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Zusammenfassung

Amphiphile Peptide, Pro-Glu-(Phe-Glu)n-Pro, Pro-Asp-(Phe-Asp)n-Pro, und Phe-Glu-(Phe-
Glu)n-Phe, können so aus n alternierenden Sequenzen von hydrophoben und hydrophilen
Aminosäuren konstruiert werden, dass sie sich in Monolagen an der Luft-Wasser Grenzfläche
anordnen. In biologischen Systemen können Strukturen an der organisch-wässrigen Grenzfläche
als Matrix für die Kristallisation von Hydroxyapatit dienen, ein Vorgang der für die Behandlung
von Osteoporose verwendet werden kann. In der vorliegenden Arbeit wurden Computersimula-
tionen eingesetzt, um die Strukturen und die zugrunde liegenden Wechselwirkungen welche die
Aggregation der Peptide auf mikroskopischer Ebene steuern, zu untersuchen.

Atomistische Molekulardynamik-Simulationen von einzelnen Peptidsträngen zeigen, dass
sie sich leicht an der Luft-Wasser Grenzfläche anordnen und die Fähigkeit haben, sich in β-
Schleifen zu falten, selbst für relativ kurze Peptidlängen (n = 2). Seltene Ereignisse wie diese
(i.e. Konformationsänderungen) erfordern den Einsatz fortgeschrittener Sampling-Techniken.
Hier wurde “Replica Exchange” Molekulardynamik verwendet um den Einfluss der Peptidse-
quenzen zu untersuchen. Die Simulationsergebnisse zeigten, dass Peptide mit kürzeren azidis-
chen Seitenketten (Asp vs. Glu) gestrecktere Konformationen aufwiesen als die mit längeren
Seitenketten, die in der Lage waren die Prolin-Termini zu erreichen. Darüber hinaus zeigte
sich, dass die Prolin-Termini (Pro vs. Phe) notwendig sind, um eine 2D-Ordnung innerhalb der
Aggregate zu erhalten. Das Peptid Pro-Asp-(Phe-Asp)n-Pro, das beide dieser Eigenschaften
enthält, zeigt das geordnetste Verhalten, eine geringe Verdrehung der Hauptkette, und ist in
der Lage die gebildeten Aggregate durch Wasserstoffbrücken zwischen den sauren Seitenketten
zu stabilisieren. Somit ist dieses Peptid am besten zur Aggregation geeignet. Dies wurde auch
durch die Beurteilung der Stabilität von experimentnah-aufgesetzten Peptidaggregaten, sowie
der Neigung einzelner Peptide zur Selbstorganisation von anfänglich ungeordneten Konfigura-
tionen unterstützt.

Da atomistische Simulationen nur auf kleine Systemgrößen und relativ kurze Zeitskalen be-
grenzt sind, wird ein vergröbertes Modell entwickelt damit die Selbstorganisation auf einem
größeren Maßstab studiert werden kann. Da die Selbstorganisation an der Grenzfläche von
Interesse ist, wurden existierenden Vergröberungsmethoden erweitert, um nicht-gebundene Po-
tentiale für inhomogene Systeme zu bestimmen. Die entwickelte Methode ist analog zur itera-
tiven Boltzmann Inversion, bildet aber das Update für das Interaktionspotential basierend auf
der radialen Verteilungsfunktion in einer Slab-Geometrie und den Breiten des Slabs und der
Grenzfläche. Somit kann ein Kompromiss zwischen der lokalen Flüssigketsstruktur und den
thermodynamischen Eigenschaften der Grenzfläche erreicht werden. Die neue Methode wurde
für einen Wasser- und einen Methanol-Slab im Vakuum demonstriert, sowie für ein einzelnes
Benzolmolekül an der Vakuum-Wasser Grenzfläche, eine Anwendung die von besonderer Be-
deutung in der Biologie ist, in der oft das thermodynamische/Grenzflächenpolymerisations-
Verhalten zusätzlich der strukturellen Eigenschaften des Systems erhalten werden müssen. Da-
rauf basierend wurde ein vergröbertes Modell über einen Fragment-Ansatz parametrisiert und
die Affinität des Peptids zur Vakuum-Wasser Grenzfläche getestet. Obwohl die einzelnen Frag-
mente sowohl die Struktur als auch die Wahrscheinlichkeitsverteilungen an der Grenzfläche
reproduzierten, diffundierte das Peptid als Ganzes von der Grenzfläche weg. Jedoch führte
eine Reparametrisierung der nicht-gebundenen Wechselwirkungen für eines der Fragmente der
Hauptkette in einem Trimer dazu, dass das Peptid an der Grenzfläche blieb. Dies deutet da-
rauf hin, dass die Kettenkonnektivität eine wichtige Rolle im Verhalten des Petpids an der
Grenzfläche spielt.
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Abstract

Amphiphilic peptides, Pro-Glu-(Phe-Glu)n-Pro, Pro-Asp-(Phe-Asp)n-Pro, and Phe-Glu-
(Phe-Glu)n-Phe, composed of n recurring sequences of alternating hydrophobic and hydrophilic
amino acids can be designed such that they self-assemble into monolayers at the air-water inter-
face. In biomimetic systems, these provide template matrices at the organic-aqueous interface
to promote crystallization of hydroxyapatite, which can serve as a treatment for osteoporo-
sis. In this work, computer simulations have been employed to investigate the structure and
interactions which govern peptide self-assembly on the microscopic level.

Atomistic molecular dynamics simulations of single peptide strands show that they readily
align at the air-water interface and have the ability to fold into β-hairpins, even for fairly short
peptide lengths (n = 2). Such rare events (i.e. conformational changes) require the use of
advanced sampling techniques. Here, replica exchange molecular dynamics has been used to
study the conformational preferences of different peptide sequences. Simulation results revealed
that peptides with shorter acidic side-chains (Asp vs. Glu) exhibit more extended conformations
than those with longer side-chains which could reach the proline termini. Furthermore, studies
suggest that the proline termini (Pro vs. Phe) are necessary to preserve the 2D order within the
monolayer aggregates, as has been observed experimentally. The peptide Pro-Asp-(Phe-Asp)n-
Pro, which contains both of these features, shows the most ordered assembly, only a small
twist in the backbone, and is able to stabilize the formed aggregates via hydrogen-bonding
between acidic side-chains, making it the most suitable candidate for self-assembly. This has
also been supported by assessing the stability of pre-assembled peptide aggregates as well as
their tendency to self-assemble from initially disordered configurations.

As atomistic simulations are limited to small system sizes and relatively short simulation
times, a coarse-grained model is developed to be able to study the self-assembly on a larger
scale. Since self-assembly at the interface is of interest, existing coarse-graining (CG) method-
ology has been expanded to determine non-bonded potentials for inhomogeneous systems. The
developed method is analogous to iterative Boltzmann inversion but constructs the update for
the interaction potential based on the radial distribution function calculated in a slab geometry
and the slab and interfacial widths, which allows a balance between the local liquid structure
and the thermodynamic properties of the interface. The new method has been demonstrated
for slabs of liquid water and methanol in vacuum, as well as a solute-solvent system of a single
benzene molecule at the vacuum-water interface, which is of particular importance in biology,
where the thermodynamic/interfacial behavior often needs to be included in addition to the
structural properties of the system. Based on this, a CG model for the system was parametrized
via a fragment-based approach and the peptide’s affinity for the air-water interface has been
tested. Although its individual fragments reproduced both the structure as well as the probabil-
ity distributions to stay at the interface, the peptide as a whole diffused into the bulk. However,
a reparametrization of the non-bonded interaction for one of the backbone beads in a trimer

lead the CG peptide to remain at the interface. This indicates that the chain’s connectivity
plays an important role on the peptide’s behavior at the interface.
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Introduction

“Everything that living things do can be understood in terms of jigglings and

wigglings of atoms.” - Feynman [1]

Many phenomena in nature involve complex, non-equilibrium systems which

undergo chemical reactions or transformations on various time and length scales.

Although these biological processes often rely on sophisticated interplays of inter-

actions or conformational changes, they continue to take place smoothly, adapt-

ing to changes in the environment, and generating optimally designed structures

which in many cases are still far ahead of today’s technologies. Understanding

such processes does not only help scientists to discover the underlying mechanisms

but can also inspire the development of new materials or pathways by artificially

mimicking nature [2]. To gain fundamental insight, one needs to start by ex-

amining what is happening to a system on the atomic level, in other words, to

analyse the “wigglings” and “jigglings” of individual atoms [1, 3]. Such motions

are directly linked to the molecular interactions on the microscopic level which

in turn affect the system’s behaviour at the macroscopic level [4].

To analyse the behaviour of a biological system, experimental techniques such

as X-ray crystallography, nuclear magnetic resonance (NMR) measurements, and

other spectroscopic methods can be used to obtain structural information at

various stages of a reaction. However, these may not always provide the full

picture, as the number of degrees of freedom of a biological system (104-106

or more for a protein) largely outnumber the experimental data available for

them. In addition, these measurements only provide averages over space and

time [5]. It may also be that the conditions under which experiments have to

be carried out are too difficult, costly, or in some cases even impossible to fulfil.

Thus, to complement experimental results, the field of biomolecular simulation

has evolved [6], attempting to use computational models to describe systems on

various levels of resolution by combining the intuitive and conceptual knowledge

of chemistry with the laws of physics. These models can in principle provide

entire distributions of a measurable quantity, thereby filling in the missing gaps
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Figure 1.1: Hierarchy of length and time scales (as in [8]), depicting examples of biomolecular
simulations from high (bottom left) to low levels of resolution (top right).

of the experimental picture [7].

When a new phenomenon is to be investigated, one must decide on an ap-

propriate model for simulation which depends on the level of resolution at which

the phenomenon of interest occurs (time and length scale) as well as the number

of degrees of freedom one needs to describe. These can range from microscopic

descriptions such as electrons on a quantum mechanical level for which electronic

structure calculations are often performed, to macroscopic descriptions such as

continuum models (fig. 1.1 as in [8]). In a classical atomistic description, interac-

tions are prescribed by a force field, which consists of a set of interaction functions

and parameters that determine the potential energy surface of the system. Before

a new simulation model can be employed, it should be verified that the properties

of interest of the experimental system can be adequately reproduced.

Modelling of an entire biological process often exceeds the range of a single

model and it becomes infeasible (if not impossible) to continue on the same level

of resolution, such that in practice, a set of models is usually required to cover the

total range of interest [9]. For example, when studying peptide aggregation, one

may want a high level of resolution to investigate the intermolecular hydrogen-

bonding that takes place between individual peptide strands or with neighbouring

water molecules, but one needs to resort to a lower level of resolution to be

able to access the long times scales and high peptide concentrations necessary

to determine the types of aggregates formed. In addition, the potential energy

surfaces of such processes are often very rugged and peptides may become trapped
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in local energy minima, pronouncing this deficiency to be able to sample the

entire phase space on an accessible time scale. Here, multiscale modelling can

be employed, where advanced sampling techniques in addition to lower resolution

simulations may help to understand equilibrium phenomena on experimental time

scales.

In this thesis, amphiphilic peptides at the air-water interface are investigated

on several levels of resolution to better understand the forces which drive their

self-assembly. Initially, classical atomistic simulations and advanced sampling

techniques are employed to model the system at the different stages of assembly

on relatively short time intervals (≈ 20-100 ns) on an atomistic level (chapter 3).

Subsequently, a coarse-grained model is systematically developed to be able to

reach longer time and length scales (chapters 4, 5, 6). The remainder of this intro-

duction provides a brief motivation to this work by introducing the system from

an experimental point of view, describing how it can be studied via biomolec-

ular simulations, the experimental questions which will be addressed, and the

computational methods employed to answer them.

From nature to experiment

With growing interest in the design of bio-inspired materials, many efforts

have been put into solving current engineering problems by following nature’s

example, such as the creation of synthetic spider silk [10, 11], gecko-inspired ad-

hesives [12], or the first artificial leaf [13]. However, going from understanding an

existing biological material to designing a new synthetic material is not a trivial

task. An important point to realize is that nature grows both, the material and

the organism in which it functions, thereby providing a dynamic design strategy

as opposed to a static one as is the case in engineering. This allows the biological

material to adapt its (micro-)structure to changes in the environment, a feature

which may lead to changes in the desired properties for the synthetic material.

Therefore, one must have a full understanding of the structure-function relation-

ship as well as the biological context in which the material exists before copying

nature’s design [14].

Another point to consider is which ingredients should be used to make the

new material. Since many structure-function relationships of proteins as well as

their assembly or folding behaviours are not sufficiently understood, researchers

concentrate on using smaller biological units such as peptides, nucleic acids, or
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lipids as building blocks [15, 16]. Although these shorter units make it more

difficult to steer the structural specificity and stability of the macromolecule, they

also come with better understood design rules and reduced flexibility (e.g. lower

entropy) which facilitates self-assembly and hence, the production of the new

material. They are also preferred for practical reasons as they can be synthesized

in large amounts and modified by decorating the peptide with functional elements

that yield the desired chemical properties [17].

One way to fabricate macromolecular structures is via the bottom-up approach,

starting with peptides as nanoscale molecular building blocks. These can be

designed such that they self-assemble through weak, non-covalent bonds which,

as a whole, also govern the conformation of the macromolecule. Engineering

of such biomaterials is especially useful for applications in biomineralization, a

process responsible for the creation of materials such as bone, dentine, enamel,

and eggshells. Although vital for many organisms, its mechanisms are still poorly

characterized on the molecular level and researchers continue to seek novel ways

to modify and promote the growth of hydroxyapatite crystals (HA)1 either by

using peptides as additives to alter the further crystal growth or by employing

pre-assembled peptide aggregates as templates to nucleate and control crystal

growth [18, 19, 20].

A particularly promising group of peptides (fig. 1.2a) for the latter approach

was designed by Rapaport et al. for applications in tissue engineering [21, 22, 23]

and has been patented as a local injection for the treatment of osteoporosis [24,

25], a disease in which bone matrices slowly degenerate over time. These peptides

are designed such that they can self-assemble into ordered β-pleated monolayers

at the air-water interface (fig. 1.2b), an environment which can be considered

analogous to the organic-aqueous interface [26] in a cell. These monolayers can in

turn serve as scaffolds to instigate and promote HA formation upon the addition

of ions to solution [27] (fig. 1.2c).

Each peptide follows the general sequence of X-Y-(Z-Y)n-X, where X rep-

resents the terminus (Pro) and Y, Z denote the residues with hydrophilic, hy-

drophobic side-chains (Glu/Asp, Phe) respectively. Note, that throughout the

text, the three letter codes Pro, Glu, Asp, and Phe are used to refer to the

different amino acids (proline, glutamic acid, aspartic acid, and phenylalanine re-

spectively) and the abbreviated names PGlu-n, PAsp-n, and PheGlu-n are used

1Hydroxyapatite, Ca5(PO4)3(OH), is a material very similar to the mineral component in bone
and is thus used in experiments and modelling as a substitute.
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Figure 1.2: (a) Chemical structures of peptides PGlu-n, PAsp-n, and PheGlu-n as designed
by Rapaport et al. (b) These self-assemble into ordered β-pleated monolayers at the air-water
interface with their hydrophilic side-chains anchored in the water phase. A snapshot of an
atomistic MD simulation of the self-assembly of PGlu-2 is shown on the right. (c) The formed
monolayers can then serve as scaffolds to instigate and promote HA formation upon the addition
of ions to solution [26]. The right side shows a transmission electron microscopy image of a
calcium phosphate aggregate, which was grown on a PAsp-5 monolayer [27].
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to refer to the different peptides (fig. 1.2a). By design, these peptides contain

several features which make them amenable to self-assembly. First, their dual

nature (amphiphilicity) allows them to align their backbone parallel to the air-

water interface with the hydrophobic side-chains (Phe) pointing out of the water

and the hydrophilic side-chains (Glu/Asp) pointing into the water phase, reduc-

ing the number of conformations which the peptide can adopt as compared to

in a bulk water environment and essentially constricting the assembly to two

dimensions. Second, the protonated acidic side-chains (Glu/Asp) promote self-

assembly as they do not electrostatically repel each other and may also aid to

stabilize the monolayer via interchain hydrogen bonding. Finally, the order of

the growing monolayers is controlled by the nature of the termini. Since Pro

residues are generally considered to be β-sheet breakers, employing them as end

groups should guide the formation of hydrogen bonds along the backbone between

parallel peptide strands, with their respective termini aligned.

Experimentally, these monolayers were prepared in Langmuir troughs by spread-

ing a solution of 0.1mg/mL peptide in trifluoroacetic acid/chloroform (1:9 v/v)

onto a (deionized) water surface. Once the monolayer had been formed, surface

pressure-area isotherms were constructed from Fourier Transform Infrared spec-

troscopy (FTIR) scans to obtain information about the rigidity of the monolayer,

the peptides’ orientation, as well as their tendency to stay at the air-water in-

terface. In addition, Grazing-Incidence X-ray Diffraction (GIXD) was employed

to get an idea about the peptides position (a, b lattice spacing) within the mono-

layer. Finally, the first molecular pictures proposed have been modelled and

energy minimized via the CERIUS2 computational package [21, 28].

Although experiments clearly help to understand what is happening on the

macroscopic level, and to some extent also the microscopic level, computer simu-

lations are required to confirm experimental hypotheses and shed light onto the

origins of the behaviour of the system. In particular, this is important in provid-

ing information about the types of interactions that govern the overall structure

of the aggregates observed. In this thesis, molecular modelling is employed on

several levels of resolution to address these issues. It is probed to which ex-

tent the peptide concentration, length (n = 2, 4, 5), side-chain length (Glu/Asp),

and the types of termini employed (Pro/Phe) have an effect on the monolayer’s

structure and stability. In addition, the peptides’ conformations, their hydrogen

bonding patterns (inter- and intrastrand), and hydrogen bonding bridges via wa-
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ter molecules are analysed to provide a microscopic/macroscopic model of the

relevant interactions/phenomena that govern the structure formation process.

From experiment to modelling

When studying peptide aggregation, one usually tries to establish a connection

between the peptide’s sequence and its aggregation propensity. To do this, the

conformational behaviour of a single peptide is monitored at the times of interest,

for example during the transition from its soluble conformation to one that is

later suited for aggregation [29]. Based on these simulations, predictions can be

made, the quality of which depends on the size (and flexibility) of the peptide,

with larger systems requiring more time and computer power to obtain sufficient

statistics for an accurate description of the ensemble of peptide folds (i.e. minima

in the free energy landscape). Here, molecular dynamics (MD) simulations can be

employed. If, however, the peptide exhibits stable conformations other than its

stable/rigid conformation in the β-sheet aggregate, one has to use more advanced

sampling methods such as replica exchange molecular dynamics (REMD).

In the early stages of assembly where several peptides need to be simulated

in concert, this sampling problem becomes even more evident and moving to

a lower level of resolution is an efficient and cost-effective solution. One way

to do this is by coarse-graining, a technique which groups several atoms into a

single coarse-grained (CG) bead, thereby decreasing the number of degrees of

freedom and hence the interactions which need to be computed, cutting down

in computational cost. In addition, the smoother potential energy landscape

of the CG model leads to reduced friction between CG beads and enables the

use of larger integration time steps, resulting in a significant speed-up of the

system dynamics and providing access to larger systems sizes and longer time

scales [30]. Results from such simulations can be used to understand the main

physical principles governing aggregation, provide insight into the underlying

mechanisms, and yield results which are directly comparable to experiment.

