shall instead restrict
ourselves to semi-analytical estimates within the Fisher-matrix formalism. This approach
gives a trustworthy estimate of the ability to determine physical parameters only for loud
enough signals, i.e., if the SNR is high enough, or if the waveform depends linearly on its
parameters, which is clearly not the case for the waveforms we consider. Nevertheless, the
order of magnitude we shall find in this approach will give us valuable hints on how to
range noise-induced and model-induced parameter biases.

Let us first re-derive some well-known results to give a coherent picture of the error
measures we use here. We denote the measured signal stream by s and assume it consists
of some noise realization n and the signal h(λ),

s = n+ h(λ) . (4.23)

We assume the search to be conducted with an ideal waveform family h(λ′) that includes
the true signal at λ′ = λ. The likelihood ratio reads

Λ =
p
�
s|h(λ′)

�

p(s|0) =
e−〈s−h(λ′),s−h(λ′)〉/2

e−〈s,s〉/2
, (4.24)

lnΛ = −
1

2



s− h(λ′), s− h(λ′)

�
+

1

2



s, s
�

(4.25)

=


s, h(λ′)

�
−

1

2
‖h(λ′)‖2 . (4.26)

With (4.23) we trivially find


s, h(λ′)

�
=


h(λ), h(λ′)

�
+


n, h(λ′)

�
, (4.27)

which shows immediately the impact a particular noise realization n has on the likelihood
ratio. Since n has zero mean, however, the ensemble mean



n, h(λ′)

�
over many noise

realizations vanishes as well, and we find the statistical expectation value of the inner
product



s, h(λ′)

�
to coincide with the expectation value of



h(λ), h(λ′)

�
. (For the sake of

readability, we shall omit the overline and understand the inner products in the following
as their ensemble means.)

A simple way to see how the Fisher matrix Γi j is related to the likelihood ratio is to
expand h(λ′) in terms of ∆λ= (λ′−λ):

lnΛ =


h(λ), h(λ′)

�
−

1

2
‖h(λ′)‖2 (4.28)

≈


h(λ), h(λ)

�
+


h(λ),∂ih(λ)

�
∆λi −

1

2
‖h(λ′)‖2 (4.29)

where we understand

∂ih(λ) =
∂ h(λ′)

∂ λ′ i

�
�
�
�
λ′=λ

. (4.30)

Expanding the last term of (4.29) in a similar way yields

‖h(λ′)‖2 =
¬

h(λ) +∆λi∂ih(λ) + . . . , h(λ) +∆λ j∂ jh(λ) + . . .
¶

≈ ‖h(λ)‖2+ 2


h(λ),∂ih(λ)

�
∆λi +



∂ih(λ),∂ jh(λ)

�

︸ ︷︷ ︸

=Γi j

∆λi∆λ j . (4.31)
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Finally, by inserting (4.31) in (4.29) we find that the second terms cancel each other, and
we are left with

lnΛ ≈
1

2

�

‖h(λ)‖2−Γi j∆λ
i∆λ j

�

, (4.32)

which corresponds to a Gaussian likelihood ratio centered around ∆λ = 0 ⇔ λ′ = λ.
The often used “1-σ” deviation is satisfied along the n− 1 dimensional ellipse (n is the
dimension of λ) where the likelihood is dropped by a factor of

p
e, hence

lnΛ
�
�
�
1-σ
=
‖h(λ)‖2

2
−

1

2
⇒ Γi j∆λ

i∆λ j = 1 . (4.33)

The 1-σ error in the parameters can be read off the correlation matrix Γ−1
i j simply through

∆λi =
Æ

Γ−1
ii . (4.34)

Another interesting aspect of (4.33) is that it is related to the indistinguishability
criterion introduced in Eq. (4.4). In fact, one way to derive this criterion is based on the
conclusions we shall present in the following. From the definition of Λ (4.25) we find that
it can be rewritten as

lnΛ = −
1

2



n+ h(λ)− h(λ′), n+ h(λ)− h(λ′)

