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Space-based gravitational-wave (GW) detectors, such as LISA or a similar ESA-led mission, will
offer unique opportunities to test general relativity. We study the bounds that space-based detectors
could realistically place on the graviton Compton wavelength λg = h/(mgc) by observing multiple
inspiralling black hole (BH) binaries. We show that while observations of individual inspirals will
yield mean bounds λg ∼ 3×1015 km, the combined bound from observing ∼ 50 events in a two-year
mission is about ten times better: λg ≃ 3 × 1016 km (mg ≃ 4 × 10−26 eV). The bound improves
faster than the square root of the number of observed events, because typically a few sources provide
constraints as much as three times better than the mean. This result is only mildly dependent on
details of BH formation and detector characteristics. The bound achievable in practice should
be one order of magnitude better than this figure (and hence almost competitive with the static,
model-dependent bounds from gravitational effects on cosmological scales), because our calculations
ignore the merger/ringdown portion of the waveform. The observation that an ensemble of events
can sensibly improve the bounds that individual binaries set on λg applies to any theory whose
deviations from general relativity are parametrized by a set of global parameters.

The formulation of gravitational theories with nonzero
mass for the graviton that are consistent with cosmologi-
cal observations is an important open problem. Attempts
to construct such theories led to well-known concep-
tual difficulties, such as the so-called van Dam-Veltman-
Zakharov (vDV-Z) discontinuity [1–3], due to the fact
that the helicity-0 component of the graviton does not
decouple from matter when the putative mass of the
graviton mg → 0. To circumvent pathologies related
to the vDV-Z discontinuity, various versions of Lorentz-
violating massive graviton theories have been proposed
in recent years [4]. Massive graviton signatures in the
CMB and possible constraints on mg from cosmological
observations are an active area of research (see e.g. [5]).
In this paper we are interested in hypothetical massive

graviton theories as “straw men” for alternative theo-
ries of gravity in which the propagation speed of grav-
ity differs from that of electromagnetic waves, leading to
a modified dispersion relation. Therefore we will adopt
a phenomenological point of view and ask the following
question: if the graviton mass were nonzero, what upper
bounds on mg could we set by gravitational-wave (GW)
observations of inspiralling compact binaries with future
space-based detectors? Using λg = h/(mgc), upper lim-
its on the graviton mass mg (in eV) can be expressed as
lower limits on its Compton wavelength λg (in km):

λg[km]×mg[eV] = 1.24× 10−9 . (1)
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Our analysis will show that, in hierarchical models of
massive BH formation [6, 7], the bound on λg from GW
observations of a population of merger events is about
one order of magnitude better than the mean bound from
GW observations of individual mergers.

Current bounds λg[km] mg[eV ] Reference

Binary pulsars# 1.6× 1010 7.6× 10−20 [8]

Solar System† 2.8× 1012 4.4× 10−22 [9, 10]

Clusters† 6.2× 1019h0 2.0 × 10−29h−1
0 [11]

Weak lensing† 1.8× 1022 6.9× 10−32 [12]

Proposed bounds λg[km] mg[eV ] Reference

Pulsar timing# 4.1× 1013 3.0× 10−23 [13]

White dwarfs∗ 1.4× 1014 8.8× 10−24 [14]

EM counterparts∗ 1015 − 1016 10−24
− 10−25 [15]

TABLE I. Graviton mass bounds. For proposed methods we
quote the best achievable bounds. In the notation of the main
text, a dagger † denotes static bounds; a number sign #, dy-
namical bounds; an asterisk ∗, bounds that could be achieved
by comparing GW and electromagnetic observations.

To put our results in context, in Table I we present a
non-exhaustive summary of current and proposed bounds
on λg that do not rely solely on GW observations.
These bounds can be roughly divided into three classes.

i) Static bounds. If the graviton has nonzero mass,
it is reasonable to expect that the Newtonian gravita-
tional potential will be modified to the Yukawa form
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in the nonradiative near zone of any body of mass M :
V (r) = (GM/r) exp (−r/λg) . Talmadge et al. [9] inves-
tigated deviations from Kepler’s third law for the inner
planets of the Solar System. By translating the uncer-
tainties in these measurements in terms of accelerations
of test bodies resulting from a Yukawa potential, Will
[10] found that the strongest bound on λg comes from the
very nearly Keplerian orbit of Mars: λg > 2.8× 1012 km.

Some bounds on mg quoted by the Particle Data
Group (PDG) [16] similarly assume Yukawa corrections
to the Newtonian potential in the weak-field limit. The
strongest bounds are naturally obtained from observa-
tions on the largest (cosmological) scales. As early as
1974, Goldhaber and Nieto assumed that the graviton
mass would produce a Yukawa-type correction to the
standard Newtonian potential and argued that the ev-
idence for bound clusters and tidal interactions between
galaxies should imply a range for gravity at least as large
as a few Mpc, so that λg > 6.2 × 1019h0 km [11]. How-
ever, the need to include dark matter to explain galactic
rotation curves indicates that there are complications in
the nature of gravity on those scales that are not neces-
sarily well characterized by a Yukawa-type potential. An
even stronger bound λg > 1.8×1022 km comes from weak
gravitational lensing, because no distortions are observed
in the measured values of the variance of the power spec-
trum [12]. Because of uncertainties in the amount and
dynamics of dark matter in the Universe (and in the ab-
sence of a consistent massive graviton theory compati-
ble with cosmology) these bounds should be regarded as
model-dependent and viewed with some caution.

ii) Dynamical bounds. All bounds listed in part i) are
static, in the sense that they do not probe features related
to the propagation of the gravitational interaction when
mg 6= 0. The best available dynamical bounds come from
the (indirect) observations of GWs from binary pulsars,
that are in excellent agreement with general relativity
[17]. Finn and Sutton [8] observed that the consistency of
the orbital decay rates of binary pulsars PSR B1534+12
and B1913+16 with general relativistic predictions yields
a “dynamical” bound λg > 1.6× 1010 km. A recent idea
is to set bounds on mg using Pulsar Timing Arrays [13].
The best bound achievable in the near future would be
λg ≃ 4.1 × 1013 km, but this figure could worsen by an
order of magnitude depending on the number of pulsars
used for the test, timing accuracy and observation time.

iii) Comparisons of gravitational and electromag-
netic observations. If mg 6= 0, the modified dis-
persion relation for GWs would result in different ar-
rival times of GWs and electromagnetic waves emitted
by the same astrophysical source. Cutler et al. [14]
proposed to correlate electromagnetic observations and
future space-based GW observations of white dwarf bi-
naries. The best bound that could be obtained in this
way is λg ∼ 1.4 × 1014 km, but realistic bounds would
probably be worse by about one order of magnitude.

Kocsis et al. proposed to correlate LISA observations
of GWs from massive BH binary mergers with their pos-

sible electromagnetic counterparts [15]. An intrinsic limi-
tation of this method is related to timing uncertainties in
the GW burst, which are comparable to the dynamical
timescale for the coalescing binary during merger, and
can be estimated as the inverse of the orbital frequency
at the innermost stable circular orbit. For binaries in
the mass range M = 105 − 107 at redshift z = 1, this
uncertainty leads to a best bound λg ∼ 1015 − 1016 km,
worse than bounds coming from GW observations alone
(as we will see below). Systematic, model-dependent un-
certainties in the electromagnetic counterpart will further
weaken graviton mass bounds achievable in this way.

I. BOUNDS ON λg FROM INDIVIDUAL

GRAVITATIONAL-WAVE OBSERVATIONS

Tight dynamical bounds on the graviton mass can be
obtained using GW observations in space. This is due
to two reasons: (1) the larger mass of observable BH bi-
naries, as compared to ground-based GW observations;
(2) the statistical increase in the bound that would re-
sult from observing populations of individually resolved
binaries. To illustrate point (1), in this section we review
existing work on massive graviton bounds from GW ob-
servations of individual binaries with LISA. In section II
we will present the first attempt to quantify the statistical
improvement of bounds on λg that could be achievable
in reality by observing several events in the context of
hierarchical models of massive BH formation.
Will [10] first pointed out that interesting bounds on

λg could come from a careful monitoring of the phase
of GWs emitted by binaries of compact objects, such as
BHs and/or neutron stars. In hypothetical massive gravi-
ton theories, the GW damping formulae and dispersion
relation would be modified. As a consequence, the GW
phasing ΨGR(f) would acquire an additional term:

