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We derive explicit expressions for the multidetector F-statistic metric applied to short-duration non-
precessing inspiral signals. This is required for template bank production associated with coherent searches
for short-duration nonprecessing inspiral signals in gravitational-wave data from a network of detectors. We
compare the metric’s performance with explicit overlap calculations for all relevant dimensions of parameter
space and find the metric accurately predicts the loss of detection statistic above overlaps of 95%. We also
show the effect that neglecting the variations of the detector response functions has on the metric.
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I. INTRODUCTION

Inspiral signals are thought to be the most promising
source of gravitational waves (GWs) for second generation
GW detectors. Depending on the rate of merger events, the
Advanced LIGO, Advanced Virgo GW detector network
operating at design sensitivity will be able to detect
between 0.4 and 400 binary neutron star coalescences per
year [1]. Underlying these numbers there is an assumed
threshold on the network signal-to-noise ratio (SNR) at
which a signal is ‘“‘detectable” (i.e., has a false alarm
probability below some established value). It has been
shown that, among the different matched-filter-based
search strategies, coherent templated searches for these
signals can reduce the false alarm rate for the same net-
work SNR compared to coincident templated searches
[2-5]. Thus it is attractive to prepare coherent searches
for when the advanced detectors come online in order to
maximize the number of detected events.

The JF-statistic was originally derived as a single-
detector detection statistic associated with searching GW
data for signals from rotating neutron stars [6], and was
extended to multiple-detector analysis in [4]. However, it is
equally applicable to coherent searches for GW signals
from inspiraling compact objects [2-5], due to the physical
similarity of the two emitting systems. The signals from
both types of systems can be modeled as GW emission
from a rotating quadrupole moment. Both signals can be
characterized by four extrinsic parameters that affect the
amplitude, polarization, and phase offset of the waveform,
an extrinsic parameter that sets a reference time for the
signal, and intrinsic parameters that affect the phase and
amplitude evolution of the waveform.

In performing templated matched-filter searches for
GWs, one is always faced with the question, “what tem-
plate waveforms should the data be filtered against?”” With
regards to searches for inspiral signals in single detector
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GW data, this question has been investigated within a
geometric formalism. Specifically, a distance measure
can be defined on the parameter space based on the
“mismatch” between waveforms from different parameter
space points [7]. This was initially derived for the two-
dimensional mass space for stationary phase approxima-
tion (SPA) inspiral waveforms expanded to Newtonian
order in the amplitude and 1.0 post-Newtonian (PN) order
in the phase, where the effects of the objects’ spins were
neglected. This has been extended to 3.5 PN order for the
“nonspinning” contributions to the phase [8,9]. In addi-
tion, a higher-dimensional metric has been obtained that
includes the “‘spin” contributions to the phase, up to 2.0
PN order, for the case where the objects’ spins are aligned
with the orbital angular momentum [10].

There have been several pieces of work that have been
closely related to deriving the multidetector JF-statistic met-
ric for short-duration nonprecessing inspiral signals. The first
was the derivation of the mismatch metric for coherent
searches of short-duration nonprecessing inspiral signals
based purely on the Newtonian order inspiral phase model
[11] and built on the formalism of [2,7], which was later
extended to cover the phase expanded at 2.5 PN order [12].
Another was the derivation of the multidetector ‘F-statistic
metric for rotating neutron stars [13]. In addition, there was
the computation of the Fisher matrix for the network SNR of
known and unknown waveforms of short and long duration,
focusing on obtaining explicit expressions for the angular
resolution of a GW detector network [14]. Finally, the most
closely related work showed parameter recovery accuracies
based on the Fisher matrix applied to inspiral and inspiral-
merger-ringdown waveforms observed by detector networks
[15], although the derivation of the Fisher matrix was not
presented. There has been no equivalent published derivation
of the multidetector ‘F-statistic metric for short-duration
nonprecessing inspiral signals including both the amplitude
model, the phase model, and the directional derivatives
effects of detector responses. This is what we derive here
to 3.5 PN order in the inspiral phase. This metric is required
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for determining how to arrange templates that would cover
the four-dimensional sky location and mass space of a
coherent search.

Previous coherent searches for short-duration nonpre-
cessing inspiral signals have been based on one of three
methods. They have either relied on the sky position to be
known precisely [16] or known to some degree and tiled by
detector triangulation arguments [17]. These have both
done a templated search on the mass parameter space in
an ad hoc way based on mass space coverings associated
with a single detector [5]. A third approach has been
hierarchical [18], relying on coincident searches of single
detector data with their associated mass space coverings
to decide what points in the mass space are followed up
coherently. The metric derived here could be used as the
starting point for determining separately a template cover-
ing of the sky as well as the mass space covering for a
template bank associated with a coherent search.

Following the formalism laid out for computing the
multidetector F-statistic in Refs. [13,19], this work is
organized as follows: Sec. II identifies the form of the
GW signal from rotating nonprecessing quadrupole
moments as seen in a GW network, Sec. III summarizes
the formulation of the multidetector ‘F-statistic, Sec. IV
outlines the approximations appropriate when applied to
short-duration (i.e., much less than one day) nonprecessing
inspiral signals, Sec. V derives the metric for the coherent
multidetector F-statistic for short-duration nonprecessing
inspiral signals, and Sec. VI shows tests of this metric.

