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Based on large quantities of co-orbital phenomena in the motion of natural bodies and spacecraft, a model of the co-orbital re-
stricted three-body problem is put forward. The fundamental results for the planar co-orbital circular restricted three-body 
problem are given, which include the selection of variables and equations of motion, a set of approximation formulas, and an 
approximate semi-analytical solution. They are applied to the motion of the barycenter of the planned gravitational observatory 
LISA constellation, which agrees very well with the solution of precise numerical integration. 
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The co-orbital phenomena in the motion of natural bodies 
were paid attention to by astronomers a long time ago. In 
the year 1918 the Japanese astronomer Hirayama found the 
orbital elements of some asteroids close to each other (es-
pecially semi-major axis a, eccentricity e, and orbital incli-
nation i), the ones with a close a were later called an aster-
oid group. He proposed that asteroids with at least two out 
of a, e, i, close to each other be called an asteroid family, 
and that with all three elements close to each other be called 
co-orbital, which is discussed in this paper. To discuss the 
problem of common origin, he also proposed the concept of 
proper elements [1]. As the number of minor planets having 
been found is increasing rapidly in recent years, the study of 
asteroid families has greatly developed. Many methods of 
the definition and calculation of proper orbital elements 
have been put forward, and the deeper understanding of 
many aspects, which includes the statistics, dynamics, and 
spectral types, of asteroid sub-families, has been brought 
forth. And a relatively comprehensive summary was given 
by Lemaitre [2] in 2005. 

The most well-known cases of co-orbits in natural ob-
jects are Trojan groups of asteroids, of which the number of 
the registered asteroids already found has exceeded 2900. 
There also exist co-orbital phenomena both in the motion of 
stars in the same spiral arm of the Milky Way galaxy, and in 
the motion of natural and man-made satellites. The planned 
gravitational wave observatory LISA is allowed to be re-
garded as approximately co-orbital, of which the barycenter 
of the three spacecraft co-orbits with the earth and the dis-
tance between each spacecraft and the barycenter is very 
small (less than 0.02 AU). We have taken part in the LISA 
orbit design and optimization; since the required operating 
period is merely 10 years, we have simply made use of a 
rough method [3, 4] to deal with it, and obtained relatively 
ideal results.  

Although the classical restricted three-body problem has 
already had a wide range of applications, it has not been 
fully resolved. In recent years, lots of researches into 
co-orbital motion appear, which are mainly aimed at the 
quasi-satellite (QS for short) case, such as the work  by 
Mikkola et al. [5]. On the basis of widespread co-orbital 
phenomena in the motion of natural and man-made celestial 
objects we put forward the model of co-orbital restricted 
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three-body problem, of which further results are expected to 
be obtained and to be applied to more objects. In this paper, 
the most fundamental planar co-orbital circular restricted 
three-body problem is discussed first. In sec. 1–3 a discus-
sion of the selection of variables and equations of motion, 
an important approximation formula, and the approximate 
analytical method are presented; in Sec. 5 the motion of the 
barycenter of the LISA constellation is taken as an example, 
of which the results are compared with those of a precise 
numerical method. 

1  Selection of variables and equations of motion 

Take the solar system for an example. Assume S and E to 
represent the sun and a certain major planet respectively. 
Assume the planet E to move round the sun S along a cir-
cular orbit, whose orbital angular velocity is n, being a con-
stant. Set S as the origin of coordinates, and SE as the direc-
tion of the x axis, and then construct a rotating coordinate 
system (synodic coordinate system) which rotates round S 
with E. For the sake of convenience, assume the masses of 
S and E to be 1−μ and μ respectively, and the distance of 
SE to be unit of length. The coordinates (x, y) of the minor 
object P on the plane should satisfy the equations [3] below: 
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To facilitate calculation, the dimensionless unit system is 
not fully adopted, and the coordinate rotation angular veloc-
ity n is retained in the equations. 

