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Extended molecular dynamics simulations covering a total of 0.232 J.LS have been carried out on a 
simplified protein model. Despite its simplified structure, that model exhibits properties similar to 
those of more realistic protein models. In particular, the model was found to undergo transitions 
between conformational substates at a time scale of several hundred picoseconds. The computed 
trajectories turned out to be sufficiently long as to permit a statistical analysis of that conformational 
dynamics. To check whether effective descriptions neglecting memory effects can reproduce the 
observed conformational dynamics, two stochastic models were studied. A one-dimensional 
Langevin effective potential model derived by elimination of subpicosecond dynamical processes 
could not describe the observed conformational transition rates. In contrast, a simple Markov model 
describing the transitions between but neglecting dynamical processes within conformational 
substates reproduced the observed distribution of first passage times. These findings suggest, that 
protein dynamics generally does not exhibit memory effects at time scales above a few hundred 
picoseconds, but confirms the existence of memory effects at a picosecond time scale. 

I. INTRODUCTION 

Knowledge about detailed atomic structures of biologi­
cal macromolecules has been rapidly accumulated in recent 
years (see e.g., Refs. 1,2). That progress opens the chance to 
acquire an understanding of macromolecular biological func­
tion in terms of basic physical and chemical notions. Many 
aspects particularly of protein function are known to be con­
nected to dynamical processes within these macro­
molecules. 3- 5 Therefore, adequate descriptions of that mo­
lecular dynamics (MD) are required and represent essential 
clues in the attempt to derive function from structure. Due to 
the structural complexity of proteins and a corresponding 
lack of well-founded coarse-grained effective models for the 
dynamics, the method of MD-simulation6,7 currently is the 
only approach, to which some reliability can be assigned. 
That method conceives a macromolecule as a classical many­
body system of "atoms" and describes the quantum­
mechanical forces like the chemical binding forces, which 
are caused by the electronic degrees of freedom, by a semi­
empirical force field. Accordingly, the molecular dynamics is 
simulated by integration of the Newtonian equations of mo­
tion. 

The enormous computational task associated with MD­
simulation of biological macromolecules entails an upper 
limit to the time scale of dynamical processes accessible by 
this method; the MD-simulation of one nanosecond (10-9 s) 
of an average-sized system consisting of 30 000 atoms re­
quires roughly 2X 1016 floating point operations if all long­
range interactions are taken into account. About 200 days of 
cpu-time on a supercomputer executing 109 floating point 
operations per second are necessary to perform that task. 
Hence, the limit of accessible time scales set by current com­
puter technology is in the nanosecond range. 

However, many biochemical processes occur at time 
scales, which are by six to twelve orders of magnitude larger 

than that limit; typical ligand binding reactions as well as 
quaternary rearrangements occur in the range 10-3_10- 1 s; 
protein aggregation and protein folding processes require up 
to 103 

S.8 Admittedly, enormous efforts have been spent to 
increase the computational performance of MD including ef­
ficient implementations of MD-codes on vector-machines 
(e.g., Ref. 9) or, more recently, on parallel computers. 10- 12 

However, assuming that such efforts generate an increase of 
processing capabilities at about the rate of 103 every 10 years 
one is forced to the conclusion that computer technology will 
not allow MD-descriptions of many important biochemical 
processes before the year 2030 (cf. also Ref. 13). 

At present, a reduction of the amount of computation 
involved in the description of protein dynamics is the prereq­
uisite to further extend the range of accessible biochemical 
processes. Accordingly, various techniques have been devel­
oped and employed among which three main approaches can 
be distinguished. 

(a) Mathematical and numerical methods attempt to re­
duce the amount of necessary computation essentially 
without any modification of the physical description. 
These methods include higher order integration 
algorithms, 14 the use of generalized internal 
coordinates,15,16 symplectic integration algorithms, 14.17 
fast multiple methods,18,19 variable time step 
methods,20,21 and various multiple time step 
methods. 20.22-26 

(b) Proper approximations modify the molecular model 
employed in MD-simulations in a way that enables a 
reduction of the computational task. Here, care has to 
be taken to ensure, that the approximations do not too 
seriously alter the physics of the macromolecular 
dynamics.27 Examples are the neglect of long-range in-
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teractions by use of a "cut-off" function,23 the suppres­
sion of fast degrees of freedom,28 and the so-called 
"mass-tensor" molecular dynamics?9 

(c) Effective models are designed to replace the original 
MD-model. They rest on a classification of "relevant" 
vs "irrelevant" system properties for a given dynami­
cal process. These models reduce the explicit descrip­
tion to the relevant properties and assume that the ac­
tion of the irrelevant properties can be implicity taken 
into account by renormalized interactions or other 
quantities representing statistical averages. Stochastic 
models, in particular, are based on the assumption, that 
the detailed dynamics of fast degrees of freedom, such 
as bond- or bond angle vibrations, is not essential for 
protein structure and function. Successful applications 
of stochastic descriptions like Monte Carlo 
simulation,3o.3! Langevin dynamics,32 generalized 
Langevin dynamics with memory friction (e.g., Ref. 
33) or the use of statistical potentials,34 support that 
assumption. 

Certainly, this classification is not mutually exclusive 
which becomes obvious by considering the neglect of the 
long-range part of the Coulomb interaction as an example; 
that method equally can be regarded as an approximation and 
as an effective model implicitly accounting for shielding ef­
fects caused by atomic polarizabilities. 

Most of the above methods have been designed for a 
wide class of many-body systems and, therefore, represent 
general purpose methods. Application of these methods to 
proteins typically speeds up MD-simulations by about one 
order of magnitude. However, in view of the desire to in­
crease accessible time spans by six to twelve orders of mag­
nitude, the efficiency gains achieved by these general pur­
pose methods represent only a moderate success. 

