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We study the bounds that space-based gravitational-wave detectors could realistically place on the

graviton Compton wavelength �g ¼ h=ðmgcÞ by observing multiple inspiralling black hole binaries.

Observations of individual inspirals will yield mean bounds �g � 3� 1015 km, but the combined bound

from observing �50 events in a two-year mission is about ten times better: �g ’ 3� 1016 km (mg ’
4� 10�26 eV). The bound improves faster than the square root of the number of observed events, because

typically a few sources provide constraints as much as three times better than the mean. This result is only

mildly dependent on details of black hole formation and detector characteristics. The bound achievable in

practice should be an order of magnitude better than this figure, because our calculations ignore the

merger/ringdown portion of the waveform.
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The formulation of gravitational theories with non-
zero mass for the graviton that are consistent with cosmo-
logical observations is an important open problem.
Attempts to construct such theories led to well-known
conceptual difficulties, such as the so-called van Dam-
Veltman-Zakharov discontinuity [1–3], due to the fact that
the helicity-0 component of the graviton does not de-
couple from matter when the putative mass of the graviton
mg ! 0. To circumvent pathologies related to the van

Dam-Veltman-Zakharov discontinuity, various versions
of Lorentz-violating massive graviton theories have been
proposed in recent years [4]. Massive graviton signatures
in the CMB and possible constraints on mg from cosmo-

logical observations are an active area of research (see,
e.g., [5]).

In this paper we are interested in hypothetical massive
graviton theories as ‘‘strawmen’’ for alternative theories of
gravity in which the propagation speed of gravity differs
from that of electromagnetic waves, leading to a modified
dispersion relation. Therefore we will adopt a phenomeno-
logical point of view and ask the following question: if the
graviton mass were nonzero, what upper bounds on mg

could we set by gravitational-wave (GW) observations of
inspiralling compact binaries with future space-based de-
tectors? Using �g ¼ h=ðmgcÞ, upper limits on the graviton

mass mg (in eV) can be expressed as lower limits on its

Compton wavelength �g (in km), since

�g½km� �mg½eV� ¼ 1:24� 10�9: (1)

Our analysis will show that, in hierarchical models of
massive black hole (BH) formation [6,7], the bound on �g

from GWobservations of a population of merger events is
about an order of magnitude better than the mean bound
from GW observations of individual mergers.
To put our results in context, in Table I we present a

nonexhaustive summary of current and proposed bounds
on �g that do not rely solely on GW observations.

These bounds can be roughly divided into three classes.
(i) Static bounds. If the graviton has nonzero mass,

it is reasonable to expect that the Newtonian gravitational
potential will be modified to the Yukawa form in the non-
radiative near zone of any body of mass M: VðrÞ ¼
ðGM=rÞ expð�r=�gÞ. Talmadge et. al. [9] investigated de-

viations from Kepler’s third law for the inner planets of the
Solar System. By translating the uncertainties in these

TABLE I. Graviton mass bounds. For proposed methods we
quote the best achievable bounds. In the notation of the main
text, a dagger (†) denotes static bounds; a number sign (#)
dynamical bounds; an asterisk (*) bounds that could be achieved
by comparing GW and electromagnetic observations.

Current bounds �g½km� mg½eV� Reference

Binary pulsars# 1:6� 1010 7:6� 10�20 [8]

Solar system† 2:8� 1012 4:4� 10�22 [9,10]

Clusters† 6:2� 1019h0 2:0� 10�29h�1
0 [11]

Weak lensing† 1:8� 1022 6:9� 10�32 [12]

Proposed bounds �g½km� mg½eV� Reference

Pulsar timing# 4:1� 1013 3:0� 10�23 [13]

White dwarfs* 1:4� 1014 8:8� 10�24 [14]

EM counterparts* 1015–1016 10�24–10�25 [15]
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measurements in terms of accelerations of test bodies
resulting from a Yukawa potential, Will [10] found that
the strongest bound on �g comes from the very nearly

Keplerian orbit of Mars: �g > 2:8� 1012 km.

