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We show that the area-angular momentum-charge inequality ðA=ð4�ÞÞ2 � ð2JÞ2 þ ðQ2
E þQ2

MÞ2 holds

for axisymmetric apparent horizons of electrically and magnetically charged rotating black holes in

dynamical and nonvacuum spacetimes. More specifically, this quasilocal inequality applies to axially

symmetric closed stably outermost marginally (outer) trapped surfaces, embedded in non-necessarily

axisymmetric black hole spacetimes with non-negative cosmological constant and matter content

satisfying the dominant energy condition.
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I. INTRODUCTION

Isolated stationary black holes in Einstein-Maxwell
theory are completely characterized by their mass M,
angular momentum J, and electric and magnetic charges,
QE and QM. This ‘‘no hair’’ property is endorsed by the
black hole uniqueness theorems leading to Kerr-Newman
spacetimes. In these black hole solutions, a mass-angular
momentum-charge inequality enforces a lower bound for
M. Such a constraint amongM, J,QE, andQM is, however,
lost in the extended Kerr-Newman family, including
singular solutions without a horizon. In this sense, the
mass-angular momentum-charge inequality follows when
the physical principle of (weak) cosmic censorship,
namely, the absence of naked singularities, is advocated.
Weak cosmic censorship conjecture provides a ‘‘dynamical
principle’’ aiming at preserving predictability and playing
a crucial role in our understanding of classical gravitational
collapse. This picture motivates the study of extensions of
the total mass-angular momentum-charge inequality to
dynamical contexts, something accomplished in Ref. [1]
for vacuum axially symmetric spacetimes. In more general
scenarios, in particular incorporating matter, it is natural to
consider a quasilocal version of the inequality not involv-
ing global spacetime quantities (see Ref. [2] for a review;
cf. also Ref. [3]). An appropriate starting point is the
area-angular momentum-charge inequality ðA=ð4�ÞÞ2 �
ð2JÞ2 þ ðQ2

E þQ2
MÞ2 also holding in the stationary vacuum

case. This inequality (forQM ¼ 0) has been proven to hold
for stationary axisymmetric spacetimes with matter in
Refs. [4–7], although requiring electrovacuum in a neigh-
borhood of the horizon. Regarding the dynamical case
[8–11], a proof has been presented for the nonvacuum un-
charged case [12] and for the area-charge inequality [13],
the latter in absence of any symmetries (cf. also Ref. [14] for
the inclusion of the cosmological constant and Ref. [15] for
a related higher-dimensional result). Here, we extend the
full area-angular momentum-charge inequality, in particu-
lar, incorporating the magnetic charge, to nonaxisymmetric
dynamical nonvacuum black hole spacetimes where axial
symmetry is only required on the horizon.

II. RESULT

The area-angular momentum-charge inequality applies
to axisymmetric apparent horizons satisfying a stability
condition. Following the approach in Ref. [12], we model
sections of quasilocal black hole horizons [16–18] in terms
of closed marginally outer trapped surfaces S satisfying a
(spacetime) ‘‘stably outermost’’ condition in the sense of
Ref. [19,20] (see Definition 1 below for details). Then the
following result holds:

Theorem 1. Given an axisymmetric closed marginally
outer trapped surface S satisfying the (axisymmetry-
compatible) spacetime stably outermost condition, in a
spacetime with non-negative cosmological constant and
matter content fulfilling the dominant energy condition, it
holds the inequality