Major efficiency gains can be expected if computational 
methods and effective models are developed which more 
specifically take advantage of structural and dynamical prop­
erties particular to proteins. That expectation rests on the 
emerging notion that proteins actually possess unique prop­
erties which distinguish these many-body systems from 
others.35 In particular, a clear-cut identification of irrelevant 
degrees of freedom, explicit consideration of which usually 
is computationally demanding, should allow considerable ef­
ficiency gains by development of coarse-grained effective 
models, which are adjusted to the particular dynamical and 
structural properties of proteins. 

From the above discussion we conclude, that a proper 
characterization of protein dynamics is a prerequisite for the 
development of efficient protein dynamics descriptions. We 
note that a separation of relevant observables from irrelevant 
ones is also required for an application oriented evaluation of 
a given MD-method. Usually, such an evaluation is based on 
a comparison of certain quantities computed from test­
simulations carried out with the given MD-method, with cor­
responding quantities obtained from simulations employing a 
reference method, which is assumed to provide more accu­
rate results (cf. Refs. 36, 37). However, for an application 
oriented evaluation, the quality of the given method should 

be evaluated solely with respect to its ability to describe 
relevant properties accurately. These ideas are discussed and 
exemplified in detail in a forthcoming pape~8 as well as in 
Ref. 26. 

In the present paper we focus on the question, how 
knowledge on the very special dynamical properties of pro­
teins can be acquired. Below we will motivate the hypoth­
esis, that studies of the dynamics of simplified protein mod­
els are well suited to contribute to such knowledge, provided 
the dynamical properties of the protein model can be shown 
to be sufficiently similar to those of more realistic protein 
models. 

Contrary to less complex many-body systems the dy­
namics of proteins appears to involve a hierarchy of time 
scales.39.40 The high-frequency dynamics of protein models 
has been examined in detail by means of MD-simulation41.42 

as well as by normal mode analysis,43 whereas knowledge 
about the low-frequency dynamics is sparse. However, many 
quantities which are important to protein function are defined 
only at slow time scales well above 100 ps: mean first pas­
sage times for tranSItions between conformational 
substates,4.44 which are considered as elementary steps for 
"functionally important motions,,,45 fall in that region. Com­
putations of corresponding transition rates, e.g., by transition 
state or activated dynamics,5.46 or of other relevant quanti­
ties, like free energies, typically require large statistical en­
sembles and, therefore, show slow convergence. Accord­
ingly, studies of infrequent conformational motions have 
been possible only for small polypeptides.47- 5o Typically, the 
time scale covered by available sampling techniques like 
umbrella sampling5! or various force-bias methods3!,52 is too 
short as to provide an ensemble large enough for accurate 
results. Hence a characterization of protein dynamics is re­
quired especially in the low-frequency region. 

At the first glance, this requirement appears to entail a 
vicious circle which impedes the development of efficient 
protein dynamics descriptions. On the one hand, due to the 
structural complexity of the system as well as due to the lack 
of experimental data, studies of dynamical properties in the 
low-frequency region have to rely on extended MD­
simulations. On the other hand, it is difficult to carry out 
such simulations unless sufficiently efficient protein dynam­
ics descriptions have been developed. 

In view of that problem we note that insights into slow 
phenomena of protein dynamics, such as the folding process, 
have been provided by studies of small, oversimplified pro­
tein models, such as lattice models53 or "bead" -models. 54 Of 
course, the simplified structure of such model systems re­
quires a careful interpretation of results in order to provide 
information on properties of real proteins. But at the same 
time their simplicity entails the key advantage of such sys­
tems which is to permit extended simulations covering time 
spans several orders of magnitude larger than those acces­
sible to simulations on more realistic protein models. Hence, 
analysis of the dynamics of a simplified protein model by 
means of extended MD-simulations should enable insights 
into dynamical properties of proteins and, therefore, should 
contribute to the development of more efficient protein dy­
namics descriptions. 
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The present paper exemplifies that approach by consid­
ering a "minimal model" for proteins, which is described in 
the following section. Despite its simplified structure, MD­
simulations carried out on this protein model reveal dynami­
cal properties similar to those computed from MD­
simulations of more realistic, complex protein models or to 
those obtained from experiments (Sec. III). In particular, the 
dynamics of the protein model was found to exhibit confor­
mational transitions at a time scale of several hundred pico­
seconds. Such conformational dynamics appears to be ubiq­
uitous in protein dynamics.55,56 As we will argue, these 
similarities support the assumption that results obtained by 
our extended MD-simulations of the simplified protein 
model actually provide information about the low-frequency 
dynamics of real proteins. 

In Sec. IV we analyze whether memory-effects are 
present in the dynamics of our model. Memory-effects of 
dynamic quantities are well known to exist in proteins at 
short time scales up to the picosecond range.33 Here they 
give rise to nonvanishing autocorrelation functions of atomic 
positions or velocities. 57 Proper consideration of these short 
time correlations is essential for stochastic descriptions of 
fast degrees of freedom.58 Accordingly, the development of 
coarse-grained effective descriptions of slow degrees of free­
dom requires knowledge about time scales of correlati~ns. To 
contribute to such knowledge, we address the questIOn, to 
what extent memory effects show up in the low-frequency 
conformational dynamics of proteins. 

II. DESIGN OF A SIMPLIFIED PROTEIN MODEL 

To enable studies of low-frequency protein dynamics by 
extended MD-simulations of a simplified protein model, the 
design of that model has to meet two main requirements. (a) 
The model should exhibit structural and dynamical proper­
ties similar to those of real proteins, in particular, it should 
enable a study of conformational transitions; (b) the model 
should exhibit as few degrees of freedom as possible, and, 
accordingly, should be structurally simple. Thus, the protein 
model should represent a "minimal" model. Such model 
cannot contain all features of proteins, nor can it model the 
dynamics of a specific protein. Therefore, we included only 
those structural elements, the combination of which a priori 
seemed to be essential for low-frequency dynamical proper­
ties. 