ΨMG(f) = ΨGR(f)− βg(πMf)−1 , (2)

where βg ≡ π2DM/[(1+z)λ2
g] andD is a distance param-

eter, similar to (but not quite the same as) the luminosity
distance DL (here and below we assume a ΛCDM model
with H0 = 70 km·s−1Mpc−1, ΩM = 0.3, ΩM = 0.7).
Using the restricted post-Newtonian approximation

and neglecting binary spins, Will estimated that stellar-
mass binary inspirals to be observed with LIGO would
yield a bound λg ≃ 5×1012 km, only slightly better than
Solar System bounds. For an “optimal” LISA system, i.e.
an equal-mass BH binary of total mass M = 2× 106 M⊙

atDL = 3 Gpc (z ≃ 0.5), the bound would be four orders
of magnitude better: λg ≃ 5× 1016 km ≃ 1.6 kpc.
These initial estimates were refined in various papers.

Will and Yunes [18] showed that bounds from binary BH
inspirals at DL = 3 Gpc would range between 1015 km
and 5 × 1016 km for M in the range 104 − 107 M⊙.

They found that the bound on λg is proportional to
√
L

(where L is the LISA armlength) and to (LISA acceler-
ation noise)−1/2, and that it scales in the following way:
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λg ∝
(

D

(1 + z)DL

)1/2 M11/12

S
1/4
0 f

1/3
0

, (3)

where M = (m1m2)
3/5M−1/5 is the “chirp mass”, S0 (in

Hz−1) sets the scale of the noise power spectral density
(PSD) of the detector, and f0 is a characteristic “knee”
frequency where the PSD has a minimum. Distance de-
pendence is weak because the effect of the massive gravi-
ton and measurement errors both grow with distance.
Berti et al. [19] performed a more detailed Monte

Carlo calculation of LISA’s parameter estimation capa-
bilities. They still considered restricted post-Newtonian
inspiral waveforms, but they used Cutler’s model [20] to
take into account the motion of the detector (all previ-
ous analyses assumed a static LISA constellation). In
this paper we will do the same. In Cutler’s model,
LISA can be seen as one (two) independent “LIGO-
like” Michelson interferometers depending on whether 4
(5/6, respectively) laser links are available between the
three satellites forming the constellation. For the “op-
timal binary” (a nonspinning, equal-mass binary with
M = 2× 106 M⊙ at DL = 3 Gpc), Monte Carlo averages
over the binary position and orientation yield a bound
λg = 5.0 × 1016(3.7 × 1016) km when using two (one)
Michelsons, in excellent agreement with Will’s original
results. For masses in the rangeM = 2×104−2×107 M⊙,
the mean bound using two Michelsons at DL = 3 Gpc is
in the range ∼ 5× 1015 − 7× 1016 km.
Later work used mostly Cutler’s model and investi-

gated the effect of more complex inspiral waveforms.
Arun and Will [21] studied the effect of higher harmonics
and PN amplitude corrections. They found that bounds
on λg improve by a factor of a few for systems of total
mass & 106 M⊙, and that this improvement is more sig-
nificant for binaries with large mass ratios. If one ignores
spin precession, adding spins to the waveforms generally
introduces degeneracies between the binary parameters,
degrading parameter estimation accuracy [19]. Stavridis
and Will [22] showed that modulations induced by spin
precession can break these degeneracies. For the “opti-
mal binary”, for example, the average bound including
spin precession is λg ∼ 5×1016 km, basically the same as
in the case of nonspinning binaries. Yagi and Tanaka [23]
included both spin precession and eccentricity. Perform-
ing simulations for a (107 + 106) M⊙ binary at 3 Gpc,
they found an average bound λg = 3.1 × 1016 km. This
is again consistent with [19] to within a factor 2.
More recently, Keppel and Ajith [24] revisited this

problem using phenomenological waveforms for nonspin-
ning BH binaries that include the merger/ringdown
phase. Their analysis of LISA bounds is similar to the
original work by Will [10] in that it ignores the motion of
the detector, using an effective non-sky-averaged noise
PSD. This simplification should not affect their main
conclusions: (i) for the “optimal binary”, the bound
on λg improves by about one order of magnitude, up

to ∼ 4 × 1017 km; (ii) a comparable bound is obtained
also for binaries of larger mass, up to M ∼ 108 M⊙.
At DL = 3 Gpc, the best bound using the full merger
is λg = 5.9 × 1017 km for M = 4.8 × 107 M⊙, to be
compared with a best bound λg = 6.3 × 1016 km for
M = 1.9× 106 M⊙ if we consider only inspiral waves. A
similar order-of-magnitude improvement is expected for
Earth-based detectors.
Del Pozzo et al. [25] recently revisited graviton mass