Now transform the rectangular coordinates into polar co-
ordinates , ,r ϑ  i.e. 

 cos , sin .x r y rϑ ϑ= =  (3) 

Substitute eq. (3) into eq. (1) and convert it to equations of 
motion with ,r ϑ  as variables: 
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Eq. (4) has a Jacobian integral: 

 2 2 2 22 ,r r n Cϑ Ω+ = −  (5) 

in which C  is known as the Jacobian integration constant. 
In the above equations, μ approximates the ratio of the 

planet’s mass to the sun’s, which is a small quantity less 
than 0.001 in the solar system. We first discuss the case 

0,μ =  namely the restricted two-body problem, or the 

two-body problem in a rotating coordinate system. Taking 

 , or ,nt nψ ϑ ψ ϑ= + = +  (6) 

eq. (4) is converted to equations of motion of the two-body 
problem; it can be worked out following the method for the 
two-body problem: 
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There is one more integral containing another integration 
constant, which is to be solved necessarily according to the 
specific conical sections. As a consequence, the integration 
constants for the restricted two-body problem are allowed to 
be chosen as , , ,h e B  with the other constant is neglected. 

Based on the restricted two-body problem, using the 
method of the variation of arbitrary constants, when 0,μ ≠  

the equations of motion are derived to be 
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and from eqs. (6), (7) we get 
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Eqs. (8)–(11) are equations of motion of the planar cir-
cular restricted three-body problem, in the perturbed 
two-body form. To avoid the difficulty of small eccentricity, 
we introduce u and v to substitute for e and B: 

 cos( ), sin( ),u e B v e Bψ ψ= + = +  (13) 

we can derive that: 
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Thus eqs. (8), (11) and eq. (14) together make up the equa-
tions of motion of the planar circular restricted three-body 
problem, in which r should be substituted by eq. (15). The 
principal variables become , , , .h u vϑ  

2  The planar co-orbital circular restricted 
three-body problem  

An arbitrary point on the circumference of a unit circle with 
the Sun being its center  

 01,r ϑ ϑ= =  (arbitrary constant) (16) 

is a particular solution and a Lagrange libration point as 
well, at which celestial bodies situated are all co-orbital 
with the planet. The co-orbital restricted three-body prob-
lem proposed in this paper studies the particular law of mo-
tion of the minor object whose initial position is given by eq. 
(16). 

Substituting the initial conditions (16) into the Jacobian 
integral (5) yields 

 ( ) 2 0 03 1 4sin csc .
2 2

C
ϑ ϑ

μ μ ⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (17) 

This is the Jacobian constant of the co-orbital restricted 
three-body problem, depending only on 0ϑ  and μ. The 

curve given in Figure 1 illustrates the relation between C  

and 0ϑ  when 63.0359 10μ −= ×  (system of Sun and 

Earth-Moon): 

 

Figure 1  The relation between C and 0ϑ  for the system of Sun and 

Earth-Moon. 

When 0ϑ = 60° and 300° (corresponding to the libration 

points L4 and L5), C takes a minimum value of 3, independ-
ent of μ. When 0ϑ = 180°, 3 2 ,C μ= +  being a maximum. 

The line 3 2C μ= +  intersects the curve C  at two other 

points 0ϑ′ = 23°.9057117 and 0ϑ′′ = 336°.0942883, neither 

being dependent on μ. 
The initial conditions (16) indicate that the minor object 

is situated on the zero-velocity curve at the initial moment. 
The curve serves as the boundary between the permissible 
area and prohibited region of the minor object. Out of the 
zero-velocity curves (the corresponding Jacobian constants 
are ,iC  when sorting by magnitude 1C  is the biggest) 

those that pass the libration points ( 1, 2,3, 4,5)iL i =  are of 

particular importance; their intersecting points with a unit 
circle are boundary points, and the corresponding arguments 

0ϑ  equal to 0iϑ  for them each. Table 1 lists the values of 

the arguments corresponding to the boundary points for the 

two cases: 63.0359 10μ −= ×  (system of Sun and Earth- 

Moon) and 30.9538754 10μ −= ×  (system of Sun and Jupi-

ter). 
Because of symmetry, the points with 1r =  and 

0iϑ ϑ= −  are also on the curve of zero velocity of C = Ci. 

