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ABSTRACT

We present the implementation of an implicit—explicit (IMEX) Runge—Kutta numerical scheme
for general relativistic (GR) hydrodynamics coupled to an optically thick radiation field
in two existing GR-(magneto)hydrodynamics codes. We argue that the necessity of such
an improvement arises naturally in most astrophysically relevant regimes where the optical
thickness is high as the equations become stiff. By performing several simple 1D tests, we
verify the codes’ new ability to deal with this stiffness and show consistency. Then, still in one
spatial dimension, we compute a luminosity versus accretion rate diagram for the set-up of
spherical accretion on to a Schwarzschild black hole and find good agreement with previous
work which included more radiation processes than we currently have available. Lastly, we
revisit the supersonic Bondi—-Hoyle-Lyttleton (BHL) accretion in two dimensions where we
can now present simulations of realistic temperatures, down to 7 ~ 10° K or less. Here we find
that radiation pressure plays an important role, but also that these highly dynamical set-ups
push our approximate treatment towards the limit of physical applicability. The main features
of radiation hydrodynamics BHL flows manifest as (i) an effective adiabatic index approaching
yeit ~ 4/3; (ii) accretion rates two orders of magnitude lower than without radiation pressure,
but still super-Eddington; (iii) luminosity estimates around the Eddington limit, hence with
an overall radiative efficiency as small as nz3. ~ 1072; (iv) strong departures from thermal
equilibrium in shocked regions; (v) no appearance of the flip-flop instability. We conclude
that the current optically thick approximation to the radiation transfer does give physically
substantial improvements over the pure hydro also in set-ups departing from equilibrium, and,
once accompanied by an optically thin treatment, is likely to provide a fundamental tool for
investigating accretion flows in a large variety of astrophysical systems.

Key words: accretion, accretion discs — black hole physics — radiative transfer — methods:
numerical.

1 INTRODUCTION

The field of numerical relativistic hydrodynamics has recently seen much progress in treating astrophysical systems under more and more
realistic conditions. Because of the large computational costs involved, the inclusion of multidimensional general relativistic radiation
hydrodynamics (GR-RHD) has been postponed for a long time, with the remarkable exception of neutrino transport in the context of
supernova simulations (see Lentz et al. 2012 and references therein). However, due to the increasing power of supercomputers, the situation
has started changing significantly in the last few years, and the inclusion of a photon field is no longer regarded as a remote possibility.

This delay has, however, not been due to the fact that dynamical radiation fields are not regarded as a main ingredient, rather it is the
inherent difficulty of solving the radiation transfer equation.! The cooling time-scales of a dynamical fluid may easily vary over several
orders of magnitude within the computational domain. This then leads to characteristic propagation speeds for the photons in optically thin
regions that are much higher than the coupled fluid/photon speeds in optically thick regions. Not only are time-scales vastly different, but also
additional spatial resolution is required whenever the coupling to the photon field induces small-scale instabilities and turbulence. In addition,

*E-mail: croedig@aei.mpg.de
I See Pomraning (1973) and Mihalas & Mihalas (1984) for a comprehensive treatment of RHD and Schweizer (1988) for the extension to the relativistic case.
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surfaces of astrophysical structures are typically not in local thermal equilibrium (LTE) and can cool very efficiently, usually on much shorter
time-scales than the dynamical ones. This problem becomes particularly severe when performing global simulations of astrophysical systems
in which the principal force is gravity. In these cases, first the spatial domain must be large enough to contain the entire astrophysical structure
and secondly, it needs to resolve the influence of gravity.?

Any such multiscale problem is numerically extremely costly and it is thus important to formulate efficient algorithms that include at least
a leading order approximation to the various physics while still remaining computationally affordable. One of the most successful strategies
was, and still is, represented by the so-called projected symmetric trace-free (PSTF) moment formalism introduced by Thorne (1981). By
defining moments of the radiation field similarly to how density, momentum and pressure of a fluid are defined as velocity moments of the
corresponding distribution function, such a formalism provides an accurate, though still reasonably cheap, approximation to the solution of
the radiation transfer equations. This approach is particularly appealing in the case of an optically thick medium, characterized by a strong
coupling between matter and radiation. Farris et al. (2008) were first to undertake the implementation of the corresponding RHD equations in
a GR framework. A further step has been taken by Shibata et al. (2011), who adopted the variable Eddington factor approach of Levermore
(1984) to solve the relativistic RHD equations both in the optically thin and in the optically thick limit. This represents a significant progress
with respect to simplified treatments, where effective cooling functions are introduced.

In spite of all this progress, major numerical difficulties still prevent the application of such schemes to realistic astrophysical systems;
one of them being the presence of stift source terms. For example, in Zanotti et al. (2011, hereafter Paper I), after implementing and testing
the framework suggested by Farris et al. (2008), we studied the Bondi—-Hoyle—Lyttleton (BHL) accretion flow on to a black hole, but we could
only treat unrealistically high fluid temperatures of the order of ~10° K or above. Though simplified, the BHL flow can effectively help our
understanding of those compact sources accreting matter with a reduced amount of angular momentum, and is currently applied to the study
of both high-mass X-ray binaries (Hadrava & Cechura 2012) and of the merging of supermassive black hole binaries (see Pfeiffer 2012 and
references therein).

In this paper, we address the problem of treating the optically thick regime compatible with the conservative formulation used in Eulerian
GR magnetohydrodynamic (MHD) codes, while at the same time coping with the stiffness of the source terms. As a stiff solver, we choose
the implicit-explicit (IMEX) scheme by Pareschi & Russo (2005), implement it in both whisky? and EcHo,* and test the codes against each
other. As the two codes contain internal differences, such as scheduling and general infrastructure, it is very useful to validate both of them
at this stage, even though the main part of the simulations shown in this paper is performed with EcHo because of its spherical, non-uniform
grid.’

This paper is organized as follows. In Section 2, we describe the treatment of the radiation stiff source terms. We detail an IMEX
Runge—Kutta (RK) scheme as our time integration stiff solver. Section 3 presents the verification of our new scheme through a selected sample
of stiff shock-tube problems. Turning towards astrophysical applications, we first present in Section 4 the results for spherical accretion in a
regime that was constructed to be particularly challenging for the numerics. We also present a physical Michel solution and compare it with
previous results. Abandoning spherical symmetry, we devote Section 5 to the study of the RHD of BHL accretion in two dimensions. Finally,
in Section 6 we offer a brief summary and our conclusions.

Throughout the paper, we set the speed of light ¢ = 1, and the gravitational constant G to a pure number. We extend the geometric units
by setting m,/kg = 1, where m, is the mass of the proton and kg is the Boltzmann constant. However, we have maintained ¢, G and kg in
an explicit form in those expressions of particular physical interest. We refer the interested reader to appendix A of Paper I for the system of
extended geometrized units.