II. OBSERVED GW SIGNAL FROM ROTATING
NONPRECESSING QUADRUPOLE MOMENTS

To start with, let us identify the parameters that will
affect how a generic GW signal from a rotating, nonpre-
cessing quadrupole moment is observed by a GW detector.
These parameters can be separated into two classes, intrin-
sic parameters, which affect the time evolution of the
waveform and we will elaborate further on this in
Sec. IV, and extrinsic parameters, which affect the polar-
ization, amplitude, and the phase and time offsets. The
extrinsic parameters can be further subdivided into two
classes, those that can be measured analytically within the
matched-filtering process, and those that must be searched
over by separate filters. As we will see, the extrinsic para-
meters that can be measured analytically are the extrinsic
amplitude A, the inclination angle : between the line of
sight and the total angular momentum of the emitting
system, the reference phase ¢, and the polarization angle
¥, which is a rotation between the radiation frame of the
GW and the frame of the detector about the direction of
propagation —7i.

With those definitions of the extrinsic parameters, we
give a signal model that describes how a generic GW signal
from a rotating, nonprecessing quadrupole moment will be
observed by a detector. A generic propagating GW signal
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of this form can be described in terms of two polarizations
in general relativity,

h:=h, —ihy, (M

where the i, and hy waveforms are out of phase by 90°.
Thus, these waveforms can be written in terms of the
intrinsic waveforms £.(z) and h(z) as

h= A, h () — iAxh(2). )

The intrinsic waveforms can be further decomposed into an
amplitude piece A(¢) and phase piece ¢ (1),

he(1) = A1) cos[ (1) + b,

hy(t) *= A(#) sin[p(y) + o),
where A(z) and ¢(r) will depend on the details of the
emitting system. The polarization amplitudes associated

with the different polarization waveforms are functions of
the extrinsic amplitude 4, and the inclination angle 1,

3)

A

h ~
A, = 70(1 + cos?1), Ay i= hgcost 4)

The waveform as seen by detector Y can be obtained by
taking the real part of this complex waveform projected
onto the complex detector response F¥ := F¥ + iF},

sY(1) = N(hFre 2¥), (5)

where we give explicit expressions for F} and FY, later in
this section. Expanding h, F, and the phase terms of cosine
and sine waveforms of (5), we find

sY(£)= (A, cospocos2 iy — Ay singosin2 ) FL (t)hY (1)
+ (A, cospysin2 i + Ay singgcos2 ) FY (1) hY (1)
+(—A, singcos2h — Ay cososin2 ) FY ()Y (1)
+(—A, singysin2if + Ay cosdocos2)FL ()hY (¢).
(6)

This can be separated into a sum over four detector-
independent amplitude parameters { A #} and four detector-
dependent polarization-weighted waveforms {A}, (1)},

4
s¥(r) =D ArhL (). (7

n=1

It is readily apparent that the amplitude parameters are
defined as

A= A, cospycos2iy — Ay singby sin24f,
A2:= A, cospysin2i + Ay singycos2i,
A3 = —A, singycos2y — Ay cosg sin2y,
A4 = —A, singosin2y + Ay cosg cos2 i,

@®)

while the polarization-weighted waveforms are defined as
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B = FL@ho(t— ), B0 == FL@ho(t — 1),

hY(1) := FY.()h,(t — 1Y), hY(1) := FY(0)h(t — 1Y).
)

Turning our attention to the detector polarization
responses, these characterize the response of an arbitrary
GW detector for signals that satisfy the long-wavelength
limit approximation [20]. They can be defined as the
double contraction of two tensors [19],

FY(1):=eldl(n,  FL(n):=eldl(n), (10)

where d}'j(t) is the detector response tensor and {ef{ <}
are the polarization-independent basis tensors of the radia-
tion frame. For an interferometric detector, the detector

response tensor is given by
J N N A
i = e ()~ Lne L. (D

Here, [ Y is the unit vector pointing along interferometer ¥’s
first arm away from the interferometer’s vertex. Similarly,
I¥ is the unit vector pointing along interferometer ¥’s
second arm away from the interferometer’s vertex. The
polarization-independent basis tensors are defined as

eli={éeé-nen cli={fentnedl (12

given in the radiation frame {£, 7, —A}, where —4# is the
direction of propagation, and {‘_f? )} are basis vectors in the
wave plane (i.e., the plane perpendicular to the direction of
propagation). The basis vectors é and 7) can be defined
with respect to 71 as

X
X

Y
(2N

Ei= . hi=EéXa (13)

>
23

In a fixed reference frame centered at the geocenter, where
Ai = (coséd cosa, cosd sing, sind), (14)

the wave-plane basis vectors are

A

& = (sina, — cosa, 0), (15)

7) = (— sind cosa, — sind sina, cosd). (16)

We have now defined all of the quantities that are used to
convert a GW signal from an arbitrary nonprecessing
rotating quadrupole moment source to the signal seen by
a GW detector. The remaining details of the signal will
depend on the specifics of the emitting system.