For the design of the protein model we have chosen a 
two step procedure. First, we defined a "primary" structure, 
consisting of I 00 residues, and a force field. Second, we 
simulated a "folding" process of that model in order to ob­
tain a stable tertiary structure. 

To optimally meet the above conflicting objectives, we 
decided to neglect the internal structure of the residues and 
to describe the polypeptide by a chain of 100 van der Waals 
spheres, which are linearly connected via interaction~ resem­
bling chemical bonds. The employed force field mcluded 
bond stretch, bond angle, van der Waals, and Coulomb inter­
actions (we did not include an angle torsion potentia!), 

E= Eb + Ee + EvdW+ Eel, 

~ 0.5 

~ w 0.0 
-5 
(ij -0.5 

~ c. 

1 10 20 30 40 50 60 70 80 90 100 
number of C-atom 

FIG. 1. Protein model in a stretched, unfolded configuration, consisting of 
100 CHz-like "atoms," their partial charges are represented by the bold 
curve; the inset shows a zoom of the detailed structure. 

where the energy contributions are defined as in Ref. 23. The 
particle masses and force parameters were those of CH2• "ex­
tended atoms" and associated single bonds, as defined m the 
CHARMm force field?3 

With the above definitions, the model describes a 100-
alkane ("hektane") rather than a protein. Therefore, addi­
tional properties which can mimic the low-frequency behav­
ior of proteins have to be included. In order to identify such 
properties we note that a characteristic feature of protein.s is 
their ability to fold into and to maintain a unique tertIary 
structure (more accurately, that is a set of mutually similar 
conformational substates) in native environment.59 That 
property is a prerequisite for their specific bioche~ic~l func­
tion. The tertiary structure is determined by speCIfic mterac­
tions of particular amino acid side groups, e.g., by disulfide 
bonds or by H-bonds as well as by less specific long-range 
interactions like Coulomb or hydrophilic and hydrophobic 
interactions. The latter type of interaction, in particular the 
hdyrophobic force, is known to dominantly contribute to the 
stability of folded proteins.60,61 We therefore decided to add 
heterogeneous long-range interactions to our protein model. 

A. Primary structure 

For that purpose we defined an artificial, heterogeneous 
"primary structure" by assigning different partial charges to 
the 100 van der Waals spheres of the model. Figure 1 shows 
the chosen charge distribution (bold, wavy curve) along the 
stretched chain. As can be seen, that distribution divides the 
protein model into five parts, three of which carry a positive 
charge, while the remaining two are charged negatively. The 
inset of Fig. I shows the detailed structure of the model. 

The average absolute charge was chosen such that the 
corresponding Coulomb energy contribution becomes suffi­
ciently large as to overcompensate entropic free energy con­
tributions at room temperature (we chose an average absolute 
charge of 0.25e, which, accidentally, corresponds to the av­
erage value found in more realistic protein models) and thus 
to stabilize folded structures. 

In that respect, the chosen Coulomb interactions mimic 
hydrophobic protein-solvent interactions comparable to 
those included into the bead-model in Ref. 54; the attraction 
of oppositely charged "residues" resembles hydrophobic 
forces, whereas the repulsion of equally charged "residues" 
models the tendency of hydrophilic groups to solvate. We 
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(a) (b) (c) (d) (e) (f) 

FIG. 2. Snapshots of the protein structure during the simulated folding 
process described in the text; structures are shown as "ribbon-plots" (a)-(t). 
Initial, completely unfolded configuration (a); successive configurations af­
ter 3 ps (b); 6 ps (c); 7 ps (d); 8 ps (e); and 100 ps (t), respectively; (g) 
folded structure of the protein model after 5 ns, which was used as initial 
configuration for the dynamics simulations described in the text; the bold 
lines represent chemical bonds; four numbered circles mark atoms referred 
to in the text. 

note, that, as a consequence of the above interpretation, the 
protein model comprises a simple effective solvent model. 

B. Folding process 

The second step-the "folding" of the protein model­
was carried out by means of MD-simulation. All simulations 
presented in this paper have been performed in vacuo using 
the Verlet-algorithm36 with an integration step size of one 
femtosecond for the integration of the Newtonian equations 
of motion. No "cut-off" has been employed. 

Starting from an unfolded configuration, shown in Fig. 1 
and, as a ribbon-plot, in Fig. 2(a), the protein model was 
allowed to freely move under the influence of bond-, van der 
Waals-, and Coulomb interactions. Figures 2(b)-2(f) show 
snapshots of the structure during this initial phase of the 
"folding process." As can be seen, the compactness of the 
model rapidly increased and, after IO ps, came close to its 
final value. At this stage, the tertiary structure had not yet 
stabilized, and the model exhibited frequent conformational 
changes. 

Within the first few femtoseconds of the folding process, 
the temperature of the model raised from 300 K to above 
IO 000 K. This large temperature jump is due to high con­
formational energy present in the initial structure, part of 
which quickly converted into kinetic energy. We continued 
this high temperature dynamics for 2 ns to explore configu­
rational space. By rescaling of atomic velocities, the model 

was then slowly cooled down to 300 K, where it was trapped 
in a well-defined conformation, which remained stable dur­
ing the subsequent equilibration phase of one nanosecond 
duration. The model was then allowed to move freely again 
for two nanoseconds in order to approach thermal equilib­
rium. This has been achieved, as is indicated by the fact that 
no temperature drift could be observed during that period. 
The resulting, folded and relaxed conformation is depicted in 
Fig. 2(g). This structure was used as initial configuration for 
the simulations described in the following sections. 