In this thesis, the aggregation of peptides PGlu-n, PAsp-n, and PheGlu-n

(fig. 1.2a) is investigated at two levels of resolution (united atom1 and coarse-

grained) to test the experimentalists’ hypotheses about the aggregation behaviour

of peptides as well as their picture of the underlying structure. In addition, first

predictions are made about the types of interactions which govern peptide assem-

1In united-atom force fields, only polar hydrogen atoms are included explicitly.
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Figure 1.3: Systems overview for the multiscale study of peptide aggregation, with correspond-
ing chapters highlighted in blue. Atomistic simulations (united-atom, UA) are performed
(ch. 3), in which the system setup is first tested by checking whether peptides move to the
air-water interface (sec. 3.1). Next, the conformations of single peptides at the interface are
investigated (sec. 3.2) followed by simulations of multiple peptides, which are analysed during
self-assembly (sec. 3.3.1) and as pre-assembled aggregates (sec. 3.3.2, 3.3.3). Finally, a coarse-
grained model is developed based on a single peptide at the air-water interface (ch. 4, 5, 6),
which can be used to simulate the peptide system on the coarse-grained (CG) level to reach
longer time and length scales and backmapped to the UA description for the times of interest.
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bly, monolayer stability, and the relationship between a peptide’s sequence and

its tendency to aggregate. Fig. 1.3 illustrates the steps taken towards the devel-

opment of a multiscale model with which one can study the aggregation processes

in these systems. After a brief introduction into the concepts of computational

modelling (MD, REMD) and coarse-graining methodology (Boltzmann Inversion,

Downhill Simplex algorithm, Iterative Boltzmann Inversion) in chapter 2, chap-

ter 3 focuses solely on the results of atomistic simulations, making predictions

about aggregation propensities based on the study of single peptides, multiple

peptides at the early stages of aggregation, and pre-assembled aggregates which

represent the final stages. In chapter 4, a solvent CG model for the air-water

interface is derived using analytical pair potentials whose parameters are fitted

to various system properties (radial distribution function, density profile, and

surface tension) via the Downhill Simplex algorithm, with the aim of finding a

compromise between reproducing structure and thermodynamic properties of the

atomistic reference. In chapter 5, an alternative CG solvent model is developed

using numerical pair potentials based on a novel approach which extends the

Iterative Boltzmann Inversion procedure for homogeneous systems to inhomoge-

neous systems. The method is demonstrated on an SPC/E water slab and also

tested on a slab of liquid methanol. Furthermore, the method is used to coarse-

grain a single benzene molecule at the air-water interface, an example which is of

particular importance as it shows how CG solute-solvent interactions, which not

only account for the structure but also for the correct partitioning behaviour be-

tween two different media, can be derived. Chapter 6 then employs the proposed

methodology to construct a CG peptide model via a fragment-based approach

in the CG (compromise) water model derived (chapter 5). Finally, the com-

plete CG model is tested by checking whether a peptide in simulation remains

at the air-water interface and by comparing its bond and angle distributions to

those of the atomistic reference. Chapter 7 outlines the conclusions which can

be drawn from this study, briefly describing what can be predicted based on

atomistic simulations, what needs to be studied via CG simulations, and the

challenges/improvements/open questions that remain for further development in

the multiscale modelling of biological systems.
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Methodology

In materials science, the most fundamental way to describe a system stems

from the field of quantum mechanics. Here, a wave function is introduced, which

is a function of the coordinates of all electrons and nuclei in a system. Its time evo-

lution can be obtained by solving the time-dependent Schrödinger equation [31].

In principle, such an accurate description can be used for any system, from

a single hydrogen atom to an entire protein complex. In practise, however, it

becomes infeasible to determine a many-body wave function for large systems

which contain many electrons and nuclei, since computational costs scale as a

higher power of the number of degrees of freedom included. Hence, simplifications

must be made to be able to treat large systems in a more efficient manner.

The Born-Oppenheimer approximation, for example, relies on the fact that

nuclei are much heavier than electrons and thus move much slower such that

they are only considered as an external potential felt by the electrons. This allows

one to employ quantum mechanical methods or density functional theory to solve

the (electronic) Schrödinger equation for systems composed of up to thousands of

atoms. For larger systems, however, this becomes too computationally demanding

and further simplifications can be made as long as there is a clear separation

between interaction energy scales. In case of a chemical reaction, where energies

needed to break a chemical bond are of the order of a few eV (hundreds of kBT ),

corresponding vibrational modes are quantised and hence a quantum mechanical

description is necessary to correctly describe the system. However, typical non-

bonded interactions between molecules are of the order of several kBT and so the

density of states in the corresponding energy range can be considered continuous.

In these cases, a simpler, classical mechanical description can be used [32].

For biological systems, whose temperatures range between room and body

temperature (T = 298-310K), typical types of interactions are hydrogen bonding,

van der Waals, and screened Coulomb interactions, all of which are of the order

of kBT . This allows one to construct an entirely classical description of the

system, where quantum effects are modelled by classical formulas, for example, as

constraints on the bond lengths or angles. Nuclei (atoms) interact via empirical
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classical potentials which are constructed from a collection of parameters and

functions known as a force field, for example the AMBER [33], CHARMM [34],

GROMOS [35], or the OPLS [36] force field. As such, force fields must be regarded

as models which have limited accuracy in describing system properties as well as

limited applicability as to which systems can be described, since the force field

has been parameterized at a specific reference state point.

Consequently, the force field should always accommodate for the complex-

ity of the system. For example, most biological force fields treat electrostatic

interactions solely via a Coulombic term in the interaction potential, approxi-

mating effects such as polarizability implicitly via fixed partial charges on the

atoms which overestimate molecular dipoles. In cases where the polarizabilities

between the molecule and its environment differ significantly, polarizable force

fields should be employed in which the standard interaction potential is extended

to explicitly account for these effects. The main limitation of the force field based

approach for biological systems, however, lies in the accessible time scales1, since

the time step used by the numerical molecular dynamics integrator is bounded

by the typical interaction energies. Although with the approximations made, one

can treat systems containing thousands of atoms, limited time scales still hinder

their applicability to realistic systems significantly. In addition, the potential

energy landscape of biological systems is often very complex and contains many

local minima, such that one must resort to advanced sampling techniques to ob-

tain a realistic picture of states available to a system on experimentally-relevant

time scales.

The remainder of this chapter is divided into two parts which describe the sim-

ulation methodology and parametrisation techniques employed throughout this

work. The first part introduces the theory behind Molecular dynamics simula-

tions, including a more advanced sampling technique (Replica Exchange Molec-

ular Dynamics), while the second part describes how the force fields/ interaction

potentials described can be parametrised by different methods (Downhill Simplex

algorithm, Boltzmann Inversion, Iterative Boltzmann Inversion).

2.1 Simulation methods

In this section, the basic simulation methodology is described, starting with

Newton’s laws of motion, introducing interaction potentials, the Verlet integrator,

1Depending on the system size, these are of the order of µs.
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and briefly explaining some of the components necessary to be able to simulate

a realistic system in a cost-efficient manner (periodic boundary conditions, ther-

mostats, Ewald summation). This methodology will be used throughout this

work (ch. 3-6). In addition, an advanced sampling technique known as replica

exchange molecular dynamics technique is also introduced, which will be used

solely for some of the atomistic simulations (ch. 3).

2.1.1 Molecular Dynamics

Molecular dynamics simulations are modelling techniques which consider par-

ticles as point masses, mi, whose interactions are determined by potential energy

terms (defined by the force field). Consider a system containing N such particles

at position ri with velocity ṙi (i = 1, . . . , N), which together make up its micro-

scopic state. In classical mechanics, the motion of each particle satisfies Newton’s

equations of motion, such that its acceleration, r̈i, can be described by

mir̈i = fi , (2.1.1)

where fi represents the sum of all forces acting on the particle (both external

and those arising due to interactions with neighbouring particles) [37]. It can be

obtained by differentiating over the particle’s potential energy, U(r),

fi = −∂U(r)

∂ri
, (2.1.2)

which includes contributions from bonded as well as non-bonded interactions,

U = Unon−bonded + Ubonded . (2.1.3)

Non-bonded interactions refer intermolecular interactions of pairs which are not

connected via covalent bonds. The complexity of the interaction function depends

on whether only 1-, 2-, or full 3-body terms should be included. In its most general

form, Unon−bonded can be written as

Unon−bonded =
∑

i

u(ri) +
∑

i

∑

j>i

v(ri, rj) + . . . , (2.1.4)

where the first term comprises all external forces on particle i and the second term

includes all of the forces arising from interactions of particle i with other particles,
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∑
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kφijkl(1 + cos(mφijkl − γm))

r
r φijkl

rij θijk

Figure 2.1: A typical interaction potential, depicting non-bonded (LJ12-6) and Coulomb) and
bonded (bonds, angles, and torsions) contributions (as in [38]).

j. In the case of a pairwise potential, v(ri, rj) = v(rij) which is usually given

by an analytical function, for example a Lennard-Jones 12-6 (LJ12-6) potential,

plus a Coulombic term which takes into account all electrostatic interactions in

the system.

v(rij) = vLJ(r) + vcoulomb(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

+
Q1Q2

4πǫ0r
. (2.1.5)

Here, σ describes the van der Waals radius and ǫ is the well depth of the LJ12-6

potential. In the Coulombic term, Q1 and Q2 are the charges of the interaction

sites and ǫ0 is the permittivity of free space.

The second contribution to the potential energy, U (eq. 2.1.3), comes from

the bonded interactions, which are intramolecular interactions of atom groups

connected by covalent bonds. These are not exclusively pair interactions as they

not only include bond stretching (2-body), but also angle bending (3-body) and

torsional (4-body) contributions,

Ubonded =
1

2

∑

bonds

kr
ij(rij − req)

2

+
1

2

∑

angles

kθ
ijk(θijk − θeq)

2

+
1

2

∑

torsions

kφ
ijkl(1 + cos(mφijkl − γm)) .

(2.1.6)

Here, rij = |ri − rj| is the distance between atom pairs ij, req is the equilib-

rium distance, and θijk and φijkl denote the angles and torsions respectively [38].

Although the bond stretching is described by a harmonic potential here, it can

also be represented by other types (i.e. LJ & FENE, Morse & FENE potential).

Note, however, that most common classical computer simulations do not repre-
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sent bonds by terms in the potential energy function, but treat them as having

a fixed length by use of constraints via the Lagrangian of the Hamiltonian for-

malism [39, 40]. kr
ij , k

θ
ijk, and kφ

ijkl are the corresponding strength parameters as

prescribed by the force field, m is an integer which describes the periodicity, and

γm is the phase shift angle. Fig. 2.1 [38] gives an overview of the non-bonded and

bonded interaction terms, with illustrations of their individual contributions.

The Verlet algorithm In order to propagate a system in space and time, one

must integrate Newton’s equations of motion, eq. 2.1.1. To achieve high accuracy

at a low computational cost, several integrators have been designed. The most

commonly used and computationally efficient integration algorithms are the Ver-

let algorithms [41]. These integrators have two properties important for physical

systems, namely that they are symplectic integrators and that they are time-

reversible. The basic Verlet algorithm can be derived by Taylor expanding the

coordinate vector, ri(t), forward and backward in time. Adding and subtracting

the resulting expansions leads to

ri(t+ δt) = 2ri(t)− ri(t− δt) + 1
mi
(δt)2fi(t) +O(δt4)

vi(t) =
1
2δt

[ri(t+ δt)− ri(t− δt)] +O(δt2) ,
(2.1.7)

where vi(t) is the velocity and fi(t) is the force obtained by substituting eq. 2.1.1

for the acceleration. Note, however, that the velocities are not directly generated

since their update, vi(t), relies on the coordinates of the previous time step,

ri(t− δt). A slight modification leads to the velocity-Verlet algorithm [42], which

only relies on the velocities and positions at time t. It can be obtained upon

adding the expansion of ri(t) to its time-reversed form, which gives

vi(t+ δt) = vi(t) +
1

2mi
δt [fi(t) + fi(t+ δt)] . (2.1.8)

Mathematically equivalent to the velocity-Verlet algorithm is the leap-frog algo-

rithm [43], which is used in this work. It calculates velocities at every half-time

step, δt
2
,

vi(t+
δt
2
) = vi(t− δt

2
) + 1

2mi
(δt) [fi(t− δt) + fi(t)] . (2.1.9)

As the name suggests, ri(t+ δt) (here the same as in eq. 2.1.7) and vi(t+
δt
2
) are

leaping over each other with the update of every time step.
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Periodic boundary conditions In many computer simulations studies, one is in-

terested in calculating the thermodynamic properties of a particular system. To

do this accurately, one needs obtain averages for (ideally) infinitely large systems.

Here, periodic boundary conditions can help to mimic such a system, without ac-

tually simulating it on such a large scale. Imagine a bulk liquid, a gas, or a

macromolecule in large solvent environment where a significant amount of the

particles in the system lie at the boundaries of the simulation box (unit cell).

Without periodic boundary conditions, the surface effects would dominate and

result in finite size effects. However, when periodic boundary conditions are em-

ployed, the simulation box is replicated in one or more (x, y, z)-directions and

particles at the box boundaries are able to interact with the closest image of

remaining particles in the system (minimum image convention). As a particle

travels across the box boundary, the focus is shifted to the next image, such that

it enters the simulation box from the opposite side, conserving the number of

particles in the cell. One thus not only is able to obtain more accurate averages,

but also avoids boundary effects, such as for example, a small bulk water system

which could form a droplet due to surface tension without the use of periodic

boundary conditions.

Thermostats Most biological systems of interest reside at a constant tempera-

ture, e.g. at body temperature of T = 37◦C. In simulations, this can be realised

by employing a thermostat, which couples the model system to an external heat

bath (a system with practically an infinite number of degrees of freedom) [44]. In

addition to keeping the temperature constant, it also improves the stability of the

integrator by removing energy drifts which may arise due to the accumulation of

force truncation or integration errors throughout the MD simulation. Suppose

a system of temperature T deviates from the reference temperature, T0. The

simplest way to correct for this temperature change, ∆T = T0−T , is by rescaling

the velocities by a factor λ at every time step, δt, such that

∆T =
1

2

∑

i=1

mi (λvi)
2

NkB
− 1

2

∑

i=1

miv
2
i

NkB

∆T = (λ2 − 1)T (t)

λ =
√

T0/T (t) .

(2.1.10)
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This scaling, however, also prohibits any temperature fluctuations present in the

NVT canonical ensemble. The Berendsen thermostat [45] is a weaker imple-

mentation of this approach. Here, the system is coupled to the heat bath via a

coupling parameter τ , which determines how tightly they are coupled, and the

velocities are rescaled according to

λ =

[

1 +
δt

τ

{

T0

T
(

t− δt
2

) − 1

}]1/2

, (2.1.11)

such that the rate of change of the temperature stays proportional to the differ-

ence in temperatures. For MD simulations of condensed phase systems, values of

τ ≈ 0.1 ps are usually used. It is important to note that this method does not pro-

duce a canonical ensemble either, as the thermostat suppresses the fluctuations of

the kinetic energy. This damping of velocity fluctuations is especially critical for

simulations of small systems. For biological systems, however, where molecules

in abundant solvent environments are treated, this thermostat can be assumed

to suffice when studying most properties which do not rely on the systems dy-

namics. In addition, as this thermostat is very efficient in relaxing systems to

the reference temperature, it is useful for equilibrating systems which are initially

prepared far from equilibrium. Once the system has reached equilibrium and a

correct canonical ensemble is required, one should either use the velocity-rescaling

thermostat according to Bussi et al. [46], which is an extension of the Berendsen

thermostat that uses an additional stochastic term for sampling a correct kinetic

energy distribution, the Nose-Hoover thermostat [47, 48], or the Langevin ther-

mostat [49], which both use the coordinates and velocities of artificial particles

instead of stochastic collisions.

With motions being governed by eq. 2.1.1, the system described is isolated and

hence its total energy is conserved (with periodic boundary conditions, this is the

NVE or microcanonical ensemble). If one considers the system to be coupled to a

thermostat to keep it at a constant temperature, the energy is no longer constant

and one obtains the NV T (canonical) ensemble. Note, that as τ → ∞, the

thermostat becomes inactive and the system samples a microcanonical ensemble.

Barostats Analogous to temperature coupling, pressure coupling can also be

performed to simulate a system at constant pressure. This is done via a barostat,
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which rescales the coordinates at every step in the case of the Berendsen [45]

barostat. Consider a system described by eq. 2.1.1. Multiplying by the coordinate

vector, ri, and using the relation of the time derivative, d
dt
(riṙi) to substitute for

rir̈i,

mi
d

dt
(riṙi −miṙi) = firi . (2.1.12)

Averaging over all particles, the first term on the left-hand side disappears, the

second term becomes the total energy, −2Ekin, and the term on the right-hand

side becomes
∑N

i=1 firi, which is known as the virial term. Hence, eq. 2.1.12

becomes

− 2Ekin =
∑

firi . (2.1.13)

Suppose now that a wall element, df , in the simulation box exerts a force on

the nearby particles, pdf , where p is the scalar pressure which can be calculated

from the pressure tensor, Pαβ, as p = tr(Pαβ)/3. This force is known as the outer

virial,

Wa = −p

∫

V

∇ · r dV = −3pV . (2.1.14)

The remaining force due to particle-particle interactions is called the inner virial,

Ξ. Hence, the pressure due to the inner and outer virial can be computed as

p =
2

3V
(Ξ− Ekin) . (2.1.15)

As the pressure in the system changes, the Berendsen barostat rescales the coor-

dinates of the simulation box at every time step, δt, such that

dp

dt
=

p0 − p

τp
, (2.1.16)

where p0 is the reference pressure and τp is the pressure coupling constant. Finally,

a proportionate coordinate and volume scaling needs to be performed to minimise

local disturbances such that the modified equation of motion becomes

ṙi = ṙi −
β (p0 − p)

3τp
r . (2.1.17)

Other barostats are the Anderson barostat [50] which rescales the coordinates

of the system. This was later extended to the Parrinello-Rahman barostat[51]

which also lets the simulation box changes its shape.
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When coupled to a barostat to keep the pressure constant, the system now

not only exchanges heat with the thermostat, but also volume (i.e. work) with

the barostat. Although the total number of particles, the pressure, and the

temperature now remain constant, the energy and volume of the system are

allowed to fluctuate which yields the NpT ensemble. Note that in this work, the

barostat is only employed briefly for the setup to bring the equilibrated system to

a pressure of 1 atm (via a short NpT simulation) before performing simulations

in the NVT ensemble.

Ewald summation When evaluating the forces and energies from the interaction

potential (eq. 2.1.3), the long-ranged non-bonded contributions are the most time

consuming. Their calculation scales as O(N2) and hence they are especially slow

to compute for systems with a large number degrees of freedom (already ≈ 105

for small proteins). To improve the quadratic scaling, one can truncate the non-

bonded potential at a cutoff distance, rcut. Although the LJ term can be truncated

easily since it is relatively short-ranged, truncating the Coulomb term leads to

large inaccuracies in describing the systems electrostatics. However, the 1
r
decay

in the Coulomb term can be divided into two parts,

1
r
= erfc(αr)

r
+ erf(αr)

r

erf(r) = 2
π

∫ r

0
e−t2dt

erfc(r) = 1− erfc(r) = 2
π

∫∞
r

e−t2dt ,

(2.1.18)

where the first (short-ranged) term decays much faster than 1
r
and the second

(long-ranged) term decays as 1
r
for large r. Realising that large r correspond to

small k values in Fourier space, the latter term can be evaluated more efficiently.

Hence, the Coulomb interaction potential is written as a sum of a short-ranged

term, U r, which is evaluated in real-space and a long-ranged term, Um, which

is evaluated in Fourier space, and a third term, U0, which cancels all i = j
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long-ranged particle interactions with itself,

U r =
1

2

N ′

∑

i,j

∑

n

QiQj
erfc(αrij,n)

rij,n

Um =
1

2πV

N
∑

i,j

QiQj

∑

m 6=0

exp(−(πm/α)2 + 2πim · (ri − rj))

m2

U0 =
−α√
π

N
∑

i=1

q2i .

(2.1.19)

Here, n = (n1, n2, n3) = n1Lx + n2Ly + n3Lz is the cell coordinate vector with

cell length L and the Cartesian coordinate unit vectors x,y,z. m = (l, j, k) is the

reciprocal space vector and V is the volume of the simulation box. Note, that

the prime on the first sum in U r indicates the omission of i = j at n = 0. In

this work, the Particle-mesh Ewald (PME) method [52] is employed to improve

the performance of the reciprocal sum, Um. It does so by assigning all charges

to a grid using a cardinal B-spline interpolation, which essentially smears them

out over the entire lattice. The reciprocal sum can then be computed using a

Fourier transform with convolutions and the forces can be obtained by analytically

differentiating the potential energies at each of the grid points [53, 54]. Note, that

this algorithm scales as N log(N) and is much faster than the conventional Ewald

summation for medium to large system sizes [55].

2.1.2 Replica Exchange Molecular Dynamics

In some cases, the free energy landscape of a system may be too complex, with

many local minima in which conformations can become trapped, such that the

time scales of conventional MD simulations no longer suffice to adequately repre-

sent the equilibrium ensemble of conformations. To remedy this, the method of

replica exchange molecular dynamics (REMD) [56] has been developed to enhance

sampling.

By simulating M independent replicas of the same system at different temper-

atures (T1, T2, . . . , Tm) and allowing for exchanges between consecutive replicas,

simulations which are trapped in one of the many local energy minima states

at lower temperatures are able to exchange with those at higher temperatures

(which usually sample large volumes of phase space), thereby overcoming high

free energy barriers and sampling more of the phase space such that an equilib-

rium ensemble can be obtained. Here, Tref denotes the reference temperature,
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which is the temperature of the system of interest. It is usually chosen to be the

lowest temperature replica such that Tref < T2 < · · · < Tm.

