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We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand
canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly
dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics
near the boundary. The resulting radiation process provides a quantum gravity description of the horizon
evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be

potentially observable.
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In order to fully understand and explain the semiclassi-
cal result of Hawking’s calculation [1] regarding the emis-
sion of thermal radiation from a black hole, it is strongly
believed that a theory of quantum gravity is necessary. The
possibility to probe the Planck scale structure of black
holes with observations at much bigger wavelengths has
been conjectured by [2]. Using an analogy with discrete
quantum systems, the authors assume the area of the black
hole to be quantized, and due to the relation between area
and mass, they study the emission amplitude related to the
jump from one quantized value of the mass to a lower one,
analogous to the behavior of atoms. Due to the discreteness
of the area eigenvalues, the full emission spectrum is given
by a set of spectral lines at frequencies multiple of a
fundamental one on the order of the black hole surface
gravity. This would imply a drastic departure from
Hawking’s semiclassical result, as emphasized by [3].
However, in [4] it has been shown that replacing the ansatz
of [2] for the area spectrum with the one computed from
loop quantum gravity (LQG) for a macroscopical black
hole, the spectral lines are very dense in frequency, recov-
ering in this way a continuous spectrum.

This “‘atomic” picture of a quantum black hole was
further exploited in [5] within the LQG framework soon
after the first exciting ideas [6] concerning the derivation of
black hole entropy from the degrees of freedom (d.o.f.)
of the horizon quantum geometry started to circulate. After
the introduction of a local definition of black hole through
the notion of isolated horizons (IH) [7], those ideas led to
models [8,9] in which the quantum horizon d.o.f. are
described by a Chern-Simons theory with punctures, rep-
resenting the quantum excitations of the gravitational field
as described by the LQG kinematics. Counting the dimen-
sion of the Hilbert space of such a theory living on the
horizon leads to an entropy in agreement with the
Bekestein-Hawking result, once the large area limit is
taken [10,11]. In [5], this quantum mechanical description
of black hole states is used to study the radiation associated
with a single puncture transition. The spectrum obtained
shows a thermal envelope, even though it presents a
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discrete structure. However, in this analysis no dynamical
process responsible for the puncture jump is taken into
account. In particular, this single ‘“‘atom” transition ap-
proximation leads to the awkward feature of removing the
line 1/2 — 0, which, for macroscopic black holes, would
represent the most likely transition. Moreover, the statisti-
cal framework of [5] lacks a clear connection with the
usual energy canonical ensemble.

In this Letter, we investigate further the analogy between
a quantum horizon with its punctures and a gas of particles
by introducing the main ingredients for a grand canonical
ensemble analysis and implementing the LQG dynamics
locally near the horizon, in order to describe the evapora-
tion process in the quantum gravity regime.

The basic idea is to consider the bulk and the horizon as
separate in thermal equilibrium. At some point, a weakly
dynamical phase takes place, and they interact with each
other, allowing for the possibility of energy and particle
exchange. After such a change of thermodynamic state has
taken place, the two subsystems go back to equilibrium. By
matching the description of this intermediate phase in terms
of weakly dynamical horizons [12,13] with the local statis-
tical description of [14], a physical time parameter can be
singled out, allowing us to describe the boundary states
evolution in terms of the theory Hamiltonian operator. In
this way, elements coming from different frameworks, such
as thermodynamics, classical general relativity, and quan-
tum gravity, combine together to provide a local quantum
dynamical derivation of the radiation spectrum.

This picture will be made more precise in the following,
where we will concentrate only on the spherically sym-
metric case. However, let us at this point clarify the frame-
work we are considering: no background structure is
introduced at any point, and we will work in the quantum
gravity regime; no matter is going to be coupled; the
radiation spectrum we will derive is related entirely to
emission of quanta of the gravitational field due to dynami-
cal processes described by the LQG approach.