�
+

1

2



n+ h(λ), n+ h(λ)

�
(4.35)

= −
1

2
‖h(λ)− h(λ′)‖2+



n, h(λ′)

�
+

1

2
‖h(λ)‖2 , (4.36)

which, again, can be reduced in the ensemble mean over many noise realizations to

lnΛ =
1

2

�

‖h(λ)‖2−‖h(λ)− h(λ′)‖2
�

. (4.37)

By comparing (4.37) with (4.32) we find

Γi j∆λ
i∆λ j = ‖h(λ)− h(λ′)‖2 , (4.38)

hence the 1-σ requirement (4.33) becomes equivalent to

(4.33) ⇔ ‖h(λ)− h(λ′)‖2 = 1 . (4.39)

In other words: the difference in λ that barely makes the waveforms distinguishable is
an estimate of how well the parameters can be measured in the presence of noise. This
is very intuitive, as we can only tell the difference in parameters if the waveforms can be
distinguished from another. With that interpretation in mind, we should be able to easily
relate our modeling errors and biases to Fisher matrix estimates.

4.6.2 Results for full binary-black-hole waveforms

In this section, we shall apply the equations derived in the previous section to full waveforms
of coalescing BBHs. We are not concerned with a new calculation of the ambiguity of the
waveform model here. On the contrary, we neglect these systematic errors for a moment
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Figure 4.16: Comparison of mismatches and Fisher-
matrix approach for a nonspinning q = 3, 20M⊙ binary.
The blue lines are the mismatch contours of the 1-σ
threshold for SNR 10 (inner ellipse) and forM = 10%,
the dashed red lines show the corresponding Fisher-
matrix estimates. The background color code illustrates
the value of the mismatch between 34% (yellow) and
0 (violet).

and only determine the statistical errors caused by fact that different physical scenarios
may display differences in their GW signals that are too weak to be detected above the
noise level. We are therefore free to work with one GW model only, and we chose again
the phenomenological model by Santamaría et al. [162] introduced in Sec. 3.5.2.

First, let us do a sanity check that the results derived before are applicable in our case.
From (4.28), (4.32) and (4.38), and additionally assuming ‖h(λ)‖ = ‖h(λ′)‖ = ρ, we
conclude

M
�

h(λ), h(λ′)
�
≈
Γi j∆λ

i∆λ j

2ρ2 . (4.40)

The two main assumptions that lead to this result are

1. we consider the ensemble mean over many noise realizations, and
2. h(λ′) can be represented by its first-order Taylor expansion in the differences of the

parameters.

While the first is always assumed implicitly throughout this thesis (we never deal with
a particular noise realization), we can check the second assumption by calculation both
sides of (4.40) independently. As an example, we consider the subfamily of nonspinning
waveforms and chose for λ the parameters M = 20M⊙, η= 0.1875 (q = 3), t0 = 0= φ0.
The results do not depend on the particular values of t0 and φ0; it is, however, crucial to
take their variation into account.

We now calculate the 4-dimensional Fisher matrix for SNR 10, although the final
comparison we aim at is independent of the SNR due to the scaling in (4.40). The
mismatches we obtain are optimized with respect to t0 and φ0, so we have to take the
minimum with respect to ∆t0 and ∆φ0 in the quadratic form Γi j∆λ

i∆λ j, too. We do
this simply through a numerical root-finding algorithm and then overlay the results with
mismatches obtained with our standard overlap routine. As we see in Fig. 4.16, the first-
order expansion accurately predicts the error ellipses around the true value, if the parameter
deviations are not too large. In particular, the 1-σ (or distinguishability) threshold for SNR
10,M = 1/(2× 102) = 0.5%, is well represented in the Fisher-matrix approach, whereas
the disagreement betweenM and Γi j∆λ

i∆λ j can become much more pronounced for
considerably higher values of the mismatch. As we are only interested in the 1-σ errors
of the parameters here (for SNR ≥ 10), we conclude that in our case the Fisher-matrix
errors (4.34) are a meaningful measure of the statistical uncertainty in the determination
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q χ
M