III. RELEVANCE OF THE SIMPLIFIED PROTEIN MODEL 

The severe simplifications inherent to the protein model 
described above enforce a close inspection concerning its 
relation to real proteins as well as a number of caveats with 
respect to the interpretation of the MD-studies described be­
low. In particular we want to check in what sense our study 
of the low-frequency configurational dynamics of our simpli­
fied model can serve as a tool to characterize the correspond­
ing dynamics of real proteins. To that aim we will first dis­
cuss some of the properties determining the shape of the 
energy and free energy landscape, respectively. Subse­
quently, we will check, whether the model fulfills our expec­
tations. 

The neglect of any internal structure of the 100 residues 
which make up the protein model, represents the most obvi­
ous simplification. Since the residues are represented by van 
der Waals spheres, most short-range, residue-specific interac­
tions, such as H-bonds, which contribute to the formation of 
rigid secondary structure elements in proteins, are absent in 
our model. As a consequence, the model structure is ex­
pected to exhibit larger flexibility as compared to proteins. 
An additional increase of flexibility should arise from the 
absence of sidegroups and a corresponding lack of site­
specific sterical restraints. Thus, free energy barriers for con­
formational transitions in our model are expected to be lower 
than in real proteins. The neglect of angle torsion barriers 
should have similar consequences. 

Secondly, the residue masses have been chosen smaller 
than those of amino acids by about one order of magnitude. 
However, this difference does not affect the quality of the 
dynamics; according to Newton's laws, scaling of masses 
merely corresponds to a shift of time scales-in the present 
case by a factor of 3-4. As a result, also conformational 
motions of the model will occur at a correspondingly faster 
time scale as compared to proteins. 

We expect that as a result of both effects, the reduction 
of free energy barriers as well as the time scaling of the 
dynamics of the simplified model, the number of conforma­
tional transitions, which occur in the course of our simula­
tions is large enough as to permit their statistical analysis. 

Finally, our simple effective solvent model does not in­
clude stochastic and frictional forces, which are exerted by 
solvent molecules onto protein surfaces. Comparisons of 
MD-simulations of protein models in vacuo with simulations 
in solvent have shown, that such solvent-induced forces re­
duce the inertial character of vibrational modes in proteins 
and decorrelate these motions. 57 Accordingly, our in vacuo 
simulations should exhibit a much slower decay of the short-
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FIG. 3. Nonnalized velocity autocorrelation function Cv(t) =(v(O)·v(t»! 
(v(O)2) derived from an average over a I ns trajectory using the velocity 
vector v of one particular atom of the protein model. The inset shows the 
corresponding spectrum. computed using a Fourier transform of the velocity 
autocorrelation function. This spectrum is comparable to that of more real­
istic protein models. The two sharp peaks originate from fast bond-stretch 
vibrations. whereas the broad bands in the low-frequency region of the 
spectrum are predominantly caused by the stochastic character of inter­
atomic van der Waals contacts. 

time displacement autocorrelation functions of surface resi­
dues than the one determined in more realistic protein­
solvent models, i.e., the simplifications should enhance 
memory effects at fast time scales. 

The folded structure of our model [Fig. 2(g)] seems to be 
built up from structural motifs comparable to secondary 
structure elements found in proteins, such as a "helix" at the 
bottom of the model as well as "loops" at the left and right 
sides and at the top. The combination of these motifs re­
sembles typical tertiary structures of small globular proteins 
(compare, e.g., the structure of Crambin, as shown in Ref. 
62). This structural similarity has not explicitly been put into 
our model, but, instead, results from the particular choice of 
chain-chain interactions. Analogously, we did expect that 
also realistic dynamical properties should appear as a conse­
quence of the model design. 

To confirm that expectation, we computed various prop­
erties, the combination of which is known to be characteris­
tic to protein dynamics, and compared them with simulations 
of more realistic protein models or experiments. In our 
analysis, we will proceed from short time scales (femtosec­
onds) to longer ones (nanoseconds). 

The short-range interactions, which determine the high­
frequency dynamics of the protein model, have been chosen 
in close correspondence to those of hydrocarbons, as defined 
by the CHARMm force field. 23 Hence, the protein model 
should exhibit reasonably realistic dynamical properties at a 
time scale below some 100 fs. 

As an example, Fig. 3 shows the normalized velocity 
autocorrelation function C(t)=(v(O)·v(t)/(V(O)2), derived 
from an average over a 1 ns trajectory using the velocity 
vector v of an arbitrarily chosen residue of the protein model. 
The inset shows the corresponding spectrum, which has been 
derived in a way similar to that employed in Ref. 57 in order 
to enable a comparison with the results of MD-simulations of 
a detailed model of RNAse-A presented therein. Similar fea-

