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Abstract

Sensory neurons in dorsal root ganglia (DRG) are highly heterogeneous in terms of cell size, protein expression, and
signaling activity. To analyze their heterogeneity, threshold-based methods are commonly used, which often yield highly
variable results due to the subjectivity of the individual investigator. In this work, we introduce a threshold-free analysis
approach for sparse and highly heterogeneous datasets obtained from cultures of sensory neurons. This approach is based
on population estimates and completely free of investigator-set parameters. With a quantitative automated microscope we
measured the signaling state of single DRG neurons by immunofluorescently labeling phosphorylated, i.e., activated Erk1/2.
The population density of sensory neurons with and without pain-sensitizing nerve growth factor (NGF) treatment was
estimated using a kernel density estimator (KDE). By subtraction of both densities and integration of the positive part, a
robust estimate for the size of the responsive subpopulations was obtained. To assure sufficiently large datasets, we
determined the number of cells required for reliable estimates using a bootstrapping approach. The proposed methods
were employed to analyze response kinetics and response amplitude of DRG neurons after NGF stimulation. We thereby
determined the portion of NGF responsive cells on a true population basis. The analysis of the dose dependent NGF
response unraveled a biphasic behavior, while the study of its time dependence showed a rapid response, which
approached a steady state after less than five minutes. Analyzing two parameter correlations, we found that not only the
number of responsive small-sized neurons exceeds the number of responsive large-sized neurons—which is commonly
reported and could be explained by the excess of small-sized cells—but also the probability that small-sized cells respond to
NGF is higher. In contrast, medium-sized and large-sized neurons showed a larger response amplitude in their mean Erk1/2
activity.
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Introduction

Tissues, primary cells, and even clonal cells are heterogeneous,

e.g., in terms of morphology, protein expression, metabolite

concentrations, and signaling status [1–9]. This heterogeneity is

often crucial for processes such as differential stimulus sensing [5]

and robust decision-making [6–9]. The analysis of population

heterogeneity and the underlying subpopulations allows insight

into the cellular functionality. But the analysis of heterogeneous

populations is challenging. Of particular importance for the

comparability of results between different research groups are

methods to detect and characterize subgroups which do not rely

on often ill-defined investigator-dependent parameters for mea-

surement and classification. In addition, most available analysis

tools require that an ‘‘average cell’’ exists, or at least assume

normally distributed subpopulation properties [10]. As this is not

true for most heterogeneous biological populations more sophis-

ticated analysis tools are required.

One particular problem which requires understanding of

cellular heterogeneity, is pain. Pain evoking stimuli are detected

by peripheral sensory neurons – so called DRG neurons –,

transmitted along the neuron, via the dorsal root ganglion, to the

spinal cord. There, secondary neurons are activated to produce

the experience of pain in the brain. DRG neurons detect diverse

environmental stimuli such as temperature, touch, or chemicals.

As individual DRG neurons often detect only a subset of these

stimuli, they are functionally highly heterogeneous. They differ in

stimulus responsiveness but also, for example, in cell size, protein

content, and innervation area [5].

Diverse classification criteria have been applied for determining

the highly overlapping subgroups of DRG neurons, such as

anatomical properties [11], electrophysiological firing patterns

[12], and/or protein expression [13]. But, clinical relevant pain is

focussed on a further cause of heterogeneity, sensitization.

Mediators, for example, present in inflamed tissue, initiate the

sensitization of signaling cascades which often results in stronger
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and prolonged activation of sensory neurons to pain eliciting

stimuli. Furthermore, stimuli which are normally not perceived as

painful become strongly painful [14]. Recent studies showed, that

sensitization signaling can be investigated on a single cell level by

following the degree of signaling component activation and their

kinetics [15,16].

One challenge of investigations of heterogeneity such as

sensitization signaling is the necessity to measure quantitative

data of gradual signals in single cells and not just to assume a

binary marker-positive versus marker-negative signal. To accom-

plish this, we introduced recently a quantitative automated

microscopy (QuAM) approach for the study of sensitization

signaling such as the MAP-kinase pathway in DRG neurons

[16]. The advantage of QuAM compared to common methods for

monitoring pathway activation, e.g., Western blotting, is its single

cell resolution. Furthermore, QuAM allows for the analysis of

hundreds to thousands of single cells providing decently large

datasets of adherent cells, which is the prerequisite for the

quantitative assessment of populations in heterogeneous cell

systems.

So far, the analysis of subgroups in DRG neurons is almost

exclusively based on thresholding methods. Common thresholding

methods use a subjective investigator-chosen cutoff-criterion for

one cell property, e.g., fluorescence intensity of an immunofluor-

escently labeled protein, and quantify the portion of cells below

and above the threshold. Thereby, the cells are classified as

negative or positive with respect to the observed cell property.

Differences in the subjective threshold results in large variation of

reported population sizes, for example between 30–100% for

TRPV1-positive neurons [17,18]. But also beyond the problems

inherent to subjective parameter setting, the quality of threshold-

ing-based results depends on the degree of heterogeneity and the

dynamic range of the investigated effect. For nearly non-

overlapping subgroups (Figure 1A) it is easy to find an appropriate

threshold, while for highly overlapping subgroups (Figure 1B) with

low dynamic range, such as found in the heterogeneous

populations of DRG neurons, the selection of an appropriate

threshold is problematic [19]. In such cases, thresholding methods

are prone to yield false positive and/or false negative results.

To overcome the drawbacks of thresholding, various threshold-

free histogram-based methods were introduced [19–21]. These

methods have so far not been applied to analyze data derived from

DRG neurons, probably, because the required number of single

cell measurements are in the tens of thousands [19]. Such large

datasets are commonly not available when studying primary

neurons as only few tens of thousands sensory neurons exist per

animal. One reason for the large amount of required single cell

measurements is the loss of information caused by binning [22]. In

addition, suboptimal binning can result in severe misinterpreta-

tions [22].

In the following, we introduce a novel tool – called KDE

subtraction method – to quantify the subpopulation size in highly

heterogeneous cell systems of relatively small cell numbers by

exploiting kernel density estimation (KDE). The KDE subtraction

method is like histogram-based approaches threshold-free and

determines the percentage of responsive cells, irrespective of the

response of the single cells. Therefore, the population density

before and after the stimulus is analyzed, allowing for the

assessment of the population change and of quantitative properties

of the identified subpopulation. The number of cells required to

obtain reliable estimates is thereby determined using bootstrap-

ping, showing that our approach can also be applied to limited

datasets containing hundreds of measured cells.

The method is employed to analyze the heterogeneous signaling

state at baseline, as well as after treatment with the potent

sensitizing substance, NGF, by measuring Erk1/2 phosphoryla-

tion. Thereby, we quantify for the first time the dependencies of

responses on NGF dose and kinetics on a true population basis,

and investigate novel functional aspects, such as the size-

dependence of the responsiveness and its response amplitude.