M⊙

∆Mn

M
[%]

∆Mm

M
[%]

∆ηn

η
[%]

∆ηm

η
[%] ∆χn ∆χm

1 0.0 10 2.97 0.14 4.95 -0.34 0.039 -0.026
1 0.0 20 2.71 0.24 5.05 -0.10 0.033 -0.004
1 0.0 50 4.19 0.13 5.57 0.01 0.097 0.000
1 0.5 10 2.58 0.31 4.32 -0.78 0.022 -0.072
1 0.5 20 2.31 0.60 4.33 -0.21 0.033 -0.009
1 0.5 50 3.84 0.33 5.20 0.01 0.078 0.000
1 0.8 10 2.77 0.51 4.69 -1.14 0.022 -0.099
1 0.8 20 3.22 0.82 5.88 0.00 0.041 0.000
1 0.8 50 4.00 0.40 5.48 1.57 0.064 0.031
4 0.0 10 2.03 0.09 3.27 -0.17 0.031 -0.011
4 0.0 20 2.89 0.15 4.34 -0.05 0.057 -0.002
4 0.0 50 3.33 0.10 7.24 0.04 0.056 0.000
4 0.5 10 1.95 0.46 3.16 -1.02 0.018 -0.062
4 0.5 20 2.79 0.56 4.17 -0.17 0.041 -0.006
4 0.5 50 3.26 0.31 6.63 1.73 0.049 0.021
4 0.8 10 2.11 0.65 3.44 -1.29 0.012 -0.077
4 0.8 20 3.11 0.78 4.70 -0.06 0.029 -0.002
4 0.8 50 3.80 0.37 5.81 2.82 0.047 0.030

Table 4.5: The noise-induced parameter errors ∆λn at SNR 10 in comparison with the model-induced
parameter uncertainties ∆λm (where λ is total mass M , symmetric mass-ratio η or spin χ , successively). The
first three columns indicate the considered binary system.

of physical parameters.

We thus proceed with comparing the noise-related uncertainties, which from now on
we denote by ∆λn, with the model-induced uncertainties ∆λm. The latter are taken from
the calculations we detailed in Sec. 4.5. In particular, we compare TaylorF2 hybrids with
TaylorT1 target signals, each family matched to fictitious NR data at Mωm = 0.06 (cf.
Fig. 4.13). The deviation of the search parameters that yield the best match with the model
waveform (with fixed parameters) defines ∆λm. In contrast, the statistical 1-σ errors ∆λn

are calculated via (4.34) with the phenomenological model [162] that is characterized by
λ = (t0,φ0, M ,η,χ). We checked that the inversion of the 5-dimensional Fisher matrix
is accurate to 10−9, i.e., ΓΓ−1 and Γ−1Γ do not deviate from identity more than 10−9 in
every component.

Our aim is not to present an exhaustive study of the parameter measurability throughout
the entire parameter space, we merely want to relate our previously found ∆λm to Fisher-
matrix estimates. We therefore find it sufficient to present a few examples in Table 4.5
that bracket the parameter region in which we would trust our underlying model. Again,
we refrain from considering negative spin parameters, as ∆λm is possibly underestimated
with our approach in this region (see the discussion of Fig 4.14). Similarly, considering
systems with even higher total masses is generally interesting, but the effect of model
uncertainties is reduced dramatically towards higher masses, so we shall leave this analysis
to a dedicated study of statistical errors.

Nevertheless, interesting conclusions can be drawn from Table 4.5. Statistical errors
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Figure 4.17: The 1-σ error ellipses of a GW from a
M = 20M⊙, q = 4, χ = 0.5 system with SNR 10 (outer
ellipse) and 20 (inner ellipse). Apart from M and η,
the search also includes the model parameters t0, φ0

and χ , and the curves are obtained by minimizing the
waveform distance with respect to those parameters.
The modeling bias is adopted from the analysis around
Fig. 4.12.
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mostly rise towards higher total masses, suggesting that the ability to accurately extract the
physical parameters of a detection is decreased. This might be expected from the simple fact
that as M increases, the number of GW cycles in the detector band decreases, which means
that less information exceeds the noise level. Higher mass ratios, on the other hand, do not
seem to diminish our ability to identify the parameters of the system. The most interesting
observation we can make in Table 4.5 is, however, that for the parameters M and η the
noise-induced errors at SNR 10 are in all cases much greater than the modeling errors. As
∆λn simply scales with the SNR, we can elaborate on these numbers and conclude that,
in fact, when ξ = |∆λn/∆λm| in Table 4.5, then only at an SNR of 10× ξ the modeling
errors exceed the noise-induced uncertainties. For M and η we find ξ between 3 and
20 in the majority of cases, i.e., only at SNRs greater than 30 up to 200 the modeling
uncertainty becomes the dominating source of error. This does not generally hold for the
spin parameter χ as it affects the waveforms least in the inspiral part, hence rather large
modeling errors are reported in Table 4.5 for 10M⊙ systems.

From a waveform modeling point of view, these results are very positive, as they seem
to suggest that the parameter biases caused by model ambiguities are in many cases below
the noise confusion and thus negligible. However, this is not equivalent to saying that
model uncertainties do not lead to an additional loss of information, mainly because the
parameter errors depend on the choice of parameters themselves.

Let us illustrate this point with a concrete example, and we chose a 20M⊙ system
with mass ratio 4 and spin parameter χ = 0.5. We learnt from Fig. 4.12 that a change
in parameters as small as ≈ 0.6% in the total mass M and −0.2% in the symmetric mass-
ratio η caused a drop of the mismatch between the waveforms from roughly 15% to 1%.
We would consequently expect that a single waveform family alone differs considerably
between the two sets of parameters obtained after the full mismatch optimization (a more
formal argument would relate the triangle inequality to mismatches, as we shall discuss in
Chapter 5). Why does Table 4.5 still indicate that the 1-σ errors are much larger than the
deviations just quoted?

The answer to this question is given in Fig. 4.17, where we plot the statistical error
ellipses as defined by (4.33) together with the model bias reported before. We can clearly
see that the parameter errors introduced by the ambiguous model are outside the 1-
σ ellipse, implying that an ideal search model would be able to distinguish the target
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parameter values from the red cross in Fig. 4.17. In that sense, the systematic errors
indeed exceed the statistical errors. If we are only interested in the determination of M and
η, however, we are anyway limited by the close degeneracy between these parameters
that leads to the elongated error ellipses in Fig. 4.17. From this point of view, the little
additional confusion from an uncertain model does not reduce our ability to measure M

and η very much.

The close degeneracy between M and η is well known, and using the chirp mass

Mc = Mη3/5 (4.41)

instead of the total mass partly cures this problem so that Mc can be determined much
more accurately than M . An alternative formulation of the fact illustrated in Fig. 4.17 is
therefore that model uncertainties only weakly compromise the measurement of M and η
but they considerably worsen our ability to determine, for instance, Mc .

4

4Yet another way of looking at the problem is to follow the strategy we employ for the fitting factor
optimization, where we first optimize over only {φ0, t0, M} before we perform a full optimization with respect
to all parameters. A 3-dimensional Fisher matrix calculation for our chosen system yields ∆M ≈ 0.1%, which
is much smaller than the deviation in M we have to accept to decrease the mismatch error of the waveform
families considerably.



Chapter 5

Conclusion and future prospects

5.1 Summary of our results

Predicting the GW signature of an inspiraling and merging BH binary in General Relativity
is inevitably associated with analytical or numerical approximations to the full theory, and
we have shown that both descriptions consistently predict the signal in their respective
range of validity. Hence, analytical and numerical waveforms can be matched during
the inspiral to construct a complete hybrid signal, and various methods to perform this
matching have been introduced, both in the time and the frequency domain.

However, we found that the agreement between PN and NR is not perfect and it varies
depending on the particular form of the PN approximant that is employed. Although both
TaylorT1 and TaylorT4 (with incomplete spin terms at 3 and 3.5PN order retained) perform
reasonably well over the parameter space of aligned spins and mass ratios less than 4, the
final complete waveform is subject to several errors that potentially affect GW searches
with such templates.

Here we estimated these errors by the distance between two approximate solutions for
each physical configuration. One after another, we varied an ingredient to the construction
of complete waveforms and found that the NR contribution as well as the hybridization
procedure lead to acceptable errors in the final signal. The PN-induced uncertainty, on the
other hand, turned out to clearly dominate the error budget, and we extensively analyzed
the difference of standard PN approximants that are connected at some matching frequency
to an NR-based merger and ringdown model.

We quantified these uncertainties by comparing the currently available 3.5PN (spinning
contributions up to 2.5PN) versions of TaylorT1, TaylorT4 and TaylorF2 approximants.
Introducing a simple algorithm that only requires amplitude information beyond the
matching frequency, we first confirmed previous studies [45, 102, 128] that found that
the mismatch error for fixed physical parameters greatly exceeds reasonable accuracy
requirements, assuming typical NR waveform lengths.

Instead of demanding extremely long numerical simulations to overcome this un-
certainty in the modeling process, we refined the understanding of the waveform error
by adopting the actual data analysis strategy of detecting an unknown signal in noise-
dominated interferometer data. In particular, assuming waveform families instead of

109
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individual waveforms naturally redefines the concept of distance by allowing physical
parameters to be varied in the mismatch calculation.

The results presented in Sec. 4.5 indicate that the GW signatures for many astrophys-
ically relevant systems can in fact be well modeled by straightforward combinations of
standard PN approximants and currently feasible NR simulations, covering ® 10 orbits
before merger. The accuracy has not yet reached a level such that detection and parameter
estimation errors are limited only by the detector noise for high SNR events, and the
intrinsic uncertainty of binary-BH models may exceed in some cases the anticipated devia-
tions caused by non-BHs, making it impossible to identify them as such. Nevertheless, the
reported disagreement among different models and biases in the parameters are certainly
tolerable for the first GW detections that are likely to have low SNRs (∼ 10). While this
is true for systems with moderate spins, one has to keep in mind that even our idealized
setting yields mismatch errors for high values of spins that are of the order of a few percent
and increasing for higher mass ratios. Reducing the matching frequency poses unrealistic
challenges for current NR codes, and either fundamentally different numerical approaches
or advances in PN are needed to fully control the entire parameter space.

While the next spin-contributions in PN theory may become available in the near future
to further improve the modeling of spinning systems (see the recent calculations of higher-
order spin-orbit contributions [40, 109, 136]), unequal-mass nonspinning contributions
at 4PN order are unlikely to be calculated with established techniques soon. However, as
we discussed for a binary with mass-ratio 20:1, astrophysical expectations are that such
systems only form with a high total mass, thereby reducing the impact of PN uncertainties.
Even for 20:1 binaries, our results suggest that NR simulations of less than 10 orbits are
sufficient.

In summary, we found that not single hybrid waveforms, but rather the embedding
in the waveform manifold, results in templates accurate enough for detection, even with
today’s limited number of NR orbits. The uncertainty in physical parameters we had to
accept for this tremendous increase in overlap is rather small, ∼ 1% in mass and symmetric
mass-ratio and ∼ 0.1 at most for the spin parameter χ . For nearly equal-mass systems, the
individual masses of the constituents are then only reliable to

∆mi

mi
≈
∆M

M
+

r

∆η

η
∼ 10% , (5.1)

and it has to be decided whether this is good enough for astrophysical studies.

5.2 Discussion and future work

5.2.1 Limits and possible extensions of our approach

Of course, our results rely on a number of assumptions that are reasonable in the range
where we apply them, but we shall collect and discuss their generalizations and limitations
below.