III. THE F-STATISTIC

The likelihood ratio of a signal s being in the data of a
network of GW detectors x is given as
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_ Plxls) _ 1
- P&l0) exp[(x|s) E(SIS)], (17)

where (a|b) := ¥ ,(a¥|bY) and the definition of the noise-
weighted inner product (a”|b¥) depends on the details of
the waveform being studied. We define this for inspiral
signals in (26) of Sec. IV. Using the signal model from (7)
and (17) can be written as

A(x;s)

InA(x;s) = Akx, — %le“j\/l,“,ﬂ”, (18)

where x, = (x|h,) and M, = (h,|h,). In matrix
form, M, is block diagonal,
A C 0 O
C B 0 O
Mu=109 0 a cl| - (1%
0O 0 C B

m
due to the orthogonality of the sine and cosine intrinsic
waveforms. Here,

A=Y FY(OFY()(hY|hY), (20a)
Y

B =Y FLOFL0)(hIIRY), (20b)
Y

(20c)

C:= Y FLOFL(0)(hY|nY).
Y

The log-likelihood ratio of (18) can be analytically
maximized over the amplitude parameters, resulting in
the maximum likelihood ratio F-statistic [4],

1
F i=1InA(x;sy) = Exﬂﬂ\/l“”xw (21)
where M~ = {M~"}#" is the inverse of M,,, ie.
MraM,, = 8%, and takes the following form:
B —C 0 0 \~v
1] —C A 0 0
Mrr = — . Q2
D]l 0 0 B —-C
0 0 —-C A

where D := AB — C?. It should be noted that the
F-statistic is the same as the square of coherent SNR
(2F = p?,,), which has been previously used in literature
associated with coherent searches for inspiral signals with
ground-based GW detectors [4,5].

IV. APPLICATION TO INSPIRAL SIGNALS

So far our treatment of the F-statistic could be
equally applied to searching for GW signals from rotating
neutron stars or inspiraling binaries of compact objects.
Restricting ourselves to the case of nonspinning inspiral
signals, the intrinsic parameters include {7, M}, where
ni=mym,/(m, +m,)* is the symmetric mass ratio and
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M, := (m, + my)n/ is the chirp mass. In addition, there
is an extrinsic parameter that can be efficiently maximized
over but has not been in deriving the 7 -statistic, namely
the coalescence time .. This can be easily done with the
use of the fast Fourier transform. The additional extrinsic
parameters that must be searched over with separate filters
are the sky locations {«, 8}, where « is the right ascension
and & is the declination.

Although we restrict the derivation to the case of short-
duration nonspinning inspiral signals, spins aligned with
the angular momentum could easily be incorporated into
the phase model and included as intrinsic parameters. This
is because binaries in which the objects’ spins are aligned
with the angular momentum do not precess.

In second-generation GW detectors, the sensitive band
of the detectors will start as low as 10 Hz. A binary neutron
star system’s GW signal will be in the sensitive band of
the detectors for = 17 minutes before coalescing, which
amounts to a rotation of the Earth of =< 0.07 radians.
Thus, for a source’s fixed sky location, the detectors
can be approximated as fixed d};(r) = d};(z.). With this
approximation, the polarization weighted waveforms are
given in the frequency domain as

h(f) == Fih(f),  hy(f) := Fih.(f),
Ry(f) == FLh(f),  hi(f) = FLhy(f).
The frequency domain intrinsic waveforms are given as

ho(f) == A(H)Re™D,  h(f) = AN, (249

(23)

where A(f) is the intrinsic amplitude of the waveform, W ()
is the phase of the waveform, and h and J denote operators
that extract the real and imaginary parts, respectively. Each
of these components has the following dependencies:

F{ = Fl(t;a 9),
A(f) = A(fs M., n),

FY =FL(t.;ab),
W(f) = Y(f;1., a, 6, M., m).
(25)

Note that A(f) is typically defined to include kj and W(f) is
typically defined (e.g., [9]) to include ¢; however, in this
treatment, iy and ¢ are instead included as part of the
amplitude parameters. The explicit expressions of A(f) and
W(f) according to the stationary phase approximation are
expanded to Newtonian order in the amplitude and 3.5 PN
order in the phase in Appendix A.

The template waveforms for inspiral signals occupy a
large bandwidth within the detectors, entering the sensitive
band at the lower frequency cutoff f;,,, and extending up to
the frequency associated with the innermost stable circular
orbit figco. For these signals, the inner product between
two waveforms is defined as

Fuien £ ()5 (f)

YY) -
Y (]

df, (26)
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where fiin is the upper cutoff frequency given by the
smaller of the Nyquist frequency of the data and figco,
X(f) denotes the Fourier transform of x(z), (.)* denotes the
complex conjugate operator, and SY(f) is the one-sided
power spectral density (PSD) of detector Y.