Consider a system at temperature T consisting of N atoms, each of position

q, momentum p, and Hamiltonian H(q, p). If one assumes a canonical ensemble,

the Boltzmann factor or the relative probability that the system can be found in

a state, x(q, p), is

W (x;T ) = e−βH(q,p) , (2.1.20)

where β = 1/kBT . For M non-interacting replicas i in a generalised ensemble,

the weighting factor for state X = x
[i]
m = (q[i], p[i])m is given by the product of

their Boltzmann factors

W (X) = e−
∑M

i=1 βiH(q[i],p[i]) . (2.1.21)

An exchange between replicas i and j must satisfy the detailed balance condi-

tion (ensuring that the reverse move is equally likely to occur), W (X)w(X →
X ′) = W (X ′)w(X ′ → X), such that the exchange process converges towards an

equilibrium distribution. Hence, the exchange probability becomes a Metropolis

criterion,

w(X → X ′) = w(x[i]
m|x[j]

n ) =

{

1, ∆ ≤ 0

e−∆, ∆ > 0 ,
(2.1.22)

where ∆ = (βn − βm)
[

U(q[i])− U(q[j])
]

. Note, that only exchanges between

replica of neighbouring temperatures are attempted, since the acceptance prob-

ability falls off exponentially with the difference in temperatures. In addition,

temperature distributions should be chosen to increase exponentially, Ti = Trefe
ik

where k = ln (Ti/Tref), and with a temperature step (∆T = |Ti − T1|) small

enough to allow for sufficient overlap between potential energy distributions in

order to achieve the desired exchange probabilities [57].

2.2 Parametrisation methods

Now, that the simulation methodology has been described, several parametriza-

tion techniques are introduced with which one can obtain/parametrise the inter-

action functions described (sec. 2.1). In this chapter, they are described in a very

general manner, irrespective of whether they are used to optimise atomistic force

fields or CG interaction potentials. They are, however, employed to derive in-

teraction potentials for coarse-grained (CG) models in later chapters, where the
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details with respect to their application to coarse-graining is given. First, the

Downhill Simplex algorithm is described which is used to parametrise different

CG water models via parameter fitting of analytical potentials to different struc-

ture/thermodynamic properties (sec. 4.2-4.4). Next, Boltzmann Inversion [58] is

introduced which is employed to determine the internal conformational behaviour

of the CG peptide (ch. 6),

and finally, Iterative Boltzmann Inversion is described which can be used to

derive a purely structure-based CG water model (sec. 4.1) as well as provide

initial guesses for the parametrisation of non-bonded interactions between the

CG peptide and water beads, which are used in an extension of the method for

inhomogeneous systems (ch. 5).

2.2.1 Downhill Simplex algorithm

The Downhill Simplex algorithm [59] is an optimisation procedure designed to

minimise a function of n + 1 variables, y(x1,x2, . . . ,xn+1). The starting simplex

(fig. 2.2a) which is a geometric figure (polytope) composed of n + 1 vertices

(sets of initial guesses for minimising the function), is transformed by reflections,

expansions, contractions, and reductions to search the parameter space for a set,

x1,x2, . . . ,xn+1, which yields the global minimum, ε,

y(x1,x2, . . . ,xn+1) ≤ ε . (2.2.1)

Here, y is the function value at the current step and yref is the function value

of the reference (target). At the beginning of every step, the vertices are sorted

according to their function values (weights), y1 < y2 < · · · < yn+1 for vertices

x1,x2, . . . ,xn+1, also known as penalty values, as they are a descriptor of how well

a given parameter set reproduces the target property (Xref), with bad parameter

sets given higher weights (yi = |Xi −Xref |2/Xref).

The first transformation performed is always a reflection (fig. 2.2b), in which

the vertex corresponding to the worst point, xn+1, is reflected through the centroid

of all remaining points, x̄, as

xr = (1 + α)x̄− αxn+1 , α > 0 , (2.2.2)

where xr is the reflected point and α is the reflection coefficient. This transfor-

mation does not change the volume of the simplex and is used to move through
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x1
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Figure 2.2: Diagram showing the starting simplex (a) and the possible transformations (b-e).
The algorithm always starts by performing a reflection (b) in which the worst point (xn+1) is
reflected through the centroid of the remaining points of the starting simplex. Depending on
whether the reflected point (xr) is better or worse than the best point so far, an expansion
(xe) (c) or a contraction (xc) (d) is performed. If one can not get rid of the worst point (via a
contraction), a reduction (e) is performed in which the simplex contracts around the best point
(x1) (as in [57]).
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parameter space (away from bad parameter sets). If the function value of the

reflected point (yr) is better than the best value (yr < y1), an even larger move

is performed in that direction to see if one can obtain an even better point. This

is known as an expansion (fig. 2.2c)

xe = (1 + γ)x̄− γxn+1 , γ > 1 , (2.2.3)

where xe is the expanded point and γ is the expansion coefficient, which is the

distance from xr through the centroid, x̄, to xe. However, if the value of the

reflected point is worse than the worst value (yr < yn+1), the move was too large

and the simplex must have crossed a valley. In this case, a contraction (fig. 2.2d)

is performed which takes smaller steps to find an intermediate lower point such

as to move down the valley,

xc = (1 + β)x̄− βxn+1 , 0 > β > 1 , (2.2.4)

where xc is the contracted point and β is the contraction coefficient. If the value

at the contracted point is still worse that then worst point in the current simplex

(yc < yn+1), for example a situation in which the valley floor has been reached, a

reduction (fig. 2.2e), i.e. a contraction in all directions, is performed which pulls

the simplex in around the best point, xi, such that

xi →
(xi + xl)

2
, (2.2.5)

and the procedure is restarted (i.e. with another reflection). In all other cases, the

highest point, xn+1, is first replaced by the new (reflected/ expanded/ contracted)

point before the procedure is resumed [60].

This algorithm is, in general, very robust and efficient as it does not require

the computation of derivatives. However, problems with the convergence of the

algorithm may arise given bad initial guesses (i.e. a starting simplex which yields

large penalty values), a minimisation function which is a poor descriptor of the

properties of interest, or a function with too many parameters (n > 10).

2.2.2 Boltzmann inversion

The simplest structure-based method for coarse-graining is Boltzmann inver-

sion [61]. Assuming that bonded and non-bonded interactions are separable (as
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in eq. 2.1.3), they can be used to obtain the bonded potentials for the CG model

by inverting the probability distributions of all bonds, angles, and dihedral angles

of the atomistic reference system.

Consider a system composed of q independent degrees of freedom at tem-

perature, T , with a Boltzmann distribution of

P (q) = Z−1e−βU(q) , (2.2.6)

where Z =
∫

e−βU(q)dq is the configurational partition function. A free energy

can be obtained by inverting the probability density distribution, P (q), such that

U(q) = −kBT lnP (q) , (2.2.7)

where Z is omitted since it is just an additive constant to the potentials and the

distributions are rescaled to represent volume normalised distribution functions.

This is also known as the potential of mean force (PMF) [62] as it considers

the force averaged over all conformations in a system. Considering the degrees

of freedom to be bonds, angles, and torsions (q = r, θ, φ) and assuming that

their probability distributions (eq. 2.2.7) are independent of one another, i.e.

P (r, θ, φ) = P (r)P (θ)P (φ), their potentials are given by

U cg(r, T ) = −kBT ln
(

P cg(r,T )
4πr2

)

U cg(θ, T ) = −kBT ln
(

P cg(θ,T )
sin θ

)

U cg(φ, T ) = −kBT ln (P cg(φ, T )) ,

(2.2.8)

Note, that eq. 2.2.7 is only exact for dilute systems (i.e. gases). For systems which

are more dense, additional interactions arise from closely neighbouring particles

and it no longer suffices to describe the potential energy based on a pairwise

radial distribution function (RDF). However, the PMF can still be used as an

initial guess in correction procedures such as Iterative Boltzmann inversion.

2.2.3 Iterative Boltzmann Inversion

Another parametrisation technique is Iterative Boltzmann Inversion (IBI) [58],

which is a natural extension of Boltzmann inversion (eq. 2.2.8). It is a numerical

scheme which can be used to refine CG bonded or non-bonded potentials, U cg,

while attempting to match the reference (atomistic) and CG radial distribution
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functions, gat(r) and gcg(r), respectively. As an initial guess, it often uses the

potential of mean force (eq. 2.2.7), given by U (0)(r) = −kBT ln gat(r). At each

subsequent iteration i, a correction is added to the interaction potential based on

the differences in ln g(r),

U (i+1)(r) = U (i)(r) + α∆U (i)(r) (2.2.9)

∆U (i)(r) = kBT ln
g(i)(r)

gat(r)
, (2.2.10)

where g(i)(r) is the radial distribution function of the CG system at iteration

i and α ∈ (0, 1] is a scaling factor used to control the stability of the scheme.

Convergence is monitored by evaluating the difference in RDFs,

∆g(i) =

∫ rcut

0

[

g(i)(r)− gat(r)
]2
dr , (2.2.11)

where rcut is the cutoff distance for the CG interaction potential. Once a given

convergence criterion has been met (e.g. ∆g < 10−3), the update is terminated

and one has obtained a CG potential which reproduces the RDF of the reference

system.

Pressure correction Coarse-graining a system by fitting to the reference struc-

ture as described does not necessarily correspond to a match of the thermody-

namic properties such as pressure. To do this, one needs to relax the convergence

criterion in eq. 2.2.11 or, in other words, to seek potential updates which offer a

compromise between structure and thermodynamic properties. In fact, the pres-

sure changes as information is lost, for example by substituting water molecules

by single beads. To adjust for this, a pressure correction [58, 63] can be performed,

which is a linear correction to the potential

∆V (r) = A

(

1− r

rcut

)

(2.2.12)

where A is a constant usually given by −0.1kBT . In this work, however, it is

estimated at every update step i by a factor of Ai [63], such that

−
[

2πNρ

3rcut

∫ rcut

0

r3gi(r)dr

]

Ai ≈ (p− pref)V , (2.2.13)
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where pref is the correct pressure and p the pressure at step i. Note, that the pres-

sure correction automatically implies a deviation from the reference structure [64]

and also a deviation from the reference compressibility [63, 65], κT , since

ρkBTκT = 1 + 4πρ

∫

r2[g(r)− 1]dr . (2.2.14)

Thus, the pressure correction should only be applied at every second potential

update step such as not to completely destroy the converged structure, while still

correcting for the high pressure of the CG system.
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Atomistic simulations of amphiphilic peptides

In this chapter, atomistic simulations are employed to characterize the struc-

tural features and types of interactions which govern the self-assembly of am-

phiphilic peptides (fig. 1.2a) into monolayers. First, small systems (of single pep-

tides) are simulated to understand the influence of a peptide’s environment and

structure on its conformational behavior. Such simple systems already demon-

strate the sampling limitations which arise in the presence of a complex free

energy landscape where rare events1 (i.e. folding transitions such as β-hairpins)

play an important role on the time scale of an MD simulation. In these cases, it

is only feasible to use atomistic simulations for the analysis of specific stages of

self-assembly or as a reference for a model with a lower level of resolution with

which one can reach larger time and length scales (ch. 6). However, even for these

purposes, advanced sampling techniques such as REMD [56] should be employed.

Initially, single peptide simulations are employed to test the system setup and

to analyse the differences in conformational behaviour induced by variations of

peptide chain lengths, peptide side-chain lengths, the types of termini, and the

surrounding environment (bulk water vs. the air-water interface). Inter- and in-

tramolecular interaction parameters for the system are taken from the GROMOS

53A6 force field [35], which is a commonly used biomolecular force field that has

already been validated for many biological systems similar to the one of inter-

est [67]. To test the simulation setup, it is checked whether the key characteristics

of the experimental system are reproduced. In this case, peptides should diffuse to

and remain at the air-water interface such that aggregation can take place. This

is largely guided by the peptide’s amphiphilicity (as prescribed by the force field)

which determines whether the peptide has a high enough driving force to align

with its backbone to the interface such that the hydrophobic/hydrophilic side-

chains reside in the air/water phases respectively. Furthermore, peptides should

have the ability to self-assemble via hydrogen bonding of neighbouring backbone

residues to form aggregates which can be stabilised by additional hydrogen bond-

1Rare events are transitions from one metastable state to another as the system overcomes some
energy barrier or goes through a sequence of correlated events. They are rare as such transitions
happen very infrequently compared to the relaxation time of the system. [66]
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ing between protonated side-chains and electrostatic interactions between the

charged termini. In the absence of other peptides, this leads to peptide confor-

mations such as β-hairpins as stable conformations. Since these are kinetically

stable (in particular at an interface), REMD simulations (ch. 2.1.2) are performed

to be able to sample all molecular conformations (i.e. well sampled and canoni-

cally distributed). Their results are compared to MD simulations according to the

amount of extended backbone conformations observed (i.e. end-to-end distance

distributions) and characteristic conformations are identified for specific peptide

sequences (via a simple clustering of peptide conformations).

Subsequently, multiple peptides (9 chains) are simulated in concert to anal-

yse their self-assembly behaviour and investigate the structure of the aggregates

formed. These simulations address only the very early stages of self-assembly,

where the formation of β-sheets commences, and the last stages, at which a per-

fectly ordered monolayer1 has been formed, since it is infeasible to simulate an

entire assembly process of realistic peptide concentrations on an atomistic time

scale (t ≫ 100 ns). The early stages of self-assembly are represented by an initial

simulation setup of free, disordered peptides, distributed randomly across the

air-water interface with the aim to correlate conformational preferences observed

previously from single peptide simulations to current assembly behaviour. The

final stages of self-assembly are represented by simulations in which peptides are

arranged in pre-assembled, ordered aggregates. From these, structural features

such as the peptide spacing, backbone extension, backbone twist, and the types

of hydrogen bonding between individual peptide strands are investigated.

3.1 Testing the system setup

In all atomistic simulations presented in this chapter, the GROMOS 53A6 force

field [35] is used to model the interactions in the system of interest. It is based on

the GROMOS force field, a united atom force field which was originally optimised

to reproduce the condensed phase properties of alkanes [68], which has undergone

a series of reparametrisations since the development of the original force field [69,

70, 71]. The GROMOS 53A6 force field in particular was reparametrized to

reproduce the free enthalpies of hydration and apolar solvation, both of which are

key properties in biological processes such as protein folding, ligand binding, and

1Here, a pre-assembled aggregate of 3× 3 peptide chains is simulated to describe an excerpt of
such a monolayer.
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membrane transport. As such, the force field has already been validated on typical

biological systems, such as DNA, numerous proteins, e.g. the hen egg-white

lyzosome (HEWL), and peptides such as the proteinogenic β3- dodecapeptide [67].

The validation for the peptide is of particular importance here, since in con-

trast to DNA or proteins, smaller peptide simulations are able to reach their

folding-unfolding equilibrium within shorter time scales. This folding-unfolding

process is strongly influenced by the balance between the hydrophobic-hydrophilic

interactions prescribed by the force field. NMR and CD1 experiments have shown

that the β3-dodecapeptide formed a 314-helix in methanol but did not form a well-

defined secondary structure in water. Simulations of the peptide actually found

a more stable helical structure in water when the older GROMOS 45A3 [72]

force field had been employed, whereas results agreed with experiment once the

reparametrized version of the force field was used (GROMOS 53A6).

For the amphiphilic peptides studied here, the balance between the different

solvation states and functional groups (polar and apolar) is bound to play a

major role as well. From a chemical perspective, the alternating sequences of

hydrophobic (Phe) and hydrophilic (Glu/Asp) residues should serve to align the

peptide with its backbone parallel to the air-water interface as the side-chain

polarity drives them to reside in like media (i.e. in the air/water partitions

respectively). To test this, peptides of two lengths (PGlu-n, fig. 1.2a) of n = 2 and

5 are simulated. The system setup consists of a cubic water slab (simulated by the

SPC/E water model) centerd in a box of twice its length in the z-direction with

periodic boundary conditions applied in all (x,y,z)-directions. The smaller system

(PGlu-2) consists of 5394 water molecules in a 5.50× 5.50× 11.00 nm simulation

box and the larger system (PGlu-5) of 15302 water molecules in a 7.68× 7.68×
15.37 nm simulation box. The vacuum-water boundaries represent the air-water

interface (two in each system). These are located at z = −2.75,+2.75 nm for the

smaller system and at z = −3.84,+3.84 nm for the larger system.

Simulations are performed in theNV T ensemble with a temperature of T = 300

K, coupled with the Berendsen thermostat with a coupling constant of τ = 0.1 ps,

and a pressure of p ≈ 1 atm, obtained via a short NpT simulation with the

Berendsen barostat, prior to the extension of the simulation box. For electro-

static interactions, the smooth PME [73] method (sec. 2.1.1) was employed using

a real space cutoff of 1 nm, while the van der Waals cutoff was set to 1.4 nm. Pe-

1Circular dichroism (CD) is an experimental technique used to study chiral molecules or identify
the secondary structure of larger biomolecules.
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Figure 3.1: (a) Diagram depicting the air-water interface system setup with different peptide
starting positions (green and red spheres). (b) Distances between the center-of-mass of the
water slab and the peptide PGlu-n, for n = 2 (top) and n = 5 (bottom) as projected onto the
z-axis, dz. Green corresponds to the peptide being initially located at the slab’s center (origin,
denoted by the black dot) and red to being initially located at the slab’s surface (interface).

riodic boundary conditions are applied in all (x, y, z)-directions. Each simulation

box contains a single peptide, initially located at either the center of the water

slab (green) or at the slab’s surface (red) as depicted in fig. 3.1a. To analyse

the peptides tendency to move towards the interface, the distance between the

centers-of-mass of the peptide and the water slab (as projected onto the z-axis),

dz, is monitored over t = 100 ns of simulation with a time step of δt = 2ps.

Results show that when peptides are initially placed at the slab’s center

(z = 0), hydrophobic-hydrophilic interactions of the force field promote diffu-

sion towards the interface. Note, that the shorter peptide (n = 2) is more rigid

and diffuses much faster than the longer peptide (n = 5). When both peptides

are started at the interface, however, no differences in behaviour can be observed,

demonstrating that the interactions present are strong enough to keep peptides at

the interface throughout the entire length of the simulation, even with a relatively

small number of hydrophobic side-chains (n = 2).

3.2 Analysis of single peptides

Now, that the simulation setup has been tested, the properties of interest can

be investigated. First, single peptide simulations are analysed to understand con-

formational changes induced by the interface environment as well as by variations

in the peptide’s length and sequence (i.e. side-chain length, types of termini).
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This analysis is not only useful for estimating folding-unfolding times, but can

also help to identify distinct peptide conformations for each sequence which can

later be linked to their ability to self-assemble.

3.2.1 Effects of the environment

To analyse conformational changes induced by the interface environment, sim-

ulations of PGlu-n with n = 2 and 5 at the air-water interface (sec. 3.1) are

compared to simulations of the same peptides in bulk water. The bulk system

setup consists of a single peptide being placed at the center of a cubic water box

(identical to the water slab from interface simulations) with periodic boundary

conditions applied in all (x,y,z)-directions. All simulation settings are identical

those of the slab system simulations (sec. 3.1). Comparisons of the effects in-

duced by the two environments are made according to the peptide’s backbone

extension, measured by the end-to-end distance, rend−to−end, which is defined by

the distance between the Cα atoms of the first and the last residue in the peptide

chain.

Results for PGlu-n are shown in fig. 3.2a,b for n = 2, 5 respectively, for MD

simulations in the bulk (blue dashed line) and at the interface (red solid line).

For the shorter peptide, simulations in bulk water yield mostly extended confor-

mations. At the interface, however, a β-hairpin1 (rend−to−end ≈ 0.5 nm) is formed

which takes almost half of the simulation time (∆t ≈ 45 ns) to unfold again. This

indicates that much longer simulation times are needed to reach conformational

equilibrium where multiple folding-unfolding events need to be sampled. Geo-

metrically, this might be explained by the peptide’s backbone alignment to the

interface which confines its motions to a 2D plane, where interactions only have

access to a cross-section of the potential energy surface. Hence, possible unfolding

pathways (i.e. those favourable in energy) which might be found in the bulk may

not be found at the interface, leading to more kinetically stable β-hairpins. It

is, however, impossible to judge from these simulations if the β-hairpins are also

thermodynamically more stable. For the longer peptide, β-hairpins are formed in

both environments, which do not unfold again within the remaining simulation

time.