Therefore the plane of motion is divided into different re-
gions by the curves of zero velocity corresponding to values 
of each 0 ,iϑ  and the relevant motion is confined to a cer-

tain region. 
As is shown in Figure 2, when the absolute value of 0ϑ  

is less than 01,ϑ  the motion is confined to an approxi-

mately circular region in the neighborhood of the planet, 
called the quasi-satellite region (QS for short); when the 
absolute value of 0ϑ  is between 01ϑ  and 02ϑ , the motion 

is confined to the interior of a dumbbell-shaped region, 
which is called the dumbbell region (DB); when the abso-
lute value of 0ϑ  is between 02ϑ and 03ϑ , the prohibited 

region is the interior of a horse-shoe-shaped region, the mo-
tion is confined to the exterior of the horse-shoe-shaped 
region, called horse-shoe region (HS); when the absolute 
value of 0ϑ  is larger than 03ϑ , the prohibited region 

shrinks to the interior of two symmetric tadpole-shaped re-
gions, the curves of motion are confined to the exterior of 
the tadpole-shaped regions, which is called the tadpole re-
gion (TP).  

03ϑ is slightly different from 0 ,ϑ′  and the corresponding 

Table 1  Values of different 0ϑ  for the system of Sun and Earth-Moon, 

and the system of Sun and Jupiter 

μ 01ϑ  02ϑ  03ϑ  04ϑ  05ϑ  

3.0359×10−6 0°.3828225 0°.3845339 23°.9056 60° 300° 

0.9538754×10−3 2°.5675658 2°.64665725 23°.9069 60° 300° 
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Figure 2  Diagram of several permissive areas (to facilitate drawing, μ = 

0.02 was taken). 

Jacobian constant 3 3 2 .C μ< +  When μ is very small (in 

the case of the system of Sun and a planet), the difference 
can be neglected in an approximate discussion. However, 
owing to singularity, when met with the case 0 0iϑ ϑ≈  in 

an application, a stricter method should be used. 

3  The approximate analytical solution 

Though starting from the initial co-orbital conditions, the 
orbits corresponding to arbitrary values of 0ϑ  can be pre-

cisely computed with a numerical solution, nevertheless, an 
analytical solution, even though only approximate, is of 
much significance, for the sake of discussing properties of 
orbits within different regions of motion to facilitate their 
application. 

3.1  Parameter τ and its approximation formula 

For the case of μ being very small such as the solar system, 
an analytical solution accurate to the first order of μ can be 
developed. The initial value of the eccentricity e is zero, e  
contains the factor of μ; so e, u and v are all small quantities 
of the first order, and among them u, v are short-period 
terms. They can be discussed separately. First, assume u, v 
to be zero, from eqs. (15), (8), (11) we get 
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With the accuracy of first-order perturbation of μ and 
adopting r=1 in the expression of Δ, yields sin( / 2)Δ ϑ= >  

0 (because (0 , 360 ),  sin( 2)ϑ ϑ∈ > 0). Again let 

 ( )1h n τ= +  (18) 

to introduce the significant parameterτ in our discussion, 
the above equation is converted to 
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Expanding the left-hand side with respect to τ, we obtain 

2 33
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τ τ− + +  if it only needs to be accurate to 

2 ,τ  we 

have 
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where 
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2 2
Q Y Y Y

ϑϑ ϑ ϑ ϑ ϑ= − = −  (20) 

From this we can see that τ is the same magnitude of ,μ  

when μ is a small quantity. In Figure 3 the relation between 
2τ  and ϑ  for 0ϑ = 20° is presented. 

