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IMPROVED BREAKDOWN CRITERION FOR EINSTEIN
VACUUM EQUATIONS IN CMC GAUGE

QIAN WANG

1. Introduction

Let (M, g) be a (3+1)-dimensional vacuum globally hyperbolic space-time, i.e.
g is a Lorentz metric of signature (—, +, 4, +) satisfying the Einstein vacuum equa-
tions

Ric(g) = 0

and every causal curve intersects a Cauchy surface at precisely one point. If (M, g)
has a compact, constant mean curvature (CMC) Cauchy surface Yy with mean
curvature ¢y < 0, then there exists a foliation of a neighborhood of ¥y by compact
CMC surfaces, and the mean curvature varies monotonically from slice to slice.
The CMC conjecture states that there is a foliation in M of CMC Cauchy surfaces
with mean curvatures taking on all allowable values, i.e. the mean curvatures take
all values in (—o0,0) if ¥¢ is of Yamabe type —1 or 0, while the mean curvatures
take on all values in (—o0,00) if ¥y is of Yamabe type +1. Certain progress has
been made ([3]), the CMC conjecture however remains open. One of the important
step to attack the CMC conjecture is to provide a reasonable breakdown criterion
to detect what may happen when the CMC foliation can not be extended.

In order to set up the framework, in this paper we assume that M, is a part
of the space-time (M, g) foliated by CMC hypersurfaces ¥; with mean curvature
t satisfying to < t < t, for some tg < t. < 0. We shall refer to Xy := 3, as the
initial slice. Thus, M, = Ute[to,t*) ¥ with t, < 0 and there is a time function ¢
defined on M., monotonically increasing toward the future, such that each ¥; is a
level hypersurface of ¢t with the lapse function n and the second fundamental form
k defined by

n:=(—g(Dt,Dt))"/* and k(X,Y):=—g(DxT,Y),

where T denotes the future directed unit normal to ¥;, D denotes the space-time
covariant differentiation associated with g, and X,Y are vector fields tangent to
3. Let g be the induced Riemannian metric on ¥; and let V be the corresponding
covariant differentiation. For any coordinate chart O C ¥y with coordinates z =
(x1,22,2%), let 2° = t,2', 22 2% be the transported coordinates on [tg,t.) x O
obtained by following the integral curves of T. Under these coordinates the metric
g takes the form

(1.1) g = —n?dt* + g;jdr'da’.
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Moreover, relative to these coordinates t,z', 22, 3 there hold the evolution equa-
tions

(1.2) O0rgij = —2nk;j,

(1.3) Oikij = =ViVin + n(Ri; + Trk kij — 2kiokj)
and the constraint equations

(1.4) R — |k]> + (Trk)*> =0,

(1.5) Vikji — V;Trk =0

on each ¥;, where R;; and R denote the Ricci curvature and the scalar curvature
of the induced metric g on ¥, and Trk denotes the trace of k, i.e. Trk = g¥k;;.
Since Trk =t on X, it follows from the above equations that

(1.6) divk =0
and

(1.7) —An+kPn=1
on each ;.

The first important breakdown criterion was given by M. Anderson in [2], who
showed that when a breakdown occurs at ¢, there holds
limsup | R (s,) = o0,

t—t;
where R denotes the Riemannian curvature tensor of the space-time (M, g). Here
the pointwise norm |R| is defined with respect to the Riemannian metric g on M,
where gy is defined as follows: for any X,Y € T'M,. write

X=XT+X and Y=Y'T+Y
with XY € T%,, then
gr(X,Y) = XY +¢(X,Y).
The result of Anderson implies that if
(1.8) sup  [|[R|[ze(xm,) = Ao < o0
te[to,t.)

for all t, < 0, then the CMC foliation exists for all values in [to, 0).

Recently, Klainerman and Rodnianski [12] provided a new breakdown criterion
which shows that if a breakdown happens at ¢, < 0 then

limsup (||k]| s,y + [[V1ogn||pe(s,)) = oo,
t—t,
or, in other words, the CMC foliation can be extended beyond any value ¢, < 0 for
which
(1.9) sup (|Ikll =z + 1V ol = (z,)) = Ao < oc.
te(to,ty)

In contrast to the breakdown criterion of Anderson, the condition (L9) of Klainer-
man and Rodnianski is formally weaker as it refers only to the second fundamental
form k and the lapse function n which requires one degree less of differentiability.
Moreover, by purely elliptic estimates, one can see that (LJ) implies immediately
(T9), since the boundedness of ||R |1~ exhausts all the dynamical degrees of free-
dom of the equations. Therefore, the result in [12] is a significant improvement.
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We remark that the result of Klainerman and Rodnianski can not be established
by purely elliptic estimates. Instead, the proof relies heavily on the tools from
the theory of hyperbolic equations. The analogous result has been extended to
non-vacuum space-time in [15].

If we consider the Einstein equation expressed relative to the wave coordinates,
by energy estimates one can see that the breakdown does not occur unless

tx
(1.10) / |9g|| Lo dt = co.

to

This condition however is not geometric since it depends on the choice of a full
coordinate system. Observe that the components of the second fundamental form
k and Vn can be viewed as part of the components of dg. It is natural to ask if we
have an integral form of breakdown criterion involving k£ and n only. The first main
result of the present paper confirms this and provides a geometric counterpart of
(TLI0), which can be viewed as an improved version of the breakdown criterion of
Klainerman and Rodnianski.

Theorem 1.1 (Main theorem I). [ Let (M., g) be a globally hyperbolic development
of ¥¢ foliated by the CMC' level hypersurfaces of a time function t < 0. Then the
space-time together with the foliation ¥ can be extended beyond any value t, < 0
for which,

ty
(L.11) [ (limisy + 1V lognl(sy) dt = Ko < o
to

Let us fix the convention for the deformation tensor of T, expressed relative to
an orthonormal frame {ey = T, ey, €2, e3}, as follows,

Tag = —g(De, T, ep), with o, 6 =0,1,2,3.
It is easy to check
oo = 0, mo; = —V;logn, mo =0, my; = kyj, with ¢,7 =1,2,3.
Consequently, the condition (I9) can be formulated as

sup H?THLao(Et) = Ay < 0,
tE[to,t«)

while the weaker condition (LIT]) can be formulated as

.
(A1) (7l L1 Loe (M) 32/ (17|l Lo (s, dt = Ko < o0
to

We basically follow the framework in [12] to prove Theorem [T} however, a
sequence of difficulties occur due to the weaker condition (III]). In order to continue
the foliation, according to the local existence theorem given in [5, Theorem 10.2.1],
one must establish a global uniform bound for the curvature tensor R and L>2-
bounds for its first two covariant derivatives. Since (M, g) is a vacuum space-time,
by virtue of the Bianchi identity R verifies a wave equation of the form

(1.12) O,R =R +R,

where O denotes the covariant wave operator O = D*D,. Based on higher energy
estimates it is standard to show that the L? bounds for DR and D?R can be

L Our method applies equally well to the case that X are asymptotically flat and maximal, i.e
Trk = 0 and can also be extended to Einstein space-time with matter.
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bounded in terms of the L>° norm of R. Thus, the derivation of the L*> bound of
R is a crucial step. In order to achieve this goal, Klainerman and Rodnianski [10]
succeeded in representing R(p), for each p € M., by a Kirchoff-Sobolev formula of
the form

R(p) = —/ A - (R *R) + other terms
N=(p,7)

where A is a 4-covariant tensor defined as a solution of a transport equation along
N~ (p, 7) with appropriate initial data at the vertex p, N~ (p, 7) denotes the portion
of the null boundary N~ (p) in the time interval [t(p) — 7, ¢(p)]. The past null cone
N~ (p) is in general an achronal Lipschitz hypersurface ruled by the set of past
null geodesics from p. In order to derive all necessary estimates, one must show
that N~ (p) remains a smooth hypersurface in the time slab [t(p) — 7, t(p)) for some
universal constant 7 > 0. Therefore, it is necessary to provide a uniform lower
bound for the past null radius of injectivity at all p € M,.

Let us recall briefly the definition of the past null radius of injectivity at p, one
may consult [T1] for more details. We parametrize the set of past null vectors in
T,M in terms of w € S?, the standard sphere in R®. Then, for each w € S?, let
l, be the null vector in T),M normalized with respect to the future, unit, time-like
vector T, by

g(luh TP) =1
and let ', (s) be the past null geodesic with initial data I',,(0) = p and %Fw (0) = lo.
We define the null vector field L on N/~ (p) by
d

L{Tu(s)) = —-Tu(s)

which may only be smooth almost everywhere on N~ (p) and can be multi-valued
on a set of exceptional points. We can choose the parameter s with s(p) = 0 so
that

D,L=0 and L(s)=1.

This s is called the affine parameter.
The past null radius of injectivity i.(p) at p is then defined to be the supremum
over all the values sg > 0 for which the exponential map

gp: (s,w) = Ty(s)

is a global diffeomorphism from (0, sg) x S? to its image in N~ (p). It is known that
ix(p) > 0 for each p, N~ (p) is smooth within the null radius of injectivity, and

iv(p) = min{s.(p), l.(p)},

where s,(p), the past null radius of conjugacy at p, is defined to be the supremum
over all values sop > 0 such that the exponential map g, is a local diffeomorphism
from (0,s0) x S? to its image in N~ (p), and l.(p), the past cut locus radius at
p, is defined to be the smallest value of sy for which there exist two distinct null
geodesics T'; and T'y from p with T'y(sg) = I'a(sp). Thus, for a past null geodesic
I, from p, a point ¢ = I',,(s+) is called a conjugate point of p if g, is singular at
(s«,w), while it is called a null cut point of p if g, is nonsingular at (s.,w) and
through ¢ there exists another null geodesic emanating from p.

Since we are working on the CMC foliation, it is convenient to introduce the past
null radius of injectivity i.(p,t) at each p with respect to the global time function
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t. We define i.(p,t) to be the supremum over all the values 7 > 0 for which the
exponential map

(1.13) Gp: (t,w) = Tu(s(t))

is a global diffeomorphism from (t(p) — 7,t(p)) x S? to its image in N~ (p). We
remark that s is a function not only depending on ¢ but also on w, we suppress w
just for convenience. It is known that

i*(p, t) = min{s*(p, t)v l* (pv t)}a

where s.(p,t) is defined to be the supremum over all values 7 > 0 such that the
map G, is a local diffeomorphism from (¢(p) — 7, ¢(p)) x S? to its image, and L. (p, t)
is defined to be the smallest value of 7 > 0 for which there exist two distinct null
geodesics I (s(t)) and T'y(s(t)) from p which intersect at a point with ¢t = ¢(p) — 7.

In [11] Klainerman and Rodnianski provided a uniform lower bound on the null
radius of injectivity under the assumption (L3). In order to complete the proof
of Theorem [T, one must provide a uniform lower bound on the null radius of
injectivity under the weaker condition (III)). This is contained in the second main
result of the present paper.

Theorem 1.2 (Main theorem II). Assume that M., is a globally hyperbolic devel-
opment of ¥ verifying the condition (I11]). Then for all p € M, there holds

(1.14) i (p,1) > min{8e, £(p) — to},
where 0, > 0 is a constant depending only on Qo, Ko, |Xo| and t.. A

In order to prove this result, it is useful to review the essential steps in the work
of Klainerman and Rodnianski in [II]. The first step is to show that

(1.15) $«(p,t) > min{l.(p,t), s }

for some universal constant] 04 > 0. This can be achieved by showing that

(1.16) sup
N=(p,7)

¢ 2
2
X7

with 7 := min{l.(p,t), 0.}, where x is the null second fundamental form xap =
g(D4L,ep) of the 2-dimensional space-like surface Sy := N~ (p)NX; with (e4)a=12
being a frame field tangent to S;. The analog has been carried out in [7, [8] 9} [13]
for geodesic foliations under the boundedness assumption of the curvature flux. In
order to adapt those arguments to prove (ILI6) for the time foliations, one needs to
show that t(p) — ¢t and s are comparable and the geodesic curvature flux (see [11])
is bounded, both of which rely on the relation

(1.17) la —1] < % on N~ (p,7),

where a, the null lapse function, is defined by a=! := g(T, L) with a(p) = 1. Note
that along a null geodesic

dt
E = _(an)ila

da
— =v, v:=kyny—Vnlogn,
ds
2Q0 denotes the Bel-Robinson energy on the initial slice ¥ which will be defined in Section 2.
3A universal constant always means a constant depending only on Qo, Ko, |Xo|, t+ and the
number Ip > 0 such that I(;l < (gij) < Ip on the initial slice £g. Throughout this paper C' always
denotes a universal constant.
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where N is the unit inward normal of S; in ;. If (I9) is satisfied, one can see that
(1D holds for t(p) — d. < t < ¢(p) for some universal §, > 0, and consequently
s and t(p) — t are comparable. However, under the weaker condition (LII]) only,
it is highly nontrivial to obtain (LIT]). We observe that (II) can be achieved by
establishing

1.18 2 2 = 2t < C
(1.18) ||V||Lw L2(N=(p,7)) 5252 /Fw an|v[*dt <

where T',, is the portion of a past null geodesic initiating from p contained in
N~ (p,7), for some universal constant d, > 0. How to obtain such an estimate
on v is the first difficulty we encounter. The idea to derive the trace estimate
(TI]) is to employ the techniques in the proof of the sharp trace inequality in
[7, 8, @]. Under the assumption (LII]) only, suppose the sharp trace inequality
holds true on null cone in time foliation, in order to prove (L.I]), schematically, we
need to prove
i) there holds for Yv the decomposition

(1.19) Yv=V.P+Q

with P and ) appropriate S; tangent tensors. A
ii) there holds

(1.20) IV (v, Pl 2v- (o)) + IV LW Pl 22w (p,ry) < C-

The decomposition of the form (II9) will be derived in [I4]. To prove the sharp
trace inequality in time foliation and to control P and @ must be coupled with
the proof of a series of estimates for the Ricci coefficients on null hypersurface
N~ (p,7) including (LI6) by a delicate bootstrap argument. Hence, under the
condition (CIT)) only, (II6), (II7) and (LI8) should be proved simultaneously.
The proof is rather involved and close to the spirit of the works [7, 8 @] [13]. We
will present it in [14] with full details.