First of all, our analyses are meant to provide a general concept of how to deal with
modeling errors, instead of giving final answers. Especially, as we emphasized before, we do
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not address the question of how accurate a particular waveform model is. The statements
formulated here are based on selecting PN approximants that are compared with each
other, and our choices were made to illustrate the order of magnitude one generally has to
assume for our notion of error. This can be taken as a conservative estimate for all currently
exsisting combinations of analytical and numerical relativity, because even a remarkable
agreement in the overlapping region of both approaches does not necessarily diminish the
uncertainty of many ambiguous choices that enter the modeling of (up to thousands of) GW
cycles in the inspiral waveform. Nevertheless, one should keep in mind that a particular
PN (or EOB)+NR combination can be much closer to the real waveform than estimated
here, as well as the possibility that the PN ambiguity at consistent 3.5PN order generally
underestimates the true error in the signal description.

Two further essential assumptions should be noted: We separated both the error of
the hybridization procedure and any uncertainties beyond the matching frequency. Each
turned out to be negligible, but care has to be taken when generalizing this statement.
For instance, from Fig. 4.13 or Table 4.3 one might be tempted to conclude that actually
very short NR waveforms are enough for modeling equal-mass, hardly spinning systems.
This is certainly true from our results if the matching to PN can be done unambiguously.
However, if there are too few cycles to align PN and NR signals properly, different matching
procedures may lead to very different results. This aspect was not treated here as it can be
checked separately, and it should only affect the resulting waveform for very short (< 5
orbits) NR simulations.

The other key assumption, the presence of exact high-frequency data, implies another
important aspect to our results. Not only do we say that the error of the NR part of
the wave is negligible (an assumption that could easily be dropped if the NR mismatch
becomes significant) we also use waveform families that directly resemble PN/NR hybrids.
In other words, the additional error that is introduced in the phenomenological fitting and
interpolation process is not taken into account here. We merely state the fact here that in

principle PN+NR combinations constitute sufficiently accurate target waveforms for the
construction of template families.

An indication of how relevant these “interpolation errors” are is provided by the study
of Damour, Nagar and Trias [82] who compared an EOBNR model [77] with phenomeno-
logical models [15, 16, 162], showing that even the mismatches optimized over physical
parameters (excluding the spin) exceed 3% in some regions of the parameter space. At
first sight, this might be surprising as the hybrids used to construct the models should
be accurate enough for detection purposes (satisfying the 3% mismatch criterion). The
difference between the final model and hybrids is also reported to beM ® 2% (® 5% for
the PhenSpin model). It should be noted, however, that the triangle inequality reads

‖hmodel− hexact‖ ≤ ‖hmodel− hhybrid‖+ ‖hhybrid− hexact‖, (5.2)

which yields through the relation (4.5) and its assumptions

M (hmodel, hexact)≤
�p

M (hmodel, hhybrid) +
p

M (hhybrid, hexact)
�2

. (5.3)

Consequently, if the hybrids are accurate within, say, 2% mismatch and the model does
not deviate by more than 2% from the set of hybrids, the resulting total uncertainty can
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nevertheless only be bounded to 8%, which is far above the acceptable mismatch. It is
clear from this rough estimation and the results from [82] that the interpolation of the
final model has to be improved in the future, which can be done most easily by increasing
the number of (NR/hybrid) waveforms it is constructed from.

Our error assessment can be complemented in many other ways. One obvious, yet
involved extension is the completion of the parameter space by allowing arbitrary spin
orientations that cause additional precession dynamics. Some steps towards building such
hybrids have taken place already [47, 63, 142, 143, 166], but a deeper understanding
of the waveform structure has to be gained before an extensive error analysis like the
present one can be performed. Similarly, this study was restricted to the dominant spherical
harmonic mode as it is crucial to understand and quantify the errors here first. Nevertheless,
a final waveform model would have to include higher modes as well, and the algorithm we
presented should be easily adaptable to these cases.