bounds using Bayesian inference (see also [26–29] for sim-
ilar work including other possible alternatives to general
relativity). They focused on ground-based observations
of sources within 150 Mpc and found results consistent
with Will’s original analysis [10]: for example, their Fig. 6
shows that binary observations with Advanced LIGO
would yield typical bounds ∼ few × 1012 km.
In this study we consider quasicircular, nonspinning,

restricted post-Newtonian inspiral waveforms. We con-
sider an observation time of two years. We take into ac-
count weak lensing errors on the redshift following [30],
and we compute the individual graviton mass bounds
by generalizing the Fisher matrix formalism described in
[31], which takes into account correlations with the other
waveform parameters. The results of Refs. [22, 24] sug-
gest that our bounds will be (i) very close to the bounds
we would obtain for spinning, precessing inspirals, and
(ii) about one order of magnitude worse than the bounds
achievable if we used “full” merger waveforms.

II. BOUNDS ON λg FROM

GRAVITATIONAL-WAVE OBSERVATIONS OF

MASSIVE BLACK HOLE POPULATIONS

All studies of massive graviton bounds so far analyzed
isolated systems, such as Will’s “optimal binary” of mass
M = 2× 106 M⊙ at z ∼ 0.5. Unfortunately, hierarchical
models of massive BH formation and evolution predict
that typical systems observable by space-based interfer-
ometers would have masses smaller than this, and be
located at redshift z ∼ 4 or higher (see e.g. [6, 7] and
Fig. 2 of [31]). The main uncertainties in these models
concern the seeding mechanism and the role of accretion
in BH growth [31, 32]. In this work we ignore spins in the
gravitational waveforms. Accretion mostly influences the
spin magnitude [33], so we will focus on the role of seed-
ing. Following work by the LISA Parameter Estimation
Taskforce [34], we will consider two “extreme” scenarios:
small seeds, efficient accretion (SE) and large seeds, ef-
ficient accretion (LE). These models being extreme, we
expect that our results should bracket the constraints
that would be obtained using other population models.
Here we consider the “Classic LISA” design along with

two different designs for the proposed ESA-led space-
based detector, that we will call by the working name
of “New LISA”. “Classic LISA” consists of three space-
craft forming an equilateral triangle with laser power
P = 2 W, telescope diameter d = 0.4 m and armlength
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FIG. 1. Non sky-averaged noise power spectral density
SNSA(f) for New LISA C2 (black, solid line), New LISA C5
(blue, dash-dotted line) and Classic LISA (red, dashed line).

L = 5 × 109 m, trailing 20◦ behind the Earth at an in-
clination of 60◦ with respect to the ecliptic. The authors
are members of a Science Performance Task Force that
is considering several different LISA-like configurations
with different characteristics and sensitivities. The con-
figurations that we call New LISA C2 (C5, respectively)
consist of three spacecraft forming an equilateral triangle
with armlength L = 109 m (L = 2× 109 m), laser power
P = 2 W and telescope diameter d = 0.4 m (d = 0.28 m).
“New LISA” should be deployed 10◦ behind the Earth,
gradually drifting to ∼ 25◦ behind the Earth in 5 years.
The non sky-averaged noise power spectral densities

for all three configurations are shown in Fig. 1; they
are related to the sky-averaged power spectral density by
SNSA(f) = 3

20
SSA(f) (see [19] for a discussion of sky av-

eraging). These curves include galactic confusion noise,
estimated using methods similar to [34] (which in turn
was based on [35]). In our study we consider the noise
power spectral density to be infinite below a cutoff fre-
quency fcutoff = 10−5 Hz. As shown in [19], bounds on
λg drop significantly at masses & 2×106 M⊙ if the noise
cannot be trusted below 10−4 Hz. This assumption has
a mild effect on our results, because most binaries in our
models have mass lower than this.
For each model we consider 1000 realizations of the

Universe. Each of these realizations typically produces
∼ 30 − 50 events observable with signal-to-noise ratio
(SNR) larger than 8. The distribution of bounds on λg

resulting from individual observations is shown in Fig. 2.
The top half of Table II shows that the mean bound

over individual observations is ∼ 3 × 1015 km for New
LISA C2, and only slightly better for the other designs.
This conclusion is quite robust, in the sense that numbers
vary only mildly for different seeding mechanisms and
different detector characteristics.