Now we simply consider how to obtain the estimate for v in (L20)). The estimate
for Vylogn of the form (L20) can be obtained by elliptic estimates and trace
inequality. By elliptic estimate, in view of
(1.21) divk =0, curlk = H,
where H denotes the magnetic part of R, we can only derive ||k 1 (xy < C, which,
by classic trace theorem, loses 1/2 derivative if restricted to null cone. However,
(C20) requires the L? control of one derivative of kyy on null cones. Hence, we
must adopt a different approach, which significantly surpasses the one via elliptic
estimate and trace inequality. This inspires us to use the tensorial wave equation
for k, which symbolically is given by
(1.22) Dk =k-Ric+n *V?*n+7-Vk—n"*aVn+r-7m-7+k-Vn—n"'k
We then prove by energy method, the k-flux satisfies

(1.23) IVEI 2w,y + IV LR L2 (p,r)) < C,

which schematically gives the desired control on ky .

The next step is to find a system of good local space-time coordinates under
which g is comparable with the Minkowski metric. More precisely, for a sufficiently
small constant € > 0, one needs to show that there exists a constant J, > 0,

4W denotes the connection with respect to the induced metric v on St.
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depending only on e and some universal constants, for which each geodesic ball
Bs,(p) with p € ¥; admits local coordinates x = (x!,22,2%) such that under

the corresponding transport coordinates z° = ¢,z!, 22, 23 the metric g has the
expression (L)) with
(1.24) In—n(p)l<e and  |g; —dij| <e

on Bg, (p) x [t(p) — d«,t(p)]. The existence of such local coordinates together with
(LI6) will enable us to show that '~ (p, d.) is close to the flat cone and consequently
Li(p,t) > 0.

The part on n in (I.24) can be established by elliptic estimates on n and d;n. The
derivation of the result for g under the weaker condition (I.TT]), however, presents
one of the core difficulties, which invokes new methods and a second application of

By the Bel-Robinson energy bound Q(t) < C and a result of Anderson [I],

one can control the lower bound of harmonic radius on ¥, such that with the

coordinates x = (z', 22, 23) on Bs, (p) C X,

1
19i5 (2, t(p)) = 95| < Je.
The challenge is to control time evolution of ¢g. Using (L2]), one hasfi
t(p) -
(1.25) g3 t0) ~ 95| S [ Kol
t

If (T9) holds, or more generally, if

t

| ROt < 0 < o6
0

for some g > 1, then with ¢, sufficiently small

(1.26) 193 (2, t(p)) — gij (2. £)] < Ag/I(t(p) — 1)} 711 < %6-

The above argument fails if k verifies (LTI)) only. Under the assumption (IT)),
our strategy is to prove directly the integral on the right of (L25]) can be small, i.e.

t(p) 1
/ |k(x, t")|dt < 36 Ve eX
t
by establishing
t(p)
(1.27) sup/ |k(x,t')]2dt’ < C,
t

TEX

since

(p) 1/2
|93 (@, t(p)) — gis(x, V)] S </t |k($,t')|2dt'> (tp) = 1)"/* S (t(p) — )"/
which implies |g;;(z, t(p)) — gij(z,t)| < i€ as long as 4, is appropriately chosen.

5We use P < ®2 to mean that &1 < CPy for some universal constant C.
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The major part of the present paper is therefore to establish (L27]) under the
weaker condition (IL.II)). To this end, we will use the Kirchoff parametrix to repre-
sent k as

—4mn(p)k(p) - J = / Ok - A + other terms,
N=(p:7)

for any § < i.(p,t), where J is any 2-covariant tensor at p tangent to X, and A
is the X-tangent tensor defined by

DrA;; + %trXAij =0 on N~ (p,7), lim (t(p) —t)Ai; = J.

t—t(p)

It can be shown that [[rA|lLen-(p,r)) S 1 together with other estimates on A,
where r = \/(47)~1|S¢| and |S:| denotes the area of S;. Thus

n(p)|k(p)| < / r~1|0k| 4 other terms.
N~ (p,7)

Next we let p move along an integral curve ®(¢) of T to get the representations of
k at all points on this curve. Then we can reduce the proof of (L27) to showing

that
t(p)
/t(p)—T
In view of (L22)), we have to employ various estimates of k and n on the null cones,
which will be established by delicate analysis.

This paper is organized as follows. In Section 2l we collect some preliminary
results related to the CMC foliation, which will be used frequently in the later
sections. In Section Bl we establish various elliptic estimates on the lapse function
n, in particular, we show that n can be bounded from below and above by positive
universal constants. In Section @] we provide the sketch of the proof of Theorem
We will explain how to use the bootstrap argument to establish ([I6]) and
other related estimates on the null cones. We then show how to use the estimate
(C27) to obtain a system of good local space-time coordinates which is crucial for
completing the proof of Theorem In order to establish (LZT), we derive a ten-
sorial wave equation for k£ in Section [f] and provide the estimate for the so called
k-flux in Section [0 which will be defined later. In Section 7 we provide some trace
estimates on the surfaces S;. We then use these results in Section 8 to establish
various estimates for k, n and x on the null cones. In section 9 we adapt the
Kirchoff-Sobolev formula in [10] to represent the second fundamental form k along
the null cones, through which we give the proof of (ITf) under the condition (IIT])

and thus complete the proof of Theorem Finally in Section 9 we complete the
proof of Theorem [I.1]

2
Ok 4| dt S L

~/J\/(F(t)7t—t(1))+7)
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2. Preliminaries
For the lapse function n, by using the elliptic equation —An + |k[*n = 1, it
follows easily from the maximum principle that
1

—— <n< i on Xi.
1] oo (520

(2.1) e

Thus, if we knew that [|k||z(s,) is uniformly bounded with respect to ¢ € [to,t.),
then we could get a positive uniform lower bound on n. Unfortunately, we only
have the weaker assumption (A1) on k, which does not allow (2] to give a positive
uniform lower bound on n directly. In the next section, we will show under the
assumption (A1) that C~! < n < C on M; for some universal constant C' > 0.

For each slice ¥, we use |3;] to denote its volume. Then, by using 0,g;; = —2nk;;
and Trk =t on X; we have

d
G ePizd) = [ (0= 3) duy <0,
b))

t

This implies that [¢]*|X;| is decreasing with respect to t. Consequently
(2.2) [Z] < @mt | < @mt [, Vitg <t <t,.
= el S jpptel Ve StE

2.1. Bel-Robinson Energy. We start with a brief review of Bel-Robinson energy,
one may consult [5] for more details. Associated to the Weyl tensor R, the Bel-
Robinson tensor is the full symmetric, traceless tensor defined by

(2.3) Q[R]aﬁ'yé = RM\WRBAJ# + *RMW*RBAJ“-
Then Q[R](X,Y, X,Y) > 0 whenever X,Y are timelike vectors, with equality only

if R=0. Let P, = Q[R]QM(;T&T'YT‘;. Since Rqp = 0, a straightforward calcula-
tion shows that

(2.4) D°P, = —37*’Q[R]ap,s T T°.
If we introduce the Bel-Robinson energy Q(t) by

Q(t) = Q[R](T7T7T7T)d/fb2m
3t

then, by integrating (2:4) in a slab My = Uy, with J = [to,t] C [to,t), we
obtain

t
Q(t) = Q(tO) - 3/ / nQ[R]agooﬁa’Bd,ugt, dt’.
to E,/
Let E and H denote the electric and magnetic parts of the curvature tensor R

defined by
(25)  E(XY)=g®R(X,T)T,Y), H(X,Y)=g('R(X,T)T.Y)
with *R the Hodge dual of R. It is well known that E and H are traceless symmetric
2-tensors tangent to >; with

R* = |B]> + [H|?,

QI < 4(|E]* + [H*)
and

Q(T,T,T,T) = |Ef + |H|*.
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Therefore
t
Qt) < Qto) + 12 / Il e s,y Q)
to

By the Gronwall inequality it follows that

t
O(t) < Q(to) exp (12 / ||m||Loo<zt,>dt')
to

for all ¢ € [to,ts). Therefore, in view of the condition (A1) we obtain the uniform
boundedness of the Bel-Robinson energy.

Lemma 2.1. Under the condition (A1), there exists a constant C' depending only
on Ko and t, such that

Q(t) < CQ}
for all t € [to,t.), where Q% := Q(to).

Consequently we have

Lemma 2.2. Let the condition (A1) hold. Then on any CMC leaf Xy C M., there
holds

1
(2.6) / IVE??+—|k[* ) + | |Ric]* < Q2
I 4 po

Proof. The inequality on k follows from [I2, Proposition 8.4] and Lemma [Z1l The
inequality on Ric then follows from the identity R;; — kiok® + Trk kij = E;;. O

2.2. Harmonic coordinates. For any coordinate chart O C ¥ with local coor-
dinates z = (21, 22, 23), we denote by z° = ¢, 2!, 22, 23 the transported coordinates
on I x O obtained by transporting along the integral curves of T. The following is

an immediate consequence of (A1) and (L2)).

Proposition 1. Let the assumption (A1) hold. There exists a positive constant
Cy depending only on Ko such that, relative to the induced transported coordinates
2, 2% in I x O we have

(2.7) Co € < gij(t, )6 < Colé)?.

Proof. This is [12], Proposition 2.4] which was stated under the stronger condition
(T3), the proof however requires only the weaker assumption (A1). O

2=t 2!z

This proposition enables us to derive a uniform lower bound on the volume radius
for all the slices 3;. Here, for a 3-dimensional Riemannian manifold (M, g), the
volume radius 7,0 (p, p) at a point p € M and scales < p is defined by

o |Br(p)|
Tvot (ps p) = inf —73

with |B,(p)| the volume of B,.(p) relative to metric g. The volume radius r,;(M, p)
of M on scales < p is the infimum of 7, (p, p) over all p € M. Using Proposition ]
it has been show in [I1 Proposition 4.4] that the volume radius r,;(3¢, 1) of each
Y on scales < 1 verifies

Tvol(zta 1) 2 Vo

for some constant vg > 0 depending only on K.
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From the previous subsection we have already obtained, under (A1), that
[tol®
[t.[?
Therefore, Theorem 3.5 in [I] applies and provides the following results on the
existence of harmonic coordinates.

|Riclam) < C and [5,] < 215,

Proposition 2. Let the assumption (A1) hold. For any € > 0, there exists rg > 0
depending on €, Qo, Ko, |Xo| and t. such that every geodesic ball B.(p) C Xt with

r < 1o admits a system of harmonic coordinates x = (z*, 2%, 2®) under which
(28) (1 + 6)715” <gij < (1 + 6)5ij
(2.9) r/ 102 gij1*dug < .

Bx(p)

We will not use the full strength of this result. The crucial part in our applica-

tions is the existence of a local coordinates z = (z!,2?,23) on each B,,(p) C X;

satisfying (2.8]) with ro > 0 depending only on €, Qq, Ko, |Xo| and ¢..

2.3. Sobolev-type inequalities. We will give several Sobolev type inequalities
under the assumption (A1). These inequalities are useful in establishing various
estimates.

Lemma 2.3. Let the assumption (A1) hold on M. Then for any smooth tensor
field F on ¥y C M, and any 2 < p < 6 there holds

3 3/p—1/2
(210)  |1Fllosy < C (IVFIZEIFIRSY? + 1Fl 2, )
where C' is a constant depending only on Ko and p.
Proof. This is [I2, Corollary 2.7]. O

The following calculus inequality is useful in deriving L°° bounds of certain
quantities.

Lemma 2.4. Let the assumption (A1) hold on M. Then for any smooth tensor
field F on ¥ C M, and 3 < p < 6 there holds

3/2-3 3 1/2
1Flleesn) < C (IV2F ISy IV F IR + IV Fll 2w + 1 Fllzes,)

where C' is a constant depending only on Ky and p.

Proof. By using a partition of unity, the Sobolev embedding WP (R3) — L*>°(R3)
with p > 3, and (27) in Proposition[I] it is easy to derive for any scalar function f
on Et that

[l < C IV ey + I flzresy)) -
Now we take f = |F|? in the above inequality. It yields
IF7 sy < CIVIFP Lo + NFPllo(s,))
< C(IVFlLesy) + IFllLecsn) IFl Lo (s,)-
This implies for p > 3 that
1Pl (s < C(IVFlloes,) + I1FllLrs,)) -
The desired inequality follows by applying Lemma 23] to the term ||V F| zr(s,). O
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3. Elliptic estimates for the lapse function n

In this section, we establish a series of elliptic estimates on the lapse function n
together with n~! and 7 := d;n under the assumption (A1). These results will be
repeatedly used in later sections. Throughout this paper we will use C to denote a
universal constant.

3.1. Estimates on n.

Proposition 3. Let the assumption (A1) hold. Then on every ¥, C M, there
holds

V20| 2(s,) + VRl L2(s,) < C.

Proof. We multiply the equation —An + |k|?n = 1 by n and integrate over ; to

obtain
/ (|Vn|2—|—|k|2n2):/ n.
I p

Since 0 < n < 3/t? < 3/t2 and || < |4, |[to]®/|t«|3, this immediately gives the
desired bound on [|Vnl|z2(s,).
In order to obtain the bound on ||V2n||p2(s,), we use the Béchner identity

/ |V2n|? = / (|An|* = R;;V'nVin),
I p
the equation An = |k|*n — 1, Lemma and the Holder inequality to infer that

1
IV2n|c2 S Bl + [S0]2 + ([ Ricl| 2 Vnll s S 1+ [Vl za.
With the help of Lemma 2.2] we have

IV2nllz2 £ 1+ [V°n ] VAl + [Vl
Therefore
V20l S1+([Vnll2 1
and the proof is complete. (I

Proposition 4. Let the assumption (A1) hold. Then there hold
(31) 198l 32200 < €
(3.2) IVl Lepee () <€
where 1 < b < 2.
We will give the proof with the help of the following lemma.