V. F-STATISTIC METRIC DERIVATION

The metric on the full set of parameters {A} including
intrinsic and extrinsic parameters can be derived by
expanding the log-likelihood ratio (17) for a mismatched
signal to second order in the parameter differences, AA,

2InA(s(A);s(A + AX))
= (s(DIs() = (8,5(V)[3,5(1))AAAN" + O(AXY),
27)
where 9, := 9/ A% is the partial derivative w.r.t. parameter
A%, In this notation, we will restrict the use of greek indices
to the amplitude parameters (i.e., A* = A#) and for the
metric subspace associated with the amplitude parameters.
Using (27), we are led to the definition of the full metric
&a»» Which measures the fractional loss of 2 F, as
_ (048]0,5)
8ab (SlS) .
Recalling that (9, A%h,|0, APhg) = (h,|h,) = M,,,
and using the signal model from (7), this metric can be
decomposed into blocks

_ 1 My
b= AT M, AP\ APR,, Ach

(28)

AR Laj
. (29
ﬂﬁ)ab ( )

As stated before, in the above equation, the indices w and v
are associated with the amplitude parameter subspace and the
indices i and j are associated with the nonamplitude parame-

aBij

ter subspace. The quantities R ,,,; and £,,,,; are defined as
R,u,vi = (h,ulazhv)r (30)
h/,u/ij = (azh,ula]hy) (31)

The M, block is associated with derivatives of only the
amplitude parameter subspace, the A “h,g;; AP block only
with derivatives of the nonamplitude parameter subspace, and
the A“R ,,; block with derivatives of both subspaces.

To obtain the metric for the F-statistic, we can project
out the dimensions associated with the amplitude subspace
[13,21]

g5 = & — 8ia8"Pp; (32)

Using the form of the full metric from (29), the F-statistic
metric can be written as

A*G, 5 AP
F_ apij 33
8 T A M,y AP G
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where the projected Fisher matrix G,,;; is given by

G;mj = h;mj - R 'MQBIRBW'- (34)

api

The two pieces of the projected Fisher matrix we refer to
as he nonamplitude parameter subspace matrix, h,,;;,
and the amplitude subspace maximization correction,
R 4 iM*PR g,;. Similar to the derivation in Appendix B
of Ref. [13], after symmetrizing on (u, v) and (i, j),
takes the form

pvij

PL Pfj 0 P
P3. P,Zj —P;‘j 0
—Pj.‘j P}j P;?j
Pt 0 P} P}

(35

nv

Although this looks identical to the derivation for rotating
neutron star signals [13], one difference to keep in mind is
that for inspiral signals there are additional terms hidden in
these components. These additional terms are the result
of the presence of an intrinsic parameter in the amplitude
of the signal, what we refer to as the intrinsic amplitude.
This can be seen in (25). The components of h,,,;; are
given as

PL=f"" G+ fi J+ i Ji+ 5" H (36a)
Py =Gy + £ I+ 50 J + £ H, (36b)

1
P?j=f+X'Gij+§(fi+X+fix+)'-]j
1 1
+§(_f;'>< +fj>-<+)'Ji+§(f;j—-X +f57)-H, (36c)
1 1
P?jzz(ffx_fix+)'Kj+§(fi;rX_f;<+)'Ki- (36d)

Above, we have introduced the detectors’ polarization
response vectors ﬁ.?), the detectors’ waveform vectors
{H, J;, K; G}, and the notation x - y := ¥ yx"y", which
denotes a sum over detectors. The detectors’ polarization
response vectors are defined as

frivi=FpFy, (37)
fP =9, FYFY, (38)
PaY = 9. FYq FY (39)

4] p=itq’

where the derivatives of the detector polarization responses
9;FY . are given in Appendix B. Next, the detectors’
waveform vectors {H, J;, K;, G;;} are defined as

G}, i= (h79; InAlR"a; InA) + (B0, WY (F)Ih" 9, WY (f)),
(40)

HY := (h¥|h"), (41)
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JY := (h¥|h¥d,;1nA), (42)

KY = (W17 9,%()), (43)

where the terms (hY|hY), (hY|hY9;InA), (RY|hY 0, WY (f)),
(h¥0;InAlhY0;1nA), and (h"0, WY (f)|h"9;¥Y(f)) are
given in Appendix C. As referred to above, the additional
terms for inspiral signals associated with derivatives of
the intrinsic amplitude are contained in the G;; and J;
terms.

Looking at the amplitude subspace maximization cor-
rection, R ., M*BR gvj» R i has the block form

api nvi
R, R,
R,u,vi = ( ~l A l) ’ (44)
_Ri Ri nv

where the blocks ’R,» and ’Ri are defined as

. R!' R N RP RM

Ri = ( ! ! ), and Ri = ( ! ! ) (45)
R? R2 R4 R¥

These components are defined in Appendix D. As noted in
Appendix B of Ref. [13], R; contains only terms with
derivatives of the phase. However for the case of inspiral
signals, R ; also contains terms with derivatives of both the
antenna factors and the intrinsic amplitude. After using the
symmetries of (22) and (44), and symmetrizing on (i, j),
the final form for R ,,,; M*PR g,,; is

api
3 4
302 —ob
tj tj tj
Ralﬂ'MQBRBV}' = . (46)

— I 3
0 Qi ij ij
4 3 2
A R Y
Explicit expressions for the Q components are given in
Appendix D.

