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Design of oscillator networks with enhanced synchronization tolerance against noise
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Can synchronization properties of a network of identical oscillators in the presence of noise be improved through
appropriate rewiring of its connections? What are the optimal network architectures for a given total number of
connections? We address these questions by running the optimization process, using the stochastic Markov Chain
Monte Carlo method with replica exchange, to design networks of phase oscillators with increased tolerance
against noise. As we find, the synchronization of a network, characterized by the Kuramoto order parameter,
can be increased up to 40%, as compared to that of the randomly generated networks, when the optimization is
applied. Large ensembles of optimized networks are obtained, and their statistical properties are investigated.
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I. INTRODUCTION

Synchronization phenomena are ubiquous in various fields
of science and play an important role in the functioning
of living systems [1]. In the last decade, much interest has
been attracted to studies of complex networks consisting of
dynamical elements involved in a set of interactions [2,3]. Par-
ticular attention has been paid to problems of synchronization
in network-organized oscillator systems [4,5]. Investigations
focused on understanding the relationship between the topo-
logical structure of a network and its collective synchronous
behavior [3]. Recently synchronization properties of systems
formed by phase oscillators on static complex networks, such
as small-world networks [6] and scale-free networks [7,8],
have been considered. It has also been shown that the ability
of a network to give rise to synchronous behavior can be greatly
enhanced by exploiting the topological structure emerging
from the growth processes [9,10]. However, full understanding
of how the network topology affects synchronization of
specific dynamical units is still an open problem.

One possible approach is to use evolutionary learning
mechanisms in order to construct networks with prescribed
dynamical properties. Several models have been explored,
where dynamical parameters were modified in response to
the selection pressure via learning algorithms, in such a way
that the system evolved toward a specified goal [11–14].
This approach can also be employed to design phase os-
cillator networks with desired synchronization properties.
Using heterogeneous oscillators with a dispersion of natural
frequencies, we have previously shown how these elements
can be optimally connected, by using a given number of links,
so that the best synchronization level is achieved [13].

Here our attention is focused on synchronization enhance-
ment in networks of identical phase oscillators in the presence
of noise. In such systems, noise acting on the oscillators
competes with the coupling, which favors the emergence of
coherent dynamics [4,15]. The question is how to connect a
set of phase oscillators, so that the resulting network exhibits
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the strongest possible synchronization despite the presence of
noise, under the constraint that the total number of available
links and, thus, the mean connectivity are fixed.

To design optimal networks, the stochastic Markov Chain
Monte Carlo (MCMC) method with replica exchange [13] is
used by us. Large ensembles of optimal networks are con-
structed, and their common statistical properties are analyzed.
As we observe, the typical structure of a synchronization-
optimized network is strongly dependent on its connectivity.
Sparse optimal networks, with a small number of links, tend
to display a starlike structure. As the connectivity is increased,
synchronization-optimized networks show a transition to the
architectures with interlaced cores.

The paper is organized as follows. In Sec. II we introduce
a model of identical phase oscillators occupying nodes of a
directionally coupled network and define the synchronization
measure for this system. The optimization method is also
introduced in this section. Construction of optimized networks
and their statistical analysis are performed in Sec. III. The
results are finally discussed in Sec. IV

II. THE MODEL AND THE OPTIMIZATION METHOD

For identical oscillators, it is known that, in absence of
noise, even very weak coupling can lead to complete synchro-
nization [15,16]. Below we consider the effects of noise acting
on a network of coupled identical phase oscillators, so that the
model equations are

dθi

dt
= ω0 + λ

N

N∑
j=1

wj,i sin(θj − θi) + ξi(t), (1)

where ξi(t) are independent white noises, such that 〈ξi(t)〉 = 0
and 〈ξi(t)ξj (t ′)〉 = S2δi,j δ(t − t ′). Interactions between the
oscillators are specified by the matrix w with the elements
wi,j = 1, if there is a connection, and wi,j = 0 otherwise.
Generally the connection matrix is asymmetric. Note that since
the rotation frequencies of all oscillators are the same, we
can always go into the rotational frame θi �→ θi − ω0t and
thus eliminate the term with ω0. Hence, without any loss
of generality one can set ω0 = 0 in Eqs. (1). It is known
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that, for global coupling, this model shows a transition to
synchronization as the ratio of the coupling strength to the
noise intensity is increased (see, e.g., Ref. [17]).