Lemma 3.1. Let the assumption (A1) hold. Then for any 1-form F on ¥y C M.,
we have

(3.3) IV2F||r2cs,) < C (1AF |22z + IVl 2y + 1F | 22s,)) -
Proof. Tt is well known that for any 1-form F' on X; there holds the Bochner identity

1
|A‘F|2 = |V2F|2 - 5 RdiacRmiachFm
P

¢ P

(34) +/ RadvdFivaFi _/ RidacchdvaE-
P p
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Since ¥ is 3-dimensional, the Riemannian curvature tensor is completely deter-
mined by its Ricci curvature, i.e.

1
5 (giagdc - gicgda)R-

Thus, we may use ([3.4]), the Holder inequality, Lemma [2.2] Lemma[2.3] and Lemma
2.4 to obtain the estimate

IV2Fllzz S 1AF 2 + | Riel IV Fll s + | Pl |1 Ricl 2
SIAF|zz + (IV2FIIVEIL + IVF2)

Ridac = giaRdc + gchia - Ricgda - Rdagic -

With the help of Young’s inequality, the inequality (B3] follows immediately. O

Proposition 5. Let the assumption (A1) hold. Then on every X, C M, there
hold

(3.5) IVPnllLacs,) < C(IVnllas) + [kllL=cs,)) -

(36)  IVnllz=s,) < C (190w, + IR IVIES?)
where 3 < p < 6.

Proof. A simple application of Lemma 3] to F' = Vn gives

3.7) IV3nllz2 S AVl L2 + V0] 12 + [V 2.

Recall the commutation formula AV;n = V;An+ R;;V;n and the equation —An+
|k|>n = 1, we can estimate

1AVR] L2 S k26l VRllze + Ikl [ VE] L2 + || Ricl| 2|V g
Plugging this into (81), using Lemma 2:2] and Lemma 23] gives
IV30allze S NVallpe + Vol a + [k oo
Using Lemma [2Z4] for the term ||Vnl||pe with p =4, we then obtain
IV2nllze S IVPnl 72 V2RI + [Vl + k] -

This clearly implies [3]). The inequality (8:6) is an immediate consequence of ([B.3])
and Lemma 27 O

Proposition [ follows by integrating (3.3]) and ([B.6)) in time with the help of (A1)
and Proposition

3.2. Estimates on n™!.
Proposition 6. Let the assumption (A1) hold. Then on each ¥y C M, there hold
V2™ Dllzzesy + I~ ez, < C.

Proof. We first have from the Bochner identity that

2(n= 12 —1)2 (N (]
/ZIV( /|A ) /RM )V, ()
(3.8) < 1AM + [Ricl 2 [V ()2

Since —An + |k|?n = 1, we have

(3.9) A~ =2n73|Vn2 + 0% — k[Pn L.
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Consequently, it follows from the Holder inequality that
ARz S I Vallpa[ V™ llpe + [kl Zsn™ e + [n 7 [7s

Combining this inequality with ([B3.8) and using the Sobolev embedding H!(X) —
L?(X) with 2 < p < 6, which is a consequence of Lemma 23], we obtain

V2™ Hllzz S 0™ Vallpa V(™ e + (In7Hms + [1E]1Z6) 07
1
(3.10) + | Ric| 22V ()] s

We need to estimate ||n=1Vnl|z4. To this end, we multiply the equation —An +
|k|?n = 1 by n~! for some positive integer I and then integrate by parts over ¥; to
obtain

(3.11) / (zn—l—1|Vn|2+n—l)=/ n=H k2
P

PP

Taking | = 7 gives
/Z 8 |Vnf? < / S K2 < (K]l 2.

Therefore

1/8 1/8
_ _ 1/4 — 3/8 3/4
In ]| < ( [ 8|Vn|2) ( / |Vn|6) < RIS 4.

By Lemma[23land Proposition[3}, we have ||Vn||,s < C (||V?n||r2 + [|[Vnl|12) < C.
By using Lemma 23] and (1) with [ = 5 we also have

1/2
In=2llzs < =2l < ( / n-4|k|2) I
t

S Elzslln™ Ze + [In~ 174
< A+ [Ells) In~ i
Therefore

— 3/8 1/4 —113/4
In = Vnlles S (14 IRIEE) IR It I

~

Combining this inequality with (BI0) and using Lemma 22 to bound ||k z4, ||k L
and ||Ric|| 2, it yields

_ —1113/4 — _ _ _
V2 Ylz2 < lln IV (Dl za + Ul e+ Dlln~ Y + 1V (Y] o,
Applying Lemma 23] to the term |[|[V(n™1)| L4 gives
— — 3/4 — 3/4 — 1/4 _ _
V2Dl S I M5 (92 DI T DI + 1V G ez ) + I
— 3/4 — 1/4 _
+ IV IV (R + I e
With the help of Young’s inequality, we obtain
(3.12) 192 Y2 < Il ik + .

In order to estimate ||n~!| g1, we use (B.I1) with [ = 3 to obtain

/Et (BIV R +n?) = /E k202,
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It then follows from the Hoélder inequality and Lemma 23] that
_ _ —1y(3/4), —1,1/4 -
IV llze S Ikllgelin e S Wellse (IVGDIEE I A+ e

This clearly implies
(3.13) V(=2 < (Ikllzs + 1El174) I~ 22 S lln7" e
The combination of B12) and BI3) gives

IV2(n=llez + V(™2 < lIn =Lz + lIn =" e
Note that (BI1)) with | = 2 gives

In =12 S/E nT R < R Zalln | e
t

This implies ||[n~!||2 < ||k]|3. < C. We therefore obtain |[n~!|| g2 < C. With the
help of Lemma 2.4 the estimate |[n =1L~ < C follows immediately. O

3.3. Derivative estimates about n. In this subsection we will give various esti-
mates on the derivative n := dyn. We start with deriving an elliptic equation for
n. By straightforward calculation we have

(3.14) An = —§"V;Vn + 9;(An) + g"T%V,n
Recall that )
I = §gab(vigjb +V;gib — Vugij)-

From (L2), (6] and the fact Trk = ¢ it then follows

9TV an = —2kIV'nVan + Trk|Vn|>.
Plugging this identity into 3.I4) and using ¢ = 2nk™ and An = |k*’n — 1 we
obtain

An = =20k, Vn + |k*n + 0 (|k|*)n — 2kEV nVan + Trk|Vn|?
We may use the equations ([L2)) and (I3]) to derive
o(|k|?) = —2K"V,;Vn + 2n Rk + 2n|k|*Trk.
Consequently, we obtain
An = —4nkVV,;V in + |k[*n — 2kIV'nV on + Trk|Vn|?

(3.15) + 2nR;;k" 4 2n|k|*Trk.

Now we multiply the equation (BI5) by n and integrate over X;, by using the
boundedness of n and the Holder inequality we obtain

[ vl + w21ap)
PR
S [ Al n + |Vl + ol Rl + 1)

< (IV?nllLz + Vnlgs + | Ricllc2) [kl zallall s + &I Zoll]| 22

Using the bounds derived in Lemma[2.2land PropositionBltogether with the Sobolev
embedding we have

/ (Ival? +1kPA%) S lallpe + lallce S IVAllLe + 7] 2.

¢
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Recall that |k|2 = |k|> +¢2/3 and [t| > |t.| > 0. Therefore
IVallZ: + lIallz: < Vil e + (14l ze.
We therefore obtain
Lemma 3.2. Let the assumption (A1) hold. Then for each ¥; C M., there holds
(3.16) IVallze s,y + 172z, < C.
Now we are ready to give some estimates on the mixed norms of n.
Proposition 7. Let the assumption (A1) hold. Let n = 0yn. Then there hold
V0l pip2 .y < C and |7l Lppoemy < C
forany 1 <b<2.

Proof. In view of the assumption (A1), it suffice to establish on every %; the
inequalities

(3.17) IV*ill 2w S C (1Kl +1) 4
and

. 3/2-3
(3.18) 72l Lo () < C (”k”L/m(Et/)p + 1)

for any 3 < p <6.
By the Bochner identity, we have

IV2RlZ2 < AR|Z + || Ricl| 2] Vil Zs-

By using || Ric||zz < 1 and applying Lemma 23] to || V7| 1+ we obtain

V20l 2 S 18R] 12 + Vil 254 VAl 5 + Vil 2.
In view of Young’s inequality and (B16), it follows
(3.19) 192122 S I1AR] 2 + 1.
From the equation ([BI3)) it follows that
|Adllze S Ikl | (IV2lle + |1 Riclz2) + k2 [llo + [ Vnl2el s + k]2

With the help of the estimates derived in Lemma 2:2] Proposition Bl and (B.16)
together with the Sobolev embedding we have ||An||rz < ||k||L=~ + 1. Therefore
V27|l 2 < ||k||Le + 1 which is exactly BIT). The inequality (BI8) immediately
follows from Lemma [Z4], BI7) and BI6l). O

4. Null radius of injectivity: proof of main theorem II

In this section we will give the sketch of the proof of Theorem[[.2l The complete
proof is rather involved and requires a delicate bootstrap argument. For any t; <
t1 < t. we consider the slab M; = U1 with I = [tg,t1]. We set, for each
pE My,

< _ [ +oo, if ix(p,t) > t(p) — to,
(P, 1) = { ix(p,t), otherwise

and define

(4.1) iy == min{i.(p,t) : p € My}.

Due to the compactness of M, we have ¢, > 0. In order to complete the proof of
Theorem [[.2] it suffices to show that i, > d. for some universal constant d, > 0.



IMPROVED BREAKDOWN CRITERION FOR EINSTEIN VACUUM EQUATIONS 17

We will use the following result concerning the lower bound on the null radius
of injectivity of a globally hyperbolic space-time which has essentially been proved
in [I1].

Theorem 4.1. Let C~' < n < C on My for some constant C > 0. Then there
exists a small constant € > 0 depending only on C' such that if, for some constant
0, > 0, the following three conditions hold for all p € Mj:

C1. the null radius of conjugacy satisfies
S«(p, t) > min{i., 0 };
C2. for each t satisfying
0 <t(p) —t < min{iy, i},

the metric v, on S?, obtained by restricting the metric g on ¥ to S; =
N=(p) N, and then pulling it back to S* by the exponential map G(t,-),
verifies

(X, X) =7 (X, X)| < €7 (X, X), VX eTS?,

where ’CY) is the standard metric on S?;

C3. OnlU, := I, x Bs, (p) with I, := [t(p) —min{i., .}, t(p)] and Bs, (p) C Xy
a geodesic ball, there is a system of coordinates ©® with x° = t relative to
which the metric g is close to the Minkowski metric moz = —n(p)dt* +
§;jdxidx? in the sense that

[n—n(p)| + 1g9i; — 0ij] <€ onlUy,
then there holds i. > 0., i.e. the null radius of injectivity verifies
ix(p,t) > min{d.,t(p) — to}
for all p e Mj.

Let us briefly outline the idea of proof. Assume that i, < d.. Let pg € M be
a point such that i.(po,t) = ix < t(p) — to. By C1 we have s.(po,t) > ix(po,t) =
l(po,t). Thus there exist two distinct past null geodesics v, and 72 initiating at
po intersect at a point go with ¢(qo) = t(po) — i«. According to the definition of i,
and [I1, Lemma 3.1] 71 and ~, are opposite at both pg and gg. On the other hand,
under the conditions C2 and C3, Lemma 3.2 and Lemma 3.3 in [11] imply that
such two null geodesics can not intersect in the time slab [t(pg) — i, t(po)].

Theorem A1 provides a general framework to estimate the null radius of injec-
tivity from below. Under the condition ([3)), in [I1] Klainerman and Rodnianski
showed that the conditions C1-C3 hold with a universal constant J, > 0; thus
they derived a universal lower bound on the null radius of injectivity.

In the following we will describe how to verify the conditions C1-C3 under the
assumption (A1). To this end, for each p € M consider the past null cone N~ (p),
let s be its affine parameter and let S; = N~ (p) N ;. Then S; is diffeomorphic to
S? for each ¢ satisfying ¢t(p) — i (p,t) < t < t(p). Let v be the restriction of g to S;
and let |S¢| be the corresponding area. The radius of S; is defined to be

(4.2) =/ (4m) 71|

which is a function of ¢ only.
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On N~ (p,7) \ {p} with 7 < i,(p,t) we can define a conjugate null vector L with
g(L,L) = —2 and such that L is orthogonal to the leafs S;. In addition we can
choose (e4)a=1,2 tangent to S; such that (e4)a=12, es = L, e4 = L form a null
frame, i.e.

g(L,L)= -2, g(L,L)=g(L,L)=g(L,ea)=g(L,ea) =0, glea,ep)=0aB.

The null second fundamental forms y, x, the torsion ¢ and the Ricci coefficient ¢
of the foliation S; are then defined as follows

xap =g(DaL,ep), X,p =8(DaL,ep),

1 1
Ca= Eg(DAIaL), 4= §g(eA;DLL)-

In addition we define

AB ~ 1
trxy =777 xaB, XAB = XAB — §trx YAB-

We can define try and x similarly.
We introduce the null lapse function

a ':=g(L,T).
Then a > 0 and a(p) = 1. It is easy to see that
L=-a*(T+N), L=-a(T-N),
where N denotes the unit inward normal to Sy in ¥;. We also introduce the function
vi=—-n"'Vyn+kyy

which is relevant to the estimate on a.
For any S;-tangent tensor field I we define the norm || F'|| poc 2 (ar— (p,r)) bY

t(p)
”FH%ZOL?(N*(;),T)) = sup /t |F|*nadt := sup/F |F|*nadt,

weS? Jt(p)—T weS?

where T',, denotes the portion of a past null geodesic initiating from p contained in
N=(p,7).
The following result is sufficient to prove the conditions C1-C3 in Theorem [£.1]

Theorem 4.2. Let the assumption (A1) hold. Then there exist universal constants
0, >0 and C, > 0 such that for any p € M there hold

t(p)
(4.3) / (@ (0))[2dt < C,
t(p)—
with ® the integral curve of T through p, and
1 2 .
(4.4 a-1<1, ‘tf’x - 5] <O I L2y < O

on any null cones N~ (p,T), where 7 := min{i,, d, }.