To avoid getting trapped in such conformations (i.e. local minima in the free

energy landscape) and to sample closer to the equilibrium (canonical) conforma-

1β-hairpins are secondary structures in which the backbone folds such that the C- and N-termini
meet and intermediate backbone residues connect via hydrogen bonding.
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Figure 3.3: Results for REMD simulations of peptides PGlu-2 and PGlu-5, employing 16 and
32 replicas respectively. Plots show (a,d) the energy probability distributions, (b,e) the end-to-
end distance distributions of REMD simulations in the bulk and (c,f) the end-to-end distance
distributions of REMD simulations at the interface. For clarity, only the reference (black dotted
line), its bounding temperatures, and the extremes (coloured) are highlighted, while all other
replicas are plotted in grey. Results from MD simulations are shown by the grey dotted line for
comparison.
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tional distribution, REMD simulations are performed for the same systems. For

PGlu-2, 16 replicas of temperatures T = 273 − 333K with ∆T ≈ 4K have been

employed (fig. 3.3a), with a simulation time of t = 100 ns per replica. For PGlu-

5, 32 replicas were employed to cover the same temperature range with ∆T ≈
4K (fig. 3.3d), with a simulation time of t = 50ns per replica. Note, that the

reference temperature (Tref = 300K) is chosen to lie approximately in the center

(i = 0) of the temperature distributions, Ti = Trefe
ik, such that replica indices

are i = −7, . . . , 0, . . . , 8 for PGlu-2 and i = −15, . . . , 0, . . . , 16 for PGlu-5. All

other simulation settings are the same as in sec. 3.1.

REMD results for simulations of PGlu-2 in the bulk and at the interface are

shown in fig. 3.3b,c with average acceptance probabilities of pacc ≈ 2.9%, 2.7%

respectively. As compared to MD simulations (fig. 3.2a), a more equal amount

of β-hairpins and extended conformations is observed in REMD simulations at

the interface. In the bulk, however, the amount of extended conformations still

outnumbers the β-hairpin formation events. Fig. 3.3e,f show results for REMD

simulations in the bulk and at the interface of PGlu-5 with average acceptance

probabilities of pacc ≈ 7.8%, 6.7% respectively. Comparing end-to-end distribu-

tions to those obtained from MD simulations, no significant differences between

the two environments can be observed. Note, however, that the end-to-end dis-

tribution is only a rough descriptor for the folding-unfolding equilibrium of a

comparatively long peptide such as PGlu-5. Average acceptance ratios between

neighbouring replicas as well as heat maps which show the temperature trajectory

of each replica (16 for PGlu-2 and 32 for PGlu-5) can be found in the appendix

(sec. A.1.1, fig. A.1).

In conclusion, the peptide’s backbone alignment with the interface seems to

increase the kinetic stability of conformations such as β-hairpins in the case of

PGlu-2. For PGlu-5, one can not make any predictions as the peptides con-

formational transitions become even slower. Hence, to obtain sampling closer

to the equilibrium conformational distributions, it is necessary to use advanced

sampling techniques, where one should choose temperatures which are optimally

distributed (i.e. similar acceptance ratios), a large enough number of replicas

such that acceptance ratios are not too small, and most importantly, high enough

temperatures such as to escape local energy minima traps.
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3.2.2 Effects of peptide length

To analyse the effect of peptide length, MD and REMD simulations of pep-

tides PGlu-n with n = 2, 5 at the air-water interface have been considered. In

MD simulations, the peptides formed β-hairpins of different kinetic stabilities

(∆t ≈ 45 ns for n = 2 and ∆t > 65 ns for n = 5), where the β-hairpin only

unfolds again for the shorter peptide (within the simulated time of t = 100 ns).

Fewer recurring hydrophilic/hydrophobic residues provide less hydrogen bonding

possibilities between the backbone residues, making the β-hairpin less stable and

easier to unfold. These observations have been confirmed by REMD simulations.

3.2.3 Effects of peptide sequence

Having illustrated the effects of the environment and peptide length, small

variations in the peptide’s sequence can be considered to understand which con-

formational features might facilitate/hinder their self-assembly at the interface.

Taking PGlu-n to be the reference peptide for comparison, effects of a shorter

side-chain (in PAsp-n) and the absence of the proline termini (in PheGlu-n) are

investigated. Note, that only the shorter peptides (n = 2) are simulated as they

require less time to undergo conformational changes and hence results should be

closer to conformational equilibrium than those for the longer peptides on the

time scales employed. It will be shown that for these peptides of only 7 residues,

a difference in conformational behaviour due to their particular sequences can

already be observed.

REMD simulations for 8 replica of t = 50ns each are carried out for the three

types of peptides, ranging from temperatures of T = 300−329 K with ∆T ≈ 4K

(fig. 3.4a). The same simulation settings as in sec. 3.1 are employed. To com-

pare the peptide’s conformational behaviour, regions which showed significant

differences in the backbone extension between the different types of peptides (b

vs. c for side-chain comparison, and b vs. d for termini comparison) have been

selected from end-to-end distance distributions and analysed via the GROMOS

cluster algorithm [74] to identify predominant structures. This clustering algo-

rithm sorts all structures according to their differences in RMSD1 and clusters

them according to a cutoff distance (rcut), where structures of r < rcut are con-

sidered to be in the same cluster group and r > rcut are nearest neighbours.

1The root-mean-square deviation (RMSD) is a measure of the distances between atoms of a
structure when superimposed onto a reference, rRMSD =

√

(1/N)
∑N

i=1 δ
2
i , where δi is the distance between

pairs of equivalent atoms.
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The group with the largest number of neighbours is then selected, eliminated

from the cluster pool, and the process is repeated until all structures have been

assigned to a cluster group. Here, the reference structure for the calculation

of the RMSD is the peptide’s structure at t = 0, including all atoms, with an

RMSD distance of rcut = 0.15 nm to define the same cluster group. The three

most predominant cluster groups in regions 1 (rend−to−end = [1.00, 1.25] nm) and

2 (rend−to−end = [1.65, 1.75] nm) are considered for comparison of the different

peptide sequences.

REMD results are shown in fig. 3.4b-d with replica exchange probabilities of

pacc = 2.60% (PGlu-2), 2.46% (PAsp-2), and 2.56% (PheGlu-2). Average ac-

ceptance ratios between neighbouring replicas as well as heat maps which show

the replica’s trajectory through temperature space are given in the appendix

(sec. A.1.1, fig. A.2). For comparison, simulation results from t = 100 ns MD sim-

ulations are also plotted (grey, dotted line). Note, that the end-to-end distance

distribution for PGlu-2 at the reference temperature (T = 300K, black dotted

line) is similar to the one obtained from the longer sampled REMD simulations

(fig. 3.3b) but differs significantly from the MD result. End-to-end distributions

for PAsp-2 and PheGlu-2 do not show significant differences between REMD and

MD simulations at the interface. Although an analysis of acceptance ratios indi-

cates that longer simulation times are required to obtain a canonical distribution

of the folding-unfolding equilibrium (app. A.1, A.2), REMD sampling results are

still an improvement over MD simulations and can be used to make initial predic-

tions about the different peptide behaviours observed based on their end-to-end

distance distributions.

First, consider the shortening of the side-chain (fig. 3.4b,c). Comparing the

end-to-end distribution to that of PGlu-2, it can be seen that there are more

extended structures for PAsp-2, as indicated by the sharp peak in the end-

to-end distribution around rend−to−end ≈ 2 nm, whereas PGlu-2 peaks around

rend−to−end ≈ 1.7 nm. To find out which conformations might possibly hinder

PGlu-2 from having a fully extended backbone, two regions are investigated. A

cluster analysis of region 1, shows that both types of peptides have conformations

in which one hydrophobic side-chain and a termini are close (Phe-Pro). In these

conformations, however, the longer side-chain of PGlu-2 (cluster size ≈ 23%) is

able to reach the P termini (Glu-Pro), which is not the case for the shorter (Asp)

side-chain. Hence, the interaction of the longer side-chain with other residues
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can keep the peptide from sampling more extended conformations, which is also

supported by the large peak observed in MD simulations in that region. Region

2, shows that the predominant conformations (cluster size ≈ 38%) correspond to

conformations in which one of the hydrophilic side-chains bends towards the back-

bone (Glu-Phe), causing it to be slightly less extended compared to the PAsp-2

peptide, which shows no bending of the side-chain towards the backbone.

Next, consider the removal of the Pro termini (fig. 3.4b,d). In region 1, a

cluster analysis of PheGlu-2 clearly shows that the added phenyl rings align

(face-to-face) with the phenyl ring of the neighbouring residue. PGlu-2 do not

exhibits this alignment, since one phenyl ring already aligns with the Pro terminus

(Phe-Pro). This also illustrates the necessity of a second analysis criterion (i.e.

the clustering algorithm) as quite different conformations (for different peptides)

can correspond to the same end-to-end distance region. In region 2, PheGlu-

2 shows similar features to PGlu-2 in that one of the hydrophobic side-chains

bends towards the backbone, which brings the phenyl rings in close proximity to

one another. However, in the absence of the proline termini, this effect is less

pronounced.

Finally, differences between the peptide conformations can also be observed

with temperature. Compared to PGlu-2, PAsp-2 shows a complete opposite ef-

fect with respect to a temperature increase in that it favours the formation of

β-hairpins. This might be explained by the bonded interactions within the pep-

tide which are only relaxed at higher temperatures, making the backbone more

mobile such that it can allow for β-hairpin formation. Indeed, PAsp-2 in its ex-

tended form seems to display a more ordered behaviour (i.e. higher rigidity of

the backbone) compared to PGlu-2 and may thus be more suitable for peptide

self-assembly into ordered aggregates at lower temperatures.

In summary, it is observed that the longer side-chains of PGlu-2 peptides can

reach and interact with other side-chain and backbone residues, contributing to

many intermediate conformations (between β-hairpins and fully extended) which

keep the peptide from sampling fully extended conformations at lower tempera-

tures. PAsp-2 on the other hand seems to have a rather rigid backbone in com-

parison and displays less intermediate conformations. Very similar to this is the

behaviour of PheGlu-2, which also shows more extended conformations, possibly

due to more order created by the ring alignment of the hydrophobic side-chains,

and less intermediate structures are observed. In addition, when considering the
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conformational changes with respect to an increase in temperature, PGlu-2 is

seen to have the opposite behaviour than PAsp-2 in that it favours folded instead

of extended conformations. This might indicate that the backbone becomes more

mobile, and hence allows for the formation of more β- hairpins. Although longer

simulation times and larger system sizes are required for more thorough sam-

pling, the results obtained already indicate that conformational preferences vary

between the different peptide sequences which are likely to affect their aggregation

behaviour during self-assembly.

3.3 Analysis of multiple peptides

Now that the behaviour of single peptides has been illustrated, the interplay of

multiple peptides can be considered to investigate their self-assembly behaviour.

Although for self-induced peptide aggregation it is important to understand the

detailed peptide conformations at the different stages of the assembly, difficulties

in sampling the equilibrium conformational ensemble (due to the formation of β-

hairpins, sec. 3.2.1) make it infeasible to study the entire self-assembly process on

experimental time and length scales via atomistic simulations. Therefore, a small

number of peptides (9 chains) is used to look at two specific stages of self-assembly.

Namely, the first stage, which corresponds to initially free peptides1 assembling

into β-sheets, and the last stage, at which a perfectly ordered aggregate (3 ×
3) has been formed. Intermediate stages should be investigated with a lower

resolution model, developed in ch. 6, for which atomistic REMD simulations of

single peptides (sec. 3.1-3.2) provide a reference, and atomistic MD simulations

of multiple peptides (sec. 3.3) serve as a first approximation to compare to.

3.3.1 Aggregation into β-sheets

To simulate initial peptide aggregation, a water slab with 9 peptides at the

interface is prepared with enough space around each peptide strand to rotate

(in the z-axis) around its centre without touching its neighbours. The angle of

the peptide’s backbone with respect to the interface is chosen at random such

as not to introduce a bias towards an assembly into parallel or anti-parallel β-

sheets. System sizes of 12.00 × 12.00 × 24.00 nm for peptides PGlu-n, PAsp-n,

and PheGlu-n with n = 2, 4, 5 have been setup and simulated for t = 50ns, each

which a time step of δt = 2ps. For comparison, identical systems were set up with

1Here, free refers to the fact that peptides are initially well-separated and non-interacting.
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the peptides pre-assembled into ordered (3×3) aggregates to mimic an excerpt of

a monolayer, with a, b lattice spacings as observed in experiment (≈ 0.5, 0.7 nm

respectively) to represent the final stage of self-assembly. All simulations have

been performed in the NV T ensemble, with the same simulation settings as in

sec. 3.1.

To follow the progress of aggregation, the peptides’ secondary structure has

been monitored throughout the simulations. Note, that here only the results

for the shorter peptides (n = 2) at a low peptide concentration (9 chains) are

shown. Secondary structure analyses for the longer peptides (n = 4, 5) and

higher peptide concentrations (16 chains on the same surface area) showed the

same qualitative trends, but require much longer time scales to assemble into

ordered aggregates, with the longest peptides (n = 5) producing predominantly β-

hairpins (see appendix, sec. A.1.2). To classify the secondary structure of a given

conformation, many algorithms exist which categorise 3D structures according

to different criteria such as the inter- and intra-Cα-distances, angles, hydrogen

bonding patterns, and backbone curvature. As such, there is no ideal method to

use and the means of characterisation should be chosen according to the structural

features of the system under investigation. The most widely used is the DSSP [75]

algorithm, which assigns secondary structures according to hydrogen bonding

patterns only. In this work, however, the secondary STRuctural IDEndtification

(STRIDE) [76] algorithm is employed, which uses hydrogen bonding energies as

well as backbone torsional angles to assign secondary structures.

Results for PGlu-2, PAsp-2, and PheGlu-2 are shown in fig. 3.5a-c. The white

regions correspond to ’coils’, which are random conformations that cannot be

assigned to any secondary structure. Green represents the formation of ’turns’,

which are structures in which the backbone reverses its overall direction such that

two Cα atoms are close (< 7 Å apart) but their corresponding residues do not

match any secondary structure element. ’β-sheets’ are depicted by the yellow

regions, which correspond to structures with at least 2 hydrogen bonds between

backbone residues. Hence, these arrangements can be parallel or anti-parallel.

Very rare are ’β-bridges’ (brown), which are a type of β-sheet with only one

occurrence of hydrogen bonding between residues.

It can be seen that all three types of peptides exhibit a very fast formation

of β-sheets (t ≈ 5 − 20 ns). However, PGlu-2 seems to take the longest time to

form more ordered structures which is probably due to the numerous side-chain
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Figure 3.5: Secondary structure analyses for MD simulations of 9 peptides of PGlu-2, PAsp-2,
and PheGlu-2 when initially started as free peptides (t = 100 ns, left) or when started in a pre-
assembled aggregate (t = 20ns, right). Based on the initial formation of β-sheets, the formed
simulation is divided into into 2 stages, (a) free and (b) during assembly which represent the
early and intermediate stages of self-assembly. (c) Peptides in pre-assembled aggregates which
mimic an excerpt of an experimental monolayer represent the last stage of self-assembly. These
stages also separate what is feasible to be analysed atomistically (a,c) and what should be
studied with a lower resolution model (b).
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- termini interactions which have already been observed in REMD simulations of

single peptides (fig. 3.4). PAsp-2 has the most similar secondary structure plot

when comparing the assembling stage to the final stage which was simulated by

the pre-assembled aggregate (fig. 3.5b,c). This is probably due to the higher rigid-

ity of its backbone induced by the shorter side-chains. PheGlu-2 falls in between

the two as, on the one hand, it exhibits relatively ordered conformations due to

the alignment of the faces of the additional hydrophobic Phe rings, but, on the

other hand, it also creates a number of intermediate structures from interactions

of the long hydrophilic side-chains (Glu) with backbone residues.

These observations can be confirmed by an analysis of the end-to-end distribu-

tions of the three stages of self-assembly (free: fig. 3.5a, during assembly: fig. 3.5b,

in the pre-assembled aggregate: fig. 3.5c) which have been averaged over all pep-

tide chains (fig. 3.6a-c). Here, PAsp-2 clearly shows the most extended conforma-

tions in the very early stage of assembly (free), with approximately the same peak

positions as those observed in the last stage of self-assembly from (pre-assembled)

aggregates. PGlu-2 can be seen to have the most intermediate structures during

the assembling stage and PheGlu-2 seems to be an average between the two types

of peptides. For longer peptides and higher peptide concentrations, the assembly

shows a substantial amount of folded conformations and β-hairpins (sec. A.1.2,

fig. A.3) and the systems require even longer simulation times to create ordered

aggregates.
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Figure 3.6: End-to-end distributions for MD simulations of peptides (a) PGlu-2, (b) PAsp-
2, and (c) PheGlu-2, when initially started as free peptides: free (top) and during assembly
(middle) or in the pre-assembled aggregate (bottom), as averaged over all 9 individual peptide
chains.
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3.3.2 Hydrogen bonding and stability

When studying peptide aggregates, it is important to understand the inter-

and intra-chain hydrogen (H) bonding involved, not only to understand the self-

assembly behaviour, but also to determine the stability of the aggregates. To

do this, both the direct peptide-peptide H-bond interactions as well as the indi-

rect H-bond interactions (i.e. those mediated by a single water molecule) have

been analysed in the pre-assembled aggregates. An H-bond exists if the distance

between the donor and the acceptor is rHB ≤ 0.35 nm and the hydrogen-donor-

acceptor angle is αHB ≤ 30◦.

First, the direct peptide-peptide H-bond interactions (depicted at the top of

fig. 3.7 for the PAsp-2 aggregate) have been analysed by counting the occurrence

of H-bonds between different residue categories (backbone ’BB’, side-chain ’SC’

of two types Phe and Glu/Asp, and terminus ’TM’) throughout the simulations.

In total, there are 10 different types of hydrogen bonding possible between these

groups. On comparison of the three types of peptide aggregates, the most oc-

curring H-bonds take place between backbone residues (BB-BB). They are on

the order of 25-30 H-bonds for PGlu-2 and PAsp-2, and on the order of 30-35

H-bonds for PheGlu-2, but are not shown explicitly here such as to depict any dif-

ferences between the peptides for less frequently occurring H-bonds. The BB-BB

H-bonds occur between the secondary amine (N) and the Oxygen of the carbonyl

group (mainly from Glu and rarely from Phe residues) and are believed to govern

the stability of the monolayer in addition to the TM-TM H- bonds, which were

observed to be the second most frequently occurring type of hydrogen bonding

(fig. 3.7a-c).

Comparing PGlu-2 and PAsp-2 (fig. 3.7a,b), one sees that neither has many

TM-SC bonds between the hydrophilic side-chains and termini. Earlier observa-

tions for PGlu-2 (sec. 3.2.3), which showed that many intermediate conformations

exist in which the longer side-chain (Glu) bends towards the Pro terminus are

more likely to interfere at an early stage of self-assembly where initial β-sheet for-

mation takes place, not in the case of a stable pre-assembled aggregate (i.e. less

BB-BB and TM-TM H-bonds). However, the SC-SC hydrogen bonding between

hydrophilic side-chains seems to appear more frequently in the case of the PAsp-2

aggregate, which might also contribute to its stability. Hydrogen bonding bridged

by water molecules (fig. 3.7d,e with examples depicted for the PAsp-2 aggregate)

show no differences between the two types of peptide aggregates.
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Figure 3.7: H-bonding analyses of (a) direct protein-protein H-bond interactions and (b) indirect
protein-protein H-bond interactions (mediated by a single water molecule). These were assigned
to separate the types of interactions, namely between groups such as the backbone (BB, residues
1-7, atoms backbone), the side-chains (SC, residues Phe, Glu or Asp, atoms not backbone) and
the termini (TM, residues 1 and 8, atoms not backbone) to classify the type of interaction.
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Figure 3.8: Twisting propensity of peptides PGlu-2, PAsp-2, and PheGlu-2 when sitting in
the preassembled aggregates, showing the angle between the backbone C=O bonds i, j when
looking down the backbone.

Considering the replacements of the Pro by Phe termini (fig. 3.7a,c), significant

differences are observed. Indeed, in the absence of the Pro termini the TM-TM

H-bond interactions are reduced, with some being partially bridged by water

molecules. Throughout the simulation, this results in the aggregate losing contact

between the termini much more readily and eventually drifting apart at the edges.

To further analyse the differences observed between the aggregates of different

peptide sequences, an analysis of the backbone twist is performed which measured

the angle between consecutive carbonyl groups along the peptide’s backbone of

residues i and j (as depicted in fig. 3.8a), averaging over all chains in the aggre-

gate. The average distributions of the angles for peptides PGlu-2, PAsp-2, and

PheGlu-2 are shown in fig. 3.8a,b,c respectively. From these results, it is appar-

ent that PGlu-2 and PAsp-2 show a better overlap of the two (i,j) angles, while

for PheGlu-2 the angle gets larger, indicating a twist of ≈ 10◦ along the back-

bone. Such a twist can result in a break in the β-sheet for larger aggregates sizes,

making a peptide with a more rigid and straighter backbone the more suitable

candidate to be used for the assembly into ordered monolayers.