To quantify synchronization of the oscillators, the global
complex Kuramoto order parameter

r(t) = 1

N

N∑
i=1

exp(iθi) (2)

will be employed. To measure the degree of synchronization,
we numerically integrate Eq. (1) with the initial conditions
θi(t = 0) = 0 and calculate the average of |r(t)| over a long
time T ,

R(w) = 1

T

∫ T

0
|r(t)| dt. (3)

Our aim is to determine the network w = {wi,j } which
would exhibit the highest degree of synchronization, provided
that the total number K of links is fixed and the noise intensity
S is given. The network construction can be seen as an
optimization problem. The optimization task is to maximize
the order parameter and, possibly, bring it to unity by changing
the network w.

To study statistical ensembles of optimized networks, the
MCMC method [18–20], which has previously been applied
to dynamical systems [13,21–28], will be used by us.

We sample networks from the ensemble with the Gibbs
distribution P (w) ∼ exp[βR(w)] by the MCMC method. To
improve the sampling efficiency, we use the Replica Exchange
Monte Carlo (REMC) algorithm, and the details of the
algorithm can be seen in Ref. [13].

We mainly consider the canonical ensemble average of a
network function f (·), i.e.,

〈f 〉β =
∑
w

f (w) exp[βR(w)]

Z(β)
, (4)

where Z(β) = ∑
w exp(βR(w)) is the partition function and

the parameter β plays the role of the inverse temperature.

III. NUMERICAL INVESTIGATIONS

To determine the synchronization degree of a given network
at each iteration step of the optimization procedure, Eqs. (1)
were numerically integrated with the time increment �t =
0.01. Due to limited computational resources, only relatively
small oscillator ensembles of sizes N = 15 are considered in
this study. The noise intensity is always S = 0.3.

Initial phases are θi(0) = 0. Hence, the order parameter at
t = 0 is always equal to unity. To construct an initial random
network with a given number K of connections and, thus,
with given connectivity p = K/N(N − 1), K off-diagonal
elements of the matrix w are randomly and independently
selected and set equal to unity.

For time averaging, relatively long intervals T = 10 000
were typically used, since the convergence of the order
parameter is slow. The results did not significantly depend
on T when sufficiently large lengths T were taken.

In parallel, evolution of M + 1 replicas with different
inverse temperatures βm = δβ × m,m = 0,1, . . . ,M has been

FIG. 1. (Color online) Examples of evolution of the synchro-
nization order parameter during the optimization process. The blue
solid, red broken, yellow dotted, and green dotted dash curves are
for the inverse temperatures β = β0,β16,β32, and βM , respectively.
The blue solid line (β0 = 0) corresponds to the networks generated
by only random rewiring. The parameters are p = 0.1,λ = 1.0,γ =
0.3,M = 63,δβ = 5.

performed (M = 63 and δβ = 5). The statistical results did
not significantly depend on the particular choice of inverse
temperatures.

At every five Monte Carlo steps (mcs), the performances
of a randomly chosen pair of replicas were compared and
exchanged, as described above. For display and statistical
analysis, sampling at each every 50 mcs after a transient of
5000 mcs has been undertaken.

A. Optimization at different temperatures

Synchronization-optimized networks were obtained by
running evolutionary optimization. In this process the order
parameter was progressively increasing until a saturation state
has been reached. Figure 1 gives examples of the optimization
processes at different temperatures. As clearly seen, when
using replicas with the larger inverse temperature β, larger
values of the order parameter could be reached, although the
optimization process was then slower. This suggests that, for
the considered problem, the replicas do not actually get trapped
in the local minima even at large β and that already such
low-temperature replicas can be efficiently used to sample the
optimized networks.