Combining the terms from (35) and (46), we find the
projected Fisher matrix for inspiral signals has the same
form as that of the low-frequency limit of rotating neutron
star signals (i.e., Appendix B of Ref. [13]),

1 3 4
mg; my; 0 n;
m? m,2 —m?- 0
Guij=| ! (47)
mrej 0 .4 1 3 ’
mi; mg; mj;
4 3 2
mi; 0 Mij M7

where m{‘j = Pi-‘j — f/ Combining (33) and (47) gives the
main result of this paper, namely, the coherent F-statistic
metric for short-duration nonprecessing inspiral signals.
It should be noted that, as in the rotating neutron star
case, although the F-statistic metric (33) has projected out
the amplitude parameter subspace, it is still dependent on
the amplitude parameters. This means that what has been
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derived is actually a family of metrics that depend on the  the average of the eigenvalues of (M*FG, Bi jA/\i AN)
extrinsic parameters that enter the amplitude parameters  to produce an average metric. This is motivated by the
[13]. In order to produce a metric that is useful for choosing  fact that this matrix determines the extremal mismatches
template points to cover the parameter space, we must  that can be obtained for any combination of amplitude
choose an averaging procedure. As an example, Prix takes ~ parameters [13,22].

1.0 T T 1.0
— 0*/n} | |
0.8 H F 0.8
- Jaa | |
0.6 | | _ p?nax/p% I 0,6 I
_ max F | i I
Jao I _ p2/pg I
0.4 0.4 H F |
| - 95 | |
0.2+ I 02H — ﬂﬁax/Pg | |
| | | | | _ gtls%ax}' | | \
0.0 ! ! [l | ul ! ! 0.0 T T I | 1 ! !
-04 -03 -02 —-0.1 00 01 02 03 04 -04 -0.3 —-0.2 —-0.1 0.0 0.1 02 03 04
o 5
(a) (b)
1.0 T T T 1.0 I I T T
— p%/p? — P*/rh |
0.8 F B 0.8 H F -
- MM, 9 I
2 2
06 H — p?nax/p(% | 06H — pmax/po |_
gw/laxj\ﬁ _ grr;%ax}' ! |
04} . 04} 1
|
02 F - 02 F 1
Il | |
0.0 T | 11 0.0 i ! /1 |
0.8690 0.8695 0.8700 0.8705 0.8710 0.8715 0.8720 0.220 0.225 0.230 0.235 0.240 0.245 0.250
MC(M(D) n

(c) (d)
1.0

0.8

0.6

0.4

FIG. 1 (color online). We show the fractional loss of F as a function of parameter mismatches for the coherent analysis, using the
Advanced LIGO and Advanced Virgo detectors, of an inspiral signal with component masses m; = m, = 1.4Mg, sky location
(a, 8) = (0,0), coalescence time ¢, = 0, reference phase ¢, = 0, polarization phase ¢ = 0, cosine of the inclination angle cost = 1,
and distance D = 200 Mpc. The vertical line shows the true parameters of the injected signal. The solid lines show the observed
fractional F with and without maximization over time (where appropriate). The dashed lines show the predicted fractional F from the
coherent metric, without (g,]; ») and with (g‘,‘ﬁff ) projection of the time dimension of the metric. The metric accurately predicts the
fractional loss of F above a match of ~0.95. Panels (a), (b), (¢), (d), and (e) show the mismatch associated variations of the right

ascension, declination, chirp mass, symmetric mass ratio, and coalescence time, respectively.
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FIG. 2 (color online).

We show the separate mismatch components of the metric, m

PHYSICAL REVIEW D 86, 123010 (2012)

Mo megs mgs
T T T T T
-
g B I
Il Il Il Il Il
T T T T T
mé? | 1 Y
Il Il Il Il Il
T T T T T
0.
g B T
90° == =t
<« » -
E S 0° '.‘ S ‘ ;. - a
—_gQ° = Ll ||

18h12h 6h Oh
«

(b)

k

i of (47), as functions of sky position in (a). The

parts of m{-‘j associated with the derivatives of the detector response are shown in (b). For the first three mismatches, these terms are
typically more than an order of magnitude smaller than the full mismatches.

VI. VERIFICATION

With the F-statistic metric for short-duration nonpre-
cessing inspiral signals in hand, we can verify its perform-
ance by comparing the fractional loss of the F-statistic for
mismatched signals to that predicted by the metric. We do
this using a network of detectors corresponding to the
locations and orientations of the LIGO Hanford, LIGO
Livingston, and Virgo detectors. The PSD we use for the
LIGO detectors is the zero-detuning high-power advanced
detector configuration [23]. For Virgo, we use the
advanced detector PSD [24]. The waveform model used
for this work is the nonspinning restricted TaylorF2 PN
approximation [25,26], which is given in Appendix A. For
computational reasons, we start the waveforms at a low-
frequency cutoff of 40 Hz, although our results should also
be valid for other choices of the low-frequency cutoff.