In fact, the estimate on try in ([@4]) implies the condition C1, see [0l [4]. Next
we will show that the estimates in ([@4]) imply the condition C2. To see this, we

recall that % = —na and %’YAB = 2xapB. Then
d _ _ _
%(8 *yap) = —na (—28 Svap + 2s 2XAB)
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Let X € T'S? be any vector field. We integrate the above equation along any null
geodesic and note that lim;_,(,)- () 27(t) 2’3,( see [13]), it follows that

(07X X)-7 (3| < [ " (2|>z| +

Let

trx — % > s(t) " 2y(X, X )nadt!

0 := 2/ +

2}
try — —|.
s
We then have

o t(p) o
s(t)72y(X, X)— (X,X)‘ < /t S} ‘s(t')_27(X,X)— v (X,X)‘ nadt’

o t(p)
+7 (X,X)/ O(t )nadt'.
¢

Therefore, it follows from the Gronwall inequality that

t(p) t(p)
Onadt’ exp / Ot nadt' | .
t

Since 0 < n < 3/t2, the estimate (@4 in Theorem F.2] implies

*

‘s(t)-%(X,X)— o (X,X)‘ < (X, X)

t(p)
/ Onadt’ < C ((t(p) — V2 4 (t(p) — t)) < O(t(p) — )2
t
and consequently

(4.5) s~2(X, X)— 7 (X, X)| < Ctp) — V2 7 (X, X)

for all t(p) — min{i., 6.} <t < t(p), where C is a universal constant. The condition
C2 is thus verified.

The verification of the condition C3, using the estimate ([43]), is given in the
following result.

Lemma 4.3. Let the assumption (A1) hold. For any € > 0, there exists a constant
0 > 0 depending only on Qq, Ko, t. and € such that for every point p € My there
exists on Uy := I, X Bs_(p) with I, = [t(p)—min{i., §: }, t(p)] a system of transported
coordinates t,x = (x', 22, x3) relative to which g is close to the Minkowski metric
m(p) = —n(p)?dt® + §;jdx'dz’, in the sense that

(4.6) lgij — dij] < € and In —n(p)| < e.
Proof. Tt follows from Proposition 2] that there exists a constant dg > 0 depending

only Ko, Qo, t« and € such that every geodesic ball Bs,(p) C ¥y(,) admits a system
of harmonic coordinates » = (z*, 22, 2®) under which

Under the transported coordinates t,z = (x!, 22, 2%), let p = (t(p),0) and let ¢ =
(t,x) be an arbitrary point in I, x B, (p) with I, = [t(p) — min{i., .}, t(p)], where
0 < 9 < dp is a constant to be determined. By using the equation 0;g;; = —2nk;;

we have
t(p) t(p)
l9ij (t, ) — 9i5(t(p), x)| = / Orgij (t', x)dt'| = 2/ n|k|dt’.
t t
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Using the bound 0 < n < 3/t,, the Holder inequality and the estimate ([@3)) in
Theorem [4.2] it follows for some universal constant C; > 0 that

1963 (8, ) — 953 (1(p), 0)| < C1(t(p) —1)"/2 < C102/2.
In view of ([@T)), we thus obtain

(4.8) gis(t, ) — 85 < |gij(t, ) — iy (t(p), )| + |gis (H(p), ) — 655 < C104/> +

€
2 )

which gives the first inequality in (£6) by letting Cy61% < €/2.
Next we prove the second inequality in ([@6]). From Proposition [7] we have

nt.2) = nlt(). )] < [ e 2l < 60— 0l < Co
while by employing Morreyfs estimate, Lemma and Proposition B we have
[n(t(p), ) = n(t(p). 0)] < Cobi |Vl iz, )
< Cool/ " (I92nl 5 IV mll 5" + 1 9nllrz )

< Co0i*,
where C5 > 0 is a universal constant. Therefore
In(t,z) = n(p)| < 2C26"
which implies the second inequality in (€3] by further letting 20561 < e. O

The proof of Theorem is based on a delicate bootstrap argument. We first
fix some notations and terminology. Related to the deformation tensor w5 of T,
we introduce the ¥;-tangent tensor hghgww,, where

hS =68 + T, T

denotes the projection tensor. It is easy to see that k;; = h?h;’ww and thus this
tensor is an extension of k. We will denote it by the same notation k, i.e.

(4.9) kap = hohgm,
Note that koo = koo = 0.

Corresponding to the null vector L, let V& be the ¥;-tangent tensor defined by

Viki; = hihDkag
and let o
|VLI€|2 = g” g” VLkiijki/j/.
We also introduce Yk by WA/% = Vak;; and set
Yk =P g g7V abiV i

Corresponding to the second fundamental form k, then, for each p € Mj, we
introduce on the null cone N~ (p, 7) the k-flux

(4.10) FlK)(p,7) = / (IVK? + [V LkP)

N~ (p,7)
where, for each function f and 7 < . (p, 1),

t(p)
/ f= / frnadp-dt.
N=(p,T) t(p)—7 J St
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Corresponding to the time foliation, we recall the null components of the Rie-
mannian curvature tensor R as follows

1
arp =R(L,eq, L,ep), Ba=;R(ea, L, L L),
1 1
(4.11) p= ZR(LPLva L), 0= Z*R(L7L7L7 L),
1
8,=5R(ea L,L L), asp = R(L e, Lyen).

The corresponding curvature flux R(p, 7) on the null cone N~ (p, 7) is given by

t(p)
R(p,7) = /( : /S (Jo)® + 1817 + |p> + |o|* + |BI?) nadpudt.
t(p)—7 t

The following result says that once the null lapse a is well controlled, then the
k-flux and the curvature flux can be bounded by a universal constant.

Theorem 4.4. Let the condition (A1) hold. Then there exists a universal constant
C. > 1 such that for allp € My if la—1] <1/2 on N~ (p,7) for some 0 < 7 < i,
then there holds

R(p,7) + Flk](p,7) < C..

We will prove Theorem 4] in Section [fl This result requires 1/2 < a < 3/2 on
N~ (p, ) which is obvious for small 7 > 0 since a(p) = 1. In order for the above
result to be applicable, we must show that there is a universal constant 6, > 0
such that the same bound on a holds with 7 := min{i,, d.}, and so does the same
bound on R(p,7) + F[k](p, 7). We will use a bootstrap argument to achieve this
together with various estimates on try, x and v. That is, we will make the following
bootstrap assumptions

1
(BA1) a1l < 35,
2
(BA2) try — —’ < &,
S
(BA3) IR Zes 30 .y < €05
(BA4) ||V||%§L§(N*(pﬂ')) < &,

on the null cone N~ (p,7) for all p € M;, where 0 < 7 < i, and & > 1 are two
numbers satisfying £g7 < 1. Due to the continuity of the quantities involved and the
compactness of My, the bootstrap assumptions (BA1)-(BA4) hold automatically
for sufficiently small 7 > 0. Our goal is to show that we can choose universal con-
stants & > 1 and 6, > 0 such that (BA1)-(BA4) hold with 7 = min{i,,d.}. We
will achieve this by showing that the estimates in (BA1)-(BA4) can be improved.

We will first derive various intermediate consequences of the bootstrap assump-
tions. In particular, we will derive the estimate on the important quantity N7 [f]
which is defined as follows. For any S; tangent tensor field F' defined on the null
cone N/~ (p, 7), the Sobolev norm N;[F](p, ) is defined by

(4.12) Mi[F)(p,7) := [Ir " Fllr2v- o)) + IVLF 2w o)) + IV F Il 20— o)) -

Recall that the components of the deformation tensor 7w of T under transported
coordinates are given by mo = 0, mo; = —n~'V;n and mi; = ki;j. Let us denote by
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A= —%Trk = —%t and k the traceless part of k. We decompose k on each S, by
introducing components

(4.13) NaB = kag, €4 = kan, §=knn
where (e4)a=1,2 is an orthonormal frame on S; and N is the inward unit normal
of S; in ¥;. Let 14 be the traceless part of n. Since §48nsp = —§, we have
N 1
NAB = NaAB + 55,435-
We will denote by ié, Wié and 7 the collections
k=(0.em), Yk=(Y5Ye Vi), 7= (Ylogn,Vylogn)

respectively. We then define # to be the collection

(4.14) 7= (k, 70, \).

We define N1 [#](p, 7) according to (II2) with F replaced by 7.

With the help of the bound on k-flux given in Theorem 4l and various estimates
on the lapse n given in Section 3, we will show that N [f#](p,7) can be bounded in
a suitable way under (A1) and the bootstrap assumptions.

Theorem 4.5. Let (A1) hold. Then there exists a universal constant C such that
under the bootstrap assumptions (BA1)—(BA3) with EgT < 1 there holds

(4.15) Mltlp,7) < C
for all p € M.

We will prove Theorem in Section 8. From Theorem [£.4] and Theorem it
follows that

(4.16) R(p,7) + Mftl(p, 7) < Co,

where Cy > 1 is a universal constant.
With the help of ([@I6]), we can establish the following result which enables us
to improve the estimates in the bootstrap assumptions.

Theorem 4.6. There exist two universal constants g > 0 and C1 > 1 such that,
under the bootstrap assumptions (BA1)-(BA4) with &7 < 1, if 7 < min{i., do}
then there hold

(4.17) o= 1< G,
2

(4.18) ‘trx—gy <Cy,

(4.19) ||>ZH%3°L§(N*(;D,T)) =G

(4.20) s 2oy < €

on the null cones N~ (p, ) for all p € Mj.

The significance of Theorem lies in that it allows us to choose & > 1 and
8. > 0 universal such that (BA1)-(BA4) hold on N~ (p,7) with 7 = min{i,, 0, }.
To see this, we choose & and . in the way that

(4.21) £ :=2C, and §, =min{(4C1)72, &}
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With such & and d,, the estimates (@I7)-(20) imply that the estimates (BA1)—
(BA4) can be improved as

1 2] 1 1 1 ) 1
|a — 1| S Z tI‘X— g S 5507 HX”Lg"Lf(J\/*(p,T)) S 580; HVHLSJOLE(N*(;D,T)) S 550

)

on N~ (p,7) if 7 < min{i., d.}. By repeated use of Theorem 4] Theorem [ and
Theorem 6] the bootstrap principle implies that the estimates in the bootstrap
assumptions (BA1)-(BA4) hold with 7 = min{i,, d.}, where & and d. are deter-
mined by (@21 which are positive universal constants. Consequently, we obtain
(#4) in Theorem

We remark that the analogous results to Theorem .6 have been proved in [7], [13]
for the geodesic foliations where only the bound of the curvature flux is used. In
time foliations, however, the proof of Theorem relies not only on the curvature
flux but also on N [#].

Assuming ([£20), the following simple argument shows how to derive ([.IT) with
the help of (BA1). Recall that a=! = g(L,T) and L = —a~'(N + T). We have

d
d—cfl =g(L,D.T) =a 2g(N,DrT) +a *g(N,DxT).
S
Since DT = n~'Vnand kyny = —(N, DyT) we obtain dlsafl = —a"2(mon + EknN).
Consequently
d
(4.22) L(a) = 750 = TN +Eknn.
Since % = —na, we have
© 0= —na(mon + k)
dta = —na (TN NN) -

Integrating the above equation along null geodesics initiating from p and using
a(p) =1 yields

t(p) t(p)
a—1= / (mon + knn) nadt = / vnadt'.
t t

Since 0 < n < 3/t2, (BA1) and [#20) imply
la — 1] < Ci(t(p) — )2 < Oy r'/?

for all t(p) — 7 <t < t(p), where C; could be a different but universal constant.
The derivation of (IR)—-(@20) however is highly nontrivial and requires lengthy
calculation. The complete proof is contained in [I4] where other related estimates
for Ricci coefficients are proved simultaneously.
In order to complete the proof of Theorem 2] it remains to prove (£3)) which
is restated in the following result.

Theorem 4.7. Assume that the condition (A1) holds. Then there exist universal
constants 6, > 0 and C > 0 such that

t(p)
/ |k(®(1))[*ndt < C
t(p)—min{i.,0.}

for all p € My, where ® denotes the integral curve of T through p.
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The proof of Theorem [£.7] forms the core part of the present paper. It is based
on the formula of Ok given in Section Bl and a Kirchoff-Sobolev representation for k
given in Section 9 together with various estimates on null cones derived in Section
8.

5. Tensorial wave equation for the second fundamental form

In this section we will derive the formula for Ok, where k is defined in (9]
whose projection to ¥ is exactly the second fundamental form.

Proposition 8. The tensor k defined by ({{.9) verifies the tensorial wave equation
Okij = —n " °AV;Vn +n">V;V;n + 2moq (Vki; — Vik§ — V;k{)
— 2Trk Rij — Rkij + RTrk gij + 2(k{ Raj + k¢ Rai) — 2Rapk g3,
+ 0" (2k{ Vo Vin + 2k{VoVin — Anky; — Trk V;V n)
(5.1) + 2kiokky; — moamgkij — n Vi
Proof. We first recall that
Oki; = —DoDoksj + g?'D,Dgk;;.

By using koo = koo = 0 and D,e; = V,e; — ki;T, we can obtain through a
straightforward calculation that

gP"D,D kij = Akij + Trk Dokyj + 2kio k™ ks,
By using DT = n"Vine, = —ﬂ'éei and koo, = koo = 0, we can obtain
DoDoki; = eo(Dokij) + ki'Dokaj + k§fDokia + m0a V*kij
+ mo; Doko; + mojDokio.

It is easy to see Doko; = Foak;-l. From the equation (L3)) it also follows that
(5.2) Dokij = eo(kij) + 2kiak§ = —n"'V;Vn + R + Trk ky;.
Consequently

DoDokij = eo(Dokij) + m0a Vi —n~ ' (k§VaV n + kiVaVin)

+ (k{ Raj + k§ Rai) + 2Tvk kiak + moim0ak + mojmoaks'-

Therefore
Oki; = —eo(Dokij) — m0a Vkij — Toim0ak] — mojToa Ky
+ 0 (k}VaVin+ k§VoVin) — (kf Raj + k§ Rai)
(5.3) — 2Trk kiok$ + Akij + Trk Dokij + 2kiak®ke;.