11.4~ 
11.2 

11.0 '--=:-::-_________ -"'.-"'L ____ ~..,..J 

1 

~~~~ 
::'~ 

~ 113800 J885Q-·-·_·-·-·-· '-'-'18900 

~15~" .-' 

~ 10 

'6 5 
~~----------------------~~~ 

18700-'-'-,_,_ 19200 _,-,---,-,-'-'19700 
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10 
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o 50000 
time [ps) 
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FIG. 4. Distance (in A) between residues #12 and #36 [cf. Fig. 2(g)] during 
an MD-simulation of 100 ns length. The series of plots shows the distance 
fluctuations at time scales increasing by a factor of 10 at each magnification 
step; the bold lines in the bottom two pictures represent smoothed data. Note 
that the depicted simulation has not been included within the analysis car­
ried out in the following section. 

tures are sharp peaks in the range 150-250 ps -1, originating 
from fast bond stretch vibrations, as well as broad bands in 
the region below 150 ps -1, arising from bond angle vibra­
tions and, particularly, the noisy character of van der Waals 
collisions. The dynamics of more realistic models differs 
from that of the simplified protein model in that it typically 
gives rise to a larger number of peaks in the high frequency 
spectrum, due to a heterogeneity of bond stretch frequencies, 
which is absent in our model. 

These high frequency modes represent the first layer of a 
hierarchy of time scales in proteins, within each of which 
specific dynamical processes can be observed.45.63.64 These 
range from bond stretching modes (=30 fs), bond angle- and 
dihedral vibrations (few 100 fs), collective motions involv­
ing groups of atoms (some 10 ps), to conformational transi­
tions occurring within a wide range of time scales above 100 
ps. Inspection of dynamical details at different resolutions in 
time has shown, that such hierarchy actually is reproduced 
by our simUlations, which cover time scales differing by 
more than six orders of magnitude. As an example, Fig. 4 
shows the time development of the distance between two 
arbitrarily chosen residues at decreasing time resolutions. 
Proceeding within Fig. 4 from top to bottom, one observes 
characteristic fluctuations, which occur at time scales in­
creasing at each step by a factor of 10 and originate from the 
four different dynamical processes enumerated above. 

A characteristic feature of protein dynamics is the exist-
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ence of a variety of conformational substates, which are in­
terconnected by conformational transitions. The model, too, 
exhibits such conformational transitions, which reveal them­
selves as sudden structural rearrangements. In particular, the 
rapid atomic distance changes apparent in the bottom three 
pictures of Fig. 4 are due to such conformational transitions. 

From these observations we infer, that, despite its sim­
plifications, our protein model exhibits a set of structural and 
dynamical properties, which are characteristic for proteins. 
In particular, the model should be rather well-suited for a 
simulation study of the long-time conformational dynamics 
of proteins. 

IV. CONFORMATIONAL DYNAMICS 

We studied the conformational dynamics of our protein 
model by means of extended MD-simulations covering a to­
tal of 232 ns. Using the well-known Verlet-algorithm with an 
integration step size of 1 fs, 232 simulations, each of 1 ns 
duration, were carried out. (Part of these 232 simulations 
were carried out using modified Verlet integration algo­
rithms, as described in Refs. 24, 38. However, we do not 
consider these algorithmic differences to seriously affect our 
results.) All 232 simulations started with almost identical ini­
tial conditions, derived from the structure resulting from the 
folding procedure described in Sec. II by minute random 
modifications of atomic positions (10-6 A). Nevertheless, 
these 232 simulations are essentially independent from each 
other, since the chaoticity inherent in the dynamics guaran­
tees a rapid decorrelation of the initially similar trajectories 
within a few picoseconds. 

An integration time step size as short as 1 fs may seem 
to contradict the purpose of our simplified model, i.e., the 
reduction of the computational effort that has to be spent to 
study conformational dynamics. Note, however, that here the 
main computational speed up is due to the decrease of the 
number of degrees of freedom as compared to more realistic 
protein models. Furthermore, as described in the preceding 
section, conformational transitions in our model are expected 
to be accelerated, implying fewer integration steps per con­
formational transition. As we shall see below, these expecta­
tions will be confirmed, in that the simulations actually will 
exhibit a large number of conformational transitions within 
the time span of our simulations. 

A. Theory of conformational substates 

Generally, a coarse-grained effective description of a 
(microcanonical) system with a Hamiltonian 3i5'(qN,pN), 
where qN denote the 3N Cartesian coordinates of the N par­
ticles within the system and pN their momenta, can be 
achieved by explicitly considering the dynamics of only a 
few degrees of freedom Ci(qN,pN), commonly referred to as 
"conformational coordinates.,,65 If the remaining degrees of 
freedom are regarded as a heat bath, the resulting system of 
reduced dimension belongs to a canonical ensemble. 

The free energy landscape of that subsystem is a poten­
tial of mean force,66 Wee), which determines, together with 
the heat bath, the dynamics of the conformational coordi­
nates e. By means of the canonical (projected) phase space 
density pc(e), 
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FIG. 5. Contour-plot of the free energy landscape W(d 12 36,d 1281) derived 
from a projection of the phase space density Pc onto t~o conformational 
coordinates, namely, the distances between atoms #12 and #36, and atoms 
#12 and #87, respectively (cf. Fig. 2). The inset shows the values of the 
energy landscape in units of k b T along a hypothetical reaction coordinate 
(bold line) connecting the points A-8-C-D-8-E. 

(I) 

Wee) can be derived from the phase space density p(qN,pN) 
generated by the dynamics of the entire system, 

W(e)= -kbT In pc(e). (2) 

As an illustration, Fig. 5 shows a contour-plot of the free 
energy landscape of our protein model, which has been de­
termined from pc(e)=pc(d 12 ,36,d I2 ,87) according to Eq. (2). 
Here, the two distances d 12,36 and d 12,87 between atoms #12 
and #36 as well as #12 and #87, respectively, have been 
chosen as conformational coordinates (cf. Fig. 2). The ca­
nonical ensemble, from which we derived pc(e), has been 
generated from the complete set of 232 I ns trajectories by 
recording both distances every 8 fs in the course of the simu­
lations. Discrete values for pc(e) have then been determined 