We perform our tests using the following intrinsic pa-
rameters for the injected signal: m; = m, = 1.4M. The
extrinsic parameters are (a, 8) = (0,0), r, =0, ¢, = 0,
¢ = 0,cost = 1,and D = 200 Mpc. The expected square
coherent SNR for this signal is 2F = 9.82. We check the
metric by computing the match, both with and without
maximization over time, while varying a single parameter.
We do this for the two intrinsic parameters { M ., i}, for the
two extrinsic sky-location parameters {c, 8}, and also for
the time parameter {z.}. Figure 1(a) shows how the match
varies when the template’s right ascension deviates from
the signal’s value, shown as the vertical line. The metric
reliably predicts the observed loss in F above ~0.95.

We are interested to see the effect that including deriva-
tives of the detector responses has on the metric calcula-
tion. To do this, first we check the mismatches m?j from
(47) associated with the ‘F-statistic metric as a function of
sky location, which can be seen in Fig. 2(a). Figure 2(b)
shows the portion of these mismatches that originates from
the derivatives of the detector responses. We see that for
the first three mismatches, this portion is typically an order
of magnitude smaller than the full mismatch. As the fourth
mismatch is already an order of magnitude smaller than the

first three, including these terms is generally only a small
correction to the metric. However, as we shall see, there are
points in parameter space where this is not true.

Finally, we check the effect of including the derivatives of
the detector responses in the metric in an extreme example.
We use the following intrinsic parameters for the injected
signal: m; = m, = 1.4M,. The extrinsic parameters are
(a, 8) = (0.785, —0.785), t. = 0, ¢y = 0, y = 0, cost =
1, D = 9.3 Mpc. The distance is an order of magnitude
smaller than the previous comparisons in order to obtain an
equal expected square coherent SNR for this signal, 2 F =
9.82. Figure 3 compares the predictions from the metric
derived with and without the derivatives of detector responses
to the observed time-maximized fractional loss of ‘F. We see
that the predictions from the metric that includes the deriva-
tives of the detector responses give a substantially better
match to the observed time-maximized fractional loss

1.00 T =

— P/ PR
0.99 H _ ggr:sax]: 1

max F/
0.98H " 9% -
0.97 -
0.96 =
0.95 L
—0.90 —0.8 —0.70

FIG. 3 (color online). We compare the time-maximized
F-statistic metric component with and without the derivatives
of the detector responses, denoted as g‘é‘é‘xf and grggxﬁ’
respectively, for a specific set of parameter space coordinates:
component masses m; = m, = 1.4Mg, sky location («, §) =
(0.785, —0.785), coalescence time ¢, = 0, reference phase ¢, =
0, polarization phase i = 0, cosine of the inclination angle
cost = 1, and distance D = 9.3 Mpc. The metric derived with
the derivatives of detector responses better matches the observed
time-maximized fractional loss of F.
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of F. However, it should be noted that the detector network is
much less sensitive to this point, which was chosen especially
to show a large discrepancy between including versus not
including those derivatives. For the majority of parameter
space, the discrepancy is much smaller.

VII. CONCLUSION

In this work, we derive the coherent ‘F-statistic metric
associated with short-duration nonprecessing inspiral sig-
nals. This metric, understandably, has very close ties to
the coherent ‘F-statistic metric associated with rotating
neutron star signals. However, in detail, there are several
important differences. For one, inspiral signals have a
larger bandwidth; hence, the important single-detector
quantities are not the detectors’ PSD values at a single
frequency, but the integrated noise moments of the detec-
tors’ PSDs. Second, the signal model includes intrinsic
parameters in the amplitude, which need to be properly
accounted for in the metric derivation.

Even though this derivation closely follows that for the
rotating neutron star case, it includes previously ignored
effects of the variation of the detector responses. If desired,
this could easily be incorporated into the rotating neutron
star coherent ‘F-statistic metric for a more complete pic-
ture of the sky-tiling problem.

Important aspects that should be explored in the future
include determining other ways that the amplitude-
dependent metric, derived here, can be averaged [13] and
applying the averaged metric to the template covering
problem associated with coherent searches for short-
duration nonprecessing inspiral signals. In order to effi-
ciently perform this search, it will need to be investigated
how well the metric can be separated into an intrinsic
parameter space (e.g., the mass space) and an extrinsic
parameter space (e.g., the sky space) that could be tiled
separately. This would allow filters associated with different
intrinsic parameters to be reused for the extrinsic parame-
ters that still need to be searched in a tiled manner [11,18].

Finally, because of the close ties between the metric and
the projected Fisher matrix, it may be interesting to use the
derivation here to determine the sky localization accuracy
of a detector network, which could then be compared to the
derivations of [14,15,27-29].
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APPENDIX A: TAYLORF2 PN WAVEFORM

In this section we give the explicit formulas for the
restricted SPA TaylorF2 inspiral waveform. As noted in
Sec. 1V, the inspiral waveform can be split into three pieces,
a frequency-independent extrinsic amplitude (i.e., a func-
tion of only extrinsic parameters), a frequency-dependent
intrinsic amplitude (i.e., a function of intrinsic parameters
and frequency), and a phase piece that depends on intrinsic
parameters, extrinsic parameters, and frequency. The ex-
trinsic amplitude for a signal at distance D is given by

e — 5 1
0 24 723D’

and the intrinsic amplitude for a signal with chirp mass

M. is

(A

A(f) = MPBf70s, (A2)