Materials and Methods

Chemicals and drugs
BSA, L-glutamine, poly L-ornithine hydrochloride, DMSO,

paraformaldehyde, Triton X-100 and glutamate were purchased

from Sigma (Taufkirchen, Germany), collagenase P from Roche

(Mannheim, Germany), trypsin from Worthington Biochemical

Corporation (Freehold, NJ, USA), Neurobasal A (without phenol

red), B27 supplement, laminin, minimum essential medium with

glutamax were purchased from Invitrogen (Germany, UK),

DMEM, trypsin and EDTA from Clonetics (Cambrex, US) and

normal donkey serum from Dianova (Hamburg, Germany).

mNGF was purchased from Alomone (Jerusalem, Israel).

Figure 1. The suitability of threshold methods to heterogeneous cell populations depends on the response magnitude of
individual cells. A Thresholding methods are appropriate tools to distinguish responsive and unresponsive subgroups in stimulated cell cultures, if
responding cells show a much higher fluorescence intensity than non-responding cells. B Thresholding methods do not provide quantitative
information about the size of responsive and unresponsive subgroups, if responding and non-responding cell populations overlap to a large extent.
In such cases an actual biological threshold does not exist and every threshold-based method will result in a large numbers of false positive and false
negative cells. (This is a schematic and does not show actual measurement data. The abbreviation [UI] denotes the unit of intensity and thus the unit
of relative fluorescence.).
doi:10.1371/journal.pone.0034257.g001

Threshold-Free Population Analysis of DRG Neurons

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e34257



Antibodies
Anti-PGP 9.5 was purchased from MorphoSys AG (Martins-

ried/Planegg, Germany; final concentration 1:1000). Anti-phos-

pho-Erk (Thr-202/Tyr-204) was purchased from New England

Biolabs (Frankfurt am Main, Germany; final concentration 1:200).

Alexa-594-labeled chicken anti-rabbit IgG and Alexa-488 chicken

anti-mouse IgG were purchased from Molecular Probes Invitro-

gen (Karlsruhe, Germany; final concentration 1:1000).

Animals
Male Sprague Dawley rats were purchased from Harlan

(Rossdorf, Germany). Our institution is licensed to house and

work with these animals by the responsible authority (LaGeSo,

Berlin, license ZH120). For tissue collection, rats were euthanized

by CO2 inhalation. This procedure was reported to and approved

by the LAGeSo, Berlin (T0370/05).

DRG-cultures
Cultures of dissociated DRG were prepared from male Sprague

Dawley rats as described previously [15]. The rates were

euthanized by CO2 intoxication and L1–L6 DRGs were removed,

desheathed, pooled and incubated with collagenase (final concen-

tration (f.c.) 0.125%; 1 h, 37uC). The neurons were dissociated by

trypsin digestion (f.c. 1176 u, 8 min, 37uC) and a trituration with a

fire-polished Pasteur pipette. Axon stumps and dead cells were

removed by centrifugation (5 min, 100 g). Viable cells were

resuspended in 12 ml of NeurobasalA/B27 medium, plated

0.5 ml/culture onto polyornithine/laminin-precoated glass cover-

slips (12 mm diameter), and incubated overnight in 24 well plates

at 37 in 5% CO2.

Cell stimulation
After incubation for 15–20 h, cells were stimulated with the

growth factor NGF. To ensure homogeneous mixture of the

stimulants, a volume of 250 ml out of the 500 ml culture medium

was removed from the culture well, mixed thoroughly with the

stimulant, and added back to the same culture. Negative controls

were treated alike but without the addition of any reagent. To

reduce mechanical cell stress the stimulus was added very slowly

(250 ml in 6 s) using an automatic pipette (MultipetteH pro from

Eppendorf). After treatment, the cells were washed once with

phosphate-buffered saline (PBS) and fixed with paraformaldehyde

(4%, 10 min) at room temperature (RT).

Immunocytochemistry
Paraformaldehyde-fixed cells were permeabilized with 0.1%

Triton X-100 (10 min, RT), followed by three washes with PBS

(5 min, RT). After blockage of nonspecific binding sites (5%

bovine serum albumin (BSA) and 10% normal donkey serum in

PBS; 1 h, RT), the cultures were probed with primary antibodies

against target proteins (antibody concentrations against target

proteins as indicated in the Section Antibodies) in 1% BSA in PBS

(1 h, RT), washed three times (1% BSA in PBS; 5 min, RT), and

incubated with secondary antibodies (1 h, RT). After three final

washes (PBS; 5 min, RT), the cultures were mounted with

Fluoromount-G (Southern Biotechı̈¿K Biozol) containing DAPI

(0.5 mg/ml).

Quantitative automated microscopy (QuAM)
Cells were evaluated with a Zeiss Axioplan 2 microscope

controlled by the software Metacyte (Metasystems). Images of

1280|1024 pixels were taken using a 10| objective. The

exposure time was defined automatically such that maximal

1000 pixel/100 mm2 were saturated, but was maximal 0.96 s. For

automatic neuron recognition the following parameters were

defined: size (150–1500 mm2), form (aspect ratio = 2; concavity

depth = 0.25), contrast (object threshold 30%). The integrative

pixel intensity of each selected neuron was normalized against the

respective neuron area and exposure time. For cell identification

the neuron specific PGP 9.5 immunostaining was used as

independent selection marker. Fluorescence intensities derived

from phospho-Erk1/2 antibody were quantified on independent

color channels.

Employing this procedure, we obtained population data D,

which were the collection of Erk1/2 phosphorylation amounts x in

hundreds of individual cells (x(1),x(2), . . . ,x(N)),

D~ x(1),x(2), . . . ,x(N)
� �

~ x(i)
� �N

i~1
:

The superscript i specified the individual cells within the

population and N is the number or measured single cells under

the considered condition.

Computation of population density from QuAM derived
data

Within a population, the x(i)’s are distributed according to the

population density function W(x). The variable x denotes in our

study the level of phospho-Erk1/2 (pErk1/2) fluorescence (if not

mentioned otherwise), which is always non-negative. Given W(x)
the probability of observing a single cell in the population with a

level of fluorescence x(i) which is contained in the interval

½x,xzDx) is

Pr(xƒx(i)
vxzDx)~

ðDx

x

W(�xx)d�xx:

Furthermore, as W(x) is a probability density,
Ð?

0
W(�xx)d�xx~1

holds. For a more detailed introduction to probability densities we

refer to [22–24]. The change of the population density W(x)
contains all available informations about the response of the cell

population. Therefore, our analysis will focus on W(x).