Implementing more PN approximants and repeating our analysis with pairwise com-
parisons of various flavors of PN and EOB will help to fully understand the spread of
equivalent descriptions of the inspiral process. When more contributions to PN expansions
become available the present analysis has to be repeated, hopefully reflecting the enhanced
knowledge of the analytical approximation. This is especially true for spinning binaries,
where calculations of higher-order PN contributions are expected in the next few years.

Finally and most interestingly, one should address the question of what kind of physics
can be achieved given a certain performance of complete waveform models and, of course,
given real GW detections with the upcoming generation of interferometers. It will be
particularly important to analyze whether a certain disagreement between signal and
model can be entirely explained by model uncertainties or if possibly unknown physical
effects are the cause. This study serves as a first step to prepare for those kinds of questions.

5.2.2 Future gravitational waveform models and their applications

We want to conclude our work with some remarks about the possibly most urgent question
of the waveform modeling community: How well are we prepared for the upcoming era
of advanced detectors, and what needs to be done to improve the science output of GW
detections?

The results presented here indicate that the theoretical basis is rather well developed,
and waveform models are expected to advance steadily when more NR simulations become
available and higher analytical corrections are determined. Certainly, the first direct GW
detection will be a signal that clearly exceeds the detection threshold, and we will be able
to see it because of the incredible sensitivity of the next generation detectors, independently
of some remaining ambiguities in the employed signal templates. Considering the wealth
of thoroughly constructed waveform families, we should also be able to deduce whether a
detected signal satisfies our expectations of a compact-binary inspiral; and if so, we should
be able constrain the parameters of the source to some extent. The work presented here
provided some first estimates of the possible parameter accuracy if complete models are
used.

The practical implementation of our knowledge and any much deeper analysis of
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detected signals, however, still require some work to be done on the modeling and the
data-analysis side. For instance, it is not obvious which final waveform family should
ideally be used for the actual search. It has to be a well-understood balance of a simple and
efficient model that nevertheless captures all the relevant characteristics of the expected
signals throughout the parameter space.

Closely related is the question of how such models should be parameterized. The
nonspinning families commonly use the physical parameters total mass and symmetric
mass ratio to define the waveform. When the dominant effect of spins was added by
considering aligned-spin configurations, it was found that one additional spin parameter
is already sufficient to represent the entire family. The choice of this parameter relies
on close degeneracies between signals of different physical scenarios, and although the
mass-weighted total spin χ that is employed in the phenomenological models by Ajith
et al. [16] and Santamaría et al. [162] might not be the final and optimal choice (see a
different effective spin parameter in [10]), it shows the tendency for future representations
of waveform models. Particularly, dealing with arbitrary precessing spins is not only
challenging in the individual PN and NR descriptions, it will be of major importance to
first understand the dominant characteristics in the complete signature that can actually
be determined in a GW search (see, e.g., [51]). Neglecting other small contributions will
both simplify the model and allow for an efficient search that constrains already the most
important parameters. Work is underway to model precessing binaries with aligned-spin
waveforms [10], expressed in an adapted coordinate frame [47, 142, 143, 166].

Another part of the parameter space that we might not be able to simulate with the
same confidence are binaries with higher mass ratios (q > 10). The EOB description is an
elegant formulation tailored to model this regime accurately, too, but in contrast to the
comparable-mass regime we do note have the possibility to compare with a number of
independent calculations, for example from NR. However, we have argued in Sec. 4.5.4
that astrophysical expectations are such that we would only have to model relatively high
values of the total mass, which implies that rather short NR waveforms would be sufficient.
Developing efficient methods to routinely make such simulations would be an important
step to complement the parameter space we can model accurately.

Addressing the issues mentioned above will eventually help to identify the sources of
detected GWs more accurately. This will improve our understanding of the population
of compact binaries in the universe, the mass range they cover and the history of their
formation. Beyond these astrophysical applications, there are questions concerning the
fundaments of physics that could be answered, or constrained at least, by GW observations.
For instance, is General Relativity the correct theory also in the strong gravity regime? There
are tests proposed addressing this question that are based on a comparison of detected
waveforms with highly accurate predictions from the theory [22, 23, 84, 121, 122, 203].
As we have detailed here, the assumption of highly accurate template waveforms might not
be fulfilled with current models, simply because different, but equivalent approximations of
the theory may differ already enough to mask the small deviations from General Relativity
we would otherwise be able to measure.