After the transients, statistical averaging of the order
parameter over the ensemble with the Gibbs distribution
has been performed, according to Eq. (4). In Fig. 2(a), the
averaged order parameter 〈R〉β is displayed as a function of
the connectivity p for several different inverse temperatures
β. The blue solid circle symbols show the averaged order
parameter corresponding to the replica with β0 = 0, i.e.,
for an infinitely high temperature. We see that the averaged
order parameter increases with the network connectivity p

even if the networks are produced by only random rewiring.
The red open circles show the average order parameters for the
ensemble corresponding to the replicas with the lowest inverse
temperature βM . Generally, greater order parameters can be
obtained by running evolution at higher inverse temperatures
β. At each connectivity p, the order parameter is gradually
increased with increasing β and is approximately saturated
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FIG. 2. (Color online) Average synchronization order parameters (a) and ratios of the order parameters (b) as functions of the network
connectivity p. The blue filled circles are for the replica β0, i.e., the ensemble of randomly rewired networks. The red squares, yellow diamonds,
green triangles, blue inverted triangles, and red open circles are for the replicas with β = β0,β4,β8,β16,β32, and βM , respectively. (c) Noise
intensity dependence of the ratios of the order parameters for βM is shown for S = 0.2 (blue filled circles), S = 0.3 (red squares), and S = 0.4
(yellow diamonds). Other parameters are the same as in Fig. 1.

at βM . This means that, even if one further increases β, only
slight improvements of the averaged order parameter can be
expected. Thus, the networks sampled by the replica with
the largest inverse temperature βM are already yielding a
representative optimal ensemble.

Figure 2(b) shows the ratio 〈R〉βM
/〈R〉β0 of the order

parameters averaged over network ensemble with the highest
inverse temperature βM and with the zero inverse temperature
(i.e., the ensemble with purely random rewiring) for different
connectivities p. Since there is no room for the improvement
of the order parameter when the number of links is small, the
ratio tends to unity as the connectivity p is decreased. On the
other hand, when p = 1, global coupling is realized, for which,
under the chosen coupling strength, full synchronization
occurs. As evidenced by this figure, the difference between
the synchronization capacities of the optimized and random
networks is most pronounced at the intermediate connectiv-
ities, for p around 0.1. The noise intensity dependence for
the synchronization capacities is shown in Fig 2(c). When
the noise intensity is small, the ratio becomes larger and the
maximum is shifted to the smaller connectivities p.

FIG. 3. (Color online) Distributions of the winding number for the
ensembles of 500 realizations of random rewiring networks (sampled
by replica with β0) and of synchronization-optimized networks
(sampled by replica with βM ). The blue circles are for random
networks, and the red squares are for the synchronization-optimized
ones. The parameters are same as in Fig. 1.

B. Collective dynamics

To analyze differences in the collective dynamics of phases
oscillators in random and synchronization-optimized net-
works, we have calculated the winding number of each oscil-
lator, 
i = 1

T
[θi(T ) − θi(0)] for many realizations of random

(sampled by replica with β0) and synchronization-optimized
(sampled by replica with βM ) networks, and determined
the probability distributions of winding numbers for both
ensembles. As shown in Fig. 3, there is a significant difference
between these two distributions. The probability peak at

i = 0 for the synchronization-optimized ensemble is higher
and more narrow than that for the random-rewiring ensemble.
This means that synchronization-optimized networks tend to
have more elements oscillating with the common frequency in
the presence of the external noises, as compared with random
rewired networks. Thus, elements in the synchronization-
optimized network behave more coherently than those in a
random network.

C. Architectures of synchronization-optimized networks

Several typical synchronization-optimized networks are
shown in Fig. 4. Their structures strongly depend on the
number of available connections (the number of links is
always conserved during an optimization process). When
connectivity p is small [Fig. 4(a)], designed networks usually
have star structures. The central element acts on a group of
periphery elements which have no connections among them.
Additionally, a number of disconnected elements are present. If
a larger number of links is available [Fig. 4(b)], a core, formed
by a group of interconnected elements, becomes formed. There
are also periphery elements, which are affected by the core,
but do not influence its dynamics. As the mean connectivity
of the network is increased, the core grows at the expense of
the periphery elements. Thus, the network starts to include
[Fig. 4(c)] a relatively large group of highly connected ele-
ments, with only a few elements which are loosely connected
and belong to the periphery.

For a synchronization-optimized network, we have inte-
grated Eqs. (1) for a long time and calculated the correlations
ηi between the phase of a local oscillator θi and that of the
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FIG. 4. (Color online) Examples of synchronization-optimized
networks with different connectivities (a) p = 0.05, (b) p = 0.1, and
(c) p = 0.15. (a′), (b′), and (c′) correspond to typical random networks
with the same connectivity for comparison. The nodes are colored
according to the phase correlation ηi , and the darker color indicates
an oscillator having stronger correlations with the global order. The
other parameters are same as in Fig. 1.

global order variable r(t) defined as

ηi = 1

T

∣∣∣∣
∫ T

0
r(t) exp(iθi)dt

∣∣∣∣ .
These quantities show how strongly the dynamics of an
oscillator i is synchronized with the global signal r(t). The
nodes in Fig. 4 are colored according to the rescaled values
ηi , i.e., {mini ηi + ηi}/{maxi ηi − mini ηi}. The darker color
indicates an oscillator having the stronger phase correlation
with the global signal.

Figure 4 suggests that the phases of central oscillators are
strongly correlated with the phase of the global signal. In order
to check this more clearly, we have divided all oscillators
into the groups with equal degrees and separately determined
average correlations with the global signal for each group.
Thus, quantities ηk have been calculated,

ηk = 1∑N
i=1 δk,ki

N∑
i=1

ηiδk,ki
,

where ki denotes the total degree of a node i, i.e.,

ki = k+ + k−, k+
i =

N∑
j=1

wi,j , k−
i =

N∑
j=1

wj,i,

with k+ and k− being the ingoing and outgoing degrees,
respectively.

In Figure 5 phase correlations ηk , averaged over an ensem-
ble of synchronization-optimized networks, are plotted as a
function of the degree k for different network connectivities
p. We see that, on the average, nodes with higher degrees
are stronger correlated with the global signal. Thus, the
oscillators having many connections act as organizing centers
of the synchronization. Furthermore, as seen in Fig. 5, phase
correlations for the nodes with the same degree become
larger as the connectivity is increased. This tendency can be
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FIG. 5. (Color online) Correlation between phases of the global
order and local oscillators as a function of the degree. Averaging over
500 realizations sampled by replica with βM . The blue circles and
red squares are for p = 0.05 and p = 0.20, respectively. The other
parameters are same as in Fig. 1.

understood if we take into account that the synchronization-
optimized networks usually have shallow tree-like structures
for the smaller connectivities p. As p increases, the network
becomes interlaced and has many loops [Fig. 4(c)]. Since the
feedback in a loop enhances the correlation, the averaged phase
correlation of nodes with the same degree becomes larger as
p increases.

Note that in a star structure, the central node does not
receive any signal from other oscillators; thus, the phase of the
oscillator in the center is affected only by the applied noise.
On the other hand, when outgoing connections from the center
to the periphery elements are present, the central oscillator
effectively acts as a source of common noise applied to the
peripheral nodes. Recently it has been shown that common
noise can induce synchronization in an ensemble of identical
oscillators [29,30]. This phenomenon may be responsible
for the development of correlations between the peripheral
elements and the central oscillator. Similar behavior may take
place when, instead of a single central node, a core of highly
connected oscillators is present in a network.