Unfortunately, W(x) cannot be measured directly but D, which

is a sample from W(x). Given D, an approximation ŴW(x) of W(x)
can be determined by kernel density estimation. Kernel density

estimators are non-parametric methods to estimate probability

density from sampled data [22]. They are widely used and can be

thought of as placing probability ‘‘bumps’’ at each single data

point x(i), as illustrated in Figure 2. These ‘‘bumps’’ are the kernel

functions K which are themselves probability densities,

Vx(i)
w0,hw0 :

ð?
0

K(�xx,x(i),h)d�xx~1:

In this work, a log-normal distribution is used as kernels given by

K(x,x(i),h)~
1ffiffiffiffiffiffi

2p
p

hx
exp {

1

2

log(x){log(x(i))

h

� �2
( )

,

with kernel bandwidth h [22]. We chose log-normal kernels

instead of the common Gaussian kernels, as log-normal kernels

preserve the positivity of x. Note that here only the equations for

the one-dimensional case are provided. The extension towards

higher dimensions is straight forward and can be found in [22].

Threshold-Free Population Analysis of DRG Neurons
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Given the kernel K an estimator of the probability density W(x)
for using the sample D is

ŴW(x)~
1

N

XN

i~1

K(x,x(i),h):

The selection of the smoothing parameter h is crucial and depends

strongly on N and the data D. In this work h is chosen according

to Silverman’s rule of thumb [22].

Estimation of the size of the responsive subpopulation
Employing the kernel density estimator induced above, we

compute an estimate for the percentage of responsive cells based

on two datasets:

N Dus~fx(i)
usg

Nus

i~1 … dataset of unstimulated (us) cells, and

N Ds~fx(i)
s g

Ns

i~1 … dataset of stimulated (s) cells.

To estimate the percentage of responsive cells r, in a first step

the kernel density estimates of the corresponding densities ŴWus(x)
and ŴWs(x) are determined using the data. The difference of ŴWus(x)
and ŴWs(x) provides information about the change of the density

due to the stimulus. Additionally, the size of the responsive

subpopulation can be calculated by integration over the positive

part of the density difference (ŴWs(x){ŴWus(x)):

r~

ð
X

ŴWs(�xx){ŴWus(�xx)
� �

d�xx, X~ x[½0,?)DŴWs(x){ŴWus(x)w0
� �

,

as depicted in Figure 3. Note that integration over the absolute

value of the negative part of the difference density yields the same

result. The change of the density due to the stimulus directly

provides information about the population dynamics and r is an

estimate for the portion of responsive cells. If the number of cells

N increases the approximations of the densities, ŴWus(x) and ŴWs(x),
and the estimate of the subpopulation size r improve.

Note that the estimate r determined using the proposed KDE

subtraction method may underestimates the true size of the

responsive subgroup as it cannot be distinguished between: (1) the

phosphorylation signal in one cell increases from x1 to x3; and (2)

the phosphorylation signal in a cell increases from x1 to x2, while

the protein concentration in another cell increases from x2 to x3.

Both cases will yield the same final probability density ŴWs(x) but in

(2) twice as many cells responded as in (1). Thus, the proposed

scheme suffers in this respect the same disadvantage as the

(modified) histogram subtraction method [19]. The distinction of

these two cases would require time-lapse single cell data of large

population, which are not available for many systems. Alterna-

tively, further assumptions about the properties of the individual

distributions (e.g., normality) could be made [25], which we are

not willing to do due to lack of prior knowledge.

Evaluation of the mean response amplitudes of the
subpopulations

On the basis of the estimated size of the responsive

subpopulation r the mean response amplitude of phospho-Erk1/

2 within the responsive (r) and the unresponsive (ur) subpopulation

can be examined. Therefore, note that the average abundance of

phospho-Erk1/2 in the stimulated population is the weighted sum

of the average abundances in the individual subpopulations,

E(xs)~rE(xr)z(1{r)E(xur):

Thereby, E(xs) is the mean fluorescence intensity of the stimulated

population, E(xr) is the mean fluorescence intensity of the

responsive subpopulation, and E(xur) is the mean fluorescence

intensity of the unresponsive subpopulation. As E(xs) can be

measured and E(xur) is equivalent to mean fluorescence intensity

of the unstimulated control population E(xus), the sole unknown is

the average abundance of phospo-Erk1/2 in responsive cells,

E(xr). Thus, the equation can be rearranged,

E(xr)~
E(xs){(1{r)E(xur)

r
,

to compute an estimate for the Erk1/2 phosphorylation in the

responsive subgroup.

Evaluation of the cell size specific response
In our study, several cell properties are measured, especially the

abundance of phospho-Erk1/2 and the cell size. To analyze the

properties of the responsive cells and to perform a biparametric

analysis, two-dimensional kernel density estimators are used [22].

Here, the aim was to analyze the property of size of the responsive cells.

At first, the cell size dependency of the percentage of the

responsive cells is determined. This is done be computing the two-

dimensional kernel density estimates unstimulated and stimulated

cell population. These densities are subtracted and the size of the

responsive cells is estimated for the individual cell sizes

independently. This provides a measure for the cell size dependent

responsiveness of the heterogeneous population.

Given the cell size dependent portion of responsive cells, also

the size dependency of the response amplitude can be analyzed.

Therefore, the analysis introduced in the last subsection is

performed for each size interval. This examination allows to

answer the question whether a larger phospho-Erk1/2 response is

related to a large portion of responsive cells or to the strong

response of the responding cells.

A priori estimate for the required cell number
As outlined above, the quality of the density estimates ŴW(x), as

well as the quality of the estimate of the size of the responsive

subpopulation r, depends on the number of measured cells. To

answer the question, how many cells of a heterogeneous cell

system have to be analyzed to reliably picture the entire

population, an uncertainty analysis is necessary for different

amounts of measured cells Nk.

Figure 2. Illustration of kernel density estimation. The kernel
density estimate ŴW(x) (thick line) of W(x) for the measured single-cell
fluorescence intensities x(i) (gray dots) is constructed from the
associated kernels K(x,x(i),h) (gray lines).
doi:10.1371/journal.pone.0034257.g002
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This uncertainty analysis is performed using parametric boot-

strapping. The statistical model ŴW(x) of the cell population is

employed to generate a set of virtual measurement data D½j�vir,

j~1, . . . ,B, by drawing samples with Nk members from ŴW(x).
These virtual datasets D½j�vir, which may be interpreted as a virtual

cell culture well, are then employed to determine density estimates

ŴW(x)
½j�
vir. These densities ŴW

½j�
vir are in turn employed for computing

the percentage of responsive cells r̂r(x)
½j�
vir. The estimated

percentage of responsive cells is computed with respect to ŴW(x).
As the estimated densities ŴW(x)

½j�
vir should be identical with the

statistical model ŴW(x), the estimated percentage of responsive cells

computed is the estimation error introduced due to the limited cell

numbers. Finally, the obtained sample fr½j�virg
B
j~1 can be examined

to obtain insight in the estimation uncertainty. The whole

procedure is summarized in Figure 4.