on a grid of 0.5 A resolution by computing a two­
dimensional histogram using square bins of 0.5 A side 
length. This choice represents a compromise between the 
conflicting aims of high resolution and low statistical fluc­
tuations of frequency counts per bin. The contour plot in Fig. 
5 represents a smoothened version of the two-dimensional 
histogram. 

The inset of Fig. 5 illustrates the shape of the free energy 
landscape W by plotting its value in units of kbT (at T=300 
K) along an arbitrarily chosen "reaction coordinate" (bold 
line) passing through the three minima. W has been interpo­
lated using a cubic spline function. 

The energy landscape in Fig. 5 exhibits three distinct 
minima, denoted as B, C, and D, respectively. As suggested 
on the basis of experimental data by Frauenfelder4 such re­
gions of low free energy in conformational space, separated 
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by free energy barriers, generally define distinct conforma­
tional substates of a protein. Accordingly, we define our 
model to be in substate B, C, or D, respectively, if its con­
formation lies in the corresponding region of the free energy 
landscape. Like the Brownian motion of a particle coupled to 
a heat bath. the dynamics of the system within the energy 
landscape shown in Fig. 5 is diffusive. Occasionally, the 
fluctuating forces generated by the heat bath drive the system 
across one of the energy barriers and induce a conforma­
tional transition, which reveals itself as a rapid change in the 
sterical structure of the model. Such sudden structural tran­
sitions are, e.g., apparent in the lower parts of Fig. 4. 

Note, that the above definition of conformational sub­
states differs from the approach commonly employed for 
theoretical explorations of substate hierarchies.67

•
68 In these 

studies, the distribution of thermally accessible local minima 
of potelltial ellergy within configurational space is studied, 
and it is assumed, that these local minima or clusters thereof 
can provide information on the distribution of conforma­
tional substates. At low temperatures, where entropic contri­
butions are small and safely can be neglected, the potential 
energy landscape definitely can serve as a tool for the analy­
sis of conformational substates. However, at room tempera­
ture the suggested relation between accessible minima of po­
tential energy and conformational subs tates, defined as 
minima of free energy, is questionable. In contrast, our ap­
proach allows the study of conformational substates at physi­
ological temperatures, as it refers to the free energy land­
scape within conformational space. Therefore, if applied to 
realistic protein models, our approach enables comparisons 
of theory and experiment. Admittedly, much larger computa­
tional effort is involved in such analysis, because a suffi­
ciently dense sampling of phase space by extended simula­
tions is required for the determination of Pc . At present, that 
computational effort restricts our method to studies of sim­
plified protein models. 

As can be seen in Fig. 4, the conformational substates of 
our protein model are stable on the time scale of several 10 
ps; conformational transitions occur on scales above a few 
hundred picoseconds. In order to study, whether memory ef­
fects are present in the dynamics on these two time scales, 
we will now consider two simple stochastic models. 

The first model will refer to and will be deri ved from the 
protein dynamics within one particular conformational sub­
state. We choose a one-dimensional Langevin model, which 
describes the Brownian motion of a particle in a potential of 
mean force. Wee). We will derive this effective potential 
from the simulation employing the same procedure that was 
used to compute the free landscape shown in Fig. 5. The 
second model serves to describe the conformational dynam­
ics of transitions beMeen the three conformational substates 
apparent in Fig. 5 on the longer time scale above several 
hundred picoseconds. We will choose a Markov model which 
neglects the protein dynamics within each substate. 

B. A Langevin model 

We now try to describe the dynamics of our protein 
model in the vicinity of the energy minimum D (cf. Fig. 5) 
as a Brownian motion. As a conformational coordinate, we 
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FIG. 6. Left, potential of mean force W(c) for the conformational coordi­
nate c in units of kbT (solid line); harmonic fits as described in the .text are 
shown as dashed lines; right, low-frequency part of the spectrum C( w) of 
the autocorrelation function C(t)=(dO)'c(t) derived from a 1 ns trajec­
tory (bold line); fit of an expression derived from a harmonic oscillator 
model (dashed line). 

chose the distance e = d 12,36' which allows to separate sub­
state B from substate D (cf. Fig. 5). Since the dynamics 
within substate D determines the transition rate from D to B, 
comparison of this particular rate determined from the 
Langevin model with the corresponding rate observed in the 
simulation will provide a check whether that model is appli­
cable. 

The time evolution of the stochastic model is described 
by the Langevin equation, 

mc= - m'}'c- VW(c) + get), (3) 

where m denotes the effective mass69 of a Brownian particle, 
the motion of which is governed by a heat bath a potential of 
mean force, W( c). The influence of the heat bath is de­
scribed by the friction coefficient '}' and a fluctuating force 
get) The dots represent time derivatives. We assume, that get) 
can be modeled by Gaussian (white) noise, and then we 
check, whether this assumption, which implies a neglect of 
memory effects, is correct. 

Figure 6 (left) shows the potential of mean force, Wee), 
which has been computed according to Eqs. (I) and (2), re­
spectively, where only those conformations, which belong to 
state D or B, have been used for the calculation of Pc ac­
cording to Eq. (I). The considerable length of the trajectory 
allowed a quite accurate determination of W( e). As a check, 
we computed W( e) using only half of the trajectory. Com­
pared to the full statistics, no significant deviations were ob­
served (data not shown). 

In Fig. 6 the transition under consideration, B -t D, cor­
responds to a transition from the deep minimum across the 
energy barrier to the left. To calculate its rate from the 
Langevin model, the parameters m and '}' have to be speci­
fied; the amplitude of get) then follows from the dissipation 
fluctuation theorem. 

As indicated by harmonic fits (dashed lines) in Fig. 6 
(left), at the energy minimum and at the barrier top, the 
shown energy landscape can be described by a harmonic 
double well. Diffusive motion in such a double well potential 
can be described analytically and, therefore, enables a simple 
determination of the friction coefficient '}' as well as of the 