D. Degree distributions

To statistically investigate architectures of designed net-
works, ingoing and outgoing degrees of their nodes have
been considered. By sampling over 200 realizations from
synchronization-optimized ensemble, we have obtained the
ingoing and outgoing degree distributions at p = 0.10, as
shown in Fig. 6. For the ensemble of random rewiring
networks, both ingoing and outgoing degrees obey the same
Poisson distribution (red broken lines in the figure represent
the in- and out-degree distributions of networks sampled by the
replica with β0). As clearly seen in Fig. 6, most of nodes in the
synchronization-optimized networks have only one ingoing
connection and no outgoing connections. This indicates that
many periphery nodes exist, consistent with a typical realiza-
tion of synchronization-optimized network shown in Fig. 4(a).
Moreover, the outgoing degrees of synchronization-optimized
networks are distributed more broadly than those of random
rewiring networks; i.e., a long tail in the outgoing connection
distribution has emerged. This reflects the development of core
nodes. Hence, there are two principal types of nodes, i.e.,
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FIG. 6. (Color online) The distributions of ingoing (a) and outgoing (b) degrees for random and synchronization-optimized networks. Each
distribution is averaged over 200 network realizations. The blue bars show the distribution for synchronization-optimized networks, whereas
the red dashed lines are for the random networks. The parameters are same as in Fig. 1.

core and periphery nodes, in the synchronization-optimized
networks. The core nodes have many outgoing connections
and a smaller number of ingoing connections, whereas the
periphery nodes tend to have small numbers of ingoing
connections.

In order to further investigate the statistics of network
structures as a function of the network connectivity, we have
calculated the maximum of ingoing and outgoing degrees
of each synchronization-optimized network, k+

max = maxi(k
+
i )

and k−
max = maxi(k

−
i ), respectively, and averaged them over

many realizations. In Fig. 7 the ratios of averaged maximum in-
going and outgoing degrees of the synchronization-optimized
networks to those of the random networks, i.e., γ + =
〈k+

max〉βM
/〈k+

max〉β0 and γ − = 〈k−
max〉βM

/〈k−
max〉β0 , are shown.

As p increases, the ratio of the averaged maximum out-
going degree of synchronization-optimized networks to that
of the random-rewiring networks increases steeply and takes
the maximum in the vicinity of pc = 0.075, while that of the
outgoing degree (shown by red square symbols) decreases
and takes the minimum at approximately the same pc. In the
vicinity of pc, the nodes with a small number of ingoing
connections and a large number of outgoing connections
(corresponding to the cores) are found in the synchronization-
optimized networks.

Β
Β

γ
+
,γ

−

FIG. 7. (Color online) The dependencies of relative maximum
in- and outgoing degrees of synchronization-optimized networks on
their mean connectivity p. The data for out- and in-degrees are shown
by blue circles and red squares, respectively. Averaging over 500
realizations of synchronization-optimized and random networks. The
parameters are the same as in Fig. 1.

E. Eigenvalues of the Laplacian matrix

The Laplacian matrix L for network w is defined as

Li,j =

⎧⎪⎨
⎪⎩

wi,j (i �= j )

−
N∑

j=1

wi,j (i = j ). (5)

Since the considered networks are directed, the eigenvalues
of their Laplacian matrices are complex. We can order the
eigenvalues according to the magnitudes of their real parts,
i.e., as

0 = Re(λ1) > Re(λ2) > · · · > Re(λN ).

The eigenvalues of the Laplacian matrix are known to play an
important role for the synchronizability of oscillator networks
[5]. Therefore, we have computed Re λ2 and Re λN/ Re λ2 for
many realizations of synchronization-optimized networks. In
Fig. 8(a) 〈Re λ2〉β as function of the connectivity is shown for
different inverse temperatures β. It is clearly seen that 〈Re λ2〉β
decreases with β. Since Re λ2 determine the inverse relaxation
time to the synchronized state in oscillator networks [5], this
indicates that the time needed to achieve the synchronized
state decreases with β. The ratio 〈Re λN/ Re λ2〉β averaged
over the Gibbs ensemble with β is shown in Fig. 8(b). The
displayed dependencies reveal that the ratio, which specifies
the synchronizability, decreases as the optimization level, i.e.,
β is increased.