Note, this procedure provides estimates of the uncertainty of r
for a certain number of measured cells Nk. Then being interested

in determining the number of cells required to achieve a certain

precision, simply the number of cells Nk is increased till the

requirements are met.

Test of statistical significance
Throughout the manuscript we used the one-tailed paired t-test

for statistical comparison. Pairing is crucial to tackle the problem

of inter-individual variability, always present when extracting

primary cells from different animals. The variability between

animals (here rats) is no measurement noise but still increases the

variance of a sample, thus rendering statistical test more

conservative. To reduce the effects of inter-individual variability

on the outcome of the statistical analysis we used pairing and

considered only the relative chance, e.g, of the Erk1/2 activity, in

the cells of individual rats. Thus, when testing for statistical

significance, instead of verifying that the mean of the sample fz(i)
1 gi

is significant different from the mean of the sample fz(i)
2 gi, in

which i is the index of the individual rat, it has been analyzed

whether the mean of the sample fz(i)
2 {z

(i)
1 gi is significant different

from zero. This reduced the influence of the inter-individual

variability on the outcome of the statistical test, as only measured

values stemming from the same rat are compared.

In the whole study p-valuesv0.05 were considered as

statistically significant.

Figure 3. Procedure of KDE subtraction method. At first, the kernel density estimates of the datasets for stimulated cells A and unstimulated
cells B are computed. Given these probability densities the difference density C is calculated. Integration over the positive part of this density yields
the size of the responsive subpopulation r (for illustration purposes we chose a real dataset obtained by stimulation of DRG neurons for 1 hour with
1 nM NGF). The estimated size of the responsive subgroup is r = 41%.
doi:10.1371/journal.pone.0034257.g003

Figure 4. Illustration of parametric bootstrapping procedure employed to determine estimation uncertainties for KDE subtraction
method. The individual steps of the uncertainty analysis are: (1) density estimation using measured data, (2) generation of virtual datasets, (3)
estimation of population density from virtual datasets, (4) calculation of the difference of the estimated density and the true density, (5) calculation of
the classification error, and (6) evaluation of the statistics of obtained estimates.
doi:10.1371/journal.pone.0034257.g004
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Results

KDE subtraction method enables quantification of the
portion of NGF responsive DRG neurons

We analyzed the signaling response of DRG neurons to NGF

treatment by analyzing the phosphorylation state of the MAP-

kinase, Erk1/2, with the newly introduced KDE subtraction

method (for details see Materials and Methods). The unstimulated

and stimulated populations of these neurons show a large overlap,

as depicted in Figure 5. For such populations any given threshold

has to result in a large number of false positive or false negative

neurons. Thus, thresholding methods fail to provide reliable

quantitative information about the sizes of subpopulations [19].

Indeed, when testing wide-spread parametric methods for the

analysis of DRG neurons [10,21], we found that they require a

larger separation of the mean fluorescent intensities in the

subpopulations for robust result. In addition, they were highly

noise sensitive (results not shown). Also, common histogram-based

approaches [19,20] could not be applied as the number of

measurable neurons in a normal experiment is to low (there are

only about 30.000 neurons in the investigated L1–L6 DRG

neurons of a male adult rat).

To overcome these drawbacks, we introduce an approach

employing kernel density estimation to analyze subpopulations of

DRG neurons responsive to sensitization-stimuli. Given the

population density of stimulated and unstimulated cells, the

positive part of the difference of both distributions represents the

portion of cells, which are surly responding to the stimulus

(Figure 3, for a detailed description of the method see Section

Materials and Methods). Thus, we are able to estimate the percentage

of responsive cells.

We stimulated cultures of primary sensory neurons with 1 nM

NGF for 60 min. Under these conditions the NGF-induced Erk1/

2 phosphorylation level reaches a stable plateau [16]. Using the

KDE subtraction method, we estimated that 40+2% of the DRG

neurons respond to NGF. This percentage is neither based on any

assumption about the intensity distribution in the subpopulation

nor depends on investigator-set parameters. Thus, it provides a

new quantifiable classification criterion for DRG neurons.

Reliable size estimates of subgroups from mono-
parametric (fluorescence intensity) distributions require
500 measured neurons

The quality of the population density approximation and hence

of the calculated percentage of responsive cells is highly dependent

on the number and the distribution of the evaluated cells.

Nevertheless, an a priori assessment of the number of required

measured DRG neurons had to our knowledge never been

attempted. One reason might be the lack of large datasets of

individual neurons, which became available only recently using

QuAM.

As basis for the evaluation we employed phospho-Erk1/2

intensity data for *50,000 unstimulated control neurons assumed

to reflect the true distribution of phosphorylated Erk1/2. Out of

this data pool we sampled randomly virtual culture wells, meaning

that the intensity data from these wells have not actually been

measured anew but were assembled randomly from the long list of

already measured control cells. For these virtual wells the resulting

intensity distribution has been computed by kernel density

estimation. Comparing the distribution densities of the whole

control pool with the distribution densities of each of the sampled

virtual wells, we assessed the estimated portion of ‘‘responsive

cells’’. As the virtual wells were derived from the large pool of

unstimulated cells and were then compared with the same large

pool of unstimulated cells, these computed portion of ‘‘responsive

cells’’ represented false positive cells. Therefore, this procedure has

established the estimation error in dependence of the chosen size

of these virtual wells. The procedure was repeated 1,000 times for

each considered virtual culture well size. The resulting classifica-

tion error is depicted in Figure 6A as a function of the number of

measured cells.

Small numbers of analyzed cells reflected the true distribution

only partially, thus the estimation error was large. For the numbers

of cells we measured in a standard experiment (about 400–600

cells), the expected estimation error was *5%, with only small

variance (Figure 6A). Obviously, an increased number of

measured/analyzed cells led to a reduced estimation error and

to a reduced estimation uncertainty. To achieve an expected

estimation error below 1% more than 10,000 cells have to be

measured.

The portion of NGF responsive cells is independent of
the stimulation time

Given the tools introduced above, novel aspects, such as the

response of DRG neurons to NGF stimulation, can be examined

in a fully quantitative manner, in awareness of the expected error,

and without the need for investigator-set parameters. In the

following, we studied dose and time response.

As shown in [26], sensitization in NGF treated animals increases

steadily reaching a plateau after 1 hour before starting to fade after

about 24 hours. The sensitization increase during the first hour

could theoretically be caused by (i) an increase in the percentage of

responsive cells, or by (ii) an increase in the response amplitude of

the responsive cells.

To study this, we measured the kinetics of 1 nM NGF-induced

Erk1/2 activation after incubation for 5, 15, 30 and 60 min and

estimated the percentage of responsive cells. Figure 7A shows that

the portion of NGF-responsive cells rose quickly after NGF

treatment. Using the one-tailed paired t-test we found for all time

points a significant higher portion of responsive cells compared to

the cells which were not treated with NGF (Table 1). Between

different stimulation lengths, the difference in portion of

responsive cells was not significant. Thus, the increase in sensitivity

Figure 5. Measured population density for control and
stimulation of 1 nM NGF for 1 hour. As there are no two clearly
distinct subgroups, the selection of any threshold would result in a non-
negligible portion of false positive and false negative cells.
doi:10.1371/journal.pone.0034257.g005
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observed in behavioral experiments appears not to be caused by a

similar, steady increase of the portion of responsive cells.

The response amplitude remains constant, independent
of the length of NGF stimulation

Next, we measured the time dependence of the mean pErk1/2

intensity of all neurons, exposed to 1 nM NGF (Figure 7B). The

pErk1/2 amplitude rose quickly after NGF application. Using the

one-tailed paired t-test verified for all time points a significant

higher pErk1/2 intensity compared to cells which were not treated

with NGF. Again, between different time points there was no

significant difference observable (Table 2).

Instead of analyzing the overall population of all responsive and

unresponsive neurons, we determined the average response

amplitude of the population of responsive neurons (for details

see Materials and Methods). While we could detect a population of

responsive neurons, also a significant increase of Erk1/2

phosphorylation in the responsive subgroup could not be observed

as seen in Figure 7C.

The percentage of NGF responsive cells shows biphasic
dose dependence

In behavioral experiments a distinct dose dependence of NGF

sensitization has been reported [26]. Therefore, we asked whether

the increase of sensitization induced by intradermal injections of

increasing NGF concentrations is accompanied by an increase of

the percentage of responding cells.

We recorded a dose response relationship of Erk1/2 phosphor-

ylation after 30 min NGF (1 pM, 10 pM, 100 pM, 1 nM and

10 nM) stimulation and computed for each treatment condition

the estimate of the portion of responsive cells. For increasing NGF

concentrations the percentage of responsive cells increased

(Figure 8A). Interestingly, the dose dependence was neither linear

nor did it show a saturation in a common sigmoidal manner with

just one saturation plateau.

Statistical analysis employing the one-tailed paired t-test

(Table 3) verified that all NFG doses resulted in a significant

increase in the number of responding neurons compared to the

control. But the dose dependent increase split up into two phases.

For NGF concentrations of 1 pM to 100 pM the response of the

DRG population was highly similar and statistically indistinguish-

able, indicating a response plateau. Interestingly, for further

increased NFG concentrations of 1 nM to 10 nM a second plateau

was reached. This indicated that DRG neurons show a biphasic

dose dependence.

The response amplitude of NGF responsive cells shows
biphasic dose dependence

In addition to the portion of responsive cells, we examined

whether the increase of sensitization induced by intradermal

injections of increasing NGF concentrations is accompanied by an

increase of the response amplitude of responding cells. The

observed Erk1/2 activation signal strongly increased for 1 and

10 nM NGF. This result was true, based on the analysis of the

response amplitude of all neurons exposed to NGF (Figure 8B) as

well as by analyzing the responsive neurons (Figure 8C),

respectively. The computed levels of statistical significance are

provided in Table 4.

Reliable size estimates of subgroups from bi-parametric
(fluorescence intensity and cell size) distributions require
w2000 measured neurons

QuAM allows for measuring more than one property of a

neuron. This facilitates a more detail subgroup analysis by

studying, for example, the size dependency of responsiveness.

Before measuring bi-parametric aspects of DRG neurons, we

determined in an a priori computational analysis, how many cells

have to be measured to ensure a good distribution density estimate

for a bi-parametric analysis. We applied the same estimation

method as presented before but this time by using a two-

dimensional kernel density estimation. Figure 6B depicts the

expected estimation error distribution for the two parameters/

dimensions, Erk1/2 phosphorylation and cell size. To obtain an

estimation error of *5% with a low variance, at least 2,000 cells

Figure 6. Expected estimation error for percentage of responsive cells depends on the number of measured cells. The estimation error
of the percentage of responding cells was estimated for (A) one-dimensional datasets (fluorescence intensities) and (B) two-dimensional datasets
(fluorescence intensities and cell size) of unstimulated cells. The plots show the mean estimation error (black line) as function of the number of
measured cells and the 90% confidence interval (gray area). The dashed line represents the acceptable error. For an expected estimation error below
5%, more than 500 cells have to be measured for a mono-parametric KDE-based analysis (A) and more than 2,000 cells for a bi-parametric analysis (B).
doi:10.1371/journal.pone.0034257.g006
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have to be analyzed. Single cell based experiments using such large

datasets are still not common in the pain field calling into question

many published studies.

Small-sized neurons respond disproportionally often to NGF
Widely it has been reported, that mostly small neurons respond

to noxious stimuli [11]. To our knowledge it has never been

investigated, if this reflects only the fact that there are much more

small-sized neurons than medium- or large-sized neurons.

Alternatively, small-sized neurons could also respond dispropor-

tionally often, i.e., in larger numbers in relation to the total

number of small neurons.

To test this, we combined the analysis of the degree of Erk1/2

phosphorylation with the analysis of the DRG neuron size. For cells

treated with 1 nM NGF for 30 minutes, we analyzed the fluorescence

intensity distributions for different cell size intervals as well as the

response amplitude in dependence of the cell size. The responsiveness

was then calculated as the percentage of responsive cells within a

certain size interval divided by the percentage of cells, that fall into

this size interval (for details see Section Materials and Methods).

For the analysis we defined three size intervals: small-sized

neurons (area of 150–300 mm2; *15–20 mm in diameter),

medium-sized neurons (area of 750–900 mm2; *30–34 m in

diameter), and large-sized neurons (area of 1350–1500 mm2;

*42–44 mm in diameter). For the different size intervals the

mean responsiveness was computed (Figure 9A). It is apparent that

for larger cell sizes the detected responsiveness is lower. This

decrease is statistically significant as confirmed by the one-tailed

paired t-test. To our knowledge, this is the first study to analyze

DRG neurons on a population basis, which provides evidence that

small-sized cells are more frequently responsive than larger ones.

Medium- and large-sized neurons show the largest
response amplitude to NGF

The observed higher response frequency does not indicate if

also the response amplitude is higher in small-sized cells. To

analyze this, we compared the mean fluorescence intensity of

responsive cells of small-, medium-, and large-sized cells. In

contrast to the response frequency calculated above, we found,

that the fluorescence intensity of small-sized responsive cells was

not as high as the fluorescence intensity of medium- and large-

sized responsive cells (Figure 9B). This indicated that larger cells

respond with stronger Erk1/2 activation. Using again the one-

tailed paired t-test we verified that this difference is statistically

significant. Therefore, small-sized neurons are more frequently but

weaker activated by NGF than larger neurons.