ðA=ð4�ÞÞ2 � ð2JÞ2 þ ðQ2
E þQ2

MÞ2; (1)

where A is the area of S and J, QE and QM are, respec-
tively, the total (gravitational and electromagnetic) angu-
lar momentum, the electric and the magnetic charges
associated with S.
This quasilocal result for axisymmetric apparent hori-

zons holds in dynamical spacetimes without bulk symme-
tries and with arbitrary (nonexotic) matter possibly
crossing the horizon. In particular, it extends the strict
inequality proved in Refs. [6,7] for Killing horizons in
stationary axisymmetric spacetimes, with electrovacuum
around the black hole (matter can surround but not cross
the horizon). Axisymmetry is required only on S, in order
to make use of a canonical notion of angular momentum
J [21] which, in particular, permits us to make a mathe-
matically rigorous and nonambiguous statement. The
stably outermost and dominant energy conditions imply,
for some nonvanishing J, QE, or QM and, in our four-
dimensional spacetime context, the spherical topology
of the surface S. For axisymmetric Killing horizons,
Ref. [4] shows that degeneracy (i.e., vanishing of the
surface gravity) implies the equality in inequality (1) [for
a reciprocal result, see Ref. [24]]. More generally, in the
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present dynamical setting with no spacetime stationary
Killing field, rigidity statements involve rather the charac-
terization of the induced metric on S as an extreme Kerr-
Newman sphere (i.e., with the geometry of a horizon
section in the extremal Kerr-Newman family) and as a
section of an instantaneous (nonexpanding) isolated hori-
zon [17]. The discussion of this rigidity issue will be
presented elsewhere.

III. MAIN GEOMETRIC ELEMENTS

The proof of inequality (1) proceeds by, first, casting the
stably outermost condition for marginally outer trapped
surfaces as a geometric inequality leading to an action
functional M on S and, second, by solving the associated
variational problem. Following Ref. [12], we start by in-
troducing the general geometric elements and by formulat-
ing the geometric inequality following from the stability
of S.

Let ðM;gabÞ be a four-dimensional spacetime with
Levi-Civita connection ra, satisfying the dominant energy
condition and with non-negative cosmological constant
� � 0. Let us consider an electromagnetic field with
strength field (Faraday) tensor Fab, so that Fab ¼ raAb �
rbAa on a local chart (corresponding to a local section
of the Uð1Þ fiber bundle, possibly nontrivial to account
for magnetic monopoles).

Let us consider a closed orientable two-surface S
embedded in ðM;gabÞ. Regarding its intrinsic geometry,
let us denote the induced metric as qab with connection
Da, Ricci scalar as 2R, volume element �ab, and area
measure dS. Regarding its extrinsic geometry, we first
consider normal (respectively, outgoing and ingoing)
future-oriented null vectors ‘a and ka normalized as
‘aka ¼ �1. This fixes ‘a and ka up to a (boost) rescaling
positive factor. The extrinsic curvature elements needed in

our analysis are the expansion �ð‘Þ, the shear �ð‘Þ
ab , and

the normal fundamental form �ð‘Þ
a associated with the

outgoing null normal ‘a

�ð‘Þ ¼ qabra‘b; �ð‘Þ
ab ¼ qcaq

d
brc‘d � 1

2
�ð‘Þqab

�ð‘Þ
a ¼ �kcqdard‘c: (2)

We require the geometry of S to be axisymmetric with
axial Killing vector �a on S, i.e., L�qab ¼ 0 with �a

having closed integral curves. Besides, we demand

L��
ð‘Þ
a ¼ L�Aa ¼ 0 and adopt a tetrad ð�a; �a; ‘a; kaÞ

on S adapted to axisymmetry, namely, L�‘
a¼L�k

a¼0

with �a a unit vector tangent to S satisfying �a�a ¼
�a‘a ¼ �aka ¼ 0, �a�a ¼ 1. We can then write qab ¼
1
��a�b þ �a�b (with �¼�a�a) and �ð‘Þ

a ¼�
ð�Þ
a þ�ð�Þ

a

(with �ð�Þ
a ¼�b�ð‘Þ

b �a=� and �ð�Þ
a ¼ �b�ð‘Þ

b �a).