For convenience, we define A without the frequency depen-
dence as

A= M5, (A3)

The phase of the inspiral waveform, expanded to 3.5 PN
order, can be written as

W (f)=2mft" 2+ by
7 6
+ Z ¢jf(*5+j)/3 + Z 1,[/§.ln(f)f(*5+j)/3, (A4)
Jj=0 j=5

where t¥ 1= t, — ¥y - fi/c is a time parameter that includes
the time of arrival of the end of the waveform at the geo-
center 7. and the sky-location-dependent correction associ-
ated with a detector Y’s location, and ¢ ; and 1//§ are the
phase coefficients associated with the j/2 PN order. These
phase coefficients are given by

3
AT Vi e
5 743
- > (24 q11), A5b
VT am M ( 84 ") i
_3,”.1/3
by =——7—0r, (A5c)
8.7\/13/3 773/5
B 5
V= 307273 M p/s
3058673 5429
T 2 617 2), A5d
( 7056 7 7 K (ASd)
57 (7729
=27 (2273
Vs 38417( 84 ’7)
X [1 4 log(63/2w M, n~3/%)], (A5e)
57 (7729
L iR T ) A5
Vs 38477( 84 K (ASD

123010-8
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6= — 64072

B3 <11583231236531
1287°/ 1564738560

6848
-————[y4-mgmmiﬂjwy3nfva]

3147553127
|l " " 4 2
4[ 254016 45t ]7’
76055 , 127825 3>
+ — n’ ),

576 1 432
—1077' 3 M
4273

5775/3.7\4%/3
3225677/
(15419335
X +
336

(A5g)

he = , (A5h)

75703

n— 14809172). (AS1)

Any PN coefficients of 3.5 PN order or lower not defined
above are identically zero.

APPENDIX B: EXPLICIT EXPRESSIONS
FOR DETECTOR POLARIZATION
RESPONSE DERIVATIVES

Based on the expressions for the detector polarization
responses in Sec. Il and [19], the derivatives of the detector
polarization responses can be obtained in terms of deriva-
tives of the polarization-independent basis tensors,

0,FY = 0,6 Y, (B1)

These in turn can be written in terms of derivatives of the
radiation frame basis vector,

9,6l ={(0,6) ® E+ £®(3,)

- (aaﬁ) ® 7’ - F] ® (aaﬁ)}lj’ (B2a)
9l ={(0,6)® 7 + £® (9,7)
+ (9,7 ®E+ 7 ®(0,6)}1.  (B2b)

The explicit formulas for the derivatives of the radiation
frame basis vectors with respect to the right ascension and
declination are given as

= (— cosé sina, cosd cosa, 0), (B3a)

ﬁ (— sind cosa, — sind sina, cosd), (B3b)
9,& = (cosa, sina, 0), (B3c)
95€ = (0,0,0), (B3d)
9,7 = (sind sina, — sind cosa, 0), (B3e)
dsf) = (— cosd cosa, — cosd sina, — sind). (B3f)
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APPENDIX C: EXPLICIT EXPRESSIONS FOR
INNER PRODUCT DERIVATIVES

In this section we define the inner products that are
needed for the coherent ‘F-statistic for short-duration non-
precessing inspiral signals in terms of derivatives of intrin-
sic and extrinsic parameters and combinations of detector
noise moment integrals, given by (E1) of Appendix E.

The simplest inner product required, which contains no
derivatives, is used by M, and H,

(hY|RY) = A%1(7,0)" := H". (C1)

The inner product that contains a single derivative of the
intrinsic amplitude and is used by J; is

5 91InM,

(hY|hY9,InA) = —2 2=
3 9

A%1(7,0)Y = JY. (C2)

The inner product that contains a single derivative of the
phase and is used by K; is

(R" R 9, W (f))

Az(a)uz 7I(4,0)" + Z[ o £1(12 — k, 0)"

a‘/’k1(12 k, 1)Y]) = K. (€3)

Finally, the inner product that contains both two single
derivatives of the intrinsic amplitude and two single

derivatives of the phase is used by G,

(hyél lnA|hY8] lnA) + (hyal\lfy(f)lhya]\yy(f)) = GU

(C4)
These individual inner products are given by
25 9InM,. 9InM,
(h';InAlRY 9, 1nA) = = 2 2 A2I(7,0),
9 A N
(C5)

and
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(R o, WY ()", ¥ (f)) =

[atY at’
A 9N
gl arr

N Z(M o |
=\9AT 9N AT 9N

n Z((W/k 31/’1 I 9P,
S\ A an oA aN

—4721(1,0)Y + Z(
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i, oty
YUYy

atr ay,
AN 9N

)2 1(9 — k,0)¥

Y a¢k (")l,b[ _ Y
)2 79—k 1) +Z i a7 k=10
) (17— k=1 1Y + Z ‘xk gf}l 117 — k-1, 2)Y]. (C6)

APPENDIX D: EXPLICIT TERMS ASSOCIATED WITH G ,,,;;

The explicit formulas of the amplitude subspace maximization correction Q of the projected Fisher matrix, written in

terms of the R¥” components, are given as

DOl = AR R + RIR) + B(R!I'R!' + RIRP) —
DO} = A(RPR? + R¥R3) + B(R*R> + RI*R}*) —

DQ'i _A(R2]R22 +R22R21 +R14R24 +R24Rl4) +B(R11R12 _I_R12Rll _I_R1'5R14 _I_R14R13)

— C(RI'R? + RPR!' + RI’RY + RY'R? + RIRY + RMRY + 2RIR!),

DO} = A(R?'R¥ + R¥R}' — RIR? —

— C(RI'"R?* + R}*R}' + RI*RS' + RY'R}*

where we recall that A, B, C, D come from (22) for MHY,
These R; components are given by

R'=fI"-H+f"" I, (D2a)
R =f*-H+ f** I, (D2b)
R} =f-H+ fJ, (D2c)
RP = -H+ f I, (D2d)
R =ftt.K, (D2e)
Ri* = f*- K, (D2f)
RY = [ K, (D2g)

It is interesting to note that all of the Q components
contain terms associated with derivatives of the detector
polarization responses as well as terms associated with
derivatives of the intrinsic amplitude.

APPENDIX E: DETECTOR PSD MOMENT
INTEGRALS

In this section we define the noise moment integrals
I(k, )Y of detector Y’s PSD,

1 frigh lnl(f)f*k”
1(k, )" :== — (WY |n"1n! ‘k/3=fg—d.
( ) A2 ( | n (f)f ) f]nw SY(fv) f
(ED)
This is the same definition as in [9]. Based on

the definition in (El), it is easy to see that pow-
ers of the frequency in the inner product can be
manipulated as  (hYIn"1(f)fR 3| WY Inb (f) fR/3) =
(R |RYInh o (f) f~ 0t R)3) = A20(ky + ky + 7, 1) + ).

C(RI'R¥ + RI'R}' + RPPR}* + RI*R}), (Dla)
C(RI’R + RPR}* + RI*R¥* + R¥*R}Y), (D1b)
(Dlc)
RPR}") + B(R/'R}* + RI*R}' — RPPR}> — RI’R}?)
— RPPR? — RPR}? — RI’R}* — RI*R}?), (D1d)

The detector PSD moments required for the metric
calculation associated with restricted SPA TaylorF2 inspi-
ral waveforms expanded to 3.5 PN order are

(k, 1) €{(1,0),(2,0),(3,0), (4,0),(5,0), (6,0),
(7,0), (8,0), (9, 0), (10,0), (11, 0),
(12,0), (13,0), (14, 0), (15, 0), (17, 0),
(3, 1), (4, 1), (5 1), (6,1),(7,1), (8 1),
(9,1), (10, 1), (11, 1), (12, 1),
(5,2), (6,2), (7,2)}.

APPENDIX F: DERIVATIVES OF PN
COEFFICIENTS

Here we give explicit expressions for the derivatives of
the PN coefficients associated with the phase in terms of
the symmetric mass ratio n and the chirp mass M, as
computed in [9]. First, the derivatives with respect to M
are

-5
Imbo = e Smppr (F1)
-5 743
e = S )
7l/3
Imips = AMP Rl (F3)
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ST (1729
e F
ms 3843\477( 84 3”)’ )

— 64072

7l/3 10052469856691
Imipe =

384 M2370/5\ 1564738560
6848 _
_ T[,y + 111(477.1/3:]\,11/3,'7 1/5)]
§[—3147553127
41 254016
76055 , 127825 3>
+ n - )
576 432

+ 451772]77

(F6)

—1077'/3
IMPG = = ers (F7)
¢ 126 M3y
575/3
48384 M3/
(15419335 75703
X +
336 2

Impr

n— 14809172). (F8)

Now the derivatives with respect to ) are
-1 (743

a S, I
n¥2 3847 Mn’/5\ 42

-33 n), (F9)

977.1/3

AR Ve

(F10)
_ -3
30727 3 M3 90/
(3058673 5429

2 4123402 Fl1
5292 21 ! 3")’ (FID)

an¢4
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—ar 7729 B
a”‘”5:384772><< oq 18+ 5In(6* 27 Mn 3/5)]—3977>,
(F12)
—386457
Il =——, F13
15 T 3005602 (F13)
- _—7r1/35\41/3(11328104339891
(AT ITE 260789760
41088
— 38407% — T[y + In(dar'3 M35~ 1/5)]
5[ —3147553127
| s T 451 2]
4[ 254016 n
76055 , . 127825
- + ) Fl4
144 " 48 77) (F14)
10773 M1/3
Iyt = ————7m— (F15)
nre 35911/5
B — B3 M2/
M7= 300567

15419335
X <7 + 757037 + 44427n2)- (F16)

Any derivatives of the coefficients of 3.5 PN order or lower
not defined above are identically zero.

The phase also contains a term associated with the
relative time shift between the arrival of a signal at a
detector’s location compared to the arrival of the signal
at the geocenter. These derivatives are as follows:

(F17a)

(F17b)

where 9,7 and dsii are given by (B3a) and (B3b),
respectively.
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