Discussion

Quantification of the response of heterogeneous
populations using the KDE subtraction method

In this work, we introduced a novel KDE subtraction method

for subgroup quantification. This method enables a purely data-

Figure 7. The maximal portion and response amplitude of NGF
responsive cells is reached after less than five minutes. A
Estimated percentages of responsive cells in dependence NGF
stimulation time (n~4 independent experiments with 1,000–4,000
underlying cells per condition). B Measured mean phospho-Erk1/2
concentration in the whole NGF-stimulated population in dependence
stimulation time. C Estimated mean phospho-Erk1/2 concentration in
responsive subpopulation, determined from A and B. The individual
data points (dots), their mean (circle) and the one standard deviation
confidence interval (gray area) are shown.
doi:10.1371/journal.pone.0034257.g007
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based estimation of the portion of responsive cells, without

knowledge of a threshold or a distribution shape. Our approach

merely requires single-cell population data of stimulated and

control cells, here obtained by quantitative microscopy, and

calculates the percentage of responsive cells from the difference

between the measured population densities.

The proposed KDE subtraction method outperforms other

methods available in the literature such as ratio analysis-, mixture

model-, or histogram-based approaches for the considered dataset

of DRG neurons. Ratio analysis-based approaches [21] become

extremely noise sensitive if the left tail of the stimulated and

unstimulated population are highly similar. This is the case for

most measurements of DRG neurons as only some of the neurons

show a strong response and many if not most remain unresponsive.

In the limit of identical tails, the results of ratio analysis-based

approaches then only depends on the measurement noise and are

thus inherently inaccurate [21].

The mixture model [10,27] on the other hand does not suffer

this extreme sensitivity. Nevertheless, the results depend strongly

on the parameterization of the density of the subpopulations. In

particular, if the subpopulations overlap it is difficult to determine

reliable parameter estimates.

Finally, the (modified) histogram subtraction methods [19,20]

commonly in use, e.g., in flow cytometry, require large datasets of

often more than 10,000 cells per individual experiment due to the

inefficient density estimation of histograms [22,27]. In addition,

the required number of data strongly increases with the number of

considered features, which is why histograms are in general not

used to study multi-dimensional datasets [22]. As in general only

few tens of thousands of neurons can be recovered from a single

rat, the excessively large datasets required by histogram-based

methods prohibited the use of this method for the analysis of

primary cells like DRG neurons.

Accordingly, the KDE subtraction method is an urgently

needed tool for the analysis of largely overlapping heterogenous

populations of medium-sized datasets. Nicely, if the data show a

clear threshold (Figure 1A), e.g., due to a strong response of the

responsive subgroup, the result of the KDE-based analysis

converges to the result of thresholding methods. Therefore, we

believe that the KDE-based approach is the method of choice for

quantitative analysis of heterogeneous populations such as stimulus

responsive subgroups of DRG neurons.

Data-driven experimental planning using bootstrapping
methods

Beyond an improved analysis of experimental data, also more

sophisticated methods for experimental planning are desirable.

During recent years, model-based experimental planning became

more and more common in experimental studies as a tool to

reduce the overall number of required experiments [28–32].

Unfortunately, in many biological studies mathematical models of

the processes are not yet available. Therefore, we propose a

procedure for experimental planning, which does not rely on a

process model.

We suggest a data-driven approach to determine the number of

single-cell measurements necessary for a reliable population

estimate. Our approach employs a non-parametric model of the

data, derived by kernel density estimation (see for details [24]).

Given this data model, bootstrapping methods enable the

assessment of expected uncertainties of the quantity of interest –

in this study the size or the amplitude of the responsive

subpopulation, respectively – before the actual experiment is

performed. To achieve this a simulation of the planned

experiments with varying data sizes is performed using the

available pool of data. This allows the prediction of the expected

information content and the uncertainties of the experiment, given

Table 1. Statistical significance for the dependency of the estimated percentage of responsive cells on stimulation time.

Stimulation time 0 min 5 min 15 min 30 min 60 min

Test vs. 0 min { v0:001��� 0:001�� v0:001��� v0:001���

Test vs. 5 min { 0:093 0:168 0:303

Test vs. 15 min { 0:843 0:941

Test vs. 30 min { 0:901

Test vs. 60 min {

The table provides the p-values obtained by the one-tailed paired t-test. Combinations for which an increase in the stimulation time resulted in a significant increase of
the estimated size of the responsive subgroup are marked with one or more asterisks.
doi:10.1371/journal.pone.0034257.t001

Table 2. Statistical significance for the dependency of the estimated mean Erk1/2 activation in responsive cells on stimulation
time.

Stimulation time 0 min 5 min 15 min 30 min 60 min

Test vs. 0 min { v0:001��� 0:004�� v0:001��� v0:001���

Test vs. 5 min { 0:264 0:092 0:080

Test vs. 15 min { 0:510 0:175

Test vs. 30 min { 0:185

Test vs. 60 min {

The table provides the p-values obtained by the one-tailed paired t-test. Combinations for which an increase in the stimulation time resulted in a significant increase of
the estimated mean Erk1/2 activation in the responsive subgroup are marked with one or more asterisks.
doi:10.1371/journal.pone.0034257.t002
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by the available data. If the information content is not satisfactory

the experiment may be adapted, e.g., the number of measured cell

may be increased.

To the best of our knowledge, such data-driven approach to

experimental planning has so far not been used in the context of

nociceptive neuron subpopulation analysis. Merely, by [16] a first

analysis was attempted to determine the number of cells needed to

infer information about the mean signaling status in such a

population. The method we propose is more general and might be

applied independent of the tool used for data analysis.

Using this bootstrapping approach, we could show that a bi-

parametric analysis requires for our system approximately four

times more cells than a mono-parametric analysis. Accordingly,

the experimental setup was adapted to allow for an in-depth study

of the NGF response of DRG neurons.

Reported DRG neuron subgroup sizes are highly variable
and unreliable

DRG neurons are frequently used to investigate cellular

mechanism underlying pain and pain sensitization. One aspect

of considerable interest is the identification and quantification of

sensory neuron subgroups [33,34]. Literature data on sizes of

DRG subpopulation are commonly based on counting positive

and negative cells as judged by a trained investigator. Thus, this

kind of subgroup classification is based on thresholding [35]. But

thresholding can be problematic as it becomes apparent by

comparing reports about population sizes of DRG-subgroups. For

example the IB4 binding subgroup is described to contain 40–70%

[36–38], the TRPV1 expressing subgroup 30–80% [17,18], the

NGF receptor expressing subgroup 35–70% [37,39], and the NGF

responsive subgroup 30–60% [16,35] of all DRG neurons.