2 RADIATION HYDRODYNAMICS IN THE STIFF REGIME

2.1 Formulation of the GR-RHD equations

In this section, we first review the set of equations that we use to approximate GR-RHD in the diffusion limit, as derived in Farris et al.
(2008) and already implemented and verified in Paper 1. The properties of the fluid immersed in the radiation field are described by the
momentum-energy tensor, which is given by

T T 4 b, (1
and comprises a matter contribution

T = phu®uf 4 Pg®” (2)
and a radiation contribution

T = %/IUN"‘Nﬁdv de, 3

2 A complementary approach, which is not covered here, is to model not a global system, but only a small, representative region, e.g. a shearing box.
3 www.whiskycode.org

4 Del Zanna et al. (2007).

5 wHisKy uses Cartesian adaptive mesh refinement, which is less suited for spherical models.
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where g* is the metric of the space—time, u“ is the four-velocity of the fluid, p, h = 1 + € + P/p, € and P are the rest-mass density, the
specific enthalpy, the specific internal energy and the thermal pressure, respectively, while I, = I, (x%, N’, v) is the specific intensity of the
radiation. We note that N defines the propagation direction of the photon with frequency v, while d2 is the infinitesimal solid angle around
N“. All of these quantities are measured in the comoving frame of the fluid. The thermal pressure is related to p and € through an equation
of state (EoS), which we take to be that of the ideal gas, with constant adiabatic index y, i.e.

P =pe(y —1). 4

In terms of the moments of the radiation field (Thorne 1981), the radiation energy-momentum tensor T can be rewritten as (Hsieh & Spiegel
1976)

T = (E; + Pouu? + F*uf +u*FF + Pg*, 5)

where E, and P, are the radiation energy density and pressure, respectively. We make the additional assumption that the radiation field is
approximately isotropic, in the sense that P, = E,/3, while the radiation flux is not constrained to zero, but is allowed to take small values
such that F!/E, < 1. Thus, the equations governing the evolution of the system are

Va(ou®) =0, (6)
v, T% =0, @)
V, T = -G, (8)

where G¢ = G¥(I, x', x*), called the radiation four-force density, depends on the specific intensity and on the opacities of the matter

interaction. As in Paper I, we drop all frequency dependencies and allow for small deviations from LTE. We consider bremsstrahlung and

Thomson scattering (i.e. x' and x*) as processes of absorption and scattering. Using the Planck function, B, it is then possible to write the

radiation four-force in covariant form as (Farris et al. 2008)

Gy = X'(E; — 4mBu® + (x' + xF . ®

In equation (9) we have introduced the equilibrium blackbody intensity 471B = a,,q Tt{‘uid, where Tp,iq is the temperature of the fluid and a,,q

is the radiation constant. We estimate the temperature from the ideal-gas EoS via the expression
my, P

Thia = — —,

kg p

where kg is the Boltzmann constant and m,, is the rest mass of the proton. We stress that the method allows for deviations from thermal

equilibrium, namely with E; # 47tB. As shown in Paper I, after adopting the 3 + 1 split of space—time (Arnowitt, Deser & Misner 1962) the

GR-RHD equations can be written in conservative form as

10)

U+ F =8, an
where the vector of conserved variables U and the fluxes F' are given by
D [ av'D—B'D
S aW'; = B'S,
U=Vs| U |, Fi=ys| oS -BU || (12)
U, aSi — BiU,
(50, ] a(Re); = B(S),

while the sources are

_ 0 -
LaWkd vy + S;0;8" — Ud o + a(Gy),
S=x | sWEBId %y + Wi/0,; B — 8700 + o*G! | . (13)
LR*BID i + (R0, 8 — SI0,a — a>G!

L %aRl{kanik + (80,8 — Udja — a(G,); |
We note that o, 8 and ¥ are the lapse, the shift and the determinant of the spatial metric, while v and I are the three-velocity and the Lorentz
factor of the fluid with respect to the Eulerian observer, respectively. In equations (12) and (13) several more terms have been defined, which

we report below for completeness (cf. Paper I for more details):

W4 = phT*v! v/ + P ", (14)
S' = phI', (15)
U= phl'> — P, (16)
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4 o S .

RV = 5ErI'zv’vf +T (flv/ + fv') + P, (17)

i 4 2.0 i i

S =3B 4T (aFV + £, (18)
4 E,

U = ~EI?+2TF — =*, 19
3 3

i F} i f!

pre_uf _uk (20)

o — Biv' o

2.2 Description of the IMEX scheme for radiation hydrodynamics

2.2.1 General concepts

A relevant feature of the RHD equations (11) is that they contain sources for the radiation field that may easily become stiff, depending
on the physical conditions under consideration. When stiffness is treated by resorting to IMEX RK schemes,’ it is important to split the
conservative variables U in two subsets {X, Y}, with {X} containing the variables that are affected by stiffness and {Y} containing those that
are not. IMEX RK methods are based on an implicit discretization for the stiff terms and on an explicit one for the non-stiff terms. They have
been extensively discussed in a series of papers by Pareschi & Russo (2005), and some recent applications have been presented in special
relativistic resistive MHD by Palenzuela et al. (2009), in GR force-free electrodynamics by Alic et al. (2012) and in GR resistive MHD by
Bucciantini & Del Zanna (2012) and Dionysopoulou et al. (2012). In full generality, the hyperbolic equations for the two sets of variables
{X, Y} are split as

0, Y =FyX,Y), 21)

3,X = Fx(X,Y)+ Rx(X,Y), (22)

where the operator Fy contains both the first spatial derivatives of ¥ and non-stiff source terms, the operator F x contains both the first spatial
derivatives of X and non-stiff source terms, while the operator Ry contains the stiff source terms affecting the variables X. Each RK substage
of the IMEX scheme can be divided in two parts.

(i) In the first part, the explicit intermediate values {X**, ¥*/} of each substage i are computed as
i—1
Y =Y ALY ay FyluY)], (23)
Jj=1
i1 i—1
X = X"+ Aty a; FxlU]+ At a; Rx[UY], (24)
j=1 Jj=1
where one might note that the summation stops at (i — 1), in order to avoid the appearance of the implicit terms at this stage. The matrices
(d;j) and (a;) are v x v square matrices. In this paper, we use v = 4 (see also Appendix B), whereas, in general, the matrix coefficients and
dimensions change with the desired number of stages’ (Pareschi & Russo 2005).
(i1) In the second part, the non-stiff variables are directly advanced to the status of substage RK variables, namely
YO _ yei (25)
while the stiff variables need to be corrected as
XO =M@ [X* 4+ a; AtK x(Y*)] (26)
The vector K x(Y') on the right-hand side of equation (26), which does not depend on the stiff variables X, results from the decomposition of
Rx(X,Y)as
Rx(X,Y) =AX)X + Kx(Y), @7
while the matrix M is given by (Palenzuela et al. 2009)®
MY™) = [I — a; AtAQY™)] 28)

where | is the identity matrix.