From eq. (20), we know that the motion has the following 
properties: 

a) being non-negative: ( ) 0;Q ϑ ≥  

b) symmetry: ( ) (360 ) ( );Q Q Qϑ ϑ ϑ− = ° − =  accordingly 

it is only necessary to discuss the case 00 180 ;ϑ° °≤ ≤  

 

Figure 3  Relation between τ 2 and ϑ  for 0ϑ = 20°. 
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c) when 02 0 03 ,ϑ ϑ ϑ< <  i.e., in the HS region, the range 

within which ϑ  varies is ( )0 0,360 ;ϑ ϑ−  

d) when 0 03 ,ϑ ϑ>  i.e., in the TP region, the range 

within which ϑ  varies is ( )0 1, ,ϑ ϑ  where 1ϑ  is deter-

mined by the following equation: 

 20 0 01 1 1
sin sin sin csc .

2 2 2 2 2 2

ϑ ϑ ϑϑ
= − + +  (21) 

For the case of 0 02ϑ ϑ< , another discussion is necessary. 

3.2  The approximate solution neglecting the short- 
period term 

Now aiming at the two cases of HS and TP regions, follow-
ing the above results, we develop an approximate analytical 
solution accurate to the firs-order of μ. Since the initial 
value of the eccentricity e is zero, the rate of variation e  
being a small quantity of the first order, as a general rule, 
the eccentricity should be a first-order small quantity. And 
then, 

 ( ) ( )cos cosu e B e nt Bψ ϑ= + = + +  (22) 

is a short-period term of the first order. Therefore in the 
analytical solution of the first order, it can be solved sepa-
rately, then combined with other terms. First we neglect u 
and work at other terms, the corresponding equations are 
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From these we get 
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in which the plus and minus signs are determined by 0ϑ  

according to the relation 
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For example, in the case of the barycenter of LISA space-
craft, 0τ >  when 0 20ϑ = − °  or 340 ,°  whereas 0τ =  

when 0.t =  Accordingly when t > 0 (at least in the neigh-                              
borhood), we have 

 0, 0.τ ϑ> <  (26) 

In a similar way, when 0 20 ,ϑ = °  correspondingly we get 

0τ <  and 0.ϑ >  

In addition, following the properties of ( )Q ϑ  (see Fig-

ure 3), one can see that except (20 ) (340 ) 0,Q Q° = ° =  

( )Q ϑ  has no more zero points in the range 20° ϑ< < 340° 

is allowed to maintain 0τ >  and 0,ϑ <  therefore ϑ  

decreases monotonically from 340°to 20°, coming back to 
0τ =  ( 1);r =  similarly, again taking 0 20ϑ = °  as a new 

starting point, meanwhile 0,τ <  as the time increases one 

gets 0τ <  and 0;ϑ >  consequently ϑ  increases mono-
tonically from 20° to 340°. The process can keep repeating 
itself. Hence, the solution developed this way is a periodic 
solution, it is only necessary to give the formula for calcula-
tion in one period. Owing to the aforementioned character-
istics, the formula needs to be divided into two parts to cal-
culate. For the case of the barycenter of LISA spacecraft, 
starting from 340°we have 
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and starting from 20  we have 
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The function ( )Q ϑ  is defined by eq. (20), the above men-

tioned integration cannot be expressed by elementary func-
tions, and it can only be computed numerically, thus ob-
taining the functional relation between the argument ϑ  
and the time t. Using T1 and T2 to represent the time (take a 
year as the time unit) it takes when ϑ  decreases from 340° 
to 20°, and increases from 20° to 340°, respectively, we 
have 
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The full period is then 
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The above mentioned results can be used directly in the 
case of the general HS region, for arbitrary 02 0 03ϑ ϑ ϑ< < , 

eq. (28) becomes  
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and eq. (27) 
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−

=
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Meanwhile in expressions (29) and (30) of period T, it is 
only necessary to change the upper limit of the integration 
to 02π ,ϑ−  and the lower limit to 0.ϑ  

In a similar way, for the case of TP region, when 

0 0360 ϑ ϑ° > > , first calculate 1ϑ  following eq. (21); it is 

easy to decide that 1180 60 ,ϑ° > > °  ϑ  can only vary be-

tween 0ϑ  and 1.ϑ  The form of the corresponding eq. (31) 

does not change, but in eq. (32) the upper limit of the inte-
gration changes to 1.ϑ  In the expression (30) of the period 

T, it is necessary to change the upper limit of the integration 
to 1,ϑ  and the lower limit to 0.ϑ  When 0180 60 ,ϑ° > > °  

the corresponding 1ϑ  should satisfy 1 0360 ;ϑ ϑ° > >  like 

above, but it is necessary to exchange the positions of 0ϑ  

and 1ϑ . When 0 180 ,ϑ > °  we can make use of the relation 

of symmetry (360 ) ( )Q Qϑ ϑ° − =  to directly use the re-

sults before. 