These differences could first of all reflect the application of

different thresholds. But our quantitative analysis of several aspects

of nociceptive neurons, such as protein expression and signaling

activation state, indicates also a more fundamental problem. The

distributions of the investigated cellular properties are broad and

overlap strongly with the distributions of the respective negative

controls. This suggests that the concept of clearly separated

subgroups – underlying most of the published studies – is an

oversimplification. Thereby, thresholding causes quantification

errors in the analysis of DRG neuron subgroups, explaining the

discrepancies between studies. We believe, that these errors and

discrepancies can be reduced by more sophisticated data analysis

procedures, such as the proposed KDE subtraction method.

Investigation of dynamic signaling components increases
antibody specificity and sensitivity of antibody-based
assays

A further source of variability/uncertainty in the determination

of subgroups and subgroup sizes are the antibody-derived signals.

Antibody-based classification of subgroups is limited by the

properties of the respective antibody, in particular its specificity

Figure 8. The maximal portion and response amplitude of NGF
responsive cells shows biphasic behavior as function of the
NGF concentration. A Estimated percentages of responsive cells in
dependence NGF stimulation time (n~4 independent experiments with
1,000–4,000 underlying cells per condition). B Measured mean
phospho-Erk1/2 concentration in the whole stimulated population in
dependence NGF stimulation time. C Estimated mean phospho-Erk1/2
concentration in responsive subpopulation, determined from A and B.
The individual data points (dots), their mean (circle) and the one
standard deviation confidence interval (gray area) are shown.
doi:10.1371/journal.pone.0034257.g008
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and sensitivity. Antibody-derived signals summarize specific, cross-

reactive and unspecific interactions with cellular components.

Specific signals result from high affinity binding of the antibodies

to the protein of interest, which is mediated by an interaction of

the antigen binding sites and its target epitope. In addition,

sometimes the antigen binding sites also bind to highly similar

epitopes, a phenomenon called cross-reactivity. Finally, parts other

than the antigene binding side might interact with charged areas

present on various molecules. Such interactions have usually lower

affinities and are termed unspecific binding. While the specific

binding is the signal of interest, cross-reactive and unspecific

binding cause an undesired ‘‘background’’ signal.

To tell apart specific binding and unspecific/cross-reactive

binding, mainly knock-out animals, tissues, and cells have been

employed, which lack the epitope/protein of interest. While widely

accepted, this approach is often not feasible, e.g., if animals are

studied for which knock-outs are not routinely performed, such as

rats.

In our study, we avoid the analysis of epitopes which are

permanently present. Instead, we analyze changes in epitope

abundances, such as the differential Erk1/2 phosphorylation. Our

focus on dynamic changes in signaling components avoids much of

the challenging identification of unspecific and cross-reactive

binding. As levels of unspecific and cross-reactive signals are highly

similar in stimulated and unstimulated cultures, the rise (decline) of

the detected signal after stimulation must be caused mostly by an

increase (decrease) of specifically binding antibodies. Thus, this

change in detected signal reflects the varied epitope availability.

Hence, measuring a dynamic alteration of a component, such as

the degree of phosphorylation of the Erk1/2 in response to, e.g.,

NGF stimulation, and calculating the difference between these two

conditions eliminates much if not all of the unspecific or cross-

reactive signal. This greatly increases the degree of specificity.

Secondly, the focus on signaling components results in an

improved sensitivity. Transmembrane proteins, such as receptors,

and/or ion channels, are usually expressed only in small

quantities. Furthermore, they often share common motives and/

or are heavily and dynamically post-translationally modified by,

e.g., glycosylation, rendering it difficult to produce high quality

antibodies against them. Investigation of the dynamics of signaling

components downstream of receptors allows to overcome some of

these problems as their abundance is commonly large. Thus, both

aspects, increased specificity as well as increase sensitivity, can

result in better signal-to-noise ratios.

Analysis via the KDE subtraction method allows for
quantification of signaling-dynamic based DRG
subgroups

Much effort has been invested to identify extracellular

mediators as well as effector structures such as ion channels

involved in sensitization. We believe that the intracellular

machinery [14], which integrates the various sensitization inputs,

computes the response of the neuron, and regulates not only one

but a multitude of effector proteins, still requires extensive

research. Tools for the investigation of endogenous signaling

components in heterogeneous primary neurons so far hardly

allowed for an in-depth analysis of the intracellular sensitization

machinery. Using automated microscopic methods and the here

proposed KDE subtraction method enables the quantitative

investigation of, e.g., phosphorylation states of endogenous

signaling components as surrogate measurements of their activity.

Table 3. Statistical significance for the dependency of the estimated percentage of the responsive cells on NGF concentrations.

NGF concentration 0 pm 1 pM 10 pM 100 pM 1 nM 10 nM

Test vs. 0 pM { 0:003�� 0:009�� 0:015� 0:004�� 0:006��

Test vs. 1 pM { 0:516 0:414 0:070 0:048�

Test vs. 10 pM { 0:319 0:034� 0:028�

Test vs. 100 pM { 0:107 0:046�

Test vs. 1 nM { 0:046�

Test vs. 10 nM {

The table provides the p-values obtained by the one-tailed paired t-test. Combinations for which an increase in the NGF dose resulted in a significant increase of the
estimated size of the responsive subgroup are marked with one or more asterisks.
doi:10.1371/journal.pone.0034257.t003

Table 4. Statistical significance for the dependency of the mean Erk1/2 activation in responsive cells on NGF concentrations.

NGF concentration 0 pm 1 pM 10 pM 100 pM 1 nM 10 nM

Test vs. 0 pM { v0:001��� 0:018� v0:001��� v0:001��� v0:001���

Test vs. 1 pM { 0:893 0:152 0:005�� 0:016�

Test vs. 10 pM { 0:079 0:006�� 0:019�

Test vs. 100 pM { 0:018� 0:013�

Test vs. 1 nM { 0:814

Test vs. 10 nM {

The table provides the p-values obtained by the one-tailed paired t-test. Values marked with Combinations for which an increase in the NGF dose resulted in a
significant increase of the estimated mean Erk1/2 activation in the responsive subgroup are marked with one or more asterisks.
doi:10.1371/journal.pone.0034257.t004
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We applied the KDE subtraction analysis approach to

investigate the subgroup of NGF responsive DRG neurons. We

found 40+2% of the neurons to respond after 60 minutes to

1 nM NGF with an increase in phosphorylation of Erk1/2. As our

method of quantification provides a conservative measure, we can

disregard the reported smaller population sizes for NGF-

responsive neurons. In addition, while indeed some more neurons

might express NGF-receptors, in the end it is most important for

the investigation of sensitization mechanisms to identify the

neurons, which are actually really activated/sensitized by NGF

treatment as visible by the increased phospho-Erk1/2 levels.

Switch-like activation of Erk1/2 after NGF treatment
Shifting the research focus away from static subgroup markers

as ion channel expression to dynamic ones as signaling

components inspires also the investigation of dynamic aspects

such as kinetics. While dependence of cellular functionality on

kinetic and dose response aspects of Erk1/2 activation have

frequently been described in secondary cell lines [40–45], also

subgroup functionality may depend rather on the dynamics and

kinetics of an activation event than on the activation itself. The

KDE subtraction method opens the door to analyze such

population specific events.