Some bounds on mg quoted by the Particle Data Group

(PDG) [16] similarly assume Yukawa corrections to the
Newtonian potential in the weak-field limit. The strongest
bounds are naturally obtained from observations on the
largest (cosmological) scales. As early as 1974, Goldhaber
and Nieto assumed that the graviton mass would produce a
Yukawa-type correction to the standard Newtonian poten-
tial and argued that the evidence for bound clusters and
tidal interactions between galaxies should imply a range
for gravity at least as large as a few Mpc, so that �g >

6:2� 1019h0 km [11]. However, the need to include dark
matter to explain galactic rotation curves indicates that
there are complications in the nature of gravity on those
scales that are not necessarily well characterized by a
Yukawa-type potential. An even stronger bound �g >

1:8� 1022 km comes from weak gravitational lensing,
because no distortions are observed in the measured values
of the variance of the power spectrum [12]. Because of
uncertainties in the amount and dynamics of dark matter in
the Universe (and in the absence of a consistent massive
graviton theory compatible with cosmology) these bounds
should be regarded as model-dependent and viewed with
some caution.

(ii) Dynamical bounds. All bounds listed in part i) are
static, in the sense that they do not probe features related to
the propagation of the gravitational interaction when
mg � 0. The best available dynamical bounds come from

the (indirect) observations of GWs from binary pulsars,
that are in excellent agreement with general relativity [17].
Finn and Sutton [8] observed that the consistency of the
orbital decay rates of binary pulsars PSR B1534þ 12 and
B1913þ16 with general relativistic predictions yields a
‘‘dynamical’’ bound �g > 1:6� 1010 km. A recent idea is

to set bounds on mg using pulsar timing arrays [13]. The

best bound achievable in the near future would be �g ’
4:1� 1013 km, but this figure could worsen by an order of
magnitude depending on the number of pulsars used for the
test, timing accuracy and observation time.

(iii) Comparisons of gravitational and electromagnetic
observations. If mg � 0, the modified dispersion relation

for GWs would result in different arrival times of GWs and
electromagnetic waves emitted by the same astrophysical
source. Cutler et. al. [14] proposed to correlate electro-
magnetic observations and future space-based GW obser-
vations of white dwarf binaries. The best bound that could
be obtained in this way is �g � 1:4� 1014 km, but realistic

bounds would probably be worse by about an order of
magnitude.

Kocsis et. al. proposed to correlate LISA observations of
GWs from massive BH binary mergers with their possible
electromagnetic counterparts [15]. An intrinsic limitation

of this method is related to timing uncertainties in the GW
burst, which are comparable to the dynamical time scale
for the coalescing binary during merger, and can be esti-
mated as the inverse of the orbital frequency at the inner-
most stable circular orbit. For binaries in the mass range
M ¼ 105–107 at redshift z ¼ 1, this uncertainty leads to a
best bound �g � 1015–1016 km, worse than bounds com-

ing from GW observations alone (as we will see below).
Systematic, model-dependent uncertainties in the electro-
magnetic counterpart will further weaken graviton mass
bounds achievable in this way.

I. BOUNDS ON �g FROM INDIVIDUAL
GRAVITATIONAL-WAVE OBSERVATIONS

Tight dynamical bounds on the graviton mass can be
obtained using GW observations in space. This is due to
two reasons: (1) the larger mass of observable BH binaries,
as compared to ground-based GW observations; (2) the
statistical increase in the bound that would result from
observing populations of individually resolved binaries.
To illustrate point (1), in this section we review existing
work on massive graviton bounds fromGWobservations of
individual binaries with LISA. In Sec. II we will present
the first attempt to quantify the statistical improvement of
bounds on �g that could be achievable in reality by ob-

serving several events in the context of hierarchical models
of massive BH formation.
Will [10] first pointed out that interesting bounds on �g

could come from a careful monitoring of the phase of GWs
emitted by binaries of compact objects, such as BHs and/or
neutron stars. In hypothetical massive graviton theories,
the GW damping formulas and dispersion relation would
be modified. As a consequence, the GW phasing �GRðfÞ
would acquire an additional term

�MGðfÞ ¼ �GRðfÞ � �gð�MfÞ�1; (2)

where �g � �2DM=½ð1þ zÞ�2
g� and D is a distance para-

meter, similar to (but not quite the same as) the luminosity
distance DL (here and below we assume a �CDM model
with H0¼70 km �s�1Mpc�1, �M¼0:3, �M ¼ 0:7).
Using the restricted post-Newtonian approximation and

neglecting binary spins, Will estimated that stellar-mass
binary inspirals to be observed with LIGO would yield
a bound �g ’ 5� 1012 km, only slightly better than Solar

System bounds. For an ‘‘optimal’’ LISA system, i.e., an
equal-mass BH binary of total mass M ¼ 2� 106M� at
DL ¼ 3 Gpc (z ’ 0:5), the bound would be 4 orders of
magnitude better: �g ’ 5� 1016 km ’ 1:6 kpc.

