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We develop and calibrate a characteristic waveform extraction tool whose major improvements and

corrections of prior versions allow satisfaction of the accuracy standards required for advanced LIGO data

analysis. The extraction tool uses a characteristic evolution code to propagate numerical data on an inner

worldtube supplied by a 3þ 1 Cauchy evolution to obtain the gravitational waveform at null infinity. With

the new extraction tool, high accuracy and convergence of the numerical error can be demonstrated for an

inspiral and merger of mass M binary black holes even for an extraction worldtube radius as small as

R ¼ 20M. The tool provides a means for unambiguous comparison between waveforms generated by

evolution codes based upon different formulations of the Einstein equations and based upon different

numerical approximations.
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I. INTRODUCTION

The strong emission of gravitational waves from the
inspiral and merger of binary black holes has been a
dominant motivation for the construction of gravitational
wave observatories. The computation of the precise de-
tails of the waveform by means of numerical simulation
is a key theoretical tool to enhance detection and allow
useful scientific interpretation of the gravitational signal.
See [1] for a review of the accuracy required of numeri-
cally generated waveforms to fully complement the sen-
sitivity of the LIGO [2] and Virgo [3] observatories.
However, the waveforms are not easy to extract accu-
rately. The radiation falls off as 1=r so that although it
asymptotically dominates near field gravitational effects
it is nevertheless small and can be contaminated by
numerical error. It is common practice for the Cauchy
codes used in simulating the binary black hole problem
to introduce a large but finite artificial outer boundary. A
combination of linearized and far field approximations
are then used to extract the waveform from data on a
smaller worldtube, which ideally is causally isolated
from the outer boundary. Such perturbative wave extrac-
tion at a finite distance, rather than at null infinity which
more faithfully represents the idealization of a distant
antenna, introduces systematic errors associated with the
effects of gauge, nonlinearities, nonradiative near fields
and back reflection. (See [4,5] for analyses of wave-
form errors arising from perturbative extraction at a
finite distance.) An alternative approach called Cauchy-
characteristic extraction (CCE) [6,7] provides a fully
nonlinear interface between Cauchy and characteristic
codes which utilizes the characteristic evolution to ex-
tend the simulation to null infinity, where the waveform

is computed. An earlier implementation of CCE has
recently been applied to extract waveforms from binary
black hole simulations [8,9], from rotating stellar core
collapse [10] and to explore the memory effect [11]. In
this work, we present details and tests of a redesigned
CCE module whose accuracy and efficiency has under-
gone major improvement. The module has been designed
to provide a standardized waveform extraction tool for
the numerical relativity community which will allow
CCE to be readily applied to a generic Cauchy code.
The first attempts to simulate collisions of black holes by

Hahn and Lindquist [12], and then by Smarr et al. [13],
were hampered by both a lack of computing power and
a proper understanding of the mathematical formulation of
Einstein’s equations required for a stable numerical solu-
tion. Their work formed the impetus for the Binary Black
Hole Grand Challenge, which was formed to take advan-
tage of the increasingly powerful computers introduced in
the 1980s. The main results of the Grand Challenge were
limited to the axisymmetric head-on collision of black
holes and the gravitational collapse of rotating matter
[14]. However, the standard Arnowitt-Deser-Misner [15]
formulation of the Einstein equations adopted by the Grand
Challenge had instabilities at the analytic level which
limited more general binary black hole simulations to the
premerger stage. Only with new formulations was a full
inspiral and merger successful, first by Pretorius [16] using
the harmonic formulation, and soon after by Campanelli
et al. [17] and Baker et al. [18] using the Baumgarte-
Shapiro-Shibabta-Nakamura formulation [19,20]. Num-
erous groups now have codes which can simulate this
binary inspiral problem by evolving the Cauchy problem
for Einstein’s equations.

PHYSICAL REVIEW D 84, 044057 (2011)

1550-7998=2011=84(4)=044057(23) 044057-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.044057


In CCE, the Cauchy evolution is used to supply bound-
ary data on a timelike inner worldtube to carry out a
characteristic evolution extending to future null infinity
Iþ, where the waveform can be unambiguously computed
using the geometric methods developed by Bondi et al.
[21], Sachs [22] and Penrose [23]. This initial-boundary
value problem based upon a timelike worldtube [24] has
been implemented as a characteristic evolution code, the
PITT null code [25,26], which incorporates a Penrose
compactification of the space-time. It computes the
Bondi news function at Iþ, which is an invariantly defined
complex radiation amplitude N ¼ N� þ iN�, whose real
and imaginary parts correspond to the time derivatives
@th� and @th� of the ‘‘plus’’ and ‘‘cross’’ polarization
modes of the strain incident on a gravitational wave an-
tenna. The error in the PITT code was tested to be second
order convergent in analytic testbeds ranging from the
perturbative regime [27] to highly nonlinear single black
hole spacetimes [26]. One of the successes of the Grand
Challenge was the successful application of the code to
generic single black hole dynamical spacetimes [28–31].
For a review, see [32].

The propagation of gravitational waves to Iþ from an
astrophysically realistic source using the PITT code has in
the past been limited to the simulation of an imploding
neutron star using a fluid dynamic code incorporated into
the characteristic code [33,34]. These simulations were
restricted to the axisymmetric case because of computa-
tional demands arising at the center of the star. For such
systems, CCE offers a way to combine the strengths of the
Cauchy and characteristic approaches. Recently this com-
bined approach has been applied to extract the waveform
from the fully 3-dimensional collapse of a rotating star
[10]. A global characteristic simulation of the full inspiral
and merger of a relativistic binary system is not possible
because of the interior caustics formed by gravitational
lensing. But the application of CCE to this system has
been shown to be possible [8,9].

The error in CCE arises from three independent sources:
(I) the Cauchy evolution; (II) the worldtube module; and
(III) the characteristic evolution to Iþ and the computation
of the waveform.

(i) Errors in the Cauchy evolution can arise from nu-
merical approximations, improper boundary treat-
ments, extraneous radiation content in the initial
data, instabilities and bugs. Errors introduced at the
outer grid boundary present a special problem for
BSSN formulations for which there is no theoretical
understanding of the proper boundary condition. The
standard practice is to extract the waveform at a
finite worldtube which is large enough to justify a
far field approximation but which is causally isolated
from the outer boundary during the simulation. For
example, perturbative extraction at r ¼ 100M would
require that the outer boundary be at r > 500M for

a t � 400M simulation. We have designed the new
CCE module so that it can be applied to a generic
Cauchy code with extraction radius as small as
r ¼ 20M. However, since any universally applicable
extraction module must be designed to be indepen-
dent of error introduced by the Cauchy code, the
extracted waveform cannot be any more reliable than
the Cauchy code.

(ii) The main improvement described and tested in this
paper is a complete overhaul of the worldtube mod-
ule, which converts the output of the Cauchy evo-
lution to boundary data on an inner worldtube for
the characteristic evolution. The prior version of this
module, which was used in the first applications of
CCE to obtain binary black hole waveforms [8–10],
contained inconsistencies and bugs which prevented
clean convergence tests. We have corrected this
worldtