Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Two Pulsar Discoveries from the Einstein@Home Distributed Computing Project

MPG-Autoren
/persons/resource/persons1452

Knispel,  B.
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40518

Allen,  B.
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Deneva, J. S., Knispel, B., Allen, B., Cordes, J., Bogdanov, S., Brazier, A., et al. (2011). Two Pulsar Discoveries from the Einstein@Home Distributed Computing Project. Bulletin of the American Astronomical Society, 43.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-B3EC-C
Zusammenfassung
We present two pulsars discovered by Einstein@Home, a distributed computing project that runs on volunteers' computers and searches for gravitational waves in LIGO data and binary pulsars in Arecibo PALFA data. J2007+27 is an isolated pulsar with a period of 24.49 ms. Its unusually large duty cycle and the presence of emission almost throughout the rotation period suggests that its magnetic and spin axes are nearly aligned. Limits on the period derivative, magnetic field, and age indicate that this is the fastest-spinning disrupted recycled pulsar known to date. J1952+26 has a period of 20.73 ms and is in a 7-hour binary. Assuming a pulsar mass of 1.4 Msun, the system's mass function indicates that the minimum companion mass is 0.95 Msun. The companion is likely a neutron star or a massive white dwarf, which makes the system an excellent candidate for Shapiro delay measurement and therefore an accurate estimate of the pulsar and companion masses.