We introduce now the expressions for J, QE, and QM.
First, the electric and magnetic field components normal
to S are

E? ¼ Fab‘
akb; B? ¼ �Fab‘

akb; (3)

where �Fab is the Hodge dual of Fab. The above-required

axisymmetry allows the introduction of the following
canonical notion of angular momentum on S [2,25–27]:

J ¼ JK þ JEM

¼ 1

8�

Z
S
�ð‘Þ

a �adSþ 1

4�

Z
S
ðAa�

aÞE?dS; (4)

where JK and JEM correspond, respectively, to (Komar)
gravitational and electromagnetic contributions to the
total J. Electric and magnetic charges can be expressed
as (e.g., Refs. [18,28])

QE ¼ 1

4�

Z
S
E?dS; QM ¼ 1

4�

Z
S
B?dS: (5)

We characterize now S as a stable section of a (quasi-
local) black hole horizon. First, we require S to be a

marginally outer trapped surface, that is �ð‘Þ ¼ 0.
Second, we demand S to be stably outermost as introduced
in Refs. [19,20] (see also Refs. [16,29]). More specifically,
we require S to be an (axisymmetry-compatible) spacetime
stably outermost marginally outer trapped surface [12,13]:

Definition 1. A closed marginally outer trapped surface
S is referred to as spacetime stably outermost if there exists
an outgoing (�ka-oriented) vector Xa ¼ �‘a � c ka, with
� � 0 and c > 0; with respect to which S is stably outer-

most: �X�
ð‘Þ � 0: If, in addition, Xa (i.e., �, c ) and �ð‘Þ

a

are axisymmetric, we will refer to �X�
ð‘Þ � 0 as an

(axisymmetry-compatible) spacetime stably outermost
condition.
Here, the operator �X is the variation operator on the

surface S along the vector Xa discussed in Refs. [19,20]
(see also Refs. [30,31]). We formulate now the following
lemma:

Lemma 1. Let S be a closed marginally trapped surface
S satisfying the (axisymmetry-compatible) spacetime
stably outermost condition. Then, for all axisymmetric
	 on S;

Z
S

�
jD	j2 þ 1

2
	2 2R

�
dS

�
Z
S
	2½j�ð�Þj2 þ ðE2

? þ B2
?Þ�dS; (6)

with jD	j2 ¼ Da	D
a	 and j�ð�Þj2 ¼ �

ð�Þ
a �ð�Þa:

The proof is a direct application of Lemma 1 in
Ref. [12]. Given the vector Xa ¼ �‘a � c ka, for all axi-
symmetric 	 on S, it holds [12]
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Z
S

�
Da	D

a	þ 1

2
	2 2R

�
dS

�
Z
S
½	2�ð�Þ

a �ð�Þa þ 	
�ð‘Þ
ab�

ð‘Þab

þGab	‘
að	kb þ 
‘bÞ�dS; (7)

with 
 ¼ 	�=c . First, since 	
 � 0, the positive-
definite quadratic term in the shear can be neglected.
Second, we insert Einstein equation Gab þ�gab ¼
8�ðTEM

ab þ TM
abÞ, with TEM

ab and TM
ab the electromagnetic

and matter stress-energy tensors. In particular, TEM
ab ¼

1
4� ðFacFb

c � 1
4gabFcdF

cdÞ. From the dominant energy

condition on TM
ab, � � 0 and the null energy condition

applying for TEM
ab , the Einstein tensor term in inequality

(7) is bounded below by 	28�TEM
ab ‘akb. Making use of

(see e.g., Refs. [13,18])

TEM
ab ‘akb ¼ 1

8�
½ð‘akbFabÞ2 þ ð‘akb�FabÞ2�; (8)

inequality (6) follows by identifying E? and B? in Eq. (3).
An important remark concerns the topology of S. Note

that taking 	 ¼ const in inequality (6), a nonvanishing
angular momentum or charge suffices to conclude the
sphericity of S by applying the Gauss-Bonnet theorem.
In the toroidal case, which corresponds to the equality in
inequality (6) together with the vanishing of its right-hand
side so that the Euler characteristic of S is zero, the angular
momentum in Eq. (4) and the charges in Eq. (5) vanish
identically, so that inequality (1) follows automatically.
Therefore, in the following, we can assume a spherical
topology for S. In this spherical context, the axisymmetry
structure on S entails (see e.g., Ref. [32]) that �a vanishes
exactly at two points on S (north and south poles [33]).
Moreover, �a is normalized so that its integral curves have
an affine length of 2�.