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effective mass m, which enter into Eq. (3) as adjustable pa­
rameters, from our simulations. For that purpose, we make 
use of the velocity autocorrelation function, C(t) 
=(C(O)'c(t», computed from an average using a selected I 
ns trajectory, which did not leave state D. In our harmonic 
approximation we assume W(c)=tmw6c2. C(t) can then be 
derived analytically and y can be determined by comparison 
with the simulation. We used the velocity autocorrelation in­
stead of a displacement correlation, because it relaxes more 
rapidly. its relaxation depends sensitively on the friction co­
efficient, and it is rather insensitive to the characteristics of 
the mean force potential. 57 

Figure 6 (right) shows the low-frequency part of the 
spectrum of C(t) (solid line). In the diffusive harmonic os­
cillator model the spectral density of the velocity autocorre­
lation function is given by69 

• yw2 

C(w)C<:(W6_ W2 )2+ yw2 ' 

provided that wo> y12, which is assumed to hold for the 
present application. A fit (dashed line) of this expression to 
the low-frequency part of the observed velocity autocorrela­
tion spectrum yields y=6.0 pS-1 and %=3.5 pS-I. In the 
harmonic oscillator model, this corresponds to an effective 
mass of m = 7.4 atomic units. The excellent quality of the fit 
demonstrates the applicability of the harmonic oscillator 
model. Moreover, the obtained values for y and wo, respec­
tively, justify the assumption of moderate friction (wo~ y/2). 

An upper limit k D~B for the transition rate in the case of 
moderate friction can be obtained using Kramers' theory,70 

where -!m w~c2 is a harmonic fit to the potential at the 
barrier top b [ef. Fig. 6 (left)] and LlW is the barrier height. 
With wb=6.5 pS-1 one obtains kD~B=46.5 ns- I

. However, 
this prediction largely overestimates the rate obtained from 
the MD-simulation, which is lower by a factor of nearly 25, 
namely 1.89 ns -I! 

Obviously, the Langevin model could not reproduce the 
observed conformational transition rates. This failure must 
be attributed to the only unjustified assumption in that 
model, namely that of memory-free, Gaussian noise as a de­
scription of the influence of all degrees of freedom within the 
system on the dynamics of the conformational coordinate c. 
Thus one is forced to the conclusion, that memory effects, 
caused by correlations between many degrees of freedom, 
strongly influence the short time scale dynamics within con­
formational states at a picosecond time scale. One conse­
quence of these memory effects is a 25-fold reduction of the 
particular transition rate under consideration. 

A closer inspection of the MD-trajectories showed in­
deed a frequent crossing of the barrier top in Fig. 6 (left), as 
predicted by Eq. (4), but, in most cases, without a consecu­
tive transition, i.e., the system "remembered," where it came 
from. Presumably, a better estimate for the transition rate 
could be obtained by applying the method of reactive flux22 

(a review can be found in Ref. 46). However, this method 

n kCC 
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FIG. 7. Transition diagram of the three state Markov process used to de­
scribe the transition dynamics of the protein model (see text). The three 
states, B, C, and D, corresponding to the three maxima of the configuration 
space density projection in Fig. 5, are connected via conformational transi­
tions (arrows). The stochastic dynamics of that model is specified by the 
values of nine transition rates k ij . 

requires the preparation of an ensemble near the barrier top. 
The question, whether this is possible without relying on 
extended conformational sampling, must be left open within 
the present paper. 

C. A Markov model 

The question arises, whether memory-effects also show 
up at longer time scales, e.g., in the range of few 100 ps. 
Viewed at that time scale, the dynamics of the protein model 
is characterized by transitions between the three distinct con­
formational states apparent in Fig. 5. Accordingly, we shall 
now neglect the fast protein dynamics within each conforma­
tional substate and instead focus on the (discrete) conforma­
tional dynamics governed by transitions between the three 
substates of our model. To study memory effects at that time 
scale we will check, whether the distribution of transition 
times between the conformational states can be described by 
a memory-free stochastic dynamics, i.e., we compare the ob­
served conformational dynamics with the three-state continu­
ous Markov process depicted in Fig. 7. 

This Markov process has three states S E {B,C,D}, 
which shall represent the three conformational states defined 
in Fig. 5 and which are shown together with all possible 
transitions (arrows) and corresponding transition rates, kij 
(i,j E {B,C,D}). The probabilities P;(t) to find the model in 
state S t = i at time t obey the master equation 

~ kijP/t) ~ kj;P;(t), 
j=B,C,D j=B,C,D 

i=B,C,D. 

The time-independent transition rates kij are defined by the 
conditional probability of finding the system in state i at any 
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time t=O. ifit has been in statej before at time t=-/:,.t, 

i*j. k;;=I-2: kji . 
i*i 

P i//:,.]) :=P(So=iILd,=j), 

In order to decide, whether the observed conformational 
dynamics is Markovian, we need to check (cf. Ref. 66), 
whether the probability for a particular transition depends on 
the history of the process, i.e., whether the conditional prob­
abilities listed below are independent of the time intervals 
/:,.k,k=O,1,2, ... , 

Pii,h(/:"l '/:"2) : =P(So= ils -d, = jlI\L d ,-d2 = h), 

Pij,hj,,(/:"] '/:"2,/:"3) : = P(So= ilS -d, = j ]I\S -d,-d2 = hl\S -d,-d2-d3 = h)· 

Of course. the limited set of available data (a total of 238 
conformational transitions) does not allow to verify all the 
above conditions. Instead, we restrict our analysis to a com­
parison of only the first and second order conditional prob­
abilities. P i/Lll) and P ij,h (/:"1,/:"2), respectively. In addition, 

we consider only probabilities Pij,h(/:"): = Pii,iz(/:"'/:") de­
rived from equally spaced instances of time. In applying this 
slightly less rigorous test, we assume that "partial amnesia" 
is not likely to appear within the dynamical systems consid­
ered here. that is, our analysis does not apply to processes, 
which exhibit long-term memory, but at the same time do not 
show short-term memory. This assumption is supported by 
the results of the preceding section, where it was shown, that 
the dynamics of our model does exhibit short-term memory. 

Estimates for the first and second order conditional prob­
abilities Pij(/:") and Pij,h(/:") were computed from fre­
quency counts derived from the 232 ns of simulation data by 

Here. the frequency counts N j , Nij' and Nij,iz' where 