6 An alternative approach to solve the special relativistic RHD equations in a moderately stiff regime has been considered in 1D Lagrangian simulations by
Dumbser, Uuriintsetseg & Zanotti (2012).

7 Note that the global order of an IMEX scheme does not uniquely determine the number of substages.

8 We stress that the form of M given by equation (28) is only valid for the decomposition as done in equation (27).
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For each RK substage, {X, Y} is computed as described above, and finally the time update is performed as

U =U"+ Aty FIUY T+ Aty w RIUOY, (29)
i=1 i=1

where ®; and w; are coefficient vectors. In most of the applications presented in this paper, we have adopted the SSP3(4, 3, 3) (strong stability

preserving of order three) IMEX RK scheme. The notation SSP k(s, o, p) is adopted to specify the order of the SSP scheme (k), the number

of stages of the implicit scheme (s), the number of stages of the explicit scheme (o) and the order of the IMEX scheme (p) (Pareschi & Russo

2005). The coefficient tables employed in this paper are listed in Appendix B.

2.2.2 Specification to radiation hydrodynamics

Because of the complexity of the GR-RHD equations, isolating the term (or the terms) that are responsible for the stiffness is not a trivial
task, although we can certainly say that such terms are contained in the radiation four-force G{'. According to the logic of the IMEX scheme
just described, we identify {X} with the radiation hydrodynamical variables {U,, (S,);} that are affected by stiffness, and {Y} with {D, S,
U}, that remain unaffected.

As highlighted above, the IMEX scheme requires the stiff source terms Ry to be decomposed according to equation (27). We therefore
write the radiation four-force G{ in terms of the conservative variables of the radiation field. To this extent, we rewrite equations (18) and
(19) to find the radiation energy density E; and the fluxes F* in terms of U, and (S;); as

E, = =3I°W [2(S)v" + U(1/T? = 2)] (30)
r
Fl = —W [-4U(T"* — 1) + (4T"% — D)(Sv'] . @31
o
S 4
(i = (F) - gEroi —a(F)'vi, (32)
where W = 1/(1 4 2I'). In this way, and after some simple algebra, we can rewrite the radiation four-force as
r : .
Gi == [X'@ Th + U2 (1 =3W) = x) + (S G + X' GW = 2))] (33)
_ -t x'+x9) t s k t s
(Goi = —x arTyquil' + f(&)i + Ul [x'(1 = 4W) + 25 (W = 1)] + (Sv Ty [x'QW — D+ x°2 — W)] . (34

We note that the right-hand sides of equations (33) and (34) do not contain the set of variables {Y'}, while they do contain the conserved
variables {X}, which always appear with a multiplication factor containing either x' or x°*. This is an indication that, depending on the values
assumed by the opacities, such source terms may become stiff, but only for the radiation variables. This means that the vector of sources
given by equation (13) will be split in two parts, S = S, + S;. The first one,

_ 0 .
%aWikan;k +S:9;8 —Udja + a(Gy);
S =3 | WEBI0 i + Wil0;p — 80,0 + G| (35)
SREBID i+ (R0, 8 — 50,
%ozRi"@,-x,-k + (89,8 — U0,

will be absorbed into the operators Fy and Fy in equations (21) and (22) because it does not contain stiff terms. The second part, on the other

hand, which contains the genuinely stiff terms for the radiation variables {X}, is

Si=x 0 , (36)

—a’G!

L —a(Gy); |
and its non-zero components are identified with Rx (X, Y) in equation (22). After using equations (33) and (34), it is possible to further
decompose Ry as prescribed by equation (27) as

|: U, :| alx'a, Ty :|
= A®Y) + ,
—a(Gy); (Sp);

al x'a, Tyyqv,
where the coefficients of the matrix A(Y) are specified in Appendix B. The components of the vector K x (the second term on the right-hand

—a?G!

(37

side of equation 37) do not depend on the stiff variables X, but only on the temperature Tp,q. We note that, in the actual implementation
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of the IMEX RK scheme, the correction to the implicit variables X’ dictated by equation (26) is performed when the conversion from the
conservative variables U to the primitive variables is performed.

2.3 Numerical tools

For reasons of flexibility, cross-verification and in view of future projects, we have implemented the GR-RHD equations in their IMEX
version in two different numerical codes.

The first one is a modification of the wHisky code, which implements the GR resistive MHD formalism wHiskYrRMHD (Dionysopoulou
et al. 2012). We use the numerical methods provided by the original wHisky code documented in Baiotti et al. (2003) and Giacomazzo &
Rezzolla (2007), namely an HLLE approximate Riemann solver and a second-order TVD slope limiter method for the reconstruction of the
primitives. The infrastructure as well as the solution of the Einstein equations is provided by the Cactus Computational Toolkit (Loffler et al.
2012). The implementation of the GR-RHD equations in wHISKYRMHD required modifications mainly in the sources and the routine which
recovers the primitives from the conservative variables. In order to deal with the stiffness of the source terms, we have modified the MoL
thorn (part of Einstein Toolkit?), by including second- and third-order IMEX RK time integrators.

The second code is based on EcHo (Del Zanna et al. 2007), which provides a numerical platform for the solution of the GR-MHD equations
in stationary background space—times.!'? It employs a high-order shock-capturing Godunov scheme with a two-waves HLL Riemann solver,
while the spatial reconstruction of the primitive variables can be obtained by linear and non-linear methods. Time integration is possible
in either second- or third-order IMEX RK. Previously in Paper I, EcHo had been extended to allow the solution of the non-stiff GR-RHD
equations in the optically thick regime.

In both wHisky and EcHo, our implementation of the stiff GR-RHD equations does not allow for a treatment of the optically thin regime.
Therefore, all the tests and applications described in this paper are limited to the optically thick regime, while we postpone an accurate
analysis of the variable Eddington factor approach to a future work.

Finally, we note that the increase of computational cost when changing from an explicit RK of order k to a RK-IMEX of the same order
k is approximately given by the ratio of the number of substages required by the IMEX to the number of substages required by the explicit
RK. For the SSP3-IMEX scheme, compared to the explicit RK3, such a nominal ratio is given by 5/3 ~ 1.67 and in both our implementations
we have measured an effective factor of ~1.8 increase.