We need to compute eg(Dok;;). It follows from (5.2) and Trk = ¢, we have
eo(Dokij) = n_?’hvivjn — n_28t(Vian) + n_latRij
(54) + nilkij + Trk DOkij — 2Trk kiak;-l.

In order to compute 9;(V;V;n) and 0, R;;, let I'?; denote the Christoffel symbol of
Y. Then it follows from the equation 0,g;; = —2nk;; that

% = —n (Vik! + Vik? — Vohyy) — Vink$ — V,nk¢ + Vnk;.
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Using divk = 0 and Trk = ¢, this in particular implies I"Zj = —TrkV n. Therefore,
noting that 0,(V;V;n) = V;V;n — I'$, Van, we can obtain

8t(Vian) =V;V;n+nVyn (Vlk;l + ij? — Vakij)
(5.5) + (Vink$ + Vink?) Van — | Vn|?ki;.
Noting also that 0, R;; = Vaf‘?j — Vif‘gj and divk = 0, we have
8tRij = Van (2Vakij — Vlk;’ — ij;l) —n (Vavik}l + Vankf — Ak”)
+ Ankw - (Van . k;l + Vann . k;l) + Trk VZVJn
With the help of the commutation formula
a __ a __ a b a
V,Viki = [Va,Vi]kj = R;j%ik, + Raik;
and the curvature decomposition formula
1
R;®vi = gjp R + Rypodi' — Rijoy — Rygsi — 5(9007 — 9i305) R,
we obtain
1 1
mﬁmyzﬂm@+Rﬂw—TMRﬁ—&M@%—53%+§Rﬂmm
Consequently
8tR1'j = Van (ZV“kij — Vzk_;l — ij;l) — (Vavink; + Vannkf)
+ HAICZJ + Ank” —3n (Riak; + Rjak;l) + 2nTrk Rij
(5.6) + 2nRapk®gij + nRk;j — nRTrk gi; + Trk V,;Vn.
Plugging (5.5) and (5.6) into (5.4)), and using mo; = —n~'V;n, it yields
eo(Dokij) = n’ghvivjn - n*QVith — T0qa (3V“kij - 2Vlk;’ - QV]k;l) - 7T0i7T0ak}l
- WOjWOakg + WOaﬂgkij - n_l (Vavink? + Vannkf — Trk Vlvjn)
+ Ak” + n_lﬁn kij -3 (Riak? + Rjakg) + 2Trk Rij + 2Rabkabgij
+ Rkij — RTrk gij +n~ 'kij + Trk Dokij — 2Trk ki'kqj.

Plugging the above equation into (5.3)) gives the desired equation. d

6. Proof of Theorem 4.4

In this section we will complete the proof of Theorem [£4] i.e. we will show that
if la—1]<1/2 on N~ (p,7) for some 0 < 7 < i, then

R(p,7) + Flkl(p,7) < C,

where C, is a universal constant.
We will use the following result (see [B) Lemma 8.1.1]).

Lemma 6.1. Let P be a vector field defined on the domain J~ (p,7). Then

[ een-[ o &(P, T)d.
N=(p,7) J~(p,7) Sipy—~NIT ~(p)
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where J~(p) denotes the causal past of p, T~ (p,7) denotes the portion of J~(p)
in the slab [t(p) — T, t(p)], and

t(p)
/ f= / dt / fndpg | .
JI~(p,7) t(p)—7 ZNT ~(p)

We first show the boundedness of the curvature flux R(p,7). With the Bel-
Robinson tensor Q[R] defined in Section 2, we introduce P, = Q[R],,5,sT T T?.
We may apply Lemma [6.1] to obtain

/ g(P, L) = / D*P, — Q[R|(T, T, T.T)dp,,
N=(p,7) I~ (p,7) Zit(p)—+NT ~ (p)

With the help of the calculations in subsection 2.1, (A1) and Lemma [ZT] it then
yields

(6.1) <c.

/ g(P.L)
N~=(p,7)

Note that g(P, L) = Q[R|(T, T, T,L) and T = —3(aL+a"'L). Since la—1| < 1/2
on N~ (p,7), it follows from [5, Lemma 7.3.1] that —g(P, L) is equivalent to

o + B2+ 181> + |p* + |o]>.

Thus, there holds, for some universal constant C' > 0,

/ g(P.L)
N—=(p,7)

By (61)), we conclude that R(p,7) < C, for some universal constant C.
Next we will show the boundedness of the k-flux F[k](p,7). With the help of
the projection tensor

C™'"R(p,7) < < CR(p, 7).

hoh = gof 4 ToT”,
for any tensor field Uy, ay--a,, in TM, we define |U| as follows

|U|2 = hIJUIUJ = porf .. 'hamBmUalozzvvvam U31ﬂ2"'ﬂm
R = peabr o pomBe U = Upiageans  Us = Us,y gy -

For any ¥;-tangent tensor field U in M, we define the energy momentum tensor
Q[U]ap associated with the covariant wave operator acting on tensors:

Q[U]ap := "D UMDU; — %gthIJg“”D#UID,,UJ.
We have
D?Q[U]as = W'D, U;0U; + b (DsD,U; — D,DsU)DPU,
+ Dl (D, UDsU; — %gaﬁg“”DHUIDVUJ)

It is easy to see that the last term in the above equation can be written symbolically
as 7- DU - DU.
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Now we apply the above equation to U = k. Noting that h°® = 0 and h¥ = g%,

we have
DP(Q[k]agT) = D*T*Q[Kas + D Q[Klog
= —kijQ[k]ij — WOjQ[k]Oj + DokijDkij
(6.2) + [Da, Dolki; VkY + 7 - Dk - Dk.
In view of the commutation formula
D, Dolkij = Ri"moks; + R mokiv = —€§ Hamk? — €5 Homky,

we derive symbolically

D?(Q[k]apT*) = =k Q[k]i; — 7% Q[Klo; + Dok Uk

(6.3) +H-k-Vk+n Dk-Dk.
From the definition of Q[k], it is easy to see that

1
(6.4) Qlkloo = 5 (IDok[* + [VE*),
(6.5) Q[k)oj = Dokpq VKP4,

1

(6-6) Q[k]u = vikpqvjkpq - §gij (_|DOI€|2 + |Vk|2) .
Therefore

1
D?(Q[k]apT*) = 5Tk (—=|Dok|* + |Vk|?) + &k - Vk - VE
(6.7) +Dok-Ok+H -k-Vk+7 Dk-Dk.

We now apply Lemma 61l to P? := T*Q[k]? and obtain

©8) [ ammo+ [ Q= [ D(@lHasT)
N—=(p,7) Si(py—~NIT~ () J~(p,7)
For the null pair L and L, it is easy to see that

QIKI(L, L) = |VLk[®,  Q[KI(L, L) = VK|
Since T = —3(aL + a~'L), we have
QU(T.L) =~ (aQIH(L.L) + 0™ QUKL L) = — 5 (alVLk? + a™!VH?).

Since |a — 1| < 1/2, the k-flux defined in (AI0) verifies the inequality
-[emmun<FHen<-1[ QT
N=(p:7) N=(p:7)
Thus we derive from (6.8) and (G4) that

(6.9) Flkl(p,7) <4

[ D@tz [ (IDakP? + [VKE)
I~ (p,7) Zip)—+NIT ~(p)
In view of (5.2]), Lemma 2.2 Proposition Bl and Proposition [6] we have

/ (IDok[? + [VAP)
>

t

(6.10) SUIVPnlliags,) + IRicllTas,) + kL, + 1VEIZ s, < C.
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Moreover, in view of ([67)), (A1), Lemma 22 and the above inequality we have

t(p) )
N / Dokl L2z, ) 1Pkl L2 (s, dt
t

(p)—7

t(p)
[ el (IR, + 19K, )

(p)—7

/ D?(Q[k]sT?)
J~(p,7)

t(p)
+ / 1l e N s IR 2,

t(p)—7

t(p) t(p)
< / ||Dk||L2(Et/)dtl+/ ||7T||Loo(2t/)dt/
t(p)—7 t(p)—7
t(p)
(6.11) <C+C |||:|k||L2(Et,)dtl.

t(p)—7
Therefore

(6.12) FlH(p.r) < C+ C/t:(j) [E P
p)—7
We now recall the formula for Ok given in Proposition [ which symbolically can
be written as
Ok = —n"3nVn+n?V*a+71 -7 -7+k-Vn+k-Ric+r Vk—n""k.
Since C~! < n < C, we obtain
10kl L1z S 1l V20l Lz + V2l L + 7l pipoe 7] Foe o
+ 1kl 1 pee V20l ooz + |1l L poc (| Ric Lo 2
+ |kl Lizz + 7l L1 [ VEl| o2
In view of the assumption (A1), Lemma 22 Proposition Bl Proposition [1 and

©10), it follows
|Ok| 12 < C (1 + 7l pipee + T) <C.

Combining the above inequality with (6.12]) completes the proof of Theorem [£.4]

7. Trace estimates

For a point p € M, let s be the affine parameter on the null cone N~ (p) and
let r be the radius of S; := N~ (p) N X; which is defined by (#2)). On each S; we
introduce the ratio of area elements

() nlw) = Y2,
(Vakl
We will first show that all the quantities s, r, vtl /% and t(p)—t are comparable under

the bootstrap assumptions (BA1)-(BA3). Here we say two quantities ¢ and v are
comparable in the sense that C~ 1y < ¢ < C% for some universal constant C > 0.

we S

Lemma 7.1. Under the bootstrap assumptions (BA1)~(BA3), the four quantities

s(t), r(t), Utl/2 and t(p) — t are comparable on the null cone N~ (p,7) with 7 <

min{i., 0.}, where §, > 0 is a universal constant.
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Proof. The comparability of s and ¢(p) — ¢ follows from the relation % = —na and
the bootstrap assumption (BA1). Similar to the derivation of ([@.5]), we have under

the bootstrap assumptions (BA1)-(BA3) that
o 1 o
(7.2) [y = s()* 7] < 55(6)° 7

for all ¢(p) — min{i., 7,d0.} < t < ¢(p), where 0, is a universal constant. This
implies immediately that 3s(t)? < vy < 3s(t)2. Consequently v; and t(p) — ¢ are

comparable. Thus for the area |S| of S; there holds
C7H(t(p) = 1)* < [8e] < C(t(p) — 1)

for some universal constant C'. This together with the definition of r gives the
comparability of r and ¢(p) — t. O

7.1. Optical function. In this section we give a brief review of the construction
of optical functions, one may see [5] for more information.

For any point p € My, let J~(p) be the causal past and let N~ (p) and Z~(p)
denote respectively the null boundary and the interior. For each 0 < 7 < i, with i,
defined by @), let 7~ (p,7), N~ (p,7) and Z~ (p, 7) denote the portions of 7~ (p),
N~ (p) and Z~ (p) in the time slab [t(p) — 7, t(p)] respectively. Let ® be the integral
curve of T through p with ®(¢(p)) = p. According to the definition of i, all the
null cones N~ (®(¢t), 7+t — t(p)), with ¢(p) — 7 <t < t(p) and 7 < i, are disjoint
and their union forms N~ (p, 7). We now define u to be the function, constant on
each N~ (®(¢),t + 7 — t(p)), such that

w(®(t)) = / n(®(t))dt'.

to
Such u, which will be called an optical function, is a well-defined smooth function
on J~(p,7) and satisfies the eikonal equation

g%, udpu = 0.
It is clear that the level sets C,, of u are the incoming null cones in the time slab

[t(p) — 7, t(p)] with vertices on ®, and T(u) =1 on ®. Moreover, the null geodesic
vector L defined before can be written as

L = g*®05ud,.
For each ¢ € [t(p) — 7,t(p)], we define ups(t) and wu,y,(t) respectively to be the

largest and smallest values of u for which the part of the cone C, that lies in the
future of ¥; is contained in J~ (p), i.e.

up(t) = u(p) and U (t) = u(P(t)).
For each u(®(t(p) — 7)) < u < u(p), we also define tp;(u) and t,,(u) to be the
largest and smallest value of ¢ for which ¥; intersects C, respectively. It is clear
that tps(u) is the value of ¢ at the vertex of C, and t,,(u) = t(p) — 7. Note that
both uys and ¢, are independent of .
We set
St,u = Cu n Et

which is a smooth surface for each ¢(p) — 7 < t < ¢(p) and upr < u < Uy, (t). The
corresponding radius function is defined as

r(t,u) ==/ (4m) 7St ul,
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where | St ,,| denotes the area of S; ,, with respect to the metric ~.
The following result follows immediately from Lemma [7.T] and the definition of
u.

Proposition 9. Under the bootstrap assumptions (BA1)-(BA3) on N~ (p,7) for
all p € Mj, there hold

(7.3) o< “j E;‘)u; oo
and

1 _ u—up(t)
(7.4) Cc— < W <C

for all t(p) — min{i., 7,0.} < t < t(p), where C' and . are two positive universal
constants.

In view of the above notations, it is clear that

N~ (pv T) = U Sth«AI .
te[t(p)—7,t(p)]
Let Int(S; y,, ) be the interior of Si.,, in 3, then
Int(Siu) = U St and T (p,7) = U Int(St,up )-
U [ung,um (t)] te[t(p)—,t(p)]

The following simple result can be found in [5].

Lemma 7.2. For any scalar [ satisfying

lim fduy, =0,

U= Uy, (1) St

UM
[ gt == [ [ (T utyadu, du
St,uM U (t) J St,u

where N denotes the unit inward normal to St in X:, and § denotes the corre-
sponding second fundamental form.

there holds

7.2. Trace estimates. We will rely on the following trace inequality.

Lemma 7.3 (Trace inequality). Under the bootstrap assumptions (BA1)-(BA3)
on N~ (p,7) with & < 1, for any ¥t tangent tensor field F there holds

HT71/2FHL2(St) SIVFE|r2sy + 1Fl 2220
where Sy ;= N~ (p,7) N Xy and r:= +/(47) 1| Sy].