Analyzing fundamental dynamic response aspects such as the

amplitude and the proportion of responding neurons over time

yields surprising results. Our data suggest, that the response

amplitude is time independent (Figure 7C). Especially with a

multicomponent signaling system such as MAPK/Erk1/2 cascade

one might expect that the amount of active Erk1/2 slowly

increases over time. Our findings apparently indicate, that the

amplification by the preceding kinases, each of which activates

multiple substrate kinases, which in turn activate multiple Erk1/2

kinases, is so fast that the phenotypic result is rather a switch-like

behavior of Erk1/2 activation.

Interestingly, the sensitization in the animal establishes itself

over about 30 min [26]. A potential mechanism underlying this

increase in sensitivity could therefore be the activation of

increasing numbers of nociceptive neurons. But also this appears

Figure 9. Analysis of size dependency of responsiveness and response strength. A Responsiveness observed in individual experiments
(dots) and average responsiveness (circle) for small-sized (150–300 m2), medium-sized (750–900 m2), and large-sized (1350–1500 m2) neurons. A
statistical analysis using the one-tailed paired t-test verified that the estimated size r of the responsive subgroup decreased significantly with the cell
size (medium vs. small: p-value~0:006��; large vs. small: p-valuev0:001���; large vs. medium cells: p-value~0:009��). B Average pErk1/2 response in
the estimated responsive subpopulation (dots) and average over all experiments (circle) for small-sized, medium-sized, and large-sized neurons.
Statistical comparison of small-sized neurons with medium- and large-sized neurons using the one-tailed paired t-test indicated that the response of
the latter two were stronger (medium vs. small: p-valuev0:001���; large vs. small: p-value~0:017�). Statistical significant differences between
medium-sized and large-sized neurons (p-value~0:275) could not be established.
doi:10.1371/journal.pone.0034257.g009
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not to be the case as we find the portion of responding neurons to

be time independent (Figure 7A). This suggests that the step

determining the behavioral sensitization-kinetic is not the signaling

cascade up to Erk1/2 phosphorylation but the downstream events.

Biphasic dose response indicates different NGF activated
subgroups

Besides the NGF-induced Erk1/2 activation kinetics, the dose

response behavior has been analyzed. The analysis showed a

biphasic response indicating the existence of at least two distinct

subgroups which are defined by their signaling state. The first

phase of the dose response (plateau between 1 pM and 100 pM

NGF) pictures the first subgroup. At least 23% (Figure 8A) of the

DRG neurons belong to this subgroup responding already to low

doses of NGF and showing a low level of Erk1/2 phosphorylation

(factor two compared to the unresponsive cells (Figure 8C)). The

second subgroup responds only to higher NGF concentrations

(§1 nM) and explains the second rise in the dose response plot

(Figure 8A). We provided evidence that this subgroup exhibits a

significant increase of Erk1/2 activation (Figure 8C, Tab. 4).

Unfortunately, our methods cannot discriminate whether these

subgroups are overlapping or non-overlapping.

The subgroup specific responses might be due to variations in

the expression of the NGF receptor TrkA. Alternatively, the

abundance of p75, which can bind to TrkA and enhance its NGF

affinity [46], or an altered regulation of Erk1/2 activity further

downstream may cause the observed subgroup differences. So far,

we cannot distinguish between these alternatives. Co-staining of

phospho-Erk1/2 and TrkA or p75 might solve the molecular

underpinning of this phenomenon, whenever suitable antibodies

become available. Nevertheless, the identification of the existence

of three differently responsive subgroups (unresponsive, weakly

responsive, and strongly responsive cells) provides a novel insight

into functional differences of nociceptive signaling in DRG

neurons.

As no thresholds are assumed, complex phenomena based on

graded response differences can be unraveled. This is important,

as complex and graded subpopulation structures are also observed

for other DRG markers like IB4 binding [47]. The KDE-based

approach allows to quantify these specific subgroups and opens the

door to further in depth analysis.

KDE subtraction method identifies individual responses
of DRG subgroups characterized by cell size

Defining the responsive subgroup not only allows to investigate

kinetic and dose dependent activation behaviors, but also to

investigate characteristics of the responsive subgroups in respect to

expression of protein markers or cell size. In this study, we

analyzed the size properties of the responsive subgroups. We found

that small-sized neurons (150–300 mm2) are more responsive than

larger neurons, as suggested but not proven by a large number of

publications (Figure 9A). But in contrast and so far not described,

we found medium-sized cells (750–900 mm2) to respond strongest

(Figure 9B). Which aspect contributes more to pain sensitization,

number or amplitude of responding neurons, is not known.

Analyzing nociceptive neurons on the basis of signaling kinetics

is new. As indicated in the subsequent chain of arguments, this

might give a new aspect helping to identify, for instance, the

subgroup essential for mechanical sensitization. Cells positive for

the marker IB4 have been described to be in average larger than

neurons positive for the classical markers of C-fibers, TRPV1 and

CGRP [48]. We find NGF to activate Erk1/2 in small- but also

medium- and large-sized IB4-positive neurons. As IB4-positive

neurons are proposed to mediate mechanical pain but not heat

pain [34], these medium- and large-sized neurons characterized by

higher NGF responsiveness might be the IB4-positive subgroup

involved in NGF-mediated mechanical hyperalgesia. Corroborat-

ing electrophysiological studies are necessary but are currently

beyond the scope of realistic investigation as they require for the

quantitative analysis of an electrophysiological data based

population study a very large number of recorded neurons.

Conclusion
To circumvent the shortcomings of thresholding methods, we

introduced the KDE subtraction method to quantify the

responsive cells. This analysis tool closes the gap between

thresholding methods and the highly quantitative analysis tools

like histogram subtraction which require in general w10,000

measured cells per individual experiment and are therefore not

feasible when studying primary sensory neurons. By combining the

KDE subtraction method with QuAM, which can greatly increase

the numbers of investigated and quantified cells, we rendered a

fully quantitative analysis of DRG neurons feasible.

We quantified and characterized the NGF responsive subgroups

and found DRG-subgroup specific differences in dose dependent

NGF responsiveness as well as in the magnitude of NGF-induced

Erk1/2 signaling. This indicates a subgroup specific signaling

regulation. Our approach renders an in-depth analysis of signaling

activation in heterogeneous nociceptive neurons manageable,

which goes beyond ‘‘yes or no’’ evaluations. Similar to the study of

the size dependence of the response, the proposed analysis of

Erk1/2 activation can also be combined with common nociceptive

markers, e.g., IB4 binding, CGRP and TRPV1 expression. As

intracellular signaling is a promising therapeutically target in pain,

such knowledge of signaling patterns is the beginning of the search

for subgroup specific signaling targets.
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