3.3  The short-period term 

In the first-order theory, the first-order short-period terms 
can be dealt with approximately. In the expressions of t and 

,ϑ  the variable embodying the short-period term is the 

parameter u, below we derive its approximate expression. 
When t=0, e=0, r=1 and h=n, hence after simplification, we 
get 

 ( )sin 2 cos ,e n K f L fμ= +  (33) 

in which 

 ( ) 3 0
0

3 0
0

,

1
1 cos 1 csc ,

8 2

1
sin 1 csc .

8 2

f B

K

L

ψ
ϑ

ϑ

ϑ
ϑ

= +

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (34) 

K, L are constants, so we have 
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α is a first-order small quantity, we can adopt approxi-

mately 0,B =  
2/ ,f B h r nψ= + = =  the above equation 

is converted to 
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the initial value of e is 0, so we integrate it and get 
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While f B nt Bψ ϑ= + = + +  can take any arbitrary value 

as the time varies, to maintain 0,e≥  it requires 

0cos( ) 1,f γ+ =  namely 0 0 ,f Bϑ γ= + = −  as a result the 

expressions of e and u are 
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in which ϑ  can be calculated through the given time t 
following eq. (31) or (32). Substituting the the value of ϑ  
into eqs. (24) and (36) yields the values of the correspond-
ing τ and u, therefore r which contains the short-pe-          
riod terms can be calculated through the exact formula 

 ( ) ( )2
1 1 .r uτ= + +  (37) 

As for the short-period term contained in ,ϑ  it can be ob-

tained with the more accurate expression 
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where 0uϑ =  is the value of ϑ  when 0,u =  discussed 

before. The additive short-period term is 

 ( )0

0 0

2 d 2 cos d ,
t t

nu t n e nt tδ ϑ ϑ γ= = − + −∫ ∫  (39) 

it can only be calculated numerically. When necessary, rela-
tionship 0uϑ ϑ δ== +  can be used to iterate.  

 The practical calculation indicates that the rate of 
change of ϑ  is almost constant, assumed to be .n  Under 
the condition that the accuracy is not be affected, we can 

adopt 04(π ) /n Tϑ= −  and 1 02 /n Tϑ ϑ= −  for the HS 

and TP regions respectively, and we take 

 0ntϑ ϑ= ± +  (40) 

in which the plus sign is taken for the segment in which ϑ  
increases, and the minus sign, for the segment in which ϑ  
decreases. Substituting the expression of e in eq. (36) into 
eq. (39), we can get the analytical expression of δ through 
integration. 

4  Numerical check 

The solution presented above is a semi-analytical one con-
sisting of a periodic-term plus a short-periodic term. As the 
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integration cannot be expressed with elementary functions, 
it has to be computed with a numerical method. In this pa-
per we made a discussion mainly aiming at two cases—the 
HS and TP regions, which already cover most of the range 
of the initial values for the motion of celestial bodies in the 
solar system. In the numerical check below, we find a very 
satisfactory agreement between the results gained by mak-
ing integration over the equations of motion and those of the 
calculation using the above mentioned semi-analytical 
method. 