The proof of Lemma can be seen in Appendix. Using Lemma [T3] we are
able to derive the following

Proposition 10. Let the bootstrap assumptions (BA1)~(BA3) hold on N~ (p,T)
with &g < 1. Then for any Xy tangent tensor field F' there hold

(7.5) 1F s,y S IFNa o lF 20,
(7.6) [Fl[acs) S N F s
for all t(p) — 7 <t < t(p).
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Proof. Let ¢(u) be a smooth cut-off function verifying 0 < ¢ < 1, ¢(upr) = 1 and
supp(¢) C [L=f 4], Tt then follows from Lemma [7.2] that

@0 WPl = ) o (TNIOFTE 4 0002 o = + 1,
nu(s:

where

I = —2/ (¢2F -VNF + ¢VN¢|F|2) adp~du’,
Int(sy)

I =— / tr0|oF |2adp du’.
Int(s,)

Since the bootstrap assumption (BA1) implies 1/2 < a < 3/2, it is easy to see that

SIVNFllz2enIFllL2 s,

/ P*F - VnFadp.du’
Int(s,)

and

| ovolrPadu,du
Int(s;)

1 UM 9 ,
<— |F|“dp~du'.
UM — Um Jumivy Jg,

It follows from Lemma [7.3] that

L s PO L P

SUFlasollFllLas, )2,

where 7 := r(t,u’). From Proposition @it follows that r(¢,u’) <« — uy,. Thus

| ovelFPadu,du
Int(s,)

1/2
1 2%
S I Flla @)l Fllezs,) </ (u' — um)du'>

UM umtupg
2

SN o lF L2 s,)-
We therefore obtain
L] S N FN o) I F Il L2z,
In order to estimate the term I, we recall that trf = —atrx—|—5ABkAB. Since the
bootstrap assumption (BA2) implies [try —2/s] < & on each S; ,» and Proposition
implies that s, t(p) — ¢ and r are comparable, we have

UM UM
s @m0 [ [ e ertanar+ [ [ kiR Pl

wp
S [ R + s P

Recall that [|k||Ls(x,) < C from Lemma 22 and apply Lemma 2.3] to ||F||2L3(Et) we
obtain

UM
ol S I s Pl + [ [ v PP
umzuM St our
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Now we use Lemma again and note that Proposition @ implies r(t,u’)™! <
(W — uy,) ™1, we have

/7UM /
+

Therefore

1/2
UM
rHFPdpydu S F o lFllzs,) (/MMM (u' — Um)ldul>
t,u’ f

S IFN a1 F |2z,

(2| S 1F ol Fllezcs,)-

The proof of (T3] is complete.
Applying (T7) with |F| replaced by |F|?, combined with Sobolev embedding, we
can obtain (7.6) in the similar fashion. O

As a consequence, we obtain

Proposition 11. Let the bootstrap assumptions (BA1)-(BA3) hold on N~ (p,T)
with g7 < 1. Let Sy := N~ (p,7) NX; and let r be defined by {{-2). Let my denote
the tensor —Vlogn.

(a) Let w denote either k , mo or Dglogn, then for t(p) — 7 <t < t(p)
Izl acs,y < C,
Ir=2x L2,y < C.
(b) Let F denotes either n='V?n or n=2Vn, then
(7.10) IEN L2v-(p,ry) < C.
(¢) For my, there holds
(7.11) IVLmollL2v=(p,r)) + 1 Domoll L2v=(p,ry) + VTl L2v-(p,ry) < C

Proof. (a) From Lemmal22] Proposition3and LemmaB.2it follows that ||z|| 51 (5,) <
C. Thus ([Z8) follows from (.6 in Proposition [0 and (Z.9) follows from Lemma

3l
(b) For F = (n=1V?n,n=2Vn) it follows from Proposition B Proposition [
Lemma and Proposition [7] that

IVELizz ) <C and  [|[Fl|perz(m,) < C.
Applying () to F yields

IF 1220 oy S N F g oamey

Fllrgerzm.y SC.
(¢) By straightforward calculation, symbolically we have
Dorg = —n " 2Via+ 7 - 7,
Vo = —n"Vn+x-m,
Vimg=a'n"2Vi—a 'Vag—a 'z 7.

Therefore, (C.I1]) follows immediately from (Z8)) and (ZI0). O
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8. Estimates on the null cones

8.1. Structure equations on the null cones. In Section 4 we introduced the
null pair L, L on the null cone N~ (p,7) and define the null second fundamental
forms x, x and the Ricci coefficients ¢ and ¢. For the null frame (e4)a=1,2, e3 = L,
eq = L, there hold B

DuL = x,peB+CaL, DyL = xapep — CaL,
DLL:2§A6A+2(UL, DpL =2Cses — 2wL,
(8.1) D.L =2 ea, D.L=0
and
Dpes — ¥ 1 1
(8:2) pea = Vpea+ gxapes + 5X g,
(8.3) Dyes = Viea + ¢ ea,

Dses = Vaea + Caes + Eaea,

where ¥ denotes the covariant differentiation on S;.
Let o, 8, p and o be the null components of R defined in (@I1]). There hold the
following structure equations on null cones (see [5, p.351-360].)

dtry 1 9 9
8.4 —(t =—
(8.4) 7 T3t X1,

dx .
(8.5) E’:B +trxxap = aaB,

d
8.6 —Ca=— -
(8.6) 7564 = ~XABCE +XABC — P,

d 1
(8.7) Zotrx F gtrxtrx = 2dive = - X+ 2|¢7 + 2.
Moreover, ¢ verifies the following Hodge system

1 1
(8.8) divi=—-p—p+ QXX - |C|2—§a6trx—a)\trx,
1
(8.9) curlC:0—§)2/\X,
where p and p are the mass aspect functions defined by
1 a? 9
(8.10) p= —§D3trx + Z(HX) — wtry,
1
(8.11) = Dytry + §trx -try,
1

(8.12) w= i(Dgloga—l—akNN—cmoN).

Let N be the unit inward normal to S; in ¥; and let 8 be the second fundamental
form of Sy, i.e. 845 = g(VaN,ep). Then there hold

(8.13) Vnea =Vyea+a 'V 4aN,
(8.14) VaN =0ages,

(8.15) Vpea = Ypea—0apN,
(8.16) VNN = —a 'V 4ae4.
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We introduce the new null pair L' := T+ N, L' :==T - N. Then L = —a~ 'L’
and L = —aL’. Let \/, X<, g', v be the Ricci coefficients corresponding to the null
frame (ea)a=1,2, €5 = L',e}; = L. Then

x=-a'x, x=-a, (¢(=¢, (¢(=¢

and

(8.17) Xap =045 — kap,
(8.18) X;B:_HAB_kABa
(8.19) ¢y =Valoga+ea,
(8.20) Q:L‘:WAlogn—eA,
(8.21) v=—-Yylogn+§— A

8.2. Proof of Theorem The main purpose of this subsection is to prove
Theorem .5 concerning the boundedness of N [#f] under the bootstrap assumptions
(BA1)-(BA3) on N~ (p,7) with 0 < 7 < i, and &7 < 1 for any p € M, where
is defined by ([@I4)) and the Sobolev norm N;[F] for any S; tangent tensor field F'
is defined by (£12). We can restate Theorem in the following form, since the
estimates for A are trivial.

Proposition 12. Let i be the S; tangent tensor field defined in (4.17), and let
7 = (k,—Vlogn). Then, under the bootstrap assumptions (BA1)-(BA4) with
Eor < 1, there hold

(8.22) Ir= 7l 2=,y < €
(8.23) IVl 2 (r= (o) < €
(8.24) IV #ll 2=y < C-

We have obtained in Theorem 4] and (Z.I1)) that
(8.25) 1Y@l 2.y + IVLT] L2y < C.

In view of (8I4)), (RIH) and (B, (B3], we can symbolically write
(8.26) Vit =V +tef -4t +0-4

and also in view of &£ = —(an)~?,

(8.27) Vit =Vir+7-C+ (an)™".

In order to show Proposition [I2] we need three auxiliary lemmas. We will use
the following norms for ¥; tangent tensor fields F' on null cones N~ (p, 7)

Fll%, /e = F|?) dugz,
| ||Lth N (p,7)) /S”Sel;]i (ve| F'|2) dpose

q — q
12 250 - oy = /S o | Flgduse.
where v; is defined by (1)), and T, w € S?, denotes the portion of an incoming
null geodesic initiating from p in the time slab [t(p) — 7,t(p)]. In the following
argument we will suppress N~ (p, 7) in these norms for simplicity.
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Lemma 8.1. For any S; tangent tensor field F', there hold the estimates
(8.28) lr =2 Fl| 2 e + | Fll s S Ni[F],

(8.29) 1FN 2200 S (VL Flle + I Fllpe) |7 oo 2

Proof. We refer to [7, [I3] for the proof of (828). In the following we will prove
[®29). Let vt be defined by (ZI)). We first integrate along any past null geodesic
initiating from p to get

t) ¢
8.30 Fl*= 1l F|* —/ — (vp | F|*)dt'.
(8.30) wlFlt = tim @lPY) = [ P
For the estimate of the first term on the right of (830), we proceed as follows.

Let ¢ be a smooth cut-off function defined on [t(p) — 7,t(p)] verifying 0 < ¢ < 1,
¢(t(p)) = 1 and suppp C [t(p) — 7/2,¢(p)]. Then

(8.31) lim o |F|4—/t(p) ﬁ(u |F|[*)p* 4 dvg | F|* 540\ ar
' t—t(p) ! B t(p)— dt k 4 k ¥ dt(p '

1
Since |&y| < (t(p) —t)7!, we have from Lemma [ that |£olvf < 1. Using
0 < ¢ <1, it then follows from ([830) and B3T]) that

(8.32) IF|L, . = / sup (w|FIY) < T+ 11,
o §2 t(p)—7<t<t(p)
where
t®) |4 t(p)
I :/ / Z(w|FY|at, I :/ / Rallal

S2 Jt(p)—7 dt S22 Jt(p)—7
Since

d

E(vt|F|4) = —na (trxvt|F|4 + 4y |’V L F - F) ,
we have

1/2 1/2 1/2
15 (I * o Fllig ez + looxwr *Fllz 2 ) 1P s zllod* P2z e

S (VL Fllze + trxFl z2) 1Pl oo 2 1P 1 2a oo -

By the bootstrap assumption (BA2) and Lemma [T.T] we have
[trxFllrz S Tl gz + [l | 2

L()O

S (Eor+ D e S e e

2
try — —
s

Therefore
IS (IVLFlle + ™ Fllez) | Fllpee 2| Fll7a pee-
It is easy to see that
1/2 _
I S NF e 2| Fll s cellvd PPl ez e S e Flle | Fll pes 2| FlI3s e

Combining the estimates for I and IT with (832]) gives (829). O
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Lemma 8.2. For any S; tangent tensor field F' verifying
(8.33) VLF + %ter:G-F—FH
with m > 1 an integer and G a tensor field of suitable type, if lim_;(,) r(t)™ F = 0
and sup,,cge ftt((pp))_T nalG2dt < A2, the following estimates hold
172
(8.34) 1Fl L2z S €“27 |1 H e,
(8.35) Ir2 Fllog e < e |11 2.

Proof. In what follows, we will use Lemma [[T] to compare vtl / > r, s and t(p) —t
if necessary. Since %Ut = —natrywv, along any past null geodesic initiating from p
we have

d
S WIFI?) = =2nav"(H + F - G, F)
With the help of the lim;_(,) r™[F| = 0, it follows for t(p) — 7 <t < t(p) that
t(p) t(p)
vl”|F|2:2/ nav?<H+F-G,F>§2/ navy? (|F||H| + |F[*|G]) .
t t

By a simple argument we can derive

/o t(p) t(p) /o t(p)
v 7| F| < exp / |G|na / nav? |H|exp —/ na|G| | dt’.
¢ t v

In view of SUp,,cs2 ftt((pp)),T na|G|2dt < A%, we have exp(ﬁt(P) na|G|) < eCAOTl/Q_
Thus by using Lemma [Tl and m > 1, we have

t(p)
|F| < eCAOTl/Qv;m/Q/ o2 H|nadt'
t

~

< CA071/2 _ 1 @) /
(8.36) e (t(p) — 1) r|H|dt'.
¢

To derive ([8.34), we integrate the above inequality along a null geodesic initiating
from vertex p. By the Hardy-Littlewood inequality

1 S
I3 [ir| s s
L
it follows that
t
1]z S 020 | / (p)TIH|
v tip) =t ), 2

(8.37) < @2l H | 2.

Integrating (8.37) with respect to the angular variable w € S? yields (8.34]).
Next we multiply (830) by 72 to obtain

sup  r|F| S el I H | e,
t(p)—7<t<t(p)

which, by taking the L2 norm, gives (8.35). O
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In view of (B3] and Lemma[82] we are able to prove the following estimates for

X-
Lemma 8.3. For x there hold the estimates

(8.38) e e + 12 R ez e + IV LRIz < C,
(8.39) IRl 2z < CE'™.

Proof. We will use the transport equation ([83]), i.e.
(8.40) VX +trxx = .
Recall that ry — 0 as t — ¢(p), see [13]. Recall also that ||«| L2 < C, see Theorem

(44 1t then follows from Lemma that

1/2

7" Xl ez Lo + Xl 2222 < C.
w 't

Next we use (840) again to estimate |V x| z2. With the help of the bootstrap
assumption (BA2) and the comparability of r, s and ¢(p) — ¢ given in Lemma [7.1]
we have

2
try — —
s

rXllz2r2 + 7= Xllz> < C.
LOO

trx Xllzz S

Thus, from (&40) it follows
IV Xl < lltexxllze + llalle < C.

We therefore complete the proof of (B38]).