In order to provide the tools for a thermodynamical
study of the system described above, one has to introduce
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a notion of local energy for the horizon. However, in the
context of TH such a notion is not unique due to the fact that
there can be radiation in space-time outside the horizon,
and therefore, no unique time evolution vector field can be
singled out. Nevertheless, in [14,15] a local first law for TH
has been recently derived, whose uniqueness can be proven
once a local physical input is introduced. More precisely,
for a preferred local stationary observer O hovering out-
side the horizon at proper distance €, this reads dE =
k/(87G)dA, where k = 1/ + o(£) represents the local
surface gravity measured by O. Integrating the previous
equation, one obtains a local notion of energy associated to
the IH in terms of its area, namely,
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Using this result, the grand canonical partition function
for the gas of punctures can be written as Z(B) =
>%_0 2V Z(B, N), where z = exp(Bu), n being the chemi-
cal potential, N the number of punctures, and Z(8, N) the
canonical partition function given by

N!
zBN) =Y TI @i+ e s, @
{s} 7 °°

where we assumed the punctures to have Maxwell-
Boltzmann statistics; {s j} represents a given quantum con-
figuration where s; punctures carry the spin j, for all
possible value of j, and such that 3 ;s; = N, while E; is
given by the scaled IH area spectrum through Eq. (1),
namely,
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Notice that, so far, 8 can be regarded simply as the
intensive parameter conjugate to the energy Eq. (1).
From the grand canonical partition function Z(), all the
thermodynamical quantities can be computed. In particu-
lar, for the expectation value of s; we get
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When the number of punctures is large, Eq. (3) gives 1 =
N/(N + 1) = z¥;(2j + 1)e PEi, where N = ¥ ;5; is the
mean number of punctures of the gas. The previous equa-
tion provides an expression for the chemical potential
matching the one found in [14]. Notice that, due to the
dynamical processes taking place near the horizon (as
described below), the chemical potential does not need to
vanish. In fact, N is not fixed a priori, and a change in the
number of punctures would imply a change of the horizon
energy; therefore, u can be different from zero.

Within this thermodynamical framework, we can now
study the evaporation process. The topology of the null

surface A representing the IH is assumed to be $* X R; i.e.,
at “‘a given time”’, the horizon surface is given by the two-
sphere at the intersection between A and a spacelike
Cauchy surface. The quantum space geometry is described
by the polymerlike excitations of the gravitational field
encoded in the spin networks states. Some edges of those
states can now pierce through the horizon, providing local
quantum d.o.f. accounting for the IH entropy. Dynamics in
the bulk are implemented by the Hamiltonian constraint
H[N] = 0. This reflects the fact that, in a diffeos invariant
theory, the canonical Hamiltonian generates evolution in
the parameter of the action which is unphysical. This
freedom in choosing the evolution parameter is reflected
in the possibility to rescale the time vector field by the
lapse N. Then, in the quantum theory, the projection op-
erator into the kernel of A is constructed by integrating
over all possible values of the lapse [16,17]. Despite the
lack of a completely well-defined quantization prescription
for H, one clear general property is that it acts locally at the
vertices of the spin networks and changes the spin of some
of the edges attached to the given vertex. In order to be
more quantitative, in the following we will consider
Thiemann’s proposal [18]. If we concentrate on the
Euclidean part for simplicity, its action on a three-valent
node having two edges piercing the horizon can be graphi-
cally represented as
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where the holonomies entering the regularization of H are
taken in the fundamental representation. The action de-
picted above can be interpreted as an absorption or emis-
sion process of quanta of the gravitational field by the
quantum horizon.

In order to study the radiation process, we need to
perturbate the equilibrium states represented by the IH
configurations by turning on some weakly dynamical ef-
fects near the horizon until another equilibrium configura-
tion state is reached again. In this way, a physical process
causes a small change of the IH state. For a large black
hole, this is expected to happen quite slowly.

A description of this dynamical phase requires first to
locally single out one of the partial observables to play the
role of time. In this way, we can use the Hamiltonian
operator in the bulk to define the evolution of the boundary
states with respect to this observable. Let us now show how
the contact between the dynamical horizons (DH) frame-
work developed in [12,13] and the thermodynamical de-
scription of [14,15] would allow us to do so.

Within a framework advocated by Ashtekar, the idea
is to describe the evaporation process by interpreting
this intermediate evolution phase as an extension of the
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quantum geometry from isolated to dynamical horizons,
where a proper quantum notion of gravitational energy
induced by the quantum theory of geometry in the bulk—
replaces the classical one introduced in [13,19].

In [13], a dynamical process version of the first law was
derived from an area balance law relating the change in the
area of the DH to the flux of matter and gravitational
energy. In the vacuum, its infinitesimal version provides
a first law for DH, namely,

R,

87G

dA = dE,, (5)

where x, = (2r)"! is an effective surface gravity, with r
the radius of the two-sphere leaf of the dynamical horizon.
The right-hand side of Eq. (5) is related to the bulk term
in the Hamiltonian, which can be written in terms of pure
geometrical quantities. In this way, the first law above
provides a dynamical coupling of bulk and boundary ge-
ometries near the horizon. Let us notice that, given the
spherical symmetry of the horizons studied here, the clas-
sical notion of gravitational energy defined by the (integral
version of) rhs of Eq. (5) would give a vanishing flux. Of
course, Hawking radiation teaches us that this does not
need to hold also at the quantum level.