Recently fluctuations in the collective signal and oscillation
precision were also linked to the eigenvalues of the Laplacian
matrix [31,32]. The mean intensity of the fluctuations of the
collective signal in an ensemble of components subject to
independent Gaussian noises can be estimated by the norm
of left eigenvector v, corresponding to the zero eigenvalue
vL = 0 and normalized as

∑N
i=1 vi = 1 (see details in Ref.

[32]). When all independent Gaussian noises have the same
strength, the mean-square dispersion of the collective signal

can be estimated as σ =
√∑N

i=1 v2
i . We have computed this

property for the ensembles of our designed networks. In
Fig. 8(c) we have shown σ as a function of the network
connectivity for different optimization levels, i.e., different
β. As we see, σ decreases with β, implying that collec-
tive fluctuations are suppressed through the optimization.

056206-5



TATSUO YANAGITA AND ALEXANDER S. MIKHAILOV PHYSICAL REVIEW E 85, 056206 (2012)

0.05 0.10 0.15 0.20 0.25 0.30
2.5

2.0

1.5

1.0

0.5

p

R
e
λ

2
β

0.05 0.10 0.15 0.20 0.25 0.30

2

4

6

8

10

12

14

p

R
e
λ

N

R
e
λ

2
β

(a)

(b)

0.10 0.15 0.20 0.25 0.30
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p

σ
β

(c)

FIG. 8. (Color online) (a) Re λ2, (b) Re λn/ Re λ2, and (c) σ

averaged over the Gibbs ensemble at different inverse temperatures β.
The circles indicate average over random networks. The squares are
averages over the Gibbs ensemble with β = β8, the diamonds are with
β32 and triangles are averages with β = βM . The other parameters are
same as in Fig. 1.

We have also estimated the oscillation precision [31] for
our synchronized-optimized networks. The results indicate a
tendency to increase the precision at higher optimization levels
(the figure is not shown in the graph).

While our networks have been optimized only with respect
to their synchronization ability in the presence of noise, the
above analysis clearly shows that the designed networks turn
out also to be optimized with respect to a number of other
properties. For the designed networks, the time of relaxation
to the synchronized state in the absence of noise is shorter. In
the presence of weak noise, such networks have lower intensity

of fluctuations in the collective signal and higher oscillation
precision.

IV. CONCLUSIONS

We have designed synchronization-optimized networks
with a fixed number of links for a population of identical os-
cillators under action of independent external noises. This has
been done by using the Markov Chain Stochastic Monte Carlo
method complemented by the Replica Exchange algorithm.
Large ensembles of networks with improved synchronization
properties have been constructed at different mean connec-
tivities, and their statistical properties have been analyzed by
using various characterization tools.

Our analysis reveals that the architectures leading to the im-
proved synchronization of identical oscillators in the presence
of noise are essentially different from the optimal synchro-
nization architectures for heterogeneous oscillator populations
without noise, which have previously been studied [13].
When the number of available links is small, synchronization-
optimized networks are typically star-shaped structures. As
the number of links grows, the designed networks are seen to
develop dense cores, which replace a single central element in
the star networks. The core expands as the number of available
links is increased, and eventually the network becomes
strongly interlaced. The star and core-periphery structures of
the designed networks can be qualitatively understood, if one
takes into account that the central elements in such networks
are effectively operating as the source of common noise for
the periphery elements. It is known [29,30] that common noise
can induce synchronization in the populations of disconnected
oscillators or, in our case, in the group of periphery elements
all connected to the same central elements or a central core.

Thus, we have shown that efficient design of oscillator
networks with the improved synchronization properties is
possible. The architectures of such optimal networks strongly
depend on the constraints, such as the total number of links
available. Through the appropriate rewiring of a network, a
strong gain in the synchronization signal can be achieved.
Although our study has been performed for a simple system of
phase oscillators, similar evolutionary optimization methods
can be applied to construct networks of different origins, where
the dynamics of individual oscillators may be significantly
more complex.
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