3.3.3 2D order within the aggregate

Finally, one can consider the effect of the termini on the (2D) order of the

monolayer. Experimentalists believe, that the Pro termini which are known to

be β-sheet breakers induce 2D order within the monolayer. To study this effect,

the pre-assembled aggregates (of PGlu-2, PAsp-2, and PheGlu-2) which repre-

sent excerpts of the respective monolayers have been analysed according to their

diffusion and orientation of the individual peptide’s backbones over time. To

do this, the reference orientation of the aggregate was defined to be along the
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backbone of the central chain at t = 0ns (identified by the square in snapshots

for 0 ns in fig. 3.9). After every 200 ps of simulation, a snapshot of the aggregate

was taken and an order parameter was calculated via S = (1/2) < 3 cos θ − 1 >,

where < · · · > denotes the average over all peptide chains in the aggregate. If

the Pro end groups do play a part in preserving the (2D) order of the aggregate,

one should observe the aggregate to diffuse apart along the xy-plane as these are

removed (i.e. in the PheGlu-2 aggregate).

Results are shown at the top of in fig. 3.9, with snapshots of the aggregates

show after 0 ns, 10 ns, and 20 ns of simulation time. As can be seen, the PheGlu-

2 aggregate displays the most disorder (i.e. lowest S) on average, in which the

aggregate has separated at the termini and diffused away from a 2D ordered

aggregate. This is probably due to the additional hydrophobic (Phe) groups

which have already shown during the hydrogen bonding analysis to have a less

H-bonds when employed as termini (sec. 3.3.2) with some mediated by bridging

water, hence they are very weak. For peptides with Pro termini, however, there is

also a deviation from a perfectly ordered aggregate structure. Here, the termini

do not lose contact as readily as in the case of the PheGlu-2 aggregate, where the

aggregate has already lost its 2D order at t = 3ns. However, to have conclusive

results, one needs to sample longer time scales, larger concentrations, as well as

test different starting positions.

3.4 Conclusions

In conclusion, it has been demonstrated that differences between the pep-

tides PGlu-2, PAsp-2, and PheGlu-2 can already be observed on atomistic time

scales (for short peptides at small concentrations). The longer side-chains of

PGlu-2 result in many intermediate structures between fully extended and folded

(β-hairpins), which can hinder (or slow down) its self-assembly into ordered ag-

gregates. Much more suitable is the behaviour of PAsp-2, which shows sharper

distributions (i.e. fully extended with a only small amount of β-hairpins). Here,

analysis of its internal structure shows that it not only has a fairly straight back-

bone (i.e. only a small twist) but also that the hydrogen-bonding between the

hydrophilic side-chain residues can aid to stabilise the aggregate. Finally, PheGlu-

2 shows the importance of employing the Pro termini as end groups in the peptide

sequence, since without them, the aggregate does not have strong enough inter-

actions between neighbouring termini and will quickly diffuse apart. For larger
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systems and longer time scales, it is already apparent that atomistic simulations

do not suffice and one needs to resort to expensive REMD simulations to im-

prove the sampling. As this limits the systems which can be studied, the time is

better invested in developing a coarse-grained model with which one can address

these scales more easily. One can then go back and forth between the scales (via

back-mapping) to obtain the information required to aid experimentalists.
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Coarse-graining by fitting analytical functions

While atomistic simulations are appealing to use for modeling biological sys-

tems as they provide access to full atomistic details at all times, they also consume

vast amounts of computational power and time. In addition, most of that time is

often spent on evaluating interactions not of interest, for example, the numerous

solvent-solvent interactions in a protein environment, limiting biomolecular sim-

ulations on the atomistic level in time (≈ µs) and length scales (≈ µm). Hence,

ways must be sought to reduce the number of interactions, or degrees of freedom,

while preserving the key features which define the reference system (e.g. the local

structure, bulk density, or the surface tension of a liquid).

One way to improve sampling efficiency is by coarse-graining, a procedure

which groups several interaction sites (i.e. atoms) into coarse-grained (CG) beads.

By introducing softer interaction potentials, it accelerates diffusion processes [30],

increases intrinsic length scales, and consequently provides access to longer simu-

lation times and larger system sizes. In the past, CG models have been developed

for various types of systems, such as polymer melts [61, 77, 78, 79], organic sol-

vents [80, 81, 82], lipid membranes [83, 84, 85], conjugated polymers [86, 87, 88],

peptides [89, 90], surfactants [91], and proteins [92].

Often, coarse-graining is performed on the entire system as the interest lies

in determining its macroscopic behaviour on extended time and length scales.

If, however, the microscopic details of a particular region are required at all

times, one may want to only coarse-grain part of the system while keeping the

region of interest at a high level of resolution. An implementation of this is

the particle-based adaptive resolution scheme (AdResS), which simulates regions

of different resolution while allowing for particle exchange between them [93,

94, 95]. In this work, however, the aim is to simulate peptide self-assembly

(simulated atomistically in ch. 3.3) under more realistic conditions (approaching

experimental time and length scales). Hence, the entire system is coarse-grained

but one can reintroduce atomistic coordinates at any point in time via a procedure

known as backmapping [61, 96, 97].

To derive a CG potential, one needs to project a many-body potential of
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mean force onto a CG force field [98]. The projection operator is not unique and

depends on the set of structure or thermodynamic properties of the system which

should be preserved during coarse-graining. Force matching, for example, tries to

approximate the entire distribution of states in a canonical ensemble [98, 99, 100,

101], while structure-based coarse-graining such as iterative Boltzmann inversion

(IBI) [58] or inverse Monte Carlo [102] tries to match the radial distribution

functions (RDFs) from the pair PMFs of the CG and reference system.

In the following two chapters (ch. 4,5) two different approaches for coarse-

graining the air-water interface are described. Since atomistic water models are

already fairly simple (e.g. an SPC/E-type water molecule consists of 3 points in-

teracting via Lennard-Jones and Coulomb potentials), the CG models are made

to consist of simple pair potentials, where long-range interactions are effectively

taken into account to obtain a significant simulation speed-up. Initially, the CG

potential is parametrised based on the structure of bulk water, leading to a very

diffuse interface and hence motivating further development of systematic CG ap-

proaches for slab systems which yield sharper interfaces (sec. 4.1). The first CG

approach then attempts to use analytical potentials to analyse the effect that the

various potential regions (short- and long-range) and potential features (single

versus double well) have on the air-water interface stability1 and the structure

of the liquid (i.e. RDF). This is done by testing a series of CG pair potentials,

building up in complexity, in an attempt to find a compromise between match-

ing the structure and the interfacial density profile of the atomistic reference

(sec. 4.2-4.4). Chapter 5 on the other hand employs numerical potentials in a

CG procedure which extends IBI for homogeneous systems to inhomogeneous

systems.

4.1 Parametrisation in bulk water

As a starting point for the study, it is tested to which extent a coarse-grained

pair potential obtained in a bulk water system is transferable to an interface

system. The change in setting already hints at potential transferability issues, as

the water molecules at the interface only have half as many interaction partners

compared to those in a bulk water environment [103]. To illustrate the deficiencies

of such an approach, the interface system is simulated by a potential obtained

1Here, a stable interface means a narrow transition region between the liquid phase and the
vacuum, whose width is comparable to that of the atomistic reference.
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via a structure-based CG method by matching the pair RDFs in bulk water.

Consider a bulk water system setup with a cubic box of length lb = 5.47 nm,

containing 5439 molecules, with a CG mapping of 1 bead per molecule (fig. 4.1a).

To obtain the target RDF (evaluated between the two oxygen moieties), an atom-

istic NVT simulation of t = 100 ns with a time step of δt = 0.2 ps is performed at

a temperature of T = 300K, using the Berendsen thermostat with a coupling con-

stant of τ = 0.1 ps. Long-range electrostatics are treated with PME and periodic

boundary conditions (PBC) are applied in all (x, y, z)-directions.

With this RDF as a target, the CG potential is parametrised by performing

IBI (sec. 2.2.3) on the bulk water system for 300 iterations of t = 100 ps each,

with the same time step, temperature, and thermostat as the reference simulation

and an interaction cutoff for CG beads of rcut = 0.9 nm. To remove the artificially

high pressure introduced by coarse-graining, the obtained potential is pressure-

corrected to yield a pressure of p ≈ 1 atm. The resulting potential, U cg
ww(r),

is then employed for simulations of a CG interface system (fig. 4.1b), obtained

by expanding the bulk system by a factor of two in the z-direction (ls = 2lb),

where w defines the width of the water slab (w = lb at t = 0ps). The same

procedure is repeated for two larger CG interaction cutoffs (rcut = 1.4, 2.0 nm)

and the resulting density profiles for the CG interface systems are compared

(fig. 4.2). Note, that all simulations are carried out via the GROMACS simulation

package [54, 104] and the coarse-graining (CG mapping, IBI, pressure correction)

is performed with the VOTCA package [105].

Results show that all of the obtained CG interfaces are too diffuse compared to

the atomistic reference, demonstrating that by solely matching the bulk structure

of water, g(r), one does not recover important thermodynamic properties which

contribute to the stability of the interface (e.g. surface tension). The microscopic

reasons for this have already been discussed extensively in the literature [106],

demonstrating that a simple CG pair potential cannot reproduce the structure

as well as all of the thermodynamic properties of water simultaneously. Clearly,

when moving from an atomistic to a CG water model, any orientational prefer-

ence of the water molecule is removed as the molecules are replaced by isotropic

spherical beads, which also leads to a different packing. In addition, CG beads do

not carry charges and hence cannot take into account polarisation effects [107].

Furthermore, as hydrogen atoms are no longer simulated explicitly, the hydro-

gen bonding between the water molecules is lost which is especially critical for
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(a)

lb ls

w

(b)

Figure 4.1: Snapshots of (a) the bulk system consisting of a cubic simulation box of length lb
and (b) the air-water interface system, which consists of a cubic water slab of width w and box
length ls in the z-direction (ls = 2lb at t = 0ns). Both systems show the CG beads mapped
onto the atomistic reference, with a mapping of 1 bead per water molecule as shown in the
zoomed-in portion of the slab.

molecules at the surface which define the stability of the interface.

To understand how some of these properties can be preserved in a CG model,

one needs to start with more simple potentials to identify which features are

required.

4.2 A simple attractive potential (LJ12-4)

To start with, a simple Lennard-Jones 12-4 (LJ12-4) potential with only 2

parameters, σ and ǫ, is tested. The same potential has been previously employed

by Shinoda et al. [108, 109] to develop a CG surfactant model, characterising

water solely based on experimental surface tension (γ = 71.20 dyne/cm) and

density (ρ = 999.57 kg/m3) while keeping the functional form of the potential

simple,

ULJ12-4(r) =
3
√
3

2
ǫ
{

(

σ
r

)12 −
(

σ
r

)4
}

, r ≤ rcut . (4.2.1)

Here, σ is the distance between particles at V = 0 and ǫ is the energy minimum.

Their findings showed that by choosing an appropriate cutoff distance (rcut) and

exponential index, such a simple model can reproduce the experimental density,

surface tension, and compressibility of water, although at a cost of having a

strongly over-structured liquid.

In this work, however, the aim is to employ the above potential to find a set of

parameters which match the density profile (X = ρ(z)) of the atomistic reference
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Figure 4.2: (a) CG pair potentials obtained from IBI parametrisation of (b) the bulk structure
of water with different CG cutoffs, rcut = 0.9 nm (green), rcut = 1.4 nm (red), rcut = 2.0 nm
(blue), and (c) their respective density profiles when employed for a simulation of a CG slab
system.

simulation (fig. 4.2c, black dotted line) and see how well the other properties (i.e.

RDF, surface tension) are matched. Note, that the second term of the LJ12-4

potential goes to zero as −r−4, generating a potential which contains more long-

range attraction than the conventional LJ12-6 potential. This may be especially

important in reducing the diffusion of water molecules into the vacuum at the

slab’s surface (as observed for the CG bulk water model, sec. 4.1).

A broad range of bead sizes (σ =0.2-0.4 nm) and interaction energies (ǫ =1.0-

5.0 kJ/mol) have been tested to find out which pairs of parameters provide den-

sity profile shapes comparable to that of the atomistic reference. To remain

at the same state point (pressure) as the atomistic reference and avoid sys-

tem size artifacts (i.e. droplet formation for small σ), box sizes have been

rescaled to range from 3.6 × 3.6 × 7.3 nm (σ = 0.20 nm) to 7.3 × 7.3 × 14.6 nm

(σ = 0.40 nm), with σ = 0.30 nm having the same box size as the atomistic refer-

ence, 5.5×5.5×11.0 nm. For each parameter set, simulations were performed for

10 ns with an interaction cutoff of rcut = 1.4 nm (to have sufficient range for tuning

the potential at a later stage) and the same settings as previous CG simulations

(sec. 4.1). As one would expect, very low interaction energies result in volatile

liquids (liquids with a high vapour pressure), while high interaction energies yield

glasses (fig. 4.3a,b). Note, that beyond ǫ > 3.5 kJ/mol, surface tensions become

very high and no longer increase linearly with ǫ. The states of the individual

simulations (volatile liquids → glasses, indicated by the colour bar) are assigned

to range from the lowest to the highest (diffusion/ surface tension) values of the

parameter sets (blue → red for diffusion and red → blue for surface tension),
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with the value of σ =0.30 nm and ǫ =3.0 kJ/mol, assigned to grey, defining the

approximate of the region of interest. In the vicinity of this region, one finds a

narrow range of parameter sets which yield systems of interfacial shapes close to

that of the atomistic reference.

To characterise them, their RDFs, density profiles, and diffusion coefficients

have been analysed. The RDF provides information about the structure and

packing of the liquid, where the first r value provides an estimate for the particle

size (σ). The density profile gives the bulk density1 of the water slab, its width

(w), and a measure of the thickness of the air-water transition layer. This last

variable is closely related to the surface tension (γ), which describes the particles

affinity for one another at the interface. Results for parameters σ = 0.3 nm

with ǫ = 1.5-5.0 kJ/mol are shown in fig. 4.4. All other results (σ = 0.20, 0.25,

0.35, 0.40 nm with ǫ = 1.5-5.0 kJ/mol) can be found in the appendix (app. A.1.3,

fig. A.4-A.7). Considering the RDFs from the different parameter sets, it can

be seen that on the one hand, a stable interface comes at a cost of introducing

long range order to the system. On the other hand, having interactions between

particles which are too weak creates a very soft (diffuse) interface.

To obtain an optimum fit to the density profile of the atomistic reference, the

Downhill Simplex algorithm (sec. 2.2.1, work-flow in app. A.1.4) is employed to

avoid unnecessary searching of the parameter space, where the penalty function

was calculated as yi =
∫ ls
0
|ρi − ρref |2/ρref dz. This optimisation algorithm was

originally employed for the development of atomistic force fields [110] but has

since been successfully applied to coarse-graining applications [111, 112]. 3 sets

of parameters which gave similar shapes to the atomistic density profile are used

as initial guesses. For the Downhill simplex optimisation of the density profile

(X = ρ(z)), 300 iterations of 100 ps each are performed. Results are shown in

fig. 4.5 with initial guesses (grey) and the optimum parameters σ = 0.31 nm

and ǫ = 3.65 kJ/mol ( red), with only a very small deviation (y ≈ 2) from

the density profile of the atomistic reference. Although this is a good match

of the thermodynamic properties which govern the shape of the interface, the

corresponding RDF is over-structured, CG bead sizes are overestimated, and the

packing between the first two coordination shells is different from that of the

atomistic reference.

Hence, a simple potential with only two parameters (σ, ǫ) does not suffice to

1For a slab system, the bulk density is defined as the maximum of the density profile.
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provide a good compromise between the structure and the density profile of the

atomistic reference. Interactions between CG particles are either too weak to

stabilise the interface or too strong, generating ordered phases which no longer

preserve the liquid structure. However, the first issue can be tackled by modifying

the attractive part of the potential to include even more long-range attraction.

Such a model is introduced in the next section.

4.3 Tuning long-range attraction (CKD)

Having attempted to use a very simple form for the inter-particle potential, it

is clear that although the density profile can be reproduced perfectly, the struc-

ture of the liquid is much too ordered. In previous work by Cooke, Kremer, and

Deserno [113], a tunable model to study fluid bilayer membranes was designed,

which could preserve a lipid bilayer without the presence of explicit solvent parti-

cles to aid stabilisation (referred to as the CKD potential). The key ingredient in

this model is a range parameter with which one can tune the extent of long-range
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attraction1 between the lipid tails. By doing so, the bilayer can be stabilised with-

out the introduction of long-range order (and consequently freezing the system).

The repulsive part of the potential consists of the Weeks-Chandler-Anderson po-

tential,

Urep(r) =

{

4ǫ
[

(

σ
r

)12 −
(

σ
r

)6
+ 1

4

]

, r ≤ rc

0 , r > rc ,
(4.3.1)

where the repulsive cutoff is rc = 21/6σ and ǫ is the energy minimum at this point.

The attractive part of the potential is

Uattr(r) =















−ǫ , r < rc

−ǫ cos2
(

π(r−rc)
2wc

)

, rc ≤ r ≤ rc + wc

0 , r > rc + wc ,

(4.3.2)

where wc is the tuning parameter which determines the attractive range between

the repulsive cutoff (rc) and the cutoff of the potential (rcut = rc + wc) at which

particles no longer interact (see potential shapes in fig. 4.7). With this addi-

tional handle on the tuning of the potential, a set of parameters (σ = 0.30 nm,

ǫ = 3.0 kJ/mol) which produced a CG stable interface with the LJ12-4 potential

is tested for various ranges of wc to find out which wc/σ ratios generate a stable

interface. Again, simulations are performed for 10 ns each, sampling a range of

wc = 0.2-1.0 nm in steps of 0.05, as well as wc ≈ 1.06 nm which is equivalent to

CG particles being attractive until their cutoff (rcut).

Results are shown in fig. 4.6, 4.7. It can be seen that a range of wc = 0.35 nm

has slightly softened the structure of the CG water without destabilising the in-

terface. This is possible since, by increasing wc, one is able to add more attraction

to the tail of the potential without having to increasing ǫ (as in the case of the

LJ12-4 potential) which also remedies some of the over-structuring in the higher

order peaks of the RDF.

Next, the Downhill Simplex method is employed for 3 independent optimisa-

tions to match the density profile, the surface tension, and the density profile and

the surface tension simultaneously with equal weights assigned to each property.

These are started from 4 initial guesses which provide a good fit of the density

profile (X = ρ(z)) and surface tension (X = γ) of the atomistic reference. Note,

1Long-range in the sense of the increased length scale over which attractions are effective, thereby
making interactions softer.
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that as the ratio of wc/σ remains constant, it can be used to estimate points

which fall in between the grid of the already scanned region.

For the optimisation of the density profile (X = ρ(z)), 300 iterations of 100 ps

each are performed. Results still show a small deviation (y ≈ 2) from the density

profile of the atomistic reference (fig. 4.8). Note, that the bulk density has been

perfectly reproduced and that the slight discrepancy in the density profiles only

arises from the edges, which are softer in the case of the CG interface. However,

when looking at the RDF, one sees that the particle size determined by the

algorithm has still been overestimated. In addition, the increased width of the

first coordination shell indicates a different packing of particles at small distances

(r < 0.4 nm).

Next, an optimisation for the surface tension (X = γ) is performed (app. A.1.5).

Here, simulations are performed for 1 ns per iteration in order to obtain accurate

surface tension averages. Only 100 iterations are performed. The surface tension
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is calculated from the pressure tensor, Pαβ, (sec. 2.1.1) as

γ =

∫
(

Pzz(z)−
Pxx(z) + Pyy(z)

2

)

dz (4.3.3)

where Pzz(z) is the perpendicular component and Pxx(z) and Pyy(z) are the trans-

verse components with respect to the plane of the interface. Results show that by

fitting to the surface tension of the atomistic reference (γat = 59.4± 0.3 mN/m),

the resulting CG model (γCG = 59.1± 0.7 mN/m) neither produces a good fit of

the density profile nor does it provide the correct CG particle size. The surface

tension, however, is a value which can also be obtained by integrating an expres-

sion which includes the RDF, the slope of the density profile, and the derivative

of the interaction potential [114]. As such, it is possible to have the same value

of γ for very different ρ(z) and g(r). Therefore, interpreting results from an

optimisation solely based on surface tension should be done with care.

Consequently, an optimisation for both the density profile and the surface

tension is performed for 300 iterations of 1 ns each. Here, optimisation results

fall directly in between those of the two individual (density/surface tension),

optimisations with the density profile being reproduced well, a better estimate

for the size for the CG beads, and a less ordered structure (app. A.1.5 with

γCG = 59.3± 0.8 mN/m).