IV. ACTION FUNCTIONAL

The proof of inequality (1) proceeds by solving a con-
strained variational problem on S, in which J, QE, and QM

must be kept constant under otherwise arbitrary variations.
We construct the corresponding action functional M, by
evaluating the geometric expression inequality (6) in a
specific coordinate system on the sphere S.

First, on an axisymmetric sphere S, a coordinate system
can always be chosen [11,32] such that

ds2 ¼ qabdx
adxb ¼ e�ðe2qd�2 þ sin2�d’2Þ; (9)

with axisymmetric � and q satisfying �þ q ¼ c ¼
constant. Then, �a ¼ ð@’Þa, �¼e�sin2� and dS¼ecdS0,

with dS0 ¼ sin�d�d’. In particular, A ¼ 4�ec. Second,

�ð‘Þ
a is expressed uniquely on a two-sphere as �ð‘Þ

a ¼
�abD

b ~!þDa�. Since �ð‘Þ
a is axisymmetric, �ð�Þ

a ¼
�abD

b ~! [12], and we can write

�ð�Þ
a ¼ 1

2�
�abD

b �!; (10)

by introducing the potential �!, as d �!=d� ¼ ð2�Þd ~!=d�,
which satisfies JK ¼ ½ �!ð�Þ � �!ð0Þ�=8 (cf. Ref. [12]).
Third, from ‘akb�Fab ¼ 1

2Fab�
ab [13] and the axisymme-

try of Aa,

B? ¼ 1

ec sin�

dA’

d�
: (11)

Finally, following Refs. [11,12], we choose 	 ¼ ec��=2.
Inserting it together with Eqs. (9)–(11) into inequality (6),
we get

8ðcþ 1Þ � M½�; �!;E?; A’�; (12)

where M½�; �!;E?; A’� is the action functional

M½�; �!;E?;A’�¼ 1

2�

Z
S

�
4�þ

�
d�

d�

�
2þ 1

�2

�
d �!

d�

�
2

þ4e2c��E2
?þ4e��

�
1

sin�

dA’

d�

�
2
�
dS0:

(13)

Inequality (1) follows by solving the variational problem
defined by M½�; �!;E?; A’�.

V. PROOF OF THE STRICT INEQUALITY,
WITH QM ¼ 0

A first approach to solve such a variational problem con-
sists in casting inequality (12) and the action functional (13)
in a form appropriate for the automatic application of the
variational treatment in Ref. [6]. The result in Ref. [6] states
that an axisymmetric stationary black hole, subextremal in
the sense that trapped surfaces exist in the interior vicinity of
the event horizon [34], satisfies the strict inequality (1). The
proof in Ref. [6] deals with the QM ¼ 0 case. Namely,

horizon subextremal condition ) p2
J þ p2

Q < 1; (14)

where pJ ¼ 8�J
A and pQ ¼ 4�Q2

E

A . This implication (actually,

its logical counterreciprocal) is cast in Ref. [6] as a variational
problem on a Killing horizon section. The action functional
in Ref. [6] is constructed by combining the horizon subex-
tremal condition in implication (14) with the expression
p2
J þ p2

Q < 1. The key remark here is to show that such a

variational problem, defined solely on a sphere S, has ac-
tually full applicability in the dynamical case beyond the
original stationary and spacetime axisymmetric setting of
Ref. [6] (cf. also in this sense Refs. [35,36], where the relation
between the variational problem in the stationary setting of
Ref. [6] and the dynamical one of Refs. [11,12] is clarified).
More specifically, we show that our expressions for pJ, pQ

and the stably outermost condition (12), valid in the dynami-
cal nonvacuum case with axisymmetric horizons, match ex-
actly the expressions in Ref. [6] for the elements in
implication (14). Therefore, the proof in Ref. [6] extends
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exactly for nonvacuum dynamical spacetimes with axially
symmetric horizons.