These initial estimates were refined in various
papers. Will and Yunes [18] showed that bounds from
binary BH inspirals at DL ¼ 3 Gpc would range be-
tween 1015 km and 5� 1016 km for M in the range
104–107M�. They found that the bound on �g is propor-

tional to
ffiffiffiffi
L

p
(where L is the LISA armlength) and to
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ðLISA AaccelerationnoiseÞ�1=2, and that it scales in the
following way:

�g /
�

D

ð1þ zÞDL

�
1=2 M11=12

S1=40 f1=30

; (3)

where M ¼ ðm1m2Þ3=5M�1=5 is the ‘‘chirp mass’’, S0
(in Hz�1) sets the scale of the noise power spectral density
(PSD) of the detector, and f0 is a characteristic ‘‘knee’’
frequency where the PSD has a minimum. Distance de-
pendence is weak because the effect of the massive gravi-
ton and measurement errors both grow with distance.

Berti et. al. [19] performed a more detailed Monte Carlo
calculation of LISA’s parameter estimation capabilities.
They still considered restricted post-Newtonian inspiral
waveforms, but they used Cutler’s model [20] to take
into account the motion of the detector (all previous analy-
ses assumed a static LISA constellation). In this paper we
will do the same. In Cutler’s model, LISA can be seen
as one (two) independent ‘‘LIGO-like’’ Michelson inter-
ferometers depending on whether 4 (5=6, respectively)
laser links are available among the three satellites forming
the constellation. For the ‘‘optimal binary’’ (a nonspinning,
equal-mass binary withM ¼ 2� 106M� at DL ¼ 3 Gpc),
Monte Carlo averages over the binary position and ori-
entation yield a bound �g ¼ 5:0� 1016ð3:7� 1016Þ km
when using two (one) Michelsons, in excellent agree-
ment with Will’s original results. For masses in the
range M ¼ 2� 104–2� 107M�, the mean bound using
two Michelsons at DL ¼ 3 Gpc is in the range
�5� 1015–7� 1016 km.

Later work used mostly Cutler’s model and investi-
gated the effect of more complex inspiral waveforms.
Arun and Will [21] studied the effect of higher harmonics
and PN amplitude corrections. They found that bounds on
�g improve by a factor of a few for systems of total mass

* 106M�, and that this improvement is more significant
for binaries with large mass ratios. If one ignores spin
precession, adding spins to the waveforms generally intro-
duces degeneracies between the binary parameters, de-
grading parameter estimation accuracy [19]. Stavridis
and Will [22] showed that modulations induced by spin
precession can break these degeneracies. For the ‘‘optimal
binary,’’ for example, the average bound including spin
precession is �g � 5� 1016 km, basically the same as in

the case of nonspinning binaries. Yagi and Tanaka [23]
included both spin precession and eccentricity. Performing
simulations for a ð107 þ 106ÞM� binary at 3 Gpc, they
found an average bound �g ¼ 3:1� 1016 km. This is again

consistent with [19] to within a factor of 2.
More recently, Keppel and Ajith [24] revisited this

problem using phenomenological waveforms for non-
spinning BH binaries that include the merger/ringdown
phase. Their analysis of LISA bounds is similar to the
original work by Will [10] in that it ignores the motion

of the detector, using an effective non-sky-averaged
noise PSD. This simplification should not affect their
main conclusions: (i) for the ‘‘optimal binary,’’ the bound
on �g improves by about an order of magnitude, up to