In conclusion, it is evident that although the CKD potential is an improvement

over the LJ12-4 potential, a good compromise between the structure (i.e. RDF)

and the thermodynamic properties (i.e. density profile and surface tension) has

not yet been reached. The main problem is the overestimated bead size and the

different packing of CG particles compared to the atomistic reference in the first

two coordination shells. One way to correct for this might be the addition of a

second minimum to the potential in order to absorb the excess CG particles now

present in the first coordination shell into the second one. In the next section,

this is implemented by the addition of a Gaussian to the current potential form

(CKD).

4.4 Addition of a second minimum (CKDg)

In the past, numerous efforts have been made in deriving effective potentials for

water which, in addition to reproducing the correct structure, could preserve its

anomalities. Although it is known that it is impossible to correctly describe both,
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the thermodynamic properties and the structure of water with radially symmetric

pair potentials [106, 115], several attempts have been made to recover them to

a large extent. Work by Barraz et al. [116] employs two-length scale potentials

which consist of a Lennard-Jones repulsive part and an attractive part composed

of 4 Gaussians, creating shoulder-like potentials. It was discovered that as long as

the first shoulder of the potential is not too deep compared to the second, some

of the anomalities of water could be recovered and it would not be necessary to

employ more expensive directional potentials. Here, a second minimum is created

in the CKD potential (sec. 4.3) by addition of a single Gaussian (referred to as

the CKDg potential). The repulsive part is

Urep(r) =







4ǫ
[

(

σ
r

)12 −
(

σ
r

)6
+ 1

4

]

+ he−
(r−p)2

2s2 , r ≤ rc

0 , r > rc
, (4.4.1)

where rc = 21/6σ and ǫ is the minimum energy at this point. h is the height

of the Gaussian, p is the position of its centre, and s is its standard deviation.

Similarly, the attractive part of the potential becomes

Uattr(r) =



















−ǫ , r < rc

−ǫ cos2
(

π(r−rc)
2wc

)

+ he−
(r−p)2

2s2 , rc ≤ r ≤ rc + wc

he−
(r−p)2

2s2 , r > rc + wc

. (4.4.2)

With this new potential, the Downhill Simplex algorithm is employed in an at-

tempt to improve the packing in the first coordination shell (i.e. first peak of the

RDF) for the CG air-water interface system by fitting to the structure (X = g(r)).

To facilitate optimisation, only the region of r < 0.6 nm has been considered when

calculating the penalty function for the RDF (yi =
∫ rcut
0

|gi−gref |2/gref dr). First,
a test run is performed on a CG bulk water system to see how closely one can

recover the bulk structure (gb(r)) with this potential. As there are now 3 ad-

ditional parameters (needed to define the Gaussian), a total of 7 initial guesses

is required. These are obtained by fitting (as closely as possible) the analytical

CKDg potential to the pressure corrected tabulated potential, which was ob-

tained by performing IBI in the bulk (sec. 4.1). The obtained parameter set is

then varied slightly in the positions and depths of the potential minima to obtain

the remaining sets of initial guesses. Similarly, sets of initial guesses are derived

for the interface system, but with the parameter sets chosen to fluctuate more
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largely around the fitted IBI potential to explore the sensitivity of the system to

changes in the potential. Note, that here IBI was performed on the slab system

(i.e. matching the slab RDF, gs(r)). Details about this can be found in the next

chapter (sec. 5.1).

Fig. 4.9 and 4.10 show the IBI potential (blue dashed line) and the fitted

initial guesses (grey), the IBI optimised result (red), and the atomistic reference

(black dotted line) for the Downhill Simplex optimisations for the RDF of the

bulk and the air-water interface systems respectively. For the CG bulk system

optimisation, one obtains a good agreement with the structure of the atomistic

reference. In the case of the slab system, however, the RDF cannot be perfectly

reproduced (due to the simplicity of the analytical function compared to the

numerical IBI potential) and one sees a deviation between the CG model and the

atomistic reference in the first and second coordination shells. For both the bulk

and the air-water interface systems, the CG potentials obtained now have two

wells. With the new potential an identical optimisation was also performed to

match the density profile (X = ρ(z)) of the slab system to compare the potential

shapes. Here, however, only one potential well suffices to perfectly reproduce the

density profile of the atomistic reference (app. A.1.6, fig. A.11).

Finding a compromise between the two properties (X = g(r), ρ(z)), however,

is a difficult task as the path of convergence is heavily influenced by the choice of

the penalty function employed. Although, the properties are given equal weights

(yi =
∫ rcut
0

0.5|gi − gref |2/gref dr+
∫ ls
0
0.5|ρi − ρref |2/ρref dz), the simplex proceeds

to move towards the lowest sum of the penalty values, even if this corresponds

to a region where the penalty of one property is significantly lower than the

others. To try to avoid this and find a parameter set which reproduces both

properties equally well, the property which has shown to converge more easily

(i.e. the density profile) is optimised instead, starting from initial guesses which

reproduce the other property (i.e. RDF). A total of 300 iterations have been

performed, each of 100 ps, where both the penalty values of the RDF and density

profile were monitored along the convergence path (fig. 4.11a). The optimised

potential to represent the compromise CG model (sec. A.1.6, fig. A.12) has been

chosen where the two lines cross (indicated by the grey arrow). This is indeed a

good compromise as it approximately reproduces the bulk density and the size

for the CG beads, while still remaining in the liquid state (i.e. no long-range

order seen in the RDF).
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result (blue dashed line), the converged result (red line) and the atomistic reference (black
dotted line).
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4.5 Conclusions

In conclusion, it has been seen that one can derive various CG models for the

air-water interface via simple parameter fitting of analytical potentials to various

system properties (e.g. RDF, density profile, and surface tension) as well as a

model which provides a compromise between them (fig. 4.11). While it is easy

to converge for properties like the density profile of the system, the structure of

the interface is more complex to reproduce as one cannot fine tune the potential

without introducing more complexity (i.e. more parameters) which eventually

leads to problems in the convergence of the algorithm. Furthermore, for optimi-

sations of multiple properties (simultaneously), it is difficult to derive a penalty

function which takes into consideration the equal weighting of all properties at

each iteration, without inhibiting the natural flow of the algorithm. In the next

chapter, a similar CG model for the air-water interface is derived via an iter-

ative procedure similar to IBI (i.e. IBI extended for inhomogeneous systems).

The use of numerical potentials should improve the accuracy of the CG model

as well as facilitate the coarse-graining procedure since neither an appropriate

potential form nor as many initial guesses as for the Downhill Simplex algorithm

are required to start the parametrisation.
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Structure-based coarse-graining for slab systems

In principle, coarse-graining via parameter fitting (ch. 4) is a useful approach

to develop a CG model based on a broad range of parameters with a minimum

amount of manual interference. Here, the Downhill Simplex algorithm provides

an attractive fitting tool as it is robust, easy to implement, and does not require

the computation of derivatives. However, the amount of input required to start

the algorithm can become problematic. First, one needs to provide an appropriate

functional form and parameters to be optimized. The more complex the analytical

potential is (i.e. the more parameters it contains), the slower the convergence of

the algorithm will be. Second, accurate starting guesses which yield the property

of interest need to be provided which may not always be available, and third,

one requires an efficient penalty function to evaluate the quality of the results.

As has been seen in sec. 4.4, some properties such as the slab radial distribution

function (RDF), are very sensitive to changes in the interaction potential and can

be difficult to optimize.

Hence, another technique of coarse-graining is sought which needs fewer input

parameters, does not require a functional form for the interaction potential, and

which can reproduce the structure of the slab more accurately. Here, an iterative

scheme such as IBI is ideal as it only needs to compute the PMF for an initial

guess, it employs numerical potentials, and it is intrinsically designed to converge

to the RDF of the underlying reference. However, as it has been derived for

homogeneous systems, some modifications need to be made to extend its applica-

bility to slab (inhomogeneous) systems. Such a method could, in fact, be useful,

for the systematic design of CG models for a wide range of phenomena which

take place at interfaces (i.e. the aqueous/organic interface in biological cells) or

in systems with phase boundaries.

Much debate exists about the true structure of water [117, 118, 119, 120, 121,

122]. Initially, it was believed that the structure in the bulk phase and that at

the air-water interface are very different, since the hydrogen bonding network

at the surface is interrupted. Shen et al. proposed that the region between the

bulk and the vacuum phase consists of to two bands, one containing ’ice-like’
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water in which mainly tetrahedrally coordinated water can be found, and one

containing ’gas-like’ water [123, 124]. A new unified molecular view of the air-

water interface, however, indicates that there is no ’ice-like’ water but that the

water molecules at the surface simply have stronger hydrogen bonding with their

neighbors. These findings have indeed shown to have excellent agreement between

theory and experiment [125] and as such, support the idea that a CG model for

a water slab can be designed in which all particles (in bulk and at the interface)

reproduce the local structure of the liquid.

In this chapter, a new coarse-graining method to develop CG models for liquid

slabs is derived [126]. First, an analytical relation between the RDF of a (homo-

geneous) liquid and that of a slab (inhomogeneous system) is derived (sec. 5.1).

One can use this transformation to design a new update for the IBI procedure

which accounts for the system’s inhomogeneity (sec. 5.2). The new method is

demonstrated on a water slab and also tested on a slab of methanol. In addi-

tion, it can be applied to solute-solvent systems to obtain the correct partitioning

(i.e. solute probability distribution in the solvent slab). An example for this is

demonstrated by coarse-graining a single benzene molecule at the surface of a

water slab (sec. 5.3).

5.1 Relation between bulk and slab RDFs

In a homogeneous system, the radial distribution function, g(r), is calculated

by counting the number of particles, Nshell(r), in a spherical shell of a radius r and

thickness ∆r. This number is normalized by the shell volume, Vshell(r) = 4πr2∆r,

and the number density, ρ = N/V , to ensure that g(r) = 1 at large r. To improve

the accuracy, g(r) is then averaged over all particles in the system

g(r) =
〈Nshell(r)〉
ρVshell(r)

, (5.1.1)

where 〈. . . 〉 denotes an ensemble average.

If the same protocol is applied to a system consisting of a slab of thickness w,

sandwiched between two vacuum layers in a box of length ls ≥ 2w (see fig. 5.1a),

two things change. First, the number density used for normalization, ρs = N/Vs,

becomes smaller due to the larger size of the simulation box in the z-direction, ls,

and second, the number of particles in the shell is no longer uniform and becomes

a function of the position of the shell center, a. This number can be estimated
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shown for a density profile with sharp interfaces (eq. 5.1.4).

by assuming that only the density, ρ(z), but not the local structure, gb(r), of the

liquid changes within the slab (as a function of the z-coordinate).

Employing this assumption, the number of particles in the shell for a system

with an interface can be estimated as

Nshell(r, a) = 2πr∆rgb(r)

∫ a+r

a−r

dzρ(z) , (5.1.2)

where gb(r) is the RDF of a pure bulk system (without interfaces), ρ(z) is the

number density which depends on the z-coordinate, and a is the distance from the

shell center to the symmetry plane of the slab (as shown in fig. 5.1b). Averaging

over all particles, which is equivalent to integrating Nshell(r, a) over ρ(a)da and

appropriately normalizing, one obtains

gs(r) = gb(r)

∫ ls/2

−ls/2
daρ(a)

∫ a+r

a−r
dzρ(z)

2rρs
∫ ls/2

−ls/2
daρ(a)

. (5.1.3)

Here, gs(r) is an object which one obtains by using a standard procedure of

calculating an RDF for a system with a slab. In what follows, it is referred to as

a slab RDF.
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To illustrate how eq. 5.1.3 works in practice, consider first a slab with two

sharp interfaces. In this case, ρ(z) can be written as a sum of two Heaviside step

functions (fig. 5.1b) and, for r ≤ w, eq. 5.1.3 simplifies to

gs(r) = gb(r)
ρb
ρs

(

1− r

2w

)

, (5.1.4)

where w < ls is the width of the slab and ρb = N/Vb is the number density of the

bulk system. One can see that apart from the local structure of the liquid, gs(r)

also contains information about the slab width and total number density.

The transformation between the bulk and slab RDFs (eq. 5.1.4) is illustrated

for atomistic SPC/E water in fig. 5.1c. Here, gb(r) obtained from simulations of

bulk water, when scaled, lies exactly on top of gs(r) obtained from simulations of

a slab of water. Note, that the slab system was prepared from the bulk system by

increasing the box size in the z direction by a factor of two, such that ρb/ρs = 2.

Slice-resolved RDFs

To verify the assumption that only the density, ρ(z), but not the local struc-

ture, gb(r), of the liquid changes within the slab, the RDFs of thin slices, gslice(r),

of width ∆z have been calculated in different regions of the water slab. Since

each slice is simply a slab with two sharp interfaces, gslice(r) was rescaled by a

factor

κ(r) =
ls
∆z







1− 1
2

r
∆z

, r ≤ ∆z

1
2
∆z
r
, r > ∆z ,

(5.1.5)

which stems from the relation between the slab and bulk RDFs calculated for

a slab with two sharp interfaces (tab. 5.2.2). These RDFs are shown in fig. 5.2

for a set of selected slices. One can see that in both the bulk and the slab cases,

the deviation from the bulk RDF is only noticeable for the outermost interfacial

layer (≈ 1−2 molecules thick). After this, it perfectly reproduces the bulk RDF.

5.2 IBI update for slab systems

5.2.1 Approximation for sharp interfaces

Employing the relation between the slab and bulk RDFs (eq. 5.1.4), one

can rewrite the potential update of the IBI method for homogeneous systems,
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eq. 2.2.10, for a slab system. Indeed, substituting eq. 5.1.4 one obtains

∆U (i)

kBT
= ln

g
(i)
b (r)

gatb (r)
= ln

g
(i)
s (r)

gats (r)
− ln

2w(i) − r

2wat − r
, (5.2.1)

where all constant offsets to the potential have been neglected. Here, one can see

that ∆U (i) splits into two contributions. The first depends on the ratio of the

coarse-grained to atomistic slab RDFs, and the second is a function of the widths

of the atomistic and coarse-grained slabs.

The derived update (eq. 5.2.1) might give the impression that it is sufficient to

match bulk RDFs in order to satisfy wcg = wat. That is, however, incorrect, since

structural coarse-graining does not preserve all thermodynamic properties of a

system [63, 106, 127], among them the interfacial width of the atomistic refer-

ence. As already seen from conventional IBI in the bulk with pressure correction

(sec. 4.1), simulations of a water slab using this model produced very wide and

diffuse interfaces which, even though bulk RDFs were perfectly matched, resulted

in different slab RDFs. In other words, wcg 6= wat and gcgs (r) 6= gats (r). Note

that this effect is especially severe in the case of a one-site coarse-grained water

model, as it lacks three-body contributions to the potential of mean force [127].

A systematic solution to this problem is to either include a three-body interaction

potential in the one-site water model [127] or to switch to a different representa-

tion which can reduce the role of such contributions, e.g. by mapping more than

one water molecule onto a CG bead [84, 91, 109].
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If, however, a one-site representation with a pair interaction potential is still

desired, one should try to find a balance between matching the pair distribution

function and the thermodynamic properties of interest. Here, eq. 5.1.4 offers a

practical solution as one can perform all simulations in a system with a slab,

determine interfacial and slab widths, δ and w, calculate slab RDFs, gs(r), and

subsequently change the interaction potential according to eq. 5.2.1. This idea,

however, has both technical and conceptual issues. Conceptually, the Hender-

son theorem [64] states that there exists a unique (up to an additive constant)

interaction potential which reproduces a given RDF of a homogeneous system.

Based on experience, this is the stationary point of the IBI method. Since this

statement does not depend on the density of the system, identical RDFs (gb(r))

can correspond to different interaction potentials if the respective densities are

different. The immediate implication is that IBI is now performed on an inho-

mogeneous system using the exact form of eq. 5.2.1, the system will eventually

become homogeneous with the RDF reproducing that of the atomistic reference

but an interaction potential which corresponds to a lower density (determined

by the size of the simulation box). This is illustrated in fig. 5.3 (green solid

line), where the convergence of the slab RDF (∆g), bulk density (ρ0), interfacial
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and slab widths (δ, w) are shown as a function of iteration. These parameters

have been extracted from simulations by fitting a sum of two hyperbolic tangent

functions, adjusted to account for the slab drift, z0, and a finite concentration of

particles outside the slab, ρv,

ρ(z) = ρv + (ρ0 − ρv)
1− tanh 2z−2z0+w

δ
tanh 2z−2z0−w

δ

1 + tanh2 w
δ

. (5.2.2)

By solving eq. 5.1.3, analytical expressions can be obtained to analyze density

profiles and construct updates for the interaction potentials (see tab. 5.1). By

following the convergence, it can be seen that independently from the initial

density profile, the system quickly becomes homogeneous and the reference RDF

is perfectly matched (∆g = 0 nm).

However, a spatially homogeneous density distribution is not what is desired.

In this case, eq. 5.2.1 also offers a solution. Since its second term depends only

on the density profile, one can introduce a bias which will make the homogeneous

solution unstable. The simplest way of doing this is via a scaling factor for

the density-dependent term, e.g. in the case of sharp interfaces, eq. 5.2.1, the

potential update becomes

∆U (i)

kBT
= ln

g
(i)
s (r)

gats (r)
− κ ln

2w(i) − r

2wat − r
, κ < 1 . (5.2.3)

This scaling effectively adds a long-range attractive term to the potential once the

interface dissociates and hence destabilizes the homogeneous solution, leading to

oscillations between the homogeneous and inhomogeneous density distributions.

Such oscillations can be seen in fig. 5.3 for κ = 0.8 (gray dashed line) which show

that the homogeneous density distribution is no longer a stationary point of the

iterative scheme, since the structure- and density- dependent components of the

update are unbalanced.

To find a compromise between optimizing the liquid structure and the density

profile, one can slow down the oscillation dynamics by making a global scaling

factor α in eq. 2.2.10 dependent on the convergence of the tail of the slab RDF,

αg = |1− g(rc)/g
at(rc)|, where rc is the cutoff distance. Similarly, one could en-

sure that the bulk densities of the slab match by introducing αρ = |1− ρ0/ρ
at
0 |.

The respective behavior of the iterative scheme and the properties of the CG

models is shown in fig. 5.3 (κ = 0.8, αg and αρ, red and blue solid lines). The
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and bulk RDFs for all functions listed in tab. 5.1. δ/w = 0.25.

“pseudo-stationary” points (depicted by the arrows) can be clearly identified and

the corresponding potentials which, as will be seen in later examples (sec. 5.3),

provide a good compromise between reproducing the thermodynamic and struc-

tural properties of a liquid.

5.2.2 Approximation for diffuse interfaces

It is not surprising that eq. 5.1.4 works perfectly for a water slab, since its

interfaces are very sharp. For more diffuse interfaces it is still possible to obtain

an analytical relation between the RDFs by approximating the slab density profile

with more complicated functional forms (e.g. trapezoidal shape, fig. 5.1b, tab. 5.1,

and fig. 5.4),

gs(r) = gb(r)
ρb
ρs











1 +
r3

12wδ2
− r2

3wδ
− δ

3w
r < δ

1− r

2w
− δ2

12rw
δ ≤ r < w

, (5.2.4)

where δ is the width of the interface. Note, that eq. 5.2.4 generalizes eq. 5.1.4 to

a slab with diffuse interfaces.

5.2.3 Exact update using the Fourier transform

While approximations with the Heaviside of the Trapezoidal shapes for the

density profile are useful to understand and test the two parts of the update, in

practice it only suffices to use the Fourier update in which an exact representation
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of the density profile is employed. In the derived integral (eq. 5.1.3),

I(r) =

∫ ls/2

−ls/2

daρ(a)

∫ a+r

a−r

dzρ(z) , (5.2.5)

it is assumed that the particle density vanishes sufficiently far from the slab

interfaces, such that all particles are (on average) located within the slab. Under

this condition, the integral over da can be extended to cover all space [−∞,∞].

Furthermore, a new variable, t = z−a, can be introduced. By changing the order

of integration, one obtains

I(r) =

∫ r

−r

dt

∫ ∞

−∞
da ρ(a)ρ(t+ a) =

∫ r

−r

dt h(t) , (5.2.6)

where h(t) is the correlation of ρ(a). Using the correlation (convolution) theorem,

one can write

ĥ(ξ) = ρ̂(ξ)2 , (5.2.7)

where the hat notation implies the Fourier transform of the function

ρ̂(ξ) =

∫ ∞

−∞
da ρ(a)e−iξa . (5.2.8)

Back-transforming ĥ(ξ) and integrating over t, one obtains

I(r) =
1

π

∫ ∞

−∞
dξ ρ̂2(ξ)

sin(rξ)

ξ
. (5.2.9)

Hence, the problem has now been reduced to simply calculating the Fourier

transform of the density profile and evaluating the integral (eq. 5.2.9). These

have been calculated for several common functional forms of the density profile,

which are summarized in tab. 5.1 together with their Fourier transforms and the

resulting relations between the bulk and slab RDFs.