From the comparison between the four-dimensional
stationary axisymmetric line element in Ref. [6] with our
line element (9) on S and between the respective inte-
grands of the Komar angular momentum, we introduce
new fields U and V from � and �!:

û ¼ e�; ûN ¼ ec; U ¼ 1

2
ln

�
û

ûN

�
;

V ¼ e� sin�

2�2

d �!

d�
:

(15)

Regarding the electromagnetic potentials, we define S and T

S ¼ �E?ec=2; T ¼ A’e
�c=2: (16)

Inserting these fields in Eqs. (4) and (5) above, using
A ¼ 4�ec and changing to variable x ¼ cos�, we get

pJ ¼ � 1

2

Z 1

�1
Ve2Uð1� x2Þdxþ

Z 1

�1
STdx

pQ ¼ 1

4

�Z 1

�1
Sdx

�
2
;

(17)

which coincide exactly with expressions in Eqs. (23) and
(24) in Ref. [6]. Regarding the stability (subextremal)
condition, we insert Eqs. (15) and (16) in condition (12)
[with strict inequality]. Using

R
1
�1 Udx ¼ �R

1
�1 U

0xdx
(following from Uð1Þ ¼ Uð�1Þ ¼ 0, as a regularity con-
dition for q on the axis) and denoting with a prime the
derivative with respect to x, we find

1>
1

2

Z 1

�1
ðU02 þV2Þð1� x2Þ� 2U0xþ e�2UðS2 þT02Þdx:

(18)

This matches exactly the horizon subextremal condition
inequality (28) in Ref. [6]. Considering expressions (17)
and (18) as the starting point, the same variational problem
used in the proof of implication (14) can be defined in the
nonvacuum dynamical case with axisymmetric apparent
horizons. This proves inequality (1) with vanishing QM

in the strictly stable case.

VI. DISCUSSION OF THE GENERAL PROOF

A complementary more general approach to inequality
(1) follows the strategy in Refs. [11,12] to the variational
problem defined by expressions (12) and (13). The enforce-
ment of the constraints on J, QE, and QM in the variational
problem is not straightforward in terms of the fields �!, E?,
and A’ in Eq. (13). In order to address this issue, we

introduce new potentials !, �, and c on S (cf. also
Refs. [1,25])

dc

d�
¼ E?ec sin�; � ¼ A’;

d!

d�
¼ 2�

d ~!

d�
þ 2�

dc

d�
� 2c

d�

d�

(19)

with the crucial property that J, QE, and QM are written as

J ¼ !ð�Þ �!ð0Þ
8

; QE ¼ c ð�Þ � c ð0Þ
2

;

QB ¼ �ð�Þ � �ð0Þ
2

:

(20)

Physical parameters in inequality (1) can then be kept
constant by fixing !, �, and c on the axis as a boundary
condition in the variational problem [note that �! in
Eq. (10) is an appropriate potential to control the Komar
angular momentum JK, but not for the total J]. In terms of
�, !, �, and c the action functional reads

M½�;!; c ; �� ¼ 1

2�

Z
S

�
4�þ jD�j2

þ jD!� 2�Dc þ 2cD�j2
�2

þ 4

�
ðjDc j2 þ jD�j2Þ

�
dS0; (21)

where M is formally promoted beyond axisymmetry.
As in Ref. [12], the proof of inequality (1) then proceeds
in two steps. First,

A � 4�eðM�8Þ=8 (22)

follows directly from the above-derived inequality (12),

and A ¼ 4�ec ¼ 4�e�ð0Þ. Second, the variational problem
defined by the action functional (21) with values of!, c , �
fixed on the axis and determined from relations (20), is
solved by following exactly the same steps as in Ref. [9],
leading to [37]

M � M0 ¼ 8 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2JÞ2 þ ðQ2

E þQ2
MÞ2

q
þ 8; (23)

where M0 corresponds to the evaluation of M on an
extremal solution in the (magnetic) Kerr-Newman family
with given J, QE, and QM. The sharp inequality (1),
including, in particular, the magnetic charge, follows
from the combination of inequalities (22) and (23).