3 VERIFICATION OF THE SCHEME

In Paper I, we had considered a number of shock-tube tests in which non-linear RHD waves propagate. The semi-analytic solution that is
used for comparison with the numerical one has been obtained following the strategy of Farris et al. (2008), and it requires the solution of the
following system of ordinary differential equations

d.U(P) =S(P), (38)
where

P pu’ 0

P T 0
P=1| u" |, U=| 17" 1, S= 0

E, 7% -G°

F; T —~G;

U,, U, and Us; are constant in x, while only Tro" and 7" need to be solved for. These tests can be used to monitor the ability of the code
to deal with the stiff regime, by simply increasing the thermal opacity /c;, (the scattering opacity , is set to zero). When this is done, the
semi-analytic solution of the ODE system (38) can be obtained with an ODE solver for stiff systems (Press et al. 1992). The initial states
of the two tests that we have considered are reported in Table 1 and are chosen in such a way that the discontinuity front at x = 0 remains
stationary, namely it is comoving with the Eulerian observer. LTE is assumed at both ends x = +X, with X = 20, and this is obtained by
adopting a fictitious value of the radiation constant a,q, namely a,g = E; 1/ TL4 , which is then used to compute E; g = draq T;: (here the
indices L and R indicate the ‘left’ and ‘right’ states, respectively). We note that tests No. 1 and 2 in Table 1 are the same as tests No. 3 and
4 in table 1 of Paper I, apart for the value of i, which controls the stiffness of the problem. After setting 800 grid points in the x-direction,
we have increased the value of K;, to the maximum value affordable by the numerical scheme, while keeping the Ccp. parameter unchanged
and equal to 0.25. For example, I(;, has been increased from 0.3 to 25.0 in test No. 1, and from 0.08 to 0.7 in test No. 2. Each test is evolved
in time until stationarity is reached, and the results are shown in Fig. 1, where the numerical solution is compared to the semi-analytic one in
the two cases considered.

9 The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics (cac); http:/www.cactuscode.org.
10 See also Bucciantini & Del Zanna (2011) for a recent extension of EcHo to dynamical space—times within the conformally flat approximation.
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Table 1. Description of the initial data — in the shock-tube tests with radiation field. The different columns refer, respectively, to
the test considered, the adiabatic index, the radiation constant and the thermal opacity. Also reported are the rest-mass density,
pressure, velocity and radiation energy density in the ‘left’ (L) and ‘right’ (R) states.

Model ¥ Arad Ky oL PL uy Ecr  pr PR Up E:r
1 2 1.543 x 1077 25 1.0 60.0 100 20 80 234x10} 1.25 1.14 x 10°

5/3 1.388 x 108 0.7 1.0 6.0x 1073 0.69 0.18 3.65 3.59x1072 0.189 1.3

3 2 1.543 x 1077 1000 1.0 60.0 125 2.0 1.0 60.0 1.10 2.0
R B e W AR maE e 4————7————— ]
8 = £ 7
6 E exact E 3¢ P E
4 E ) numerical J 2 E exact =
2 E P E 1 E numerical ]
) S A A HHMHAHH: ob v v 1 [ R
e = s = = S, e L
1 3 0.6 & E
0.9 |- 3 0.4 |- E
ol V¥ . oz V¥ 4
[ T D P S D P T T T e
A MM AAAa RanAARARAA RAAA AR T v o
1000 - - F ]
[ ] 1~ -
500 - J r b
r E ] 0.5~ B, E
N r ] E ]
0 et ‘ 1HH Ll ol v v T
-5 -4 -3 - - 0 3 4 5 ~10 -5 0 5 10

X X

Figure 1. Shock tubes — solution of the test No. 1 (left-hand panel) and No. 2 (right-hand panel). From top to bottom the panels report the rest-mass density,
the velocity and the radiation energy density. In both cases 800 grid points have been used with Ccpr, = 0.25 and RK-IMEX2. The tests are performed with
the wHisky code, employing TVD reconstruction and minmod limiter.

It should also be noted that shock-tube problems do not represent an ideal set-up to highlight the ability of the scheme in handling
the stiffness of the source terms, since strong discontinuities are by themselves a challenge for any numerical method. As a result, we have
performed an additional and peculiar shock-tube problem, test No. 3, which has equal left and right states, except for the velocity. In this case,
two shock waves propagate in the opposite direction, no stationary solution is obtained, but a much higher value of K; can be used, namely
/c; = 1000. Fig. 2 reports the corresponding solution at time ¢ = 15, and also shows the very good agreement between the results obtained
with WHISKY and ECHO.

4 SPHERICAL ACCRETION

Having introduced the numerical tools for the treatment of the stiff source terms typical of GR-RHD, we now focus on a problem that has
been the subject of several astrophysical analyses, namely spherical accretion on to a black hole. In the first part of this section, we present
an additional test of our numerical scheme, brought in the stiff regime by assuming unphysically large cross-sections. On the other hand, in
the second part, we choose physical parameters to model the solution by Michel (1972) in an astrophysical context.

Transonic accretion on to a non-rotating black hole in the presence of an isotropic radiation field has been studied in great detail by
several research groups over the years. In the optically thick regime, the stationary solution was investigated under different approximations
and by focusing on different emission mechanisms by Maraschi, Reina & Treves (1974), Katka & Mészdros (1976), Vitello (1978), Gillman
& Stellingwerf (1980), Flammang (1982) and Nobili, Turolla & Zampieri (1991). The time-dependent solution was considered by Gilden
& Wheeler (1980) and Zampieri, Miller & Turolla (1996). The latter, in particular, solved via a Lagrangian code of the radiation transfer
equations using the PSTF moment formalism,!! is truncated at the first two moment equations. Because of the limiting approximations
assumed, and in particular because of the lack of Comptonization effects, our analysis should not be regarded as an attempt to improve with
respect to the above-mentioned works, but rather as a preliminary study in view of further developments. We also note that multidimensional
simulations with an Eulerian code have been recently performed by Fragile et al. (2012) obtaining promising results.

Our initial conditions are given by the fluid spherically symmetric transonic solution of Michel (1972), which is stationary in the absence
of a radiation field. The free parameters of the fluid solution are the critical radius r. and the rest-mass density at the critical radius p.. We
choose a black hole with mass M = 2.5M), while the adiabatic index of the fluid is y = 4/3. The initial radiation field is initialized to

1 The first time-dependent problems adopting the PSTF formalism were presented in Rezzolla & Miller (1994).
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Figure 3. Stiff spherical accretion — numerical solution at time ¢ = 1000. From top to bottom the panels report the rest-mass density, the velocity and the
radiation energy density. An artificial K‘;, = 1.0 x 10" has been adopted to highlight the ability of the code to treat the stiff regime. N; = 300 grid points have
been used with Ccpr, = 0.2, MC reconstruction and SSP3-IMEX.

a negligible energy density, while radiation fluxes are set to zero. As a first test, aimed at showing the ability of the numerical scheme in
handling the stiff regime, we have considered an unphysical set-up with p. = 0.02, r. = 8.0, and a high uniform value of the thermal opacity,
IC;, = 10'3. The test is performed in Boyer—Lindquist coordinates with 2.5 < r < 200 using N = 300 radial grid points. The SSP3-IMEX
scheme has been adopted, with the MC limiter for the spatial reconstruction. Fig. 3 shows the profiles of the rest-mass density, the radial
velocity and the radiation energy density (from top to bottom) at time # = 1000. We stress that, if the IMEX scheme is not available, and the
evolution is performed through a fully explicit RK scheme, this test can be successfully repeated at the same Ccrr. = 0.2 only with a value of
Ky S L