Note, that it is implicitly assumed that the density of particles vanishes at the

box boundaries, i.e. there is enough vacuum around the slab such that one can

ignore effects arising from periodic boundary conditions.

Inclusion of periodic boundary conditions

On the technical side, eq. 5.2.1 is not exact and does not take into account
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Type ρ(z)/ρ0 ρ̂(ξ)/ρ0 ρsgs(r)/ρbgb(r)
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ξ
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2
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(
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δ
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2(w − δ)

1 −1
2(w − δ) ≤ z < 1
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1
2

(
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δ

)

1
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2(w + δ)
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e
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




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








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2w

2− exp −w−2z
δ −1

2w ≤ z < 0

2− exp −w+2z
δ 0 ≤ z < 1

2w

exp w−2z
δ

1
2w ≤ z ≤ ∞

4
(

4e
w
δ sin ξw

2 + ξδ
)

(

2e
w
δ − 1

)

ξ(δ2ξ2 + 4)

Hyperbolic
1− tanh 2z+w

δ tanh 2z−w
δ

1 + tanh2 w
δ

δ

tanh w
δ

sin
(

ξw
2

)

sinh
(

ξδ
2

)

Table 5.1: Density profiles, their Fourier transforms, and relations between RDFs calculated in
a slab and in bulk. For the exponential profile the analytical expression for the relation between
RDFs exists but is too lengthy to be shown here. From the practical point of view, fitting with a
hyperbolic profile and using the relation between the RDFs provided by the trapezoidal profile
suffices. All profiles, their Fourier transforms, and scaling relations are also shown in fig. 5.4.
Here ρ0 = ρ(z = 0).
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periodic boundary conditions present in MD simulations. This issue can, however,

be improved by employing more realistic fitting functions for the density profile,

or, ultimately, the Fourier series.

Suppose that during a single iteration step, the interface becomes so diffuse

that the concentration of particles at the box boundaries (z = −ls/2 and z = ls/2)

is no longer zero. In this case, the link between gb(r) and gs(r) must account for

periodic boundary conditions (PBC). In other words, one can no longer change

the range of integration from [−ls/2, ls/2] to [−∞,∞] in eq. 5.1.3 and Fourier

series must be used. Expanding the density profile, one obtains

ρ(z) =
∞
∑

n=−∞
an exp

(

2πin
z

ls

)

, (5.2.10)

an =
1

ls

∫ ls/2

−ls/2

dz ρ(z) exp

(

−2πin
z

ls

)

. (5.2.11)

By performing similar steps as in sec. 5.2.3 and taking into account that ρ(−z) =

ρ(z), the integral becomes

I(r) = l2s

∞
∑

n=−∞

a2n
πn

sin
2πnr

ls
. (5.2.12)

To illustrate the effect of having a finite concentration of particles in vacuum,

the functional form for the slab with two sharp interfaces will be used

ρ(z) =



















ρv −ls/2 ≤ z < −1
2
w

ρ0 − ρv

(

w0−w
ls−w

)

−1
2
w ≤ z < 1

2
w

ρv
1
2
w ≤ z ≤ ls/2

(5.2.13)

where ρv is the particle concentration in vacuum. Note that the total number

of particles, that is, the integral over z ∈ [−ls, ls] is ρ0w0, where w0 denotes the

width of the slab when ρv = 0 (no particles in the vacuum).

Evaluating eq. 5.2.11, the corresponding Fourier coefficients are

an = ρ0
ls − w0

ls − w

sin(πnw
ls
)

πn
. (5.2.14)

The relation between slab and bulk RDFs, ρsgs(r)/ρbgb(r) = I(r)/(ρ20w02r), is

shown in fig. 5.5 for several widths of the slab, w/w0, which correspond to different
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Figure 5.5: Ratio between the slab and bulk RDFs for a slab with two sharp interfaces,
eq. 5.2.13. Two cases are shown: without taking into account periodic boundary conditions (no
PBC), eq. 5.1.4, and with PBC for different concentrations of particles outside the slab, ρv (or
different slab widths, w). The difference for r > ls/2 is due to the slab periodic image and exist
even if there are no particles outside the slab (w = w0).

densities of particles in the vacuum. One can see that even when w = w0 (i.e.

all particles are part of the slab), the relation for a system with PBC starts to

deviate from that with two infinite vacuum layers, starting at r > ls/2. This is

expected since at this point, the spherical shell of radius r starts to touch the

periodic image of the slab. However, this is of no relevance for constructing the

IBI update, as long as g(r) is calculated only until the cutoff distance, rcut < ls/2.

If w 6= w0, the deviation can already be seen at small r and, strictly speaking,

one should calculate the update using the expansion in eq. 5.2.11, which is the

simplest way of constructing the potential update as it only relies on the Fourier

expansion coefficients of the density profile, ρn, does not require fitting of the

simulated density profile, and avoids assumptions about the shape of the interface

when constructing the update. This is especially useful in the case of solute-

solvent systems, where the distribution of the positions of the solute, p(z), is a

tabulated function of the z coordinate. In this case, the update can be calculated

as

gs(r)

gb(r)
=

ls
2rp0ρs

∞
∑

−∞

ρnp−n

πn
sin

2πnr

ls
= (5.2.15)

=
ρ0
ρs

+
ls

rρsp0

∞
∑

n=1

ρnp
∗
n + ρ∗npn
πn

sin
2πnr

ls
,
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where pn are the Fourier expansion coefficients of p(z).

5.3 Examples

5.3.1 Slab of SPC/E water

Putting this into practice, IBI was performed on a slab of SPC/E water using

gats (r) as a target and the pressure-corrected potential for bulk water as an initial

guess. All simulations were performed with the GROMACS simulation pack-

age [54], while the coarse-graining tools (mapping, IBI) stem from the VOTCA

package [105]. Atomistic simulations were performed in a box of approximately

5.5 × 5.5 × 11 nm, containing 5439 type SPC/E water molecules. The GRO-

MOS53a6 force field was used to describe inter- and intramolecular interactions.

For electrostatic interactions, the smooth PME [73] method (sec. 2.1.1) was em-

ployed using a real space cutoff of 1 nm, while the van der Waals cutoff was set to

1.4 nm. The temperature of T = 300K was regulated by the Berendsen thermo-

stat [45] with a coupling constant of τ = 0.1 ps. Atomistic reference simulations

were run for t = 20 ns with a time step of δt = 2 fs, while CG simulations were

performed for t = 100 ps (per iteration) with the same time step. Fourier series

and a scaling factor of κ = 0.8 were used to construct the potential updates (with

αg and αρ, sec. 5.2).

To analyze simulations, the density profile, ρ(z), was fitted to a sum of two

hyperbolic tangents (see fig. 5.1b) at each iteration step. Fitted parameters,

namely the height of the slab density profile, ρ0, the width of the slab, w, and the

width of the interface, δ, were monitored over the course of the simulation and

are shown in fig. 5.3, together with the convergence for the slab RDF, ∆gs. The

points with matching slab RDFs at rcut or bulk densities were identified (these are

shown by the red and blue arrows) and the corresponding interaction potentials,

RDFs, and density profiles are summarized in fig. 5.6. Note, that if a “naive”

substitution of the IBI update is used (by simply matching the slab RDF, κ = 0)

the convergence also oscillates. However, one can terminate iterations once the

RDFs match and obtain a reasonable fit of the RDF as well as the density profile

to those of the atomistic reference (fig. 5.3, 5.6, pink dashed line). Note, that

this potential was used in sec. 4.4 as a fitting reference for the CKDg analytical

potential to obtain an accurate starting guesses.

One can see that, depending on the potential update (αg or αρ scaling), either

the slab RDF or the density profile is better reproduced. This implies that a cer-
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Figure 5.6: (a) Water-water pair interaction potentials, U(r), (b) radial distribution functions,
g(r), and (c) slab density profiles, ρ(z), for systems coarse-grained in the bulk (CG bulk), in
a slab using the update from eq. 5.2.1 using slab RDFs (CG κ = 0.8, αg), or densities (CG
κ = 0.8, αρ) indicated by a red and blue arrows in fig.). For RDFs and density profiles the
atomistic reference is also shown (atomistic).

tain compromise has been achieved between the local structure, characterized by

gs(r), and the geometry of the interface, represented by w and δ. In other words,

the two terms in the potential update (eq. 5.2.1) compensate each other within

some numerical accuracy. Remarkably, in both cases the density profile and the

slab RDF are significantly better in agreement with the atomistic reference than

those obtained by using interaction potentials based on the IBI procedure in the

bulk system.

We have also calculated the surface tension (eq. 4.3.3). The atomistic reference

system has a surface tension of γat = 59.4±0.3 mN/m. All CG models reproduce

this value reasonably close, γCG
bulk = 57.5±0.3 mN/m, γCG

αg ,κ=0.8 = 45.6±0.9 mN/m,

and γCG
αρ,κ=0.8 = 31.7 ± 1.3 mN/m. However, as already mentioned, the surface

tension, is a value which can also be obtained by integrating an expression which

includes the RDF, the slope of the density profile, and the derivative of the

interaction potential [114] and as such, it is possible to have the same value of γ

for very different ρ(z) and g(r). Therefore, one should not validate the CG model

on surface tension alone.

5.3.2 Slab of liquid methanol

Next, a slab of methanol is investigated which, in spite of being in a liquid

state, exhibits significant differences in behavior as compared to water. First, its

liquid-vacuum interface is much wider (δat ≈ 0.6 nm) than that of water due to the

substitution of one hydrogen by a methyl group. Second, a CG model with one

site per molecule may be able to reproduce both structural and thermodynamic



5.3. EXAMPLES 83

1.0

0.0∆
g
(i
)

s
0.7ρ

0
/
ρ
a
t

2.0

1.0w
/
w

a
t

Iteration

25002000150010005000

5.0

1.0δ/
δa

t

α = 0.1, κ = 0.0
α = 0.5, κ = 1.0
α = 0.5, κ = 0.8

αg , κ = 0.8
αρ, κ = 0.8

Figure 5.7: Convergence for the slab RDF, ∆gs, maximum of the density in a slab, ρ0, width
of the slab, w, and width of the interface, δ, all normalized by the reference values taken from
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properties of the bulk system better than the corresponding CG model of water,

since similar coarse-grained potentials can be obtained from force-matching or

conventional iterative Boltzmann inversion [105].

In spite of these differences, the dynamics of convergence is qualitatively very

similar to water: stationary homogeneous density distribution for κ = 1.0, oscil-

lations between homogeneous and heterogeneous (with a slab) states for κ = 0.8,

and slow oscillations for both αg and αρ (fig. 5.7). The respective interaction

potentials, U cg
mm(r), radial distribution functions, and density profiles are shown

in fig. 5.8a-c. Again, by coarse-graining in a slab, one can achieve much steeper

density profiles, matching slab widths, while the reference and atomistic RDFs

still agree with each other. Note, that if a naive substitution of the IBI update

is used (κ = 0) and the iterations are terminated once the slab RDF is perfectly

matched, the density profile is not reproduced well.

The surface tension of the atomistic reference, calculated using eq. 4.3.3, was

γat = 21.3 ± 0.4 mN/m, while the CG models yielded values of γCG
bulk = 20.3 ±

0.2 mN/m, γCG
αg ,κ=0.8 = 10.1 ± 0.3 mN/m, and γCG

αρ,κ=0.8 = 6.4 ± 0.3 mN/m. It

has also been checked that the potentials obtained from the update using the

Fourier series are transferable to systems of different slab widths (w) as can be
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seen in fig. 5.8 (top and bottom for thinner and thicker slabs respectively). This

is true as long as the interaction range is larger than w and there is a well defined

plateau in the middle of the density profile.

5.3.3 Benzene in water

Now, a more complicated situation is described, that is, determining solute-

solvent coarse-grained potentials. As an example, a single benzene molecule in

water (i.e. dilute system) is considered. Benzene is a hydrophobic molecule

and hence predominantly occupies the vacuum-water interface region. This has

been confirmed by analyzing the distribution of its position, pat(z), along the z

coordinate from atomistic simulations, as shown in fig. 5.9c. One can see that this

distribution is peaked around the positions of the two water-vacuum interfaces

of the slab. Simulations details were the same as for the water slab, but with

smaller simulation box sizes of 4× 4× 8 nm. In addition, due to the low benzene

concentration (1 benzene in 2175 water molecules), simulation times for both the

atomistic references as well as the CG simulations have been increased to t =

100 ns and t = 10 ns (per iteration) respectively, to obtain better sampling. The

benzene-water interaction was assigned a Van der Waals cutoff of 1.4 nm. If one

now employs a usual IBI coarse-graining procedure (in bulk) and reproduces the

bulk RDF between the benzene bead (which is treated as a single interaction site)

and the surrounding water molecules, simulations in a slab with this potential

result in benzene distributions which are peaked around the slab center (shown

in fig. 5.9c).
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Figure 5.9: (a) Benzene-water pair interaction potentials, U(r), (b) benzene-water radial distri-
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z, p(z). All plots show results of coarse-graining in the bulk (CG bulk) and in a slab using the
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This means that the benzene bead mostly occupies the bulk water region, a

circumstance which is directly reflected in the differences in slab RDFs of the

coarse-grained and atomistic systems, as shown in fig. 5.9b. It arises due to

the different probability distributions, pcg(z) and pat(z), of the benzene positions

along the slab, since now, in order to average over the ensemble of benzene posi-

tions, one has to integrate Nshell over p(a)da instead of ρ(a)da in order to obtain

the equivalent of eq. 5.1.3.

In other words, to perform an update of the interaction potential analogous to

eq. 5.2.1, the benzene position along the slab was obtained and decomposed into

a Fourier series in order to obtain the relation between gs and gb. Starting from

an initial guess of a pressure-corrected potential for bulk water and applying this

procedure we eventually recovered the shape of the atomistic slab RDF, as shown

in fig. 5.9b.

By matching the slab RDFs, one automatically matches the distributions of

the benzene position along the slab, as can be seen in fig. 5.9c. The benzene

bead is now primarily located at the interfaces of the slab which coincides with

its behavior in atomistic simulations. It is notable that the two coarse-grained

potentials (U cg
bw(r)) shown in fig. 5.9a, are remarkably similar: the one obtained by

coarse-graining in a slab has a slightly more long-range attractive tail and smaller

repulsive bump at the beginning than the one obtained from a bulk system. This

small difference, however, is what leads to the distinct hydrophobic behavior of

benzene when simulated in a slab.

5.4 Conclusions

Here, a scheme for obtaining coarse-grained potentials for inhomogeneous sys-

tems, analogous to the iterative Boltzmann inversion method has been proposed.

The main idea is to construct an update for the interaction potential based on the

radial distribution function calculated in a slab geometry. Apart from the local

liquid structure, this update also carries information about the geometry of the

system, namely the slab and interfacial widths. Since these geometric features are

very sensitive to the thermodynamic properties of the system (surface tension,

pressure tensor), a partially controllable balance between the local structure and

thermodynamic properties can be achieved. This is of particular importance in

solute-solvent systems in biology where the thermodynamic/interfacial behavior

often needs to be included in addition to the structural properties of the system.
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There are also drawbacks to the proposed method. First, simulation times for

each iteration need to be increased to attain adequate accuracy when measuring

thermodynamic properties of the system, such as a density profile or a distribution

of positions of a solute within a solvent. Second, one needs to introduce a small

scaling factor for the potential update in order to improve convergence and to

avoid either evaporation or solidification of the system. Finally, while the form of

the algorithm (i.e. two separate terms) would suggest that obtaining a controlled

balance between the thermodynamic properties and the local structure is trivial,

one cannot assign equal weights to both properties but needs to adjust the second

term such that the update does not converge to the bulk result.

In spite of these limitations, the method offers a practical way of finding a

compromise between the local structural and intensive thermodynamic properties

of the system, and as such, can be useful for building simple coarse-grained models

for inhomogeneous and open systems.
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Coarse-grained model for an amphiphilic peptide

In recent years, the interest in the development of systematic coarse-graining

approaches for modelling biological systems has grown rapidly, since processes

such as protein folding or peptide aggregation involve large time and length

scales which could not be addressed otherwise, for example, by atomistic MD

simulations. One of the earliest reduced models designed to study protein fold-

ing are the Gō models [128] in which only those residues which correspond to

contacts in the native state can interact, generating an energy landscape which

resembles a weakly rugged funnel that points towards the native state. Although

such coarse-grained models are very efficient in speeding up simulation times and

in giving insight into the possible folding pathways of a protein, they provide a

very rough description of the actual structure. For a more detailed description,

so-called knowledge-based potentials [129] can be employed. Here, interaction

energy functions can either be derived based on the analysis of known protein

structures (e.g. crystal structures from the PDB1) [130, 131] to make secondary

structure predictions or, if the protein structure is not available, based on atom-

istic simulations, as in the UNRES (UNited RESidue) model for polypeptide

chains [132].

In this chapter, a coarse-grained (CG) model for the peptide PGlu-2 is devel-

oped based on atomistic simulations of smaller peptide fragments. These are de-

termined according to a mapping scheme (fig. 6.1) which defines the positions and

atomistic constituents of individual CG beads. Structure-based coarse-graining

using this fragment-based approach2 has already been applied in the conforma-

tional studies of diphenyl alanine [89] and oligoalanine [90] in bulk water. Hence,

a similar mapping scheme is adopted here for the CG beads in common (i.e.

the peptide group, the Cαβ group, and the phenyl group). While bonded poten-

tials are parametrized by Boltzmann inversion of the bond and angle distributions

from atomistic MD simulations of the peptide at the air-water interface (sec. 6.1),

1The Protein data bank is a crystallographic database for proteins and nucleic acids.
2Fragments should have a comparable chemical and topological environments to their corre-
sponding atomistic components. Hence, any bonds which extend to a neighboring CG bead are
capped by methyl groups instead of hydrogens.
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the parametrization of non-bonded potentials differs from that of previous stud-

ies as it tries to retain some of the thermodynamic properties in addition to

the structure. It determines the radial distribution function (RDF) as well as

the distribution of the bead’s position from atomistic simulations of the peptide

fragments in a slab system and tries to obtain a compromise between the two

properties (sec. 6.2).

Once the CG model has been derived, a single CG peptide is simulated at

the air-water interface and its affinity to diffuse away from the interface is moni-

tored to test the fragment-based peptide model. A correct model should balance

hydrophobic-hydrophilic interactions such that the peptide resides at the inter-

face, as was the case in atomistic simulations (sec. 3.1).

6.1 Parametrization of bonded interactions

As initially it is only of interest whether the CG peptide with alternating

hydrophobic-hydrophilic beads can align and stay at the air-water interface, the

peptide PGlu-2 (of length n = 2) with its charged termini replaced by methyl

groups (fig. 6.1) is simulated as an atomistic reference. This only requires 4 types

of CG beads and should suffice to demonstrate to which extent a fragment-based

coarse-graining approach is useful for these types of systems.

Figure 6.1: Mapping scheme for PGlu-n with the termini replaced by methyl groups, showing
the backbone (NMA, CAB) and side-chain CG beads (PHE, COH), with their corresponding
atomistic fragments in color.
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With beads of NMA (N-MethylacetAmide), CAB (Cαβ), PHE (PHEnyl),

and COH (COOH, Carboxyl), 4 types of bond (NMA-CAB, CAB-NMA, CAB-

PHE, CAB-COH), 6 types of angle (NMA-CAB-NMA, CAB-NMA-CAB, NMA-

CAB-PHE, NMA-CAB-COH, PHE-CAB-NMA, COH-CAB-NMA), and 2 types

of dihedral angle distributions 1 (NMA-CAB-NMA-CAB, CAB-NMA-CAB-NMA)

are determined and the bonded potentials obtained via Boltzmann inversion

(sec. 2.2.2).

However, as opposed to coarse-graining of, for example, polymers which are

sampled in vacuum with exclusions, atomistic (reference) simulations of the pep-

tide are performed in its solvent environment, as has been done in previous work

for the developments of CG peptide models in the bulk [89, 90]. In this case,

t = 100 ns atomistic MD simulations were performed of a single peptide of length

n = 2 as depicted in fig. 6.1 to calculate the distributions (fig. 6.4, black dotted

lines).

6.2 Parametrization of non-bonded interactions

For the parametrization of the solute-solvent interaction potentials, atomistic

MD simulations of t = 100 ns with a time step of δt = 2ps have been performed

in the NV T ensemble, at a temperature of T = 300K (Berendsen thermostat,

τ = 0.1 ps) with PME to treat electrostatics. Simulations have been performed in

both, bulk water and a slab system (containing 2175 water molecules for the N-

methylacetamide and benzene systems and 2176 water molecules for the ethane

and acetic acid systems), with simulation box sizes of 4.0 × 4.0 × 4.0 nm and

4.0 × 4.0 × 8.0 nm respectively, to compare the two types of parametrizations

schemes, CGbulk and CGslab. As already seen from the parametrization of the

hydrophobic bead (i.e. benzene in bulk water. sec. 5.3), reproducing the RDF

in the bulk does not provide the correct density distribution of the bead which

prefers to stay at the interface and a parametrization in a water slab is required.