In most alternative theories, deviations from general
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FIG. 2. Distribution of bounds on the graviton Compton
wavelength for individual observations. We consider 1000 re-
alizations of the massive BH population and three different
detector designs: New LISA C2 (black, thick line), New LISA
C5 (blue, medium line) and Classic LISA (red, dashed line).

Mean (median) of individual events (1015 km)

Detector SE, 1 Mich. LE, 1 Mich. SE, 2 Mich. LE, 2 Mich.

Classic LISA 4.26(2.60) 6.83(5.77) 4.87(2.72) 9.13(7.72)

New LISA C2 3.03(2.44) 3.62(3.27) 3.60(2.80) 4.76(4.29)

New LISA C5 3.41(2.53) 4.63(4.13) 4.02(2.84) 6.15(5.48)

Mean (median) of combined bound (1016 km)

Detector SE, 1 Mich. LE, 1 Mich. SE, 2 Mich. LE, 2 Mich.

Classic LISA 4.93(4.87) 5.67(5.59) 6.51(6.45) 7.50(7.37)

New LISA C2 2.29(2.25) 2.73(2.71) 3.09(3.04) 3.66(3.64)

New LISA C5 3.10(3.07) 3.64(3.62) 4.16(4.12) 4.85(4.82)

TABLE II. Top: mean (in parentheses: median) bound on λg

for different BH formation models, using one or two detectors,
in units of 1015 km. Bottom: mean (in parentheses: median)
of the combined bound on λg over 1000 realizations of the
massive BH population, in units of 1016 km.

relativity can be parametrized by one or more global pa-
rameters (such as λg) which are the same for every sys-
tem. It is natural to expect that one can obtain better
constraints on these parameters, as well as other univer-
sal constants, by combining multiple observations (see
e.g. [25, 28, 29, 36–39]). Assuming that estimates for in-
dividual sources are independent and Gaussian posteriors
for each source, consistent with the Fisher matrix approx-
imation, the width σ2 of the combined posterior on 1/λg

is given by σ−2 =
∑

i σ
−2
i , where σ2

i is the width of the
posterior for the ith source. The bound on λg can thus be
obtained by adding the individual bounds in quadrature.
The results are shown in Fig. 3 and in the bottom half of
Table II. The combined bound obtained from the whole
BH population is about one order of magnitude better
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FIG. 3. Distribution of combined bounds over 1000 realiza-
tions of the MBH population. Linestyles are as in Fig. 2.

than the average bound obtained from typical observa-
tions. A rough estimate would suggest that N identical
sources should provide a bound ∼

√
N times better than

the bound from a single source. Our combined bound
is typically about 3 times better than the bound from
the best event, but the median bound is typically an or-
der of magnitude worse than the best, and hence ∼ 30
times worse than the combined bound. A typical realisa-
tion has ∼ 50 events, so our analysis shows that we can
beat the

√
N extrapolation from the median bound by

a considerable margin. If 5/6 links (two Michelsons) are
available instead of 4 links (one Michelson), the bound

typically improves by a factor ∼
√
2.

III. CONCLUSIONS AND OUTLOOK.

We assessed the capability of future space-based in-
terferometers, such as “Classic LISA” and the proposed
ESA-led “New LISA”, to constrain the mass of the gravi-
ton by combining observations of a population of massive
BH binaries. We found that: (1) by using a population
of merging BH binaries we can obtain a bound on λg that
is ∼ 10 times better than the mean bound on individual
observations; (2) quite independently of the detector’s
design and of details of the massive BH formation mod-
els, the combined bound from inspiral observations will
be λg ≃ 3 × 1016 km. This figure is likely to under-
estimate the bound achievable in practice by about one
order of magnitude, as we have ignored the merger and
ringdown portion of the waveform [24], but further work
is required to confirm this expectation.
In conclusion, space-based observations of a popula-

tion of merging BHs should set bounds in the range
λg ∈ [2× 1016 , 1018 km] on the graviton Compton wave-
length, depending on details of the detector and on the
specific waveform model used to set the bounds. This is
comparable to the (static and model-dependent) bounds
from cosmological-scale observations quoted in Table I
but it is very different in nature, because gravitational
radiation tests the dynamical regime of Einstein’s gen-
eral relativity.
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