i.j.j],h E {B.C.D}, are defined in analogy to Eq. (5): N//:,.) 
denotes, how often in the course of the simulations the model 
has been found in substate j; Nij(/:") denotes the number of 
times it has been found in subs tate i, ifit has been in substate 
j a particular time span /:,. before, and Nii,iz' how often it has 
been found in substate i, if it has been in substate j 1 before 
and in substate h. 2/:" before, i.e., 

Nj =2: Iij,S(kd') , 
k 

Nij= 2: lii,s(kt.'+d)lij,S(kd')' 
k 

(5) 

The frequency counts were determined using a sample rate 
of /:,.' =0.5 ps. Here, Ii;,s(t) denotes the Kronecker symbol, 
being unity, if the protein model is in conformational state i 
at time t, and zero otherwise. 

In order to test the hypothesis that corresponding first 
order and second order conditional probabilities are equal, in 
which case the observed conformational dynamics would be 
Markovian, the statistical significance of observed deviations 
of the probability estimates P ij liz from P ij had to be deter­
mined. Accordingly, we estimated the corresponding stan­
dard deviations O'ijd/rom our data by 

O'ij,j//:") = ~Pij'iz(/:")[l- Pij,iz(/:,.)]INj,h(/:")' (6) 

using the Gaussian approximation for binomial probability 
distributions. 

From the set of 27 possible probability distributions 
Pij,h(/:")' i,j 1 ,h E{B,C,D} which we examined, Fig. 8 
shows a selection of six typical cases. These are the second 
order conditional probability estimates P DDD , P DDB , P DDC , 

P BCD, P BDD, and P CCD computed in the range /:"=50-500 
ps (bold, solid lines) which are compared with the corre­
sponding first order conditional probability estimates, P ij(/:") 
(bold, dashed). Also shown is a 10'-interval (thin, solid) as 
well as a 20'-interval (thin, dashed dotted), computed accord­
ing to Eq. (6). 

The main observation is that the deviations of the second 
order conditional probabilities from the first order probabili­
ties do not exceed 20', i.e., with a significance of 2% the data 
are consistent with the hypothesis that the conformational 
dynamics of our model is indeed Markovian. This is also true 
for the remaining 21 probability distributions not shown in 
Fig. 8. For a closer analysis we note, that although the three 
second order probabilities, P DDD' P DDB, and P DDC (upper 
half of Fig. 8) correspond to the same first order probability, 
P DD ' the particular error ranges vary considerably as a result 
of the different population densities of the three states. 
Whereas the broad error ranges of P DDC or P BCD, resulting 
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FIG. 8. Comparison of six selected second order conditional probabilities 
Pij,i, (bold, solid) with the corresponding first order conditional probabili­
ties P ij (bold, dashed), as described in the text. The statistical error due to 
the limited data set is depicted as a la-range (thin, solid lines) centered at 
Pi)' and a 2a-range (thin, dashed-dotted), respectively. 

from a low population density of state C do not provide 
much significance, the narrow ranges apparent for P DDD or 
P BDD' resulting from a large number of transitions between 
these highly populated states, provide a good check for non­
Markovian memory-effects. The largest deviation (=20") was 
observed for P DDC in the time range below 60 ps. One may 
speculate, that this deviation might be due to a minor 
memory-effect present in the rapid decay dynamics from 
conformational state C into D. 

The above analysis of the distribution of conformational 
transition times shows, that the conformational dynamics of 
our model is actually well described by a Markov model 
suggesting that no memory effects are present at the corre­
sponding time scale of a few hundred picoseconds. 

V. SUMMARY AND DISCUSSION 

We studied the conformational dynamics of a simplified 
protein model by molecular dynamics simulations at long 
time scales up to 0.232 p,s. The model has been designed as 
a minimal model, intended to include only those structural 
elements, which can be assumed to be essential for the low­
frequency dynamical properties of proteins. As shown by our 
simulations the model actually exhibits properties similar to 
those of more realistic protein models, such as tertiary struc­
ture, vibrational spectra, a hierarchy of time scales, and the 
occurrence of rare transitions between conformational sub­
states. 

Two effective descriptions for the conformational dy­
namics of the model, which both neglect memory effects, 
were compared with an explicit MD-simulation. To enable an 
analysis, a rigorous theoretical concept of conformational 
substates based on the notion of free energy landscapes has 
been formulated and applied. 

The first model, a Langevin model, describing the dy­
namics within a certain conformational state at a picosecond 
time scale, could not reproduce conformational transition 
rates derived from MD-simulations. This failure was found 

to be due to memory effects, caused by correlations between 
many degrees of freedom, which strongly influence the short 
time scale dynamics within conformational states at the pi­
cosecond time scale. 

The second description, a Markov model, aimed at an 
analysis of the protein dynamics at the much longer time 
scale of few hundred picoseconds. Here, the analysis of the 
distribution of conformational transition times suggested, 
that the conformational dynamics of our model does not ex­
hibit memory effects. 

These findings demonstrate a qualitative change in the 
dynamical behavior of our model protein, when proceeding 
from the short time scales, which are at present accessible by 
MD-simulations of realistic protein models, to longer time 
scales: Whereas memory effects play a significant role at 
short time scales, they appear to vanish at longer time scales. 
As a result the slower conformational dynamics can be de­
scribed by a master equation. 

Care has to be taken in the attempt to generalize these 
results to the dynamical behavior of real proteins. As argued 
in the first part of Sec. III, we expect the polymer chain 
of our simple model to be much more flexible than that of 
real proteins. Correspondingly, their conformational 
dynamics-as far as collective motions of the polypeptide 
chain are involved-should occur at slower time scales. For 
this reason, one cannot conclude, that memory effects in pro­
tein dynamics are actually absent at that 100 ps time scale 
characteristic for conformational transitions of our model. 
However, the results do suggest that memory effects in the 
dynamics of proteins generally tend to vanish at long time 
scales. Furthermore, due to the enhanced rigidity of real pro­
teins, the time scale of few 100 ps can be considered as a 
lower bound for the absence of memory effects. 
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