By making use of (829) and (B3])) together with the bootstrap assumption
(BA3) we obtain

N < N 1A 1.3 1/4
IXNzazee S IV eXlze + Ir™ Xllz2) 21X 12 < CEo

which gives ([839). O

Now we are ready to complete the proof of Proposition
Proof of Proposition [I2. We first prove (822)). Let |7| := |7|,. It is easy to check

2
V(s 7)) + trys 72 = s (try — E)|7_T|2 + S_2|7_T|§ +257 Vw7

We integrate the above equation along the null cone N~ (p, 7). By Lemma [T it
is easy to see fSt s~ 72 — 0 as t — t(p). Therefore, by integration by parts we
obtain

2
/ <$2|7_T|2 + s Htry = )72+ 257 VLT - 7_T> nadpdt = / s~ H 7).
N=(p,7) s s

t(p)—7

By Lemma [7Il and (Z9)) in Proposition [Tl we have

[ s
S.

t(p)—7

By (BA2), Lemma [T and (9],

/ Htry — —)|7r|2du7dt
N (pﬁ)

S 7 a5,y < C-

<C&T < C.
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By ([B25) we have

/ sV - mnadpdt| S IV 7| L2 ||5717Tr||L2 < C||8717_T||L2.
N=(p.7)

Therefore
(8.41) ||s_17’r||2L2 <C+ CHS_lﬁ'”Lz

which implies ||s717| 2 < C. Consequently, in view of Lemma [T} (822) follows.
As a byproduct, we have from (BA2) and Lemma [7.1] that

2
(8.42)  |trx7||r2 S ||s7 7| g2 + |[try — = 7||s 7172 < C(1 4+ &T) < C.
5| poe
Next we will show [823). we will use the equation ([B26]), i.e.
(8.43) Vit =V7+trf -4 +6 -7

Using 045 = —axap + kap, we have from (Z.8)) and (839]) that
16-#llze S I#lles (Kl + I¥10) < © (687 41) 72 <
Since trf = —atry + 6*Bkap, we have from (7.8) and (842) that

[tr07 |22 S Kl allftllLe + lerxstfle < C.

Consequently, in view of (B2H) and ([843), (823) follows immediately.
In view of (827) and (R20), (824) follows immediately from (825) and (TF). O

8.3. Estimates for Ricci coeflfients.

Lemma 8.4. For the Ricci coefficient ¢ and the null lapse a there hold

(8.44) I Cllze e + Ir ¢l + V28l < C,
(8.45) ||7“%Y710ga||L3L§o +|lr'Ylogalr> + || V.Y logal > < C.
Proof. From the transport equation (86l we have

1 .
(5.46) Yo+ Strx-C = %+ x-C— B

Since (BA3) implies ||X||pocr2 < 53/2 with &7 < 1, it follows from Lemma 82 and
the relation y = x + %trx*y that
1 _ .
72 ¢z pge + 77 ¢l S BNz + 1% - Cllzz + [ltrx - ¢l

From Theorem B4 we have ||8]|2 < C. Recall that { = ¥Vlogn — e which is a
combination of terms in #. By ([8.42) we have [[trx ¢[|z2 < C. Therefore

I7/2¢ N L2 pge + Ir ¢llze < C (Eom + 1) + [1X - ¢l 2.
In view of (Z8)) in Proposition Il 839) in Lemma R3] and &7 < 1, we have
1 _ N
172Nz pee + 7 Cllze < C + 72Xl pareell¢llpeers < C.

Consequently, it follows from (848), (BA2) and (BA3) that ||V (|2 < C. We

thus obtain (8Z4)).
In order to show (8.45)), we use the relation ¢ = ¥ loga + ¢. By Proposition [2

1
72 ellz e + llellz Lz + (I Viellze < C.
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Thus, the estimates for ¥ loga follows. O
Lemma 8.5. For the p defined by (811) there holds ||p||.> < C on N~ (p, 7).

Proof. Recall that by B7), p = 2div¢ — X - X + 2/|¢|* + 2p. We have from Theorem
4 Proposition [[T] and Theorem that

lelze SIVCez + 1€ + ol + 1% - xllee S C+ 1% Xllee-
Recall also the relation x " = —x’ — 27, we have from (839) and Proposition [Tl that
lplle S C+ Xl e (XL + [[EllLs) < C.
The proof is thus complete. (|
In the following we summarize the estimates obtained so far in this section.

Proposition 13. There exists universal constants g > 0 and C, > 0 such that,
under the bootstrap assumptions (BA1)-(BA3) with &7 < 1, if 7 < min{i., do}
then there hold

(8.47) Ir=2 x| 25,0y < C,
(8.48) Izl zacs,..) <C,
(8.49) Mt](p,7) < C,
(8.50) [n~'V?n,n"2Vn||L: < C,
(8.51) Ir2 (%, 7,¢, Vloga,0)|| 2 L < C,
(8.52) (%, 7,¢, Yloga,0)| p2r2 < C,
(8.53) IV L (%. ¢, Y loga, 0)|.2 < C,

where T = (n"19;logn, ).

The above estimates provide the intermediate steps toward the proof of Theorem
The complete proof however requires more estimates on x, ¢ and ¢ as follows.
Since the arguments are rather lengthy, we will report them in [14].

Proposition 14. There exists universal constants g > 0 and C, > 0 such that,
under the bootstrap assumptions (BA1)~(BA4) with &7 < 1, if 7 < min{i.,do}
then there hold

(8.54) trx—g . < C,
(8.55) Xl 22 + 1€ L2 < Coy
(8.56) IVl ooz + ¢l Loz < O,
(8.57) Ni[%, ¢, Yloga,b](p,7) < C.,
(8.58) 2 (Vtrx, w)llzpee + [(Wtrx, )]l zz < C,

on the null cone N~ (p,7) for all p € Mj.

The estimates in Proposition [I[3] and Proposition [[4] gives Theorem Thus,
we may use a bootstrap argument, as explained in Section 4, to conclude that all
the estimates in the above two propositions hold on the null cones N~ (p, 7) for all
p € M with 7 = min{i,, d, } for some universal constant d, > 0.
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We conclude this section with an application to estimate |72, (TNt (Ss )
where, for any ¥ tangent tensor F,

u
2 -2 2
”F||L3La<1ntst,u>ZA /S v E | gadpy du!
m t,ul

with 7/ = r(t,u’).
Proposition 15. For m = (n=19;logn, ), there holds

(8.59) 1Tl 2 r2 (nt(s, .y < C-

Proof. From (84), (810), (812) and (B8], we can derive
1 1
(8.60) Wty + 5(trx)” = —5otrx’ + 2Mrx’ = X' (X' + 1) = (divC+ [ + p),

which, multiplied by |z| := |z|,, implies
1
Vv (tex|zly”) + trf(tex|zf3) — 5 [trx'zl;

3 o .
= {—§5trx’ X +0) = (dive+ ¢+ p)} |z|* + 2trx'Vnz - 7,

In view of Lemma [7.2] integrating the above equation over Int(S;,,) gives

/ / (trx')? |z |2adp du’
= —/ try’|z|? + / / (—2Vnz - trx'm + p|£|2) adpdu’
St u
<[ t/' (Botrx 1P+ 08 +) ) 1sPad, o

(.61) tL/ —¢ - Y (|xPa)dpdud

By (BA2), Lemma [I1 and (T3],

/ trx’ |z dpy
St,u

By Lemma [2.2] Proposition Bland (314,

u
/ / V- trx' madp,du’
Um St,u/

and

S Ir2al G, < C.

SIVNzle@ollex'zll e, < Cllex'zll 2,

3
§5trx'|1|2adu7du'

< Ilzocmo Il 3ogs, + Il s,

St,u

S (VK2 +llzllm o)zl s,
<C.



IMPROVED BREAKDOWN CRITERION FOR EINSTEIN VACUUM EQUATIONS 41

By Lemma 2] and (Z.8)),

u
/ / plr|*adpdu’
Um J Sy 0

By (8I9) we have

/ / Y (a|z|?)dpdu’| =

SNVl 2@t s, ) sup_ (HEHLAL(SML/)||<||L4(Styu/)) (u — )/

Um SU

o[, 0P clf o
In view of Lemma 2:2] Proposition Bl and (BI6]) we derive

IVZI 2 (Intcs, .y < IVEl L2020 < C,
while in view of ([85T), (B28) and (Z8]) we have
sup  [ICllzacs, ) <O, sup  ||z[|pas, ) < C.

U, <u/ <u U <u' <u

S ||P||L2(Et)||£||i4(1ntsw) <C(u-— um)1/2-

/ / (Vlogalx|*¢ + V|z|*¢)adp du’

tu’

Consequently,

[ 6Pia? +iclinf) aduonr <

+sup (e, oo, ) (0= )

Um Su’'<

sup_ (1Kl aqs, o llags, . ) (@ = um)

U, <u’ <

< Clu— up).

Therefore, we obtain

/ / a|7r| Ydpydu’

In view of (857)), (R2]) and (Z.8)), by a similar argument we obtain

<O+ (u— um)Y?) (u — um) /2.

[ 6P s alaadu

I PO+ IR 81

<Cu—um)

Combining all the above estimates with (861 and noting that v — u,, <7 <1, it
yields

2
Htrxﬂ”p(lnt(st,u)) <C+ CHthEHL?(Int(St,u))

which implies ||tTXE||L2(Int(St,u)) < C. This together with (BA2) implies the
desired inequality. ([
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9. Proof of Theorem [4.7]

In this section we will complete the proof of Theorem .7 For any p € My, let
®(t) be the integral curve of T through p with ®(¢(p)) = p. For each p; := ®(t),
we will represent k(p;) in terms of a Kirchoff-Sobolev formula over a past null cone
with vertex p;. We then use the estimates established in the previous section to

obtain fttg))fT |k(®(t))|?>ndt < C for some universal constant C.
9.1. Derivation of Kirchoff Parametrix. We first revisit the formulation of
Kirchoff Parametrix in [I0]. We define A to be a X; tangent 2-tensor verifying

1
(91) (DLA)Z']‘ + —tI'XAij =0 on N7 (p, 7'), lim (t(p) — t)Aij = Jij,

2 t—t(p)~
where J € T;,X ) and [J|, = 1. This A is similar to the one defined in [12] but
with the modification that A is 3; tangent. Since we have obtained in Propositions
and [I4] the estimates on

2
try — —
s

1 - N
IVt e, 2 Vel za g, 17 (C+ Ollze, 1% v Clleg 2, R(p,7)
LDO

on the null cone N~ (p, 7), we may adapt the proof in [12] to obtain the following
estimates on A.

Proposition 16. For the tensor A defined by (1)) there hold

1
92) VAl + I VAl 2o o) + 1T All Lo vy < C,
where C' is a universal constant.

Now we revisit the Kirchoff-Sobolev formula for any ¥; tangent 2-tensor ¥y,
I ={u,v}, see [10,[15]. According to the definition of 0¥, we have under the null
frame (e4) =12, €3 = L, e4 = L that

1 1

Ov; = —§D43‘1’1 - §D34\I’1 + 0PD 45V,
By 1),
(9.3) D307 = Dy(D30); — 2¢"D V5.
It is easy to see

D34\IJI - D43\IJI = R,ua34\11av + Rva34lp,uoc-
By (82), we obtain

1 1
5ABDAB\I/[ = 5ABY7AWB\I/[ — §tI‘KD4\I/] — gtrXDgll/[.

Therefore

1 1
OU; = —Dy(D30); +2("Da¥; — 5Dl — StryDa ¥y

1 1
+ 6ABWAWB\IJI - §Rua34\11a1/ - §Rua34\11ua'
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We multiply the above equation by A and integrate over N/~ (p, T) to obtain

/ OVAT =2 + 55 + / (QCADA\I/I AT 4 5ABY Y T AI)
N=(p,7) N=(p,7) ¥

1

(94) Y / (R,U.a34lllav + Rl/a34\Ij,u.a) A,
2 Jn-pm)

where

1
=, = / <—D4(D3\IJ)1 AT — ZtryDs ¥y - A1> ,
N=(p7) 2

1
2:——/ tI‘XD4\I/]'AI.
2 JN-wm)

For =1, integrating by parts gives

(1]

—_

1
=0 = / (—D4(D3‘I’)] . AI — tl”XDg‘I’] . AI + —tYXD3\I/] . AI)
N~ (p,7) 2

:_/ D3U;- Al + lim [ DsU;-Af
S,

to)—7 =) Js,

1
+/ <D4A’ + —trXAf> D3y
N=(p,7) 2

Since limy_;(, (t(p) — t)*A = 0, we have in view of (@.I) that
g = /
S

Q1(¥) = D4A” - D3V, + DA - D3¥y.
For the term =, in view of (@) and the fact that ¥ is 3; tangent, we first have

D3\IJI-AI+/ 01 (D),
N—=(p,7)

t(p)—T

where

1 1
—EtI‘KD4\I/] AT = —5 (D4(\I/[ . AItI‘K) — D4AI . tI‘X -0 — D4tI‘X Wy AI)

1 1
=-3 <D4(\I/1 ~AItrK) + gtrxtrKAI W — Dytry - ¥y ~A1> ,
thus integration by parts yields

1 1
52:/ —,uAI-\III—— / \IJI-AItrx— lim \IJI-AItrX ,
N— (va) 2_ 2 St(p),q- - t%t(p) St -

where p is defined in (8.1T)).
In view of try’ = —try’ — 2648k 45, we have

1 I
tﬂl%)5/5t Ur- Altry = —4mn(p)(¥, J),

Hence

1 1
=0 :/ EEAI-\IJI - 5/ ;- Altry — dmn(p)(P, J).
N~ (p,7) s

t(p)—7
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Therefore we derive

tmnp)e. ) = [

N=(p,T)

1
— / (Dg\Ifj . AI + —tI‘X\I/] AI)
Se(py—r 2 =
P

+ / (2¢"Dpws- AT - Vv VAT
N=(p.7)

1
(—D\I/] . AI + 5&‘1’] . AI +Ql(\11)>

1 -
(9.5) - = / (Ri%340q; + Rj%340;0) AY.
2 Jn-(r)

We apply (@) to the tensor field ¥ = k and obtain

Theorem 9.1. Let p € My, let ®(t) be the integral curve of T through p with
®(t(p)) = p, and let pr = ®(t). Let A be a 3y tangent 2-tensor on T~ (p, T) verifying
(@1) on each null cone Cy := N~ (p,t — t(p) + 7), where u = u(t) = fti) n|edt for
tm :=t(p) — 7 <t < t(p). Then there holds

(9:6)  dmn(pe)(k(pe), J) = I(pe) + J(pe) + K(pe) + L(pe) + €(pe) + /C N (k),

where

Cy
1
J(pt):_g/c AR(aaLuL)ku

Kp) = [ (-9°A-Fah 2" Tk A).