Having done that, we have concentrated on a sequence of more realistic models, all of them with p. = 9.88 x 107° cgs, but with different
critical radii (r.), chosen in the range between 800 and 7000, in order to control the accretion rate. The test is performed in Kerr—Schild
coordinates with 1.0 < r < 1000 using N = 3200 radial grid points. The evolution is stopped when stationarity in the L2 norms of all of the
variables has been reached, which may require a final time as long as = 400 000 in code units. The scheme employed is the SSP3-IMEX,
with MC limiter.
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Special attention has to be paid to the boundary conditions at the outer radial grid point, for which we have followed closely the
discussion presented by Nobili et al. (1991). In particular, zeroth-order extrapolation (copy of variables) is adopted for the gas pressure and
for the density. This guarantees that the temperature has zero gradient. At the same time we want to make sure that at large radii the radiation
field streams radially, namely that E o< f” o #~2. This translates into the condition

dIn E
= -2, (39
dinr

which can be easily implemented. Finally, we fix the accretion rate at the outer boundary to the value possessed by the initial configuration.

At the inner radial boundary, on the other hand, zeroth-order extrapolation is adopted for all of the variables. The evolution is performed
considering both the contribution of the bremsstrahlung opacity and of the Thomson scattering opacity for electrons. We note that during the
evolution the radiation flux remains typically two orders of magnitude smaller than the radiation energy, thus maintaining the code in the
physical regime for which it was designed. After an initial relaxation, the system converges to a different stationary configuration characterized
by a non-zero radiation flux. The solution is optically thick in all the models for » < 100, while it becomes marginally optically thick at large
radii. From the radiation flux we compute the luminosity as L = 47tr? f".

Fig. 4 reports the results of our simulation tests in the diagram (M/Mgaq, L/Lgaa), where the luminosity is computed at r = 200.
Although our data resemble the high-luminosity branch reported in fig. 1 of Nobili et al. (1991), a close comparison with their results is
not really possible, since Comptonization, bound—bound transitions and free—bound transitions are not taken into account in our analysis. In
particular, the absence of pre-heating effects does not allow us to verify the onset of strong thermal instabilities producing hydrodynamic
shock waves that propagate outward, as reported by Zampieri et al. (1996). In spite of this, the test we have performed is very relevant. In
fact, by using an entirely different procedure with respect to Nobili et al. (1991) and Zampieri et al. (1996), it confirms the existence of a
high-luminosity branch in the diagram (M / Mgaq, L/ Lgqa), which corresponds to the optically thick regime. A more extended analysis of this
problem, by including additional contributions to the opacity, a treatment of the Comptonization and the effect of a spinning black hole will
be the focus of a separate and dedicated work.

5 BONDI-HOYLE-LYTTLETON ACCRETION

This section deals with the application of our new scheme to simple astrophysical models departing from spherical symmetry. We revisit the
BHL accretion flow that we already described in some detail in Paper I, and whose initial conditions are briefly summarized in Section 5.1.
After showing consistency with the non-stiff solver, we illustrate the effectiveness of the IMEX by treating models of low temperature, which
is the key parameter responsible for numerical difficulty. Only now, it becomes feasible to treat astrophysical temperatures that are few orders
of magnitude lower than in Paper I and as astrophysically realistic as our approach can allow at this stage (cf. conclusion for more discussion).
Having thus reached the limits imposed by the physical assumptions of the current treatment, we now analyse the dynamics of the fluid, the
occurrence of shocks and the possible observational quantities, with particular attention to the computation of the luminosity. We stress that
it is not our intention to perform a systematic analysis of the full parameter space.
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Figure 5. Consistency test of the new IMEX scheme — time evolution of a perturbed BHL model with vipf = 0.18 and ¢5 oo = 0.07 (model p.V18.cs07 of
Paper I) with the IMEX (solid line) and with the non-IMEX version of the code (dashed line). The lower panel shows the light curve, whereas the accretion
rate is plotted in the top panel. All curves are shown in Eddington units.

5.1 Initial conditions for the BHL accretion flow

We perform 2D numerical simulations of a BHL accretion flow (Hoyle & Lyttleton 1939; Bondi & Hoyle 1944) on to a Schwarzschild black
hole of Galactic size with Mgy = 3.6 x 10° M@ . The initial conditions considered are similar to those adopted in Paper I, with a velocity
field that is specified in terms of an asymptotic velocity v, (Font & Ibaiiez 1998)

v = A/¥"vy COS P, (40)
v? = —V¥%%vy sin ¢, 41)

where x¥ are the components of the three-metric and ¢ is the azimuthal angle in Boyer-Lindquist coordinates. The radiation field is initialized
to a uniform and small energy density E;, such that the radiation temperature Tyq = (E;/ayq)"/* ~ 1.5 x 10° K. Additional free parameters are
the asymptotic sound speed c; ., and the asymptotic pressure, from which the asymptotic rest-mass density o, follows directly. The resulting
configuration relaxes to a different and stationary one, on a time-scale that depends on the parameters chosen. Keeping to nomenclature
of Paper I, we encode the two parameters vu,, and ¢ ,, ' and a prefix denoting perturbation (if applicable) in our naming scheme as
—--Voog1 -Cs,000.4 - 1he adiabatic index of the fluid is y = 5/3.

The computational grid consists of N, x N, numerical cells in the radial and angular directions, respectively, covering a computational
domain extending from 7, = 2.1 M t0 1, = 200 M and from ¢ i, = 0 t0 Ppax = 271 For our fiducial simulation we have chosen N, = 1536
and N4 = 300, but have also verified that the results are not sensitive to the resolution used or to the location of the outer boundary.

5.2 Consistency test

Before going to new models, we first carried out a consistency test using a representative model with Mach number M, = 2.57 (model
p-V18.cs07 of Paper I) and reproducing it with the present new IMEX version of EcHo. As shown in Fig. 5, the IMEX version reproduces
the light curves and the accretion rates obtained with the purely explicit version of the code. Moreover, by using the IMEX scheme, it is now
possible to extend the evolution to later times, whereas the previous version of the code required reducing the Ccp. to values smaller than
0.01, making such long evolutions practically unfeasible. This test confirms that the new scheme is verified also in a non-trivial 2D application
and that the use of the IMEX offers clear advantages in terms of computational resources.

5.3 Results

In the following we examine the behaviour of three models, with two different initial sound speeds ¢, ~, and the same asymptotic velocity vu.
The prefix sp is used to denote ‘strongly perturbed” which means that the initial asymptotic pressure is lowered by two orders of magnitude
with respect to the equilibrium value. This is done with the main purpose of producing models with even lower temperatures.