It is of interest whether this is also the case for the more hydrophilic beads.

To provide references for the CG beads NMA, CAB, PHE and COH, the atom-

istic fragments N-methylacetamide, ethane, benzene, and acetic acid have been

used. For parameterizations in the bulk systems, iterations have been performed

for t = 5ns. Resulting potentials were used as initial guesses for the parametriza-

1Note, that only a minimum number of proper dihedrals has been used in the backbone to avoid
cross-correlations between bonded potentials.
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tion at the interface, which required t = 10ns per iteration to obtain sufficient

statistics for an accurate calculation of the RDFs, g(r), and the density distri-

butions of the CG solute beads, p(z), and solvent beads, ρ(z). In order to avoid

artifacts in the inversion of the radial distribution function, RDFs have only been

calculated from r values at the onset of the first peak (rmin = 0.33 nm for NMA,

rmin = 0.28 nm for CAB, rmin = 0.28 nm for PHE, and rmin = 0.29 nm for COH).

A cutoff of rcut = 1.4 nm was employed for all Van der Waals interactions between

CG beads.

While parametrizations in the bulk employed the conventional IBI procedure

(sec. 2.2.3), parametrizations at the interface used the extended version of IBI for

inhomogeneous systems which was developed in ch. 5. This depends on the RDF

calculated in a slab geometry, g(r), and the density profiles of the solute bead

and the water slab, p(z) and ρ(z), respectively. A compromise between the two

properties can be steered by the scaling factors α and κ in the potential update,

∆U (i)

kBT
=α

[

ln
g
(i)
s (r)

gats (r)
− κ ln

f (i)

fat

]

, (6.2.1)

f =
ρ0
ρs

+
ls

rρsp0

∞
∑

n=1

ρnp
∗
n + ρ∗npn
πn

sin
2πnr

ls
.

Here, pn and ρn are the Fourier expansion coefficients of p(z) and ρ(z) respec-

tively, of which n = 128 were used. Each bead required between 30-50 iterations

until a reasonable compromise between the structure and the density distribution

was achieved. Note, that to speed up the parametrization process, a scaling of

α = 0.05, κ = 1 was used first, followed by a scaling of α = 0.05, κ = 0.4 once the

two update terms compensated one another.

Parametrization results are shown in fig. 6.2, with the obtained potentials

(left), the RDFs (middle), and density distributions (right). Non-bonded po-

tentials obtained from the parametrization in bulk water (CGbulk, blue dashed

line) show that although the atomistic structure of the bulk water is perfectly

matched, the CG beads do not reproduce the correct g(r) and p(z) when placed

in an interface environment. Here, all beads except for NMA reside mainly in the

bulk water region (i.e. center of the slab).

For the parametrization at the interface (CGslab, green solid line), however,

the developed procedure is capable of finding a compromise between the structure
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Figure 6.2: Parametrization results for non-bonded CG potentials, comparing the parametriza-
tion in bulk, CGbulk, and at the interface, CGslab, according to their potentials (left), their RDFs
(center), and their density distributions (right). A snapshot of each CG bead (as mapped onto
the atomistic fragment) is shown as it interacts with water.
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and the affinity towards the interface.

Now, that both the bonded and non-bonded interaction potentials have been

derived, the CG peptide can be assembled and its behavior in a water slab tested.

6.3 Testing the coarse-grained peptide model

Putting everything together, the first simulations can be performed to validate

the new CG model. Here, a single PGlu-2 peptide is simulated in a water slab

(with its initial positions at the interface) for t = 10ns with a time step of

δt = 1 ps, employing a Van der Waals cutoff of rcut = 1.4 nm (fig. 6.3a). All other

simulations settings are the same as in sec. 6.2.

Here, results show that the peptide diffused away from the interface into the

bulk. This is at first sight surprising since even though all of the fragments stay

at the interface when simulated individually, the combination of them in CG

peptide does not do so. This indicates that the derived non-bonded potentials

are not additive and a fragment-based parametrization as described can not be

used to model amphiphilic peptides at interfaces on a coarse-grained level.

Since the presence of the interface is known to influence a fragment’s orien-

tation as well as a peptide’s conformations, one can imagine that sampling of

individual fragments in a water slab is not representative of the beads’ orienta-

tions in a chain. To test this, one of the backbone beads (NMA) in the CGslab

model has been re-parameterized in a trimer to obtain a better “intra-chain”

representation for the CG bead. Here, N-ethylacetamide was simulated as an

atomistic reference for t = 100 ns and the RDF was calculated in a slab geometry

for the NMA fragment. Next, a coarse-grained trimer of CAB-NMA-CAB was

prepared for parametrization of the NMA-water non-bonded interaction poten-

tial. Here, non-bonded potentials for CAB-water interactions were substituted

from resulting potentials of the previous monomer parametrizations respectively.

Starting from the initial guess of the NMA-water interaction (parametrized from

a trimer in bulk water), approximately 50 iterations lead to a match in RDFs

(fig. 6.3a). Results show, that the obtained interaction potential between the

NMA bead and water has a deeper minimum than in the monomer case.

Substituting this new potential for the non-bonded NMA-water interaction

and repeating the CG test simulation with the same simulation settings as be-

fore, the peptide now remained at the interface (fig. 6.3b). This implies that in

addition to accounting for the bead’s affinity towards the interface, the proper av-
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eraging over a bead’s orientation during sampling needs to be considered. Finally,

computing the bond, angle, and dihedral angle distributions, one sees that they

only qualitatively agree with those of the atomistic reference (fig. 6.4). Hence,

the model still needs to be refined, possibly by including bonded interactions into

the iterative procedure, in order to be able to deduce any structural information

from coarse-grained simulations.

6.4 Conclusions

In conclusion, a CG model for an amphiphilic peptide has been developed

via fragment-based approach. For each single fragment, the procedure developed

in ch. 5 yielded solute-solvent bead potentials which reproduced both the local

structure as well as the solvation behavior of the atomistic fragment (otherwise

not reproduced by conventional IBI in the bulk). When assembled in a CG

peptide, however, the affinity towards the interface was not reproduced, with the

CG peptide diffusing into the bulk. This indicated that the orientational sampling

of the fragment (biased by the interface) needs to be taken into account. After

reparametrizing one of the backbone beads (NMA) in a trimer, the CG peptide

indeed stayed at the interface. Hence, one can conclude that a fragment-based

approach needs to be adjusted to take into account the constraints imposed by a

heterogeneous environment.





7

Conclusions

In this thesis, a series of amphiphilic peptides, PGlu-n, PAsp-n, and PheGlu-

n, for n = 2, 4, 5 have been studied, which are designed to self-assemble into

monolayers at the aqueous-organic interface. These can serve as template matri-

ces to promote the crystallization of hydroxyapatite in the presence of ions and

can thus be applied in the field of tissue engineering to treat diseases such as

osteoporosis. To verify experimental hypotheses and obtain a better understand-

ing of the structure and interactions which govern the self-assembly process on

the microscopic level, computer simulations have been employed to complement

existing experimental results.

In chapter 3, small peptide systems have been investigated via atomistic sim-

ulations. Here, MD simulations showed that peptides behaved very differently in

terms of backbone extension when simulated in the bulk and at the air-water in-

terface. While mostly extended backbone conformations could be observed in the

bulk, stable β-hairpins were formed at the interface which greatly outnumbered

the amount of extended conformations. However, these MD simulations were sub-

ject to severe sampling problems and when REMD simulations were employed, an

approximately equal amount of β-hairpin and extended conformations could be

found for short peptides (n = 2), while the longer peptides (n = 5) still displayed

mainly β-hairpins at the interface since these become more stable as the length

of the peptide (n) (i.e. the number of possible hydrogen bonds between backbone

residues) increases. In addition, various peptide sequences have been compared

by both MD and REMD simulations which displayed different conformational

characteristics. These could later be linked to the peptide’s tendency to aggre-

gate from studies of assembling peptides and pre-assembled aggregates. It was

discovered that peptides with longer acidic side-chains (i.e. Glu vs. Asp) were

slower to self-assemble due to the sidechains’ interactions with other backbone

groups. Once shorter side-chains have been employed, the peptide has been seen

to aggregate much faster and in a more ordered manner, where the aggregates

have even been stabilized by hydrogen bonding between the acidic side-chains of

neighboring peptides. The main hydrogen bonding contribution, however, was
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shown to arise from H-bonds between backbone residues (O and H of amide),

which form a hydrogen bonding network whose regularity determines the sta-

bility of the monolayer. In addition, it was seen that an intrinsic twist in the

peptide’s backbone also restricts the length of the aggregates formed as it breaks

the regular hydrogen bonding network. Similarly, the Proline termini (i.e. Pro

vs. Phe), which have been said to be β-sheet breakers play an important role

in ordering peptides in 2D within the aggregate and regulating the length of the

aggregates. As any larger simulations (with realistic peptide concentrations and

system sizes) would be infeasible an atomistic level of detail, a coarse-grained

model has been developed to reach those time scales of interest.

In chapter 4, it was first tested whether a CG water model parametrized by

conventional structure-based coarse-graining (IBI) in the bulk was transferable to

a situation at the air-water interface. This, however, lead to very diffuse interfaces

and hence, one needs other methods to derive a CG model which retains a stable

interface. Next, it was attempted to systematically build up a CG strategy, start-

ing from simple potentials in order to find out which features of the interaction

potential preserve those atomistic properties which stabilize the interface (for a

pair potential and a 1 bead/molecular mapping for water). To optimize analytical

potentials, the Downhill Simplex method was employed in order to avoid unnec-

essary searching of the parameter space. The potential which was tested first

was the LJ12-4 potential, which when optimized to fit the density profile of the

atomistic reference showed that although one can perfectly reproduce the shape

of the interface with the CG model, the resulting potential also leads to a system

which is much too over-structured or interfaces which are too diffuse. To improve

this, a long-range attractive tail was added to the potential, which demonstrated

that the diffuse interface could now be stabilized by a tuning parameter for the

attraction, resulting in a radial distribution function (RDF) closer to that of the

atomistic reference. In a final attempt to fit the first two coordination shells

(packing) and to obtain a correct bead size, a Gaussian function was added to

the potential to produce a (structurally relevant) second minimum, which indeed

led to a much better reproduction of the RDF in the first two coordination shells.

Finally, to obtain a CG model which can compromise between reproducing the

structure and the density profile of the atomistic reference, the Downhill Simplex

algorithm was used to tune the potential. The resulting model reproduced the

proper bead size and provided a good fit of the first coordination shell of the RDF
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as well as of the density profile.

However, as coarse-graining via parameter fitting is rather empirical, relies on a

large set of fitting parameters, and is limited in terms of the flexibility of the shape

of the potential, an alternative approach was sought in chapter 5. Here, the con-

ventional IBI method for homogeneous systems was extended to inhomogeneous

systems by deriving a transformation between the bulk and slab RDF, based on

the assumption that as one moves to the slab’s interface, only the density and not

the local structure of the liquid changes. The derived potential update was found

to consist of two parts, one which depends on the water structure in the slab and

the second which depends on the density profile (i.e. slab and interfacial widths).

Various approximations for the density profile have been made, starting from a

simple Heaviside function for sharp interfaces, to a trapezoidal shape for more

diffuse interface, to finally an exact (even with periodic boundaries) expression

which employs the fourier transform coefficients to describe the density profile of

the system. The state point to which this update converges, however, is that of

a homogeneous bulk liquid. As it is not possible to stabilize the update without

either ending in the gas or solid phase, different prefactors to the two parts of the

update were employed which slow down the update at the desired state points

yielding a stable interface with a suitable structure. This CG method was applied

to coarse-grain a slab of water, a slab of methanol, as well as a benzene molecule

(i.e. hydrophobic CG bead of the peptide) in a water slab. The last example

is especially relevant for the solute/solvent interactions here, as the CG model

should not only the reproduce the structure but also the correct partitioning in

the solvent environment (i.e. affinity towards to interface). Employing the same

procedure, all non-bonded interaction potentials for the remaining beads were

parametrized in different water models (structure- and thermodynamics based),

with bonded potentials derived via Boltzmann inversions of the distribution from

REMD simulations at the interface.

Finally, in chapter 6, the new coarse-graining method is employed to derive a

simple CG peptide model via a fragment-based approach. This was tested in com-

binations with different CG water models to find out which combination led the

peptides to remain at the air-water interface. The reference (atomistic) peptide

was similar to PGlu-2 (ch. 3), except that the charged termini have been replaced

by methyl groups, as initially it is only of interest whether the CG peptide is able

to align at the air-water interface. With parametrizations of non-bonded po-
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tentials purely based on monomers of individual peptide fragments, CG models

eventually lead to the peptide diffusing into the bulk. However, when the pep-

tide in the structure-based water model was reparametrized by using a molecular

trimer (i.e. to obtain a better “in-chain” representation of the bead), the CG

peptide showed the same interfacial behavior compared to atomistic simulations.

Hence, a structure-based CG approach for peptides at the interface is capable

of providing CG interaction potentials if the parametrization is performed in ex-

actly the same environment (i.e. at the interface) and the affinity of the beads

towards staying at the interface (monitored via the probability distributions to

find a fragments at a specific position along the slab) are accounted for.

Future work still includes the parametrization of the charged termini as in

experiment as well as fine tuning of the CG model by trying to achieve a better

compromise between structural and thermodynamical properties. Once this has

been achieved, effective peptide-peptide interactions will be derived based on

PMF calculations of peptide fragments in a solvent environment. On a method

development side, ways to stabilize the algorithm for inhomogeneous systems

without driving the system into the gas or the solid phase need to be improved.

Ideally, one would like to have a CG procedure which requires little user input

and is transferable to other systems and applications.

With these tools at hand, one will then able to simulate the time and length

scales relevant to experiment to study the formation and stability of the monolay-

ers. By reintroducing atomistic details at the various stages (via a back-mapping

procedure), one may then obtain further insight into the assembly behaviors of

different peptide sequences and select the one most suitable for applications in

tissue engineering.







Appendix

A.1 Supplementary material

A.1.1 REMD analysis
System Exchange pair Acceptance ratio Acceptance ratio

(bulk) (interface)
PGlu-2 1 ↔ 2 0.030 0.035

2 ↔ 3 0.031 0.039
3 ↔ 4 0.030 0.036
4 ↔ 5 0.032 0.037
5 ↔ 6 0.031 0.041
6 ↔ 7 0.033 0.041
7 ↔ 8 0.037 0.038
8 ↔ 9 0.034 0.041
9 ↔ 10 0.038 0.038
10 ↔ 11 0.039 0.039
11 ↔ 12 0.039 0.040
12 ↔ 13 0.042 0.039
13 ↔ 14 0.043 0.041
14 ↔ 15 0.044 0.043
15 ↔ 16 0.048 0.043

PGlu-5 1 ↔ 2 0.074 0.074
2 ↔ 3 0.076 0.074
3 ↔ 4 0.076 0.075
4 ↔ 5 0.073 0.080
5 ↔ 6 0.076 0.077
6 ↔ 7 0.075 0.081
7 ↔ 8 0.078 0.076
8 ↔ 9 0.077 0.078
9 ↔ 10 0.084 0.084
10 ↔ 11 0.078 0.076
11 ↔ 12 0.082 0.078
12 ↔ 13 0.082 0.078
13 ↔ 14 0.082 0.077
14 ↔ 15 0.084 0.077
15 ↔ 16 0.083 0.079
16 ↔ 17 0.085 0.084
17 ↔ 18 0.087 0.077
18 ↔ 19 0.089 0.079
19 ↔ 20 0.087 0.083
20 ↔ 21 0.087 0.082
21 ↔ 22 0.092 0.086
22 ↔ 23 0.090 0.083
23 ↔ 24 0.088 0.083
24 ↔ 25 0.092 0.081
25 ↔ 26 0.095 0.087
26 ↔ 27 0.097 0.078
27 ↔ 28 0.100 0.080
28 ↔ 29 0.100 0.088
29 ↔ 30 0.097 0.089
30 ↔ 31 0.099 0.085
31 ↔ 32 0.103 0.087
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Figure A.1: Acceptance ratio for REMD simulations for PGlu-2 and PGlu-5, comparing con-
formations obtained from peptide simulations in the bulk and the air-water interface (fig. 3.3).
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System Exchange pair Acceptance ratio
(interface)

PGlu-2 1 ↔ 2 0.026
2 ↔ 3 0.026
3 ↔ 4 0.026
4 ↔ 5 0.026
5 ↔ 6 0.027
6 ↔ 7 0.026
7 ↔ 8 0.026

PAsp-2 1 ↔ 2 0.023
2 ↔ 3 0.025
3 ↔ 4 0.023
4 ↔ 5 0.024
5 ↔ 6 0.026
6 ↔ 7 0.026
7 ↔ 8 0.025

PGlu-2 1 ↔ 2 0.025
2 ↔ 3 0.023
3 ↔ 4 0.027
4 ↔ 5 0.027
5 ↔ 6 0.027
6 ↔ 7 0.024
7 ↔ 8 0.026
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Figure A.2: Acceptance ratio for REMD simulations for PGlu-2, PAsp-2, and PheGlu-2 at the
air-water interface, comparing conformations obtained for different peptide sequences (fig. 3.4).
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A.1.2 Secondary structure analysis
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Figure A.3: Secondary structures analysis of systems with high peptide concentrations at the
interface (16) for peptides PGlu-2 and PGlu-4, as well as for low peptide concentrations (9 as
ch. 3, fig. 3.5) for longer peptides PGlu-4, PAsp-4, PheGlu-4 and PGlu-5.
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A.1.3 LJ12-4 parametrisation results
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Figure A.4: Results for parameters σ = 0.20 nm with ǫ = 1.00− 5.00 kJ/mol.
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Figure A.5: Results for parameters σ = 0.25 nm with ǫ = 1.00− 5.00 kJ/mol.
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Figure A.6: Results for parameters σ = 0.35 nm with ǫ = 1.00− 5.00 kJ/mol.
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Figure A.7: Results for parameters σ = 0.40 nm with ǫ = 1.00− 5.00 kJ/mol.
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A.1.4 Implementation of the Downhill Simplex algorithm
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Figure A.8: Work-flow of the Downhill Simplex algorithm as implemented, which operates via a
state machine. At every step, it uses the knowledge of the last transformation (yellow) to make
a decision on which transformation to perform next (green). After the new transformation has
bee performed, the convergence criterion is checked (in this case, if the maximum number of
steps, imax, has been performed) and when met, the algorithm is terminated (red).
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A.1.5 CKD Simplex results
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Figure A.9: Simplex optimisation of the slab system when fitting the surface tension with the
CKD potential, showing the initial guesses (grey), the converged result (red) and the atomistic
reference (black dotted line).
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Figure A.10: Simplex optimisation of the slab system when fitting the density profile and the
surface tension simultaneously with the CKD potential, showing the initial guesses (grey), the
converged result (red) and the atomistic reference (black dotted line).
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A.1.6 CKDg Simplex results

r, nm

V
(r
),
k
J
/
m
o
l

1.41.210.80.60.40.2

15

10

5

0

-5

1.20.80.4

4

0

-4

r, nm

g
(r
)

1.41.210.80.60.40.2

9

8

7

6

5

4

3

2

1

0

1.20.80.4

12

8

4

0

Steps 1-3
Step 134
Atomistic

Box length, nm

ρ
,
k
m
/
m

3

1086420

2000

1500

1000

500

0

Step i σ ǫ wc h p s yi
1 0.263 3.6 0.45 5.5 0.31 0.045 62.8
2 0.259 4.3 0.44 6.5 0.30 0.047 61.0
3 0.259 4.5 0.40 6.5 0.30 0.042 21.7
4 0.259 4.0 0.40 6.0 0.30 0.043 39.2
5 0.259 3.5 0.50 5.6 0.30 0.045 74.0
6 0.263 3.0 0.50 5.0 0.31 0.044 71.6
7 0.290 3.2 0.34 0.0 0.31 0.045 15.3
134 0.290 4.3 0.26 0.1 0.31 0.045 0.72

Figure A.11: Simplex optimisation of the slab system when fitting the density profile with the
CKDg potential, showing the initial guesses (grey), the converged result (red) and the atomistic
reference (black dotted line).
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Figure A.12: Simplex optimisation of the slab system when fitting the structure (RDF) and
the density profile with the CKDg potential simultaneously, showing the initial guesses (grey),
the converged result (red) and the atomistic reference (black dotted line).
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