Let us illustrate this last point with a concrete example. One generic test of deviations
from Einstein’s theory of gravitation is to test the PN expansion parameters, for example in
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3.5PN

2PN

0PN 1.5PN

1PN

Figure 5.1: Test of General Relativity sug-
gested in [22], applied to a TaylorT1+❙♣❊❈
hybrid waveform. Each PN coefficient of the
TaylorF2 phase was individually fitted (PN or-
der as indicated), and the resulting mass range
is illustrated in the plot. The width of the area
is determined by the 1-σ fitting errors of each
parameter. The true parameters are included
as a red cross, and the result does not seem to
be entirely consistent with General Relativity.

the TaylorF2 formulation (2.91). The test proposed by Arun et al. [22] assumes nonspinning
systems and instead of determining only the two masses in a search, a third parameter
corresponding to a PN coefficient is introduced as a free parameter to be determined in the
matched-filter process. Such a search is repeated for each PN coefficient, while the others
are given by the prediction of General Relativity, respectively. By overlaying the regions in
the m1-m2 space that every PN parameter permits, we can find inconsistencies with the
underlying theory.

As an illustration how much this test depends on the validity of PN predictions, we
construct a TaylorT1 hybrid with the ❙♣❊❈ equal-mass waveform [2, 165]. Obviously,
both descriptions are based on General Relativity. We then perform the test just described,
and for illustration purposes (and simplicity) we do not assume a particular detector but
determine the phase coefficients in multiple least-square fits. The frequency range we
use corresponds to the interval (10Hz, fLSO) for a binary with two 10M⊙-BHs. The result
is shown in Fig. 5.1 where we include the 1-σ fitting error as a shaded area for each
coefficient. As we see, the Newtonian-order coefficient and the 3.5PN-order coefficient are
consistent with the system we simulated, but the 1PN and 1.5PN terms exhibit small biases,
although they are well well determined. The 2PN contribution is far off the expected value.
We do not include the 2.5 and 3PN terms here as they include logarithmic contributions
that had to be treated separately. However, the conclusion we might be tempted to draw
from Fig. 5.1 is that the signal is inconsistent with General Relativity, which is clearly not
the case. With this very simplified example we do not mean to say that the proposed
test is ineffective, one simply may have to modify the expected relation between physical
parameters and expansion coefficients towards higher frequencies, as the optimal value is
not necessarily the one predicted by the stationary-phase PN treatment.

For these and other tests of General Relativity we clearly need much more accurate
models than currently exsisting, which brings us back to the requirement of hundreds of
NR orbits to make the hybrid as accurate as possible. In that case, on the other hand, the
NR uncertainty would most likely be the dominant source of error, and we have to carefully
take all these considerations into account when estimating the potential power of such
tests with GW data.

A similar caveat should be mentioned when, e.g., neutron stars are considered instead of
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BHs. If the equation of state of the nuclear matter affects the GW signature strongly enough,
we should in principle be able to extract it from GW observations by a discrimination from
binary-BH templates. Indeed, various studies for binary neutron stars [83, 111] and
BH-neutron-star binaries [146] address this question and conclude that particularly stiff
equations of state could be detected, provided that the signal is loud enough. We learnt
from the present study, however, that BH waveform models are still uncertain enough to
possibly spoil such a sensitive measurement, and this modeling error is not reduced with
increasing SNR of the signal.

We finally conclude that there are important issues to be resolved before we can take
advantage of all opportunities GW observations offer. However, waveform models have well
advanced within the last years, and this thesis provided an assessment of the current state
of the art, but also developed a general framework of how to combine information both
from analytical and numerical approximations and evaluate their accuracy. Taking these
insights into account will be of great assistance in future developments and, eventually, the
interpretation of GW data.
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