12 Here, subscripts 0.1 denote the normalization in units of 0.1¢, S0 Voo, ; = Voo /(0.1c). Therefore, the model V07.cs03 has v, = 0.07 and ¢5 o = 0.03.
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Measured physical quantities. In addition to the primitive variables provided by the code, we calculate several physical quantities: the
accretion rate in Eddington units, M, the luminosity in Eddington units, L, the radiation equivalent temperature, T;,q = (Elagqg)"*, the fluid
temperature, T4, the effective adiabatic index, y g:

5/2+20g + 164>
off = oo th =P,/P, 42
TE G gl M 4= “2)

and the local Mach number M:

/o P P
M= it == [ 3)
I cs hp o+ ﬁP

Moreover, as discussed in Paper I, we define an effective BHL luminosity efficiency 7,,,, . that takes into account the injected energy at
infinity as
L

— . (“44)
Macec® + 3 MooV,

Nsne =

We measure several quantities Q as volume-weighted averages over all grid elements 7, thus defining the pointy brackets as

1 N
= —_— E i ,'d ,'d i . 45
(Q) ZNridr[d¢[ ( Q riar, ¢> ( )

i i

The rate of entropy generation is measured according to equation (AS), which is an appropriate approximation for a coupled photon fluid
plasma in a quasi-stationarity state. When we extract the luminosity, we choose a surface of constant optical depth T 2> 10. We argue that
this is reasonable because only if T > 1 the system is still in a regime where the approximation with the diffusion limit is valid. This is
also realistic, when thinking of actual observations, where measurements are taken at constant!* 7. For a discussion of how the luminosity
estimates change with respect to Paper I, see Appendix A. Suffice it to say that this luminosity is a tracer of the outwards radial fluxes and
that different possible extractions agree within the current error bars.

The optical depth 7 is computed in post-processing as in Paper [

L
r:/ (' + x> ds, (46)
0

where we have assumed a constant characteristic length scale L = 10. All other quantities are standard and reported in cgs units. Selected
results are shown in Figs 6-8 and summarized in Table 2.

BHL dynamics dominated by radiation quantities. First of all, we note that the qualitative dynamics of all BHL models is the same as described
in Paper I and can be summarized as follows (see also Petrich et al. 1989; Font & Ibafiez 1998; Dénmez, Zanotti & Rezzolla 2011 for the
hydrodynamics case and Penner 2011 for the MHD one). Initially, a narrow, hot shock cone forms downstream of the accretor and the plasma
is fluid-pressure dominated. Progressively, the radiation field builds up strength until the radiation pressure becomes similar to the fluid
pressure. At this point, the shock cone becomes unstable, oscillating from one side of the accretor to the other, until it finally reverses into the
upstream domain as a bow shock. From now on the radiation pressure exceeds the fluid pressure, the effective adiabatic index approaches the
value ~4/3 and, at the same time, the density (and correspondingly the optical depth) decreases in most parts of the numerical domain. After
the upstream shock has moved out of the numerical domain and expelled a significant amount of mass, a new, low-density equilibrium is
formed in which there is a smaller shock cone in the downstream region (this is illustrated well in fig. 3 of Paper I, which shows a comparison
of BHL flows with and without the radiation field).

The central improvement over Paper I is shown in Fig. 6, where the 2D maps of the optical depth (left) and of the fluid temperature
(right) are shown for two different models, both of them at the final quasi-stationary state. The top panels, in particular, show that for the
strongly perturbed model sp.V07.cs03 large parts of the upstream region settle down to temperatures of the order of Tg,q < 10° K, a value
which could not be reached before due to the stiffness of the equations. The corresponding unperturbed model, V07.cs03, shown in the
bottom panels, has upstream temperatures as high as Tuq < 5 x 10° K, while both of the models have significantly high optical thickness. It
is important to note that at this stage of the evolution, namely after the ‘reversal’ of the shock cone, the effective adiabatic index of all three
models is very close to y i ~ 4/3, and therefore behaving like an effective photon fluid.

Additional understanding of the thermodynamics of the models is achieved if we look at the time evolution of the averaged fluid and
averaged radiation temperatures, which are plotted in Fig. 7. There are three points worth noting. First of all, for each model, the two
temperatures 7'y,q and Tpyq differ by many orders of magnitude, suggesting that, at least globally, there is a strong deviation from thermal
equilibrium within the fluid. Secondly, the fluid temperatures of the models sp.V07.cs03 and V07.cs03 are also significantly different, in
spite of the dynamics being very similar (this is discussed in the next section). Finally, 7,4 shows a smooth evolution, whereas T'g,q exhibits
a strong dip, reaches a minimum and heats up again afterwards. When the large size and hot (Tp.q > 10'° K) shock cone reverses, the
density downstream of the accretor becomes small, yet the pressure remains high. A smaller size high-temperature shock cone forms in the
downstream region, as visible in the right-hand panels of Fig. 6, with T4 average being dominated by the high values within the shock cone.

13 In the case of stars, for instance, this is usually taken as 7 ~ 2/3.
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Figure 6. 2D optical depth and fluid temperature of perturbed model sp.V07.cs03 and unperturbed model V07.cs03 — both models are shown at a stationary
state: £ =7.71 x 10* M for model sp.V07.cs03 (top) and 7 = 5.98 x 10* M for model V07.cs03 (bottom).

Thus, the fluid behaves like an effective photon fluid of temperature T,q < 10° K, but in the shock cone no thermalization is possible and the
fluid temperature vastly exceeds the radiation temperature.

In order to corroborate this description, we measure the entropy generation rate V,S” as an effective tracer of dissipative processes
(see Appendix A). The entropy generation rate (Fig. 8 for the two models V07.cs03 and sp.V07.cs03) is maximum in the shocked region
downstream of the accretor, where the fluid is very far from thermalization, even though the dynamics is otherwise stationary. Only in the
upstream regions where VS is very small (cf. the white region of Fig. 8) are the two temperatures 7',q and T'iq similar.

To further illustrate the effects of radiation-induced dynamics, we measure two crucial parameters of accretion flows, namely the
luminosity and the accretion rate, both of them reported in Eddington units. The computation is performed by directly integrating the escaping
radiation fluxes f” (equation A7), and the infalling mass fluxes at the innermost grid point, respectively. We plot the time evolution of the
luminosity and accretion rate, respectively, on the left- and right-hand panels of Fig. 9 for all three models. The important aspects of this
figure are that (i) there is a transient peak in the luminosity evolution, corresponding to the point in the dynamics where the shock cone is
momentarily dissipated away; (ii) the final luminosity is sub-Eddington for all cases; (iii) the luminosities of the models sp.V07.cs03 and
V07.cs03 converge towards the same value; and (iv) the higher sound speed (correspondingly the lower asymptotic Mach number M) of
sp.V07.cs05 leads to smaller luminosity. On the other hand, the corresponding accretion rates are substantially super-Eddington, with final
values of M /Mgy in the range [62, 135], and confirming the advection-dominated nature of BHL accretion flows. The relaxed luminosity
efficiency 7,,,, of the models together with all radiation quantities are listed in Table 2.
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Figure 8. 2D entropy generation rates for V07.cs03 and sp.V07.cs03 — distribution map of V¥ for model V07.cs03 (left-hand panel) at time r = 5.98 x
10* M and for model sp.V07.cs03 (right-hand panel) at time 7 = 7.71 x 10* M.