4.1  The motion of the barycenter of the LISA spacecraft 

The analysis of the motion of the barycenter of the LISA 
constellation is a typical application of the planar co-orbital 

restricted three-body problem. We adopt 1,r =  0,r ϑ= =  

0 340ϑ = °  when 0,t =  then make an precise numerical 

integration following the original equations (4) of motion in 
polar coordinates. It takes 85614.5 days or 234.3997 years 
for ϑ  to monotonically decrease from 340° to 20° (there 
will be minute short-period disturbances), during which 

1r >  and there are two minimum and one maximum val-
ues in the variation. As the computation continues, it takes 
another 85343.51145 days or 233.6578 years for ϑ  to 
monotonically increase from 20° to 340°, during which 

1r <  and there are two maximum and one minimum val-
ues. The curve of zero velocity corresponding to that initial 
condition is horse-shoe-shaped. The computation results 
indicate that the barycenter of LISA starts out from 1,r =  

0 340 ,ϑ ϑ= = °  moves in the neighborhood along the outer 

circumference of the horse-shoe-shape, after arriving at 
20 ,ϑ = °  it then returns to 340ϑ = °  along the neighbor-

ing inner circumference of the horse-shoe-shaped, which 
accords with the results of the semi-analytical method in 
this paper. For details of comparison please refer to the fol-
lowing figures. Figures 4(a) and 4(b) are comparisons of the 
computation results of r and ϑ  which are obtained by nu-
merical integration with those obtained by the 
semi-analytical solution in this paper. 

Following eq. (29), 1T  and 2T  are calculated to be as 

follows: 

1 2234.66 years,   233.47 years,T T= =   

which approximates the results by numerical integration. 
Here we have calculated the relation between the period 

T  and 0ϑ  by a precise numerical method and eq. (30), as 

shown in Figure 5. It is worth noting that when 0 03ϑ ϑ≈ , 

T  approaches infinity and when 0 60 ,ϑ = °  T takes a very 

flat minimum (about 220.7 years). 

4.2  Other examples in the HS region and the TP region 

Below we choose three kinds of motion with the initial 

 
Figure 4  (a) The comparison of the results of r respectively by the 
semi-analytical method and numerical integration; (b) the comparison of 
the results of ϑ  respectively by the semi-analytical method and numeri-
cal integration. 

 

Figure 5  The relation between the period T and 0ϑ . 

values to be 0 21ϑ = °  in the HS region, and 0 30ϑ = °  

and 70°  in the TP region, respectively. For each kind we 
made a comparison of the results which were calculated by 
the semi-analytical method with those obtained by numeri-
cal integration, expecting further knowledge of the motion. 
Figure 6(a) describes the comparison of the results of r from 
the semi-analytical method with those from numerical  
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Figure 6  (a) 0 21 ,  30 ,  70 ,ϑ = ° ° °  the comparison; of the results of r by 

the semi-analytical method with those by numerical integration; (b) 

0 21 ,  30 ,  70 ,ϑ = ° ° °  the comparison of the results of ϑ  by the semi- 

analytical method with those by numerical integration. 

integration for 0 21 ,  30 ,  70ϑ = ° ° °  each; Figure 6(b) de-

scribes the comparison of the results of ϑ  from the 
semi-analytical method with those from numerical integra-
tion for 0 21 ,  30 ,  70ϑ = ° ° °  each. The comparisons indi-

cate that the extent of agreement is not only satisfactory, it 
is excellent for both research and application. 

5  Outlook 

In this paper we have presented an approximate 
semi-analytical method of the first order of the co-orbital 
restricted three-bodies problem, have made comparisons of 
the results of the calculation for initial values in the HS and 
TP regions (covering most of the range of the initial values), 
with the results from numerical integration, they agrees well 
with each other over the timescale of 1000 years, which is 
of certain significance to theoretical research and practical 
application. Further work involves, on the one hand, to 
conduct a deep theoretical investigation, on the other hand, 
to enlarge its application area. It includes the study of the 
stability of this kind of orbit, and the effect of orbital eccen-
tricity of planets; the exploration of a more accurate ana-
lytical solution; the application to the study of the orbital 
evolution of the Trojan asteroids; the application to the 
study of the orbits of the near-earth asteroids; the applica-
tion to the study of the orbit design of spacecraft being ap-
proximately co-orbital; and the investigation of the motion 
of co-orbital stellar families in the Milky Way galaxy. 
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