�4� 1017 km; (ii) a comparable bound is obtained
also for binaries of larger mass, up to M� 108M�. At
DL ¼ 3 Gpc, the best bound using the full merger is �g ¼
5:9� 1017 km for M¼4:8�107M�, to be compared with
a best bound �g ¼ 6:3� 1016 km for M ¼ 1:9� 106M�
if we consider only inspiral waves. A similar order-of-mag-
nitude improvement is expected for Earth-based detectors.
Del Pozzo et. al. [25] recently revisited graviton mass

bounds using Bayesian inference (see also [26–29]
for similar work including other possible alternatives to
general relativity). They focused on ground-based obser-
vations of sources within 150 Mpc and found results con-
sistent with Will’s original analysis [10]: for example, their
Fig. 6 shows that binary observations with Advanced LIGO
would yield typical bounds �few� 1012 km.
In this study we consider quasicircular, nonspinning,

restricted post-Newtonian inspiral waveforms. We con-
sider an observation time of two years. We take into
account weak lensing errors on the redshift following
[30], and we compute the individual graviton mass bounds
by generalizing the Fisher matrix formalism described in
[31], which takes into account correlations with the other
waveform parameters. The results of Refs. [22,24] sug-
gest that our bounds will be (i) very close to the bounds
we would obtain for spinning, precessing inspirals, and
(ii) about an order of magnitude worse than the bounds
achievable if we used ‘‘full’’ merger waveforms.

II. BOUNDS ON �g FROMGRAVITATIONAL-WAVE
OBSERVATIONS OF MASSIVE BLACK

HOLE POPULATIONS

All studies of massive graviton bounds so far analyzed
isolated systems, such as Will’s ‘‘optimal binary’’ of mass
M ¼ 2� 106M� at z� 0:5. Unfortunately, hierarchical
models of massive BH formation and evolution predict
that typical systems observable by space-based interfer-
ometers would have masses smaller than this, and be
located at redshift z� 4 or higher (see, e.g., [6,7] and
Fig. 2 of [31]). The main uncertainties in these models
concern the seeding mechanism and the role of accretion in
BH growth [31,32]. In this work we ignore spins in the
gravitational waveforms. Accretion mostly influences the
spin magnitude [33], so we will focus on the role of
seeding. Following work by the LISA Parameter Esti-
mation Task Force [34], we will consider two ‘‘extreme’’
scenarios: small seeds, efficient accretion (SE) and large
seeds, efficient accretion (LE). These models being ex-
treme, we expect that our results should bracket the con-
straints that would be obtained using other population
models.
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Here we consider the ‘‘Classic LISA’’ design along with
two different designs for the proposed ESA-led space-
based detector, that we will call by the working name
of ‘‘New LISA.’’ ‘‘Classic LISA’’ consists of three space-
craft forming an equilateral triangle with laser power
P ¼ 2 W, telescope diameter d ¼ 0:4 m and armlength
L ¼ 5� 109 m, trailing 20� behind the Earth at an incli-
nation of 60� with respect to the ecliptic. The authors are
members of a Science Performance Task Force that is
considering several different LISA-like configurations
with different characteristics and sensitivities. The con-
figurations that we call New LISA C2 (C5, respectively)
consist of three spacecraft forming an equilateral triangle
with armlength L ¼ 109 m (L ¼ 2� 109 m), laser power
P¼2W and telescope diameter d ¼ 0:4 m (d ¼ 0:28 m).
‘‘New LISA’’ should be deployed 10� behind the Earth,
gradually drifting to �25� behind the Earth in five years.

The non-sky-averaged noise power spectral densities for
all three configurations are shown in Fig. 1; they are related
to the sky-averaged power spectral density by SNSAðfÞ ¼
3
20S

SAðfÞ (see [19] for a discussion of sky averaging).

These curves include galactic confusion noise, estimated
using methods similar to [34] (which in turn was based on
[35]). In our study we consider the noise power spectral
density to be infinite below a cutoff frequency fcutoff ¼
10�5 Hz. As shown in [19], bounds on �g drop signifi-

cantly at masses * 2� 106M� if the noise cannot be
trusted below 10�4 Hz. This assumption has a mild effect
on our results, because most binaries in our models have
mass lower than this.
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FIG. 1 (color online). Non-sky-averaged noise power spectral
density SNSAðfÞ for New LISA C2 (black, solid line), New
LISA C5 (blue, dash-dotted line) and Classic LISA (red, dashed
line).
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FIG. 2 (color online). Distribution of bounds on the graviton
Compton wavelength for individual observations. We consider
1000 realizations of the massive BH population and three differ-
ent detector designs: New LISA C2 (black, thick line), New
LISA C5 (blue, medium line) and Classic LISA (red, dashed
line).