The role of fluid temperature. It is interesting to note that the strongly perturbed model sp.V07.cs03 converges towards a final state that is
very similar to that of its unperturbed counterpart VO7.cs03. This is observed in the accretion rate, M, plotted in the right-hand panel of
Fig. 9, in the luminosity, in the radiative efficiency, n (cf. Fig. 10), in the optical depth, 7 (cf. Fig. 6), and in the radiation temperature, T',q
(cf. Fig. 7), of these two models.

This effect remained obscured in Paper I, due to the fact that the previous criterion for the luminosity extraction was spuriously affected
by boundary effects.'*

While the radiation quantities converge for the two models sp.V07.cs03 and V07.cs03, the quantities more directly related to the fluid
properties do not. For example, the fluid temperature, the Mach number and the entropy generation are neither qualitatively and certainly not

14 See discussion in Appendix A.
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Table 2. Representative quantities of the considered models after a quasi-
stationary state has been reached. The columns represent the model name,
the average radiation temperature, the average effective adiabatic index,
the accretion rate, the luminosity and the radiative efficiency, all of them
computed after a quasi-stationarity state had been reached. See the text for
definition of these quantities.

Name (Traa) K)  (yerr) M/Mgpag  LiLgaa nBH
V07.cs03 5.6 x 105 1.333 132 0939 69 x 1073
sp.V07.cs03 5.6 x 10° 1334 135 0943 68 x 1073
sp.V07.cs05 43 x 10° 1.333 62 0484 9.0x 1073
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depth 7 > 10; right-hand panel: accretion rate M as a function of time in Eddington units.
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Figure 10. Radiative efficiency — comparison of the radiative efficiency 7,5, . as a function of time.

quantitatively the same. In addition, the radiation-dominated regime is reached at earlier times for VO7.cs03 as it has higher Tq,;q and thus
higher thermal conductivity (cf. Appendix A).

From the consideration above, it stands to reason that the radiation temperature and the matter density (conversely, the optical depth)
are the quantities affecting the dynamics most. This means that bremsstrahlung cannot be a dominant process, since it is a temperature-
dependent radiation interaction. This is confirmed by the fact that, when looking at the respective opacities, Thomson scattering dominates
over bremsstrahlung by several orders of magnitude. We also note that in some portions of the grid, the discrepancy between Tayiq and T'rug
is very large, implying that the assumption of LTE is not valid there (cf. the red region of Fig. 8). This is consistent with the fact that full
thermalization in general is very hard to accomplish in dynamical environments of moderate density.
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Further comments. We had already pointed out in Paper I that models with initial high Mach number, M, are characterized by a luminosity
that is dominated by the emission at the shock front, rather than by accretion-powered luminosity. This is also confirmed by the relative
comparison between sp.V07.cs03 and sp.V07.cs05, the former having a larger Mach number and a higher luminosity (the left-hand panel
of Fig. 9).

Finally, we would like to comment about what has been dubbed the ‘flip-flop’ instability in BHL accretion flows, and whose physical
nature is still a matter of debate (Foglizzo, Galletti & Ruffert 2005). While we do not see this instability in our models (neither in Paper I
nor in the present), we have observed that during the ‘shock-reversal’ strong, although transient, oscillations in the shock cone can appear.
However, we suspect that this effect can be partly attributed to the numerics, since the use of the IMEX in combination with a higher order
RK (of the order of three instead of two) alters the behaviour of this oscillation slightly. An extended analysis through 3D simulations would
be needed to establish the potential relation of this oscillatory behaviour with the eventual development of the flip-flop instability.

6 CONCLUDING REMARKS

In this paper, we have revisited the optically thick, thermal radiation transfer in GR. First, we addressed the numerical problem of stiff source
terms; proposed a numerical treatment, implemented and verified it. As we chose an IMEX RK scheme, we needed to isolate the principal stiff
parameters, which were found to be the (density-weighted) opacities. After applying the new IMEX method to the 1D problem of spherical
accretion, we compared our results with those obtained earlier by Nobili et al. (1991) and found good agreement. In this spherical, stationary
scenario the current formulation of the GR-RHD equations is fully applicable as long as the solution remains optically thick. We remark that
there is not a unique stiffness threshold, valid for any physical scenario, at which the purely explicit scheme fails and the IMEX becomes
necessary. In the case of a purely explicit RK scheme, when the source terms become stiff, it is possible to a certain extent to lower the Ccpr,
factor and obtain a stable evolution. However, the stiffness parameter can become very large, so the time step becomes very tiny. That is of
course inefficient, and resorting to a stiff solver is the only way out. In general, if a problem can be solved with a purely explicit RK scheme,
this is to be preferred as the latter is CPU-faster. However, we believe that most non-trivial radiation applications will exhibit stiffness and
lead to code crashes with standard explicit RK schemes.
We then revisited the BHL accretion in 2D for an astrophysical, dynamical problem. Here, we could show the following.

(i) The IMEX scheme allows us to evolve models with realistic choice of parameters, of the order of T ~ 10° K.

(ii) The dynamics of the flow are significantly affected by the radiation pressure, yielding super-Eddington accretion rates in the range
M ~ [62, 135]Mgq4q and Eddington-limited luminosities.

(iii) The fluid and the radiation depart strongly from thermal equilibrium in shocked regions, particularly in the shock cone downstream
of the accretor.

Our analysis has substantially benefited from the ability of our scheme to treat stiff source terms. However, we should also state a few words
of caution as to the current shortcomings and necessary future improvements of our scheme.

(i) The optically thin regime cannot be treated yet, and further steps are required to incorporate the variable-Eddington factor approach.

(ii) Temperatures of the order of T < 10° K, as they appear in small regions of the domain, require the inclusion of bound—free opacities,
which are currently neglected.

(iii) The only dissipative mechanism is currently thermal conductivity. Other types of viscosity such as an effective viscosity related to
magnetic turbulence would be beneficial. Coupling the current equations to MHD represents another direction of future research.

(iv) Since we currently cannot extract the luminosity in regions where the optical depth is low, we must trace a geometrical surface of
constant 7 > 1. However, it remains an uncertainty as to where such a surface should be placed, and the computed luminosities are therefore
affected by at least one order of magnitude uncertainty.