u

1
L(p) = 5/0 BA -k,
1
St ,u

9.2. Main estimates. In the following we will use the representation formula given
in Theorem to show that

t(p)
/ le(py) Pt < C
t

(p)—7
for some universal constant C'. We proceed as follows.

e FEstimate on I(p:): We will use the expression of Ok given in Proposition 8]
which symbolically can be written as

Ok =-n"3aVn+n2V¥i+n-7m-7+k-Vn+k-Ric+n -Vk—n"'k.
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It then follows from Proposition [I6 that

() 5/ rt (InV2n] + V2] + |7f? + [kl V?n| + |k||Ric| + |x[|VE] + |k])

u

S IVl I~ bl + I VPl + [

+ r 7 Rl 2o V20l 2200y + I Ricl 2o 7 Rl L2(c0)
+ et 2 e IVEI L2y + I Rl Lo
Therefore, with the help of Proposition [[1] and Proposition 12, we have

)] S e "ll oy + IVl e + / r

+ [ Ricll2c.) + IVEll2c.) + C-

Now we consider Liip) |I(p:)|?dt. Using % = n, we have from Proposition
that

w o wr)
| I il it = [ L Il

u(t(p))  ptar(u)
= / / / 2|0 *nadp, dt’ du
u(tm) tm St’ u
t(p) pu(t(p))
= / / / 2|0 )*nadp, dudt’
tm u(t’) Sy u
t(p)

1.2
S/t |7 ”HL2(1nt(5tl,u(t(m)))dt/
< CT.

By similar argument, we have from Lemma that

t(p) o )
‘/t (”RZCHLQ(CH) + ||Vk||L2(Cu)) ndt S CT.

m

Therefore

t(p) t(p) t(p) 2
/t |I(pt)|2ndt§CT+/t ||r_1V2h||%1(Cu)ndt+/t (/C 7“_1|7T|3) ndt.

m m m u

By using the Minkowski inequality and Proposition [7] we have

Hp) 1/2
/ ||r1V2h||%1(Cu)ndt>
tm
u(t(p) [ ptar(u) 2
= / / r71||cmv2ﬁ||L1(St, odt' | du
u(tm) tm ’
t(p)
‘f
t

1/2

u(t(p)) 1/2
/ / r72||anV2h||%1(Stl,u)du dt’

(")

- t(p) o2/ & < C
~ ¢ || n||L2(I'ﬂt(St',u(f(P)))) t=C
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Finally, we have from Proposition [Tl and (822) that

tM(u)
Lot [ s, s, Ly < Cltar(a = )2

u m

Thus, by Lemma [Z.1] we obtain

t(p) 2
/ (/ 7“_1|7r|3) ndt < C72.
tim Cu

Combining the above estimates we therefore obtain
t(p)
/ |I(p,)|*ndt < C +C7? < C.
t’VTL

e Estimate on J(p;): It follows from Proposition [[6, Theorem [£4] and Proposi-
tion [[2] that

1 (p0)] S Ir Al Lo (o Ir ™ Kl L2 ey Rlpe, T+ £ — t(p)) < C.
Thus

t(p)
/ |J(pt)|2ndt < C(tlp) —tm) <CT < C.
t

m

o Estimate on K(p;): It follows from the Holder inequality that
Kol S IVAllL2 0 VEl 200 + 7 Al L= o lr ™ <2 o0 [V E 220
Thus, we obtain from Proposition[I6l Theorem[.4] and Proposition[I2that | K (p;)| <
C which gives
t(p)
| KRt < Ct) ~ 1) < Cr<C.
t’Vn
e Estimate on L(p:): It follows from Proposition [[6l and Proposition [[2] that

1L(pe)] < Al Lo Ir 7zl z2en) S lellzze.)-
From Lemma B35 we then obtain |L(p;)| < C. Therefore

t(p)
[ 1P <€) 1) < 07 <
t

e Estimate on €(p;): We first have from Proposition [I6] that
€(p)] S v IDskllLis,,, ) + 77 Xk, .-

Using the definition of r we then obtain

|€(pe)] S IDskllracs,, o)+ Hitexkl s, )-
Recall
trK’ = —try’ — 2648k p.
Since (BA1) implies 1/2 < a < 3/2. Thus, with the help of (BA2), it yields

2
try — —
s

kllzasi,.0 + 7 MKl s, 00 + kI Z2s,,, 0
Lo (Cu)

SR s, 0 + RN 2,

[trxkll L1 (s,,, ) <

S Mkllzagsi,, ) + 7l s, , -
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Consequently
1€(pe)| S D3kl L2(s,,, ) + 7 Kl L2, ) + 1R Fags,, -

Therefore, using % = n, we have

t(p) ) u(t(p)) )
/ €(pe)| dts/( e
t7n utm

S I3kl 2w,y + 17 Rl T2 (rnes,, ) + IRl Tees,,
It follows from Lemma and Proposition [[5] that

t(p)
| 0Pt S IDakl s, + C:
t’Vn
Recall that L = —a(T — N). So D3k = —a(Dgk — Vyk). Recall also that Dok =
—n~1V2n + Ric + kTrk. Thus
IDskllr2cs,, ) S IVnllL2cs,, ) + I Ricl 2s,, ) + Hk|‘%4(ztm) +[IVE| L2(z,,,)-
It follows from Lemma and Proposition B that ||D3k|[2(s,, ) < C. Therefore

t(p)
/ |€(pt)|2ndt <C.
t

m

e Estimate on fCH 04 (k): By straightforward calculation we have (k) = A -
777w It follows from Proposition L6 that

1 (k)] < / .

u

Therefore, one can use the similar argument in the estimate of I(p;) to get

t(p) t(p)
/ 10 ()Pt < / / Tl
t t C

m m u

2
ndt < C7% < C.

10. Proof of main theorem I

In this section, based on Theorem [[.2] we will follow the idea in [12] to give
the proof of Theorem [Tl According to the local existence theorem given in [12]
Proposition 6.1], see also [B, Theorem 10.2.1], it suffices to show that the quantity

(10.1) Ry := || Ricl|g2(s,) + |kl 53 (s,)

on each slice 3; with ty <t < t, is uniformly bounded.
Since (M, g) is a vacuum space-time, by virtue of the Bianchi identity R verifies
a wave equation of the form

(10.2) OR =R *R,

Based on higher energy estimates it is standard to show that
t

(10.3) DR < DRI + [ IRE) it
1

and

t
(10.4) ID*R(®)[7- < ID*R(t1)]17 +/t IDR()[|Z: R )7~ dt!
1
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for all tg < t1 <t < t,. The derivation has been given in [I2] under the assumption
(C9), the argument however depends only on the condition (A1).

Thus, the derivation of the L bound of R is a crucial step. As in [I0] one can
represent R(p), for each p € M., by a Kirchoff-Sobolev formula over the null cone
N~ (p,7), where 7 > 0 is a universal constant such that i, (p,t) > 7 whose existence
is guaranteed by Theorem One can then follow the delicate argument in [12]
to derive that

(10.5) [R®) = 77" sup (RE)llz2 + [DR()] 2 + [D*R()]|12) -

~Y
teft—27,t—7/2]

The derivation of (I0.H) requires the estimates on

2
try — —

R(p, 7). .

o v G llne L2 (o))
Lo (N~ (p,T))

i, Yorxll 2wy 72V orxll 2o vy 177 €+ Oll2 v oor)

which are provided by Proposition I3 and Proposition[[dlunder the condition (A1).
Combining the estimates (I03)—({I0H) gives

IROgz S 770 sup R =
t'eft—7,t—7/2]

Tterating this estimate as many times as needed, in steps of size 7/2, yields

(10.6) sup [|[R(t)||g= < C,
tE(to,tx)

where C'is a positive constant depending only on Qq, Ko, |Xo|, t«, Io and the initial
data [R(to) | 2.

Now we are ready to show that the quantity R. defined by ([I0.I]) is uniformly
bounded for all tg < ¢ < t.. Although the argument is standard, we will include
the details for completeness.

We have defined in ([Z35]) the electric and magnetic parts E, H of the curvature
tensor R. It is known that

(107) Vikjm - vjkim = Eilelma
(10.8) Rij — kiak™ + Trk kij = Eyj.

From Lemma [2.1] and Lemma it follows that

(10.9) | Ricllzs + [kl + | Ellze + 1 H ] 22 < C,

where and in the following all the norms are taken over a fixed slice ¥; which is
suppressed for simplicity.

In order to obtain the derivative estimates, by straightforward calculation we
have symbolically

(10.10) VimEij = DR — k- H,

(10.11) ViHij = Dp*Roio; — k- E,

(10.12) V2, Eii = D2 Roioj — kmnDoRoio; — V(k - H),
(10.13) V2, Hij =D2 *Roioj — kmnDo*Roio; — V(k - E).



IMPROVED BREAKDOWN CRITERION FOR EINSTEIN VACUUM EQUATIONS 49

From (I0.I0) and (I0II) it follows that
IVE||L2 < DR[|z + [ ol H]| Lo
IVH||> < [DRJ|> + ||| o[ ]| >
Applying Lemma 23] to | F||rs and ||H||z3, and using (I06) and (I03), we obtain
IVElz: +IVH 2 < C+ C (IVE|Z + |IVH| )
which implies
(10.14) IVElls + [VH]| 2 < C.

Next we will derive the estimate for |V2k| 2. It follows from divk = 0 and
([I01) that Ak = Ric- k+ VH. Differentiating it and commuting V with A gives

AVk = Ric-Vk+ VRic-k+V*H
which together with (I0.8]) implies
(10.15) AVk=k-k-Vk+E-Vk+VE-k+ V?H.
Multiplying (I0.I5) by Vi and integrating over ¥; yields

[ 9 S [ (KEIVHE + EITKE + (VEIKVE + [ H][ V)
I p

S IkIZeIVEILs + 1 Ell e VEIZ 125 + IV Ell 2| VE Lol ] 2o
+ [ VHI L2 VK| 2.
With the help of Lemma 223 (I0.9) and (I0.I4), we have
IV2k)2 < © (IV2Kl 22 + 92K

which implies | V2k||z2 < C. By the Sobolev embedding we obtain
(10.16) Kl + Ikl g2 < C.
Using (I0.16) and [I0.46), it follows easily from (I0.8), (I0.12) and (I0.I3) that

IV Ricl| 2 + IV Ricl 2 + [[V?El| 2 + V2 H | 2 < C.

Finally we derive the estimate on ||V3k| 2. By differentiating (I0.15), commut-
ing V with A and using (I0.8)) we obtain

AV?k=k k-Vk+k-Vk-Vk+FE -Vk+VE -Vk+V?E-k+ V3H.

Multiplying this equation by V2k and integrating over ¥; it follows

IngIQS/ (IK*|V2k]? + K[| VE[?[V2E] + |E||V?E|* + [VE||VE||VE])
I p

+/ (|k[|V2E||V?k| + [V2H||V?E)
p

SEIZ< V2RI T2 + [kl o< VEIZa V2R L2 + ||| o< [ V2|72
+ IVE| L[ VE[ 2l V2Rl L2 + [[E]| < [ V2 E | 2 VK] L2
+ V2 H|| 2|V 2
< C+C||V3k| e
Therefore || V3k||;2 < C. The proof is thus complete.
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11. Appendix

In this appendix we give the proof of Lemma [7.3l It suffices to consider the case
that F' is an arbitrary smooth function on X;.
On Int Sy v, (1) = U, (1) <u<uns (1) St,us We have the family of diffeomorphisms

‘Ilu,t : S2 — St,u; \I/u,t(w) = g@(tM(u))(taw)a

where G is defined in ([I3]). Relative to this radial foliation, the metric g on
IntSt ., can be written as

a’du® + Yapdwadwp,

where v is the restriction of g on St ,,. By LemmalZl vs, , = r(t,u)?ys2. Moreover,
F(z), © € Sy, can be reparametrized by

F(z) = F(u,w):=Fo ¥, (w),we §2.

Due to Lemma [Tl and (74]), for a scalar function f,

(1) 500 % [, PG~ ).
For a fixed leaf Sy, with w,(t) < ug < up(t) and any © € Spu,, F(z) =
F(ug,w) with w € S?, we define with w,, 1= u,(t)
2 u();“m F d

m(x) = m/o (—z 4 ug,w)dz

G(z) :==m(z) — F(x).
Lemma can be proved by establishing the following estimates
(11.2) 7”_1/2||G||L2(St,u(,) SIVF| sy
(11.3) 7”71/2||m||L2(St,u0) S NF e (s,

where r = r(t, up).
To see ([I1.2)), according to definition, we have

(11.4) G(z) = ﬁ/o

It is easy to see

ug—um

2

b d
/0 @F(uo —lz,w)dldz.

d

—F

dl
In view of (BA1) and N = —a~19,,, it follows that

(ug — lz,w) = —z - Oy F(ug — Lz,w).
d
(11.5) }ﬁF(uo—fz,w)‘ S 2|VNE|(ug — £2,w).

Since 0 < z < #05tm  we have from (Z4) that z < 7/, where 1" = r(t,ug — £2).
Thus, by combining (IT4) with (IT5) and setting v(y) := ||7'VF(—y 4+ o, )| 2 it
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yields

1 ug—um um
0 [ [T TRt a2
0 0

/1 E(uo Ui, )

,1/2 0~ 1/ 2 (y)dydg
0 0

r 2G50y ST

somum g
*1/2/ / e dev(y)dy
0 ug— um
e Uy — U
1 — Um
St [T (M) v
0 2y
By Hoélder inequality,
1/2 ug—tum 1/2

1
7“_1/2||G||L2(5t’u0) S (/ (1DU)2d0>
0

-2 2
/ [o(y) dy
0
< ||VF||L2(IntSt,u0)'

This proves (IT2). Using (T4), with " := r(t,ug — 2) = ug — Um — 2,

ug—Uum

2 1/3 -1
Imll 2251 ) 5/0 I P o S < rE (P o (nts,.,)"

By Sobolev embedding, (IT.3]) follows.
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