VII. FINAL DISCUSSION

We have shown that ðA=ð4�ÞÞ2 � ð2JÞ2 þ ðQ2
E þQ2

MÞ2
holds for axisymmetric stable marginally outer trapped
surfaces in dynamical, non-necessarily axisymmetric
spacetimes with ordinary matter which can be crossing
the horizon. More specifically, we have presented a com-
plete proof of the strictly stable case with QM ¼ 0 and
provided the key elements for the proof of the complete
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inequality. Furthermore, we have explicitly shown the
close relationship between the variational problems in
Refs. [4–7] and in Refs. [11,12] (see also Refs. [35,36]),
in particular showing that the proof in Ref. [6] extends
automatically to the dynamical nonvacuum case with axi-
symmetric horizons. From the perspective of the no hair
property of vacuum stationary black holes, the extension of
inequality (1) to fully dynamical nonvacuum situations
represents a remarkable result. Indeed, although parame-
ters A, J, QE, and QM no longer characterize completely
the black hole state and new degrees of freedom are
required to describe the spacetime geometry, the generic
incorporation of the latter is still constrained by inequality
(1). Such a constraint represents a valuable probe into
nonlinear black hole dynamics. As a first remark, it gives
support to the physical interpretation of the Christodoulou
mass in dynamical settings (cf. discussion in Ref. [2]), in
particular, endorsing dynamical horizon [17] thermody-
namics [38]. More generally, whereas inequality (1) fol-
lows originally in the Kerr-Newman family under the
assumption of (weak) cosmic censorship, the present result
is purely quasilocal involving no global condition on the
spacetime, namely, no asymptotic predictability. This sug-
gests a link between cosmic censorship and marginally
trapped surface stability to be further explored. In this
context, assuming Penrose inequality (with no surface
enclosing S with area smaller than A), inequality (1)
refines the positive of mass theorem in terms of physical

quantities: 16�M2 � A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8�JÞ2 þ ð4�½Q2

E þQ2
M�Þ2

q
.

A very interesting problem, especially for its practical
applications in the astrophysically realistic black hole sce-
narios considered in numerical relativity, is the study of
inequality (1) when relaxing the requirement of axisym-
metry on the apparent horizon. In this case, we must resort
to some quasilocal prescription [22,23] for J. On the one
hand, the lack of a canonical choice for J introduces some
degree of arbitrariness in the problem. However, a more

serious obstacle arises from the fact that, in contrast with
the area-charge inequality [13], the incorporation of the
angular momentum involves the resolution of a subtle
variational problem (cf. Ref. [2]). The construction of the
corresponding action functional M given by expressions
(13) and (21) makes explicit use of axisymmetry (although,
remarkably, in the resolution itself of the variational
problem, axisymmetry can be relaxed; see details in
Ref. [9,37]). In the absence of axisymmetry, the main
challenge would consist of identifying the appropriate
potentials in terms of which the variational problem can
be defined and solved. In this context, the assessment of the
general situation in the absence of local axisymmetry is
certainly worthy of further research. Finally, Ref. [37]
discusses the close relation between the variational prob-
lem (on a three-slice) employed in Ref. [1] for the proof of
the spacetime mass-angular momentum-charge inequality
and the present action functional M in Eqs. (13) and (21),
also closely related to (but different from) the functional
used in Ref. [6]. Regarding the latter, we stress that elec-
tromagnetic potentials S and T in Eq. (16) follow straight-
forwardly (with no gauge choices involved) from the
geometric formulation of the general stability condition
in Lemma 1. This underlines the intrinsic interest of the
flux inequality in Lemma 1 (and, more generally, its com-
plete expression in Ref. [12]; cf. also the discussion in
Ref. [3]) for exploring further geometric aspects of stable
black hole horizons.
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