Even in the presence of these limitations, our analysis may become relevant for the study of merging supermassive black hole binaries,
which have been attracting a lot of interest for the possible joint measure of electromagnetic and gravitational wave signals (in the context of
multimessenger astronomy). Neglecting the back reaction of radiation on to matter, Farris, Liu & Shapiro (2010) already considered the BHL
solution in a binary system, finding that luminosities as high as 10*} erg s~! can be obtained in a hot gas cloud of temperatures T ~ 10° K.
Such estimates are compatible with our calculations, but a dedicated work will be presented in the future.
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APPENDIX A: ENTROPY GENERATION RATE AND LUMINOSITY COMPUTATION

In the framework of Eckart’s formulation of relativistic standard irreversible thermodynamics (Eckart 1940), the entropy current is given by
q"

St =spu* + T (Al)

where g" is the heat flux, s is the entropy per unit mass and 7 is the temperature of the fluid. The heat flux is given by the relativistic form of

Fourier law, namely (Israel 1976)

qu =—AT (R}, V,InT +a,), (A2)
where a" is the four-acceleration of the fluid, A is the thermal conductivity and A4, = g,, + u,u, is the projector operator in the space
orthogonal to the four-velocity u*. Under the assumption that the fluid has vanishing shear and vanishing bulk viscosity, the entropy-generation
rate that follows from equations (A1) and (A2) is given by

q9"qu
TV, St =121 A3
o AT (A3)
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Figure A1. Comparison of luminosity extraction of perturbed BHL — p.V18.cs07 and p.V10.cs07. Extracting the luminosity at T > 10 leads to different light
curves; these curves are labelled ‘new’. In Paper I we had used the criterion 7 > 1.

We recall that the thermal conductivity is related to the opacity. For instance, the thermal conductivity computed using the ordinary diffusion
approximation of stellar interiors is given by A = (4/3)arqcT>/x* (Schwartz 1967). Under the assumption that the matter plus radiation fluid
behaves as a single fluid with effective pressure and energy density given by Per = P + P, e = € + E,, the four-acceleration a,, can be
computed from the Euler equations as
h}, Yy Peg
eei + Peir |
When quasi-stationary configurations are reached, the terms containing time derivatives can be neglected with respect to those containing

(A4)

aﬂ =

spatial derivatives, and after replacing ¢* into equation (A3) we obtain

A
Vit A o @+ TR TY + (7 + "))y T + 200073, T, T — (<g” + T2 W)")0, P 0,T

ett + Pefr

T 2
+ (g¢¢ + FZ(U¢)2)6¢T a¢ Peff + sz"v%, Peffa¢T + sz’v¢a¢ Peffa,T) + (ﬁ) <(g" + Fz(vr)z)(a, Peff)z
eff eff

+ (87 + T2 (")) Pesr)” + 2T 0" 070, Peffad)Peff) (AS)
The conversion of V,,S* from geometrized units to cgs units is given by
" 31 Mg ’ m

[ViS"legs = 10353 x 10" G e ( = = [ViS"] oo - (A6)
In the code, we generally compute the luminosity as the surface integral over outgoing radiation fluxes f;" as

Ny
L=2> [V¥ (f]), A] lr=.. (A7)

n=1

where A¢, is the angular size of a grid cell and the integral is taken at the radial position of the last optically thick surface,'® i.e. where
T = 7,. In Paper I, we computed the luminosity by imposing the criterion 7, > 1. However, these small values of the optical depth often
correspond to an integration surface close to the boundary of the numerical domain, where spurious boundary effects may alter the results.
Hence, in this paper we have adopted a different criterion by choosing t, > 10, which guarantees that the integration surface is not placed at

the outermost grid cells. For clarification we have repeated the luminosity extraction for two models considered in Paper I, p.V18.cs07 and
p-V10.cs07, and show the light curves, computed with the two different criteria, in Fig. Al.

15 The factor 2 in equation (A7) accounts for both the contributions above and below the equatorial plane.
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Figure A2. Uncertainties and comparison of luminosity extraction — V09.cs07. Extracting the luminosity at T > 10 leads to different light curves with much
smaller uncertainties; these curves are labelled ‘new’. In Paper I we had used the criterion 7 > 1.

‘We can assign error bars to our extraction method by taking the standard deviation of the mean. For model p.V09.cs07, the comparison
is shown, including the error bars, in Fig. A2. We stress that the size of such error bars reflects the uncertainty in choosing the position of
the last optically thick surface across which the emitted luminosity is computed. It should be noted, moreover, that both our estimates agree
within these uncertainties, but the choice T > 10 produces much smaller error bars than T > 1 and should therefore be preferred.

APPENDIX B: IMPLEMENTATION OF THE IMEX SCHEME

A tableau notation is usually adopted to express in a compact form the coefficients of the matrices a;;, @;; and of the corresponding vectors
wi, 5),‘ as

C | aijj
(BD)
| ot
where the index T denotes transposition.'®
The explicit tableau of the SSP3(4, 3, 3) is
0 0 0 0 0
0 0 0 0 0
1 0 1 0 0 (B2)
1/2 0o 1/4 1/4 0
| o 1/6 1/6 2/3
while the corresponding implicit tableau is
qi q1 0 0 0
0 —(q1 q1 O 0
1 0 I—q q1 0 (B3)
172 9 qs 12—-q1—q2—q3 ¢
| o 1/6 1/6 2/3
with

q1 = 0.241694260788 21, g, = 0.060423 565 197 05,
q3 = 0.129 152 869 605 90.

16 Note that the coefficients ¢; and ;, which are defined as ¢; = Zi‘:l a;j and ¢; = Zi'=1 a;j, are not used in the practical implementation of the scheme.
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The coefficients of the radiation matrix A(Y') of equation (37) are given by
A = —al[x' 4+ x4W (1 - T?)],
Ay = alv [ + x*W(l — 4T?)],
Az = oV [x' + x*W(1 — 4I?)],
Ay = alv X' + x*W( — 4T,
Ay = —alv, [x'(1 —4W) +2x*(W — D],
Ay = —alv v, [X'CW — D+ x°*2— W)] —a(x' + x*)/T,
Ay = —alvv, [x'QW — D+ x*Q = W)],
Ay = —alvu, [x'QW — D+ x*2 = W)],
Azl = —al'v, [x'(1 —4W) +2x(W — D],
Az = —alv'y, [X‘(ZW - D+ x’2 - W)} ,
Ayy = —aTv'v, [x'QW — D+ x*2 — W)] —a(x' + x*)/T,
Azy = —alviy [X'QW — D+ x*2 — W)],
Ay = —aTv, [x'(1 —4W) +2x5(W — )],
Ap = —alv v, [x'QW — D)+ x*Q — W)],
Ay = —alv'v, [x'QW — D+ x*2 - W)],
Ay = —alvv. [X'QW — D+ x* Q2 = W)] —a(x' + x*)/T,

where, just for convenience, we have specified the spatial coordinates to (x, y, z).

This paper has been typeset from a TEX/IATEX file prepared by the author.
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