TABLE II. Top: mean (in parentheses: median) bound on �g for different BH formation
models, using one or two detectors, in units of 1015 km. Bottom: mean (in parentheses: median)
of the combined bound on �g over 1000 realizations of the massive BH population, in units

of 1016 km.

Mean (median) of individual events (1015 km)

Detector SE, 1 Mich. LE, 1 Mich. SE, 2 Mich. LE, 2 Mich.

Classic LISA 4.26(2.60) 6.83(5.77) 4.87(2.72) 9.13(7.72)

New LISA C2 3.03(2.44) 3.62(3.27) 3.60(2.80) 4.76(4.29)

New LISA C5 3.41(2.53) 4.63(4.13) 4.02(2.84) 6.15(5.48)

Mean (median) of combined bound (1016 km)

Detector SE, 1 Mich. LE, 1 Mich. SE, 2 Mich. LE, 2 Mich.

Classic LISA 4.93(4.87) 5.67(5.59) 6.51(6.45) 7.50(7.37)

New LISA C2 2.29(2.25) 2.73(2.71) 3.09(3.04) 3.66(3.64)

New LISA C5 3.10(3.07) 3.64(3.62) 4.16(4.12) 4.85(4.82)
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For each model we consider 1000 realizations of the
Universe. Each of these realizations typically produces
�30–50 events observable with signal-to-noise ratio larger
than 8. The distribution of bounds on �g resulting from

individual observations is shown in Fig. 2.
The top half of Table II shows that the mean bound

over individual observations is �3� 1015 km for New
LISA C2, and only slightly better for the other designs.
This conclusion is quite robust, in the sense that numbers
vary only mildly for different seeding mechanisms and
different detector characteristics.

In most alternative theories, deviations from general
relativity can be parametrized by one or more global
parameters (such as �g) which are the same for every

system. It is natural to expect that one can obtain better
constraints on these parameters, as well as other universal
constants, by combining multiple observations (see, e.g.,
[25,28,29,36–39]). Assuming that estimates for individual
sources are independent and Gaussian posteriors for each
source, consistent with the Fisher matrix approximation,
the width �2 of the combined posterior on 1=�g is given by

��2 ¼ P
i�

�2
i , where �2

i is the width of the posterior for

the ith source. The bound on �g can thus be obtained by

adding the individual bounds in quadrature. The results are
shown in Fig. 3 and in the bottom half of Table II. The
combined bound obtained from thewhole BH population is
about an order of magnitude better than the average bound
obtained from typical observations. A rough estimate

would suggest that N identical sources should provide a

bound � ffiffiffiffi
N

p
times better than the bound from a single

source. Our combined bound is typically about 3 times
better than the bound from the best event, but the median
bound is typically an order of magnitude worse than
the best, and hence �30 times worse than the combined
bound. A typical realization has �50 events, so our analy-

sis shows that we can beat the
ffiffiffiffi
N

p
extrapolation from the

median bound by a considerable margin. If 5=6 links
(two Michelsons) are available instead of 4 links (one

Michelson), the bound typically improves by a factor� ffiffiffi
2

p
.

III. CONCLUSIONS AND OUTLOOK

We assessed the capability of future space-based inter-
ferometers, such as ‘‘Classic LISA’’ and the proposed
ESA-led ‘‘New LISA,’’ to constrain the mass of the gravi-
ton by combining observations of a population of massive
BH binaries. We found that: (1) by using a population of
merging BH binaries we can obtain a bound on �g that is

�10 times better than the mean bound on individual ob-
servations; (2) quite independently of the detector’s design
and of details of the massive BH formation models, the
combined bound from inspiral observations will be �g ’
3� 1016 km. This figure is likely to underestimate the
bound achievable in practice by about an order of magni-
tude, as we have ignored the merger and ringdown portion
of the waveform [24], but further work is required to
confirm this expectation.
In conclusion, space-based observations of a popu-

lation of merging BHs should set bounds in the range �g 2
½2� 1016; 1018 km� on the graviton Compton wavelength,
depending on details of the detector and on the specific
waveform model used to set the bounds. This is compa-
rable to the (static and model-dependent) bounds from
cosmological-scale observations quoted in Table I but it
is very different in nature, because gravitational radia-
tion tests the dynamical regime of Einstein’s general
relativity.
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