In [13] it is shown that, for a dynamical horizon, the first
law Eq. (§) can be generalized by replacing the radius r
with an arbitrary function f(r), reflecting the freedom to
rescale the vector field & with respect to which the notion
of energy is associated. The function f(r) encodes the
dynamical nature of the previous version of the first law,
but it also represents an ambiguity in the description of the
dynamics.

The passage from a weakly DH to a weakly IH is a well-
defined procedure described in [13]. The only ingredient
missing in our construction is the matching of the surface
gravity entering Eq. (5) with the one appearing in the local
notion of energy in Eq. (1). This last step can now be
carried out by means of the rescaling freedom described
above. For our preferred family of observers located right
outside the horizon, a natural choice of the field §f would
be given by f = {. In standard coordinates for the
Schwarzschild metric, for an observer at r = 2M + e,
the proper distance from the horizon is € = 2+/2Me. If
we now set f(r) = €, we get an effective surface gravity
matching exactly the one entering the energy expression
Eq. (1), i.e., k; = (df/dr)k, = 1/€. Therefore, the local
first law derived in [14,15] is compatible with the frame-
work of [13] if we single out, among the permissible time
vector fields for the local observer O, the one defined by
t* = Ny x“, where N, is a permissible lapse associated with
the radial function .

Moreover, if we interpret € as a parameter controlling
the slow evolution of the horizon area, i.e., £ yrH ~ €, the
previous expression for the surface gravity i, matches the
requirements of [19] for the definition of slowly evolving

horizons. In this case, the local surface gravity entering the
relation (1) would be approximately constant. Henceforth,
one can regard the horizon as making continuous transi-
tions from one equilibrium state to another, and the geo-
metrical surface gravity k can be interpreted as a (slowly
varying) parameter controlling this process. In this sense, it
seems very natural to interpret i as the temperature of the
radiation emitted during this transition phase. This
strengthens the connection between thermodynamics and
our statistical analysis and puts on more solid ground the
entropy derivation of [14].

At the quantum level, the local notion of energy in
Eq. (1) acquires a definition in terms of the LQG area
operator, whose eigenstates are given by the spin networks
coming from the bulk. The Hamiltonian operator action
modifies these states, inducing in this way a jump to a
different area eigenvalue. Therefore, the local deparamet-
rization of the system described above can be used to
interpret the bulk quantum dynamics as a generator of
boundary states evolution, providing a quantum notion of
weakly DH. More precisely, the action of H on nodes close
to the horizon can be used, in the formalism of [17], to
define a physical scalar product to interpret as transition
amplitudes between one boundary state to another in the
physical time parameter defined by N,. Given a state [{s;})
on a given two-sphere cross section, the action of A on the
vertices near the horizon will evolve it in a state |{s;}),
through the change of spin of some of the punctures. The
transition probability when the two states differ only at a
given vertex v, in an infinitesimal interval of time, is given
by P;i = |H;;|*, where

Hjj’ = <{Sj’}|{sj}>phys = <{Sj’}| [dNoee_iﬁ[N]HSj})

—iN({s; A, s} + o(N?). (6)

Let us explain the last passage in the previous equation.
The diff-invariant nature of the physical scalar product is
usually obtained by removing the dependence on the regu-
lator in the action of A through the diff-invariant nature of
the DN integral. In the case of an internal boundary
though, the situation is more subtle. In particular, IH
boundary condition are such that only diffeos tangent to
the horizon are to be regarded as gauge transformations
[7]; these diffeos are compatible with the “gauge fixing”
performed in the evaluation of Eq. (6), which encodes the
local deparametrization of the system. Such a selection of a
physical time variable can be performed by inserting a
local observable O, = 8(N, Ny(v)) in the path integral,
which singles out the constant value N, for the scalar
function N(x) at the vertices near the horizon.

Let us now observe that the terms generated by the
action of H on a generic three-vertex near the horizon
are of two different kinds: two of them create new punc-
tures piercing the horizon and one [shown in (4)] does not.
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Since the new puncture created by H has to be coplanar to
the two links it is attached to, the inclusion of the first kind
of terms would lead to a breaking of the boundary diffeo-
morphism symmetry and, potentially, to an infinite entropy.
Therefore, we only allow the action of A that does not
create new punctures. Notice that this term corresponds to
the absorption inside the horizon of a quantum of the
gravitational field associated with an emission process,
due to the jump to a lower area eigenvalue. This dynamic
is reminiscent of the heuristic picture of Hawking radiation
where one antiparticle is absorbed while one particle es-
capes to infinity.

Given these considerations, the H;; in Eq. (6) corre-
sponds to the transition amplitude where two of the punc-
tures piercing the horizon have jumped to a different
energy level. For the case of a macroscopic black hole,
only the first SU(2) irreps are relevant for the punctures;
therefore, we will consider only the cases ¢ = j and j =
p = j+ r, withr =1/2,1,3/2. Higher values of r would
not be relevant for the spectrum. We now choose the
holonomies in H to be in the fundamental representation,
implying that, in the emission process, ¢ can only jump to
g — 1/2 while p to p *1/2. Among the two possible
orderings of H, as defined by Thiemann, we will choose
the one in which the volume operator acts before the
creation of the new link, in order to have a nonvanishing
probability for the jump 1/2 — 0 of one of the punctures.
Notice that the action of H always preserves the IH gauge
symmetry, and the unpleasant feature of removing the
1/2 — 0 transition from the spectrum is not present
anymore.

We now have all the ingredients to derive the radiation
spectrum for our local observer O. The energy of the
quantum of radiation emitted after the action of H on
two punctures with spins p, g is A, =E, — E,+), +
E, — E,1/-2) and the intensity of the lines is given by

I = 5,5,INAQRp, 1;2¢, =1, 1)[*A7,, @)
where the matrix elements A are explicitly computed in
[20], for Thiemann’s version of the Euclidean constraint. In
FIG. 1 we plot the energy distribution /;; as a function of
x = ﬂAﬁq. The plot shows a discrete structure formed by
four different sets of spectral lines. The first two groups of
lines correspond to the case p — p + 1/2, while the last
two to the case p — p — 1/2.

Let us now conclude and make some comments.

We have used the statistical mechanical framework in-
troduced in [14,15] to study the properties of IH near
equilibrium in the grand canonical ensemble. This setting
seems to be the most appropriate, given the nature of the
emission process. Compatibility of this framework with the
weakly DH description of the intermediate transition phase
allowed us to single out a physical time variable in terms of
which describe the boundary states evolution. By means of
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FIG. 1 (color online). Emission lines intensity and the thermal
envelope. For the x variable, we used ,8Ry€f,/G ~ o(1). The
normalization factor N¢N of the intensity is left unspecified. The
gap between the different sets of lines is on the order Aw ~ k.

this deparametrization, we implemented the LQG dynam-
ics near the horizon, providing a quantum gravity descrip-
tion of the evaporation process. For large black holes, the
spectrum presents a neat discrete structure.

Analogous to [4], one could ask if the inclusion of other
lines would make the spectrum effectively continuous. The
ambiguity in the holonomies irrep present in the definition
of H can be easily checked to not alter the discrete pattern.
Another possibility would be to consider the simultaneous
action of H on more than one vertex in the expansion
Eq. (6). However, those lines could be significantly
damped by the transition amplitude [for instance, this
would be the case if NyN ~ o(1)]. Therefore, the LQG
dynamics might provide the possibility to observe a depar-
ture from the semiclassical scenario. However, further
investigation in this direction is necessary, and our analysis
should be regarded as a first step towards a fully quantum
dynamical description of the emission process.

While our attention here has been limited to the canoni-
cal analysis, the near-horizon dynamics could be imple-
mented using spin foams. More precisely, given the
increasing evidence for the spin foam amplitude to imple-
ment the Hamiltonian constraint [21], one could use the
vertex amplitude to compute transition probabilities be-
tween boundary states containing the right part of (4) as a
subgraph. This could turn out to be a useful application of
the duality between the two formalisms.

Finally, the process described here differs considerably
from the Hawking effect. The latter simply requires a
curved background and a scalar field propagating on it:
the gravitational d.o.f. are frozen. The emission process is
intrinsically related to the definition of particles possible
due to this switching off of gravity. On the contrary, in our
analysis, it is the evolution of the quantum gravitational
d.o.f. on the horizon which is responsible for the energy
emission. Moreover, due to this dynamical framework, the
whole description of the process is local.

D.P. is very grateful to D. Oriti and A. Perez for clarify-
ing discussions and important remarks concerning differ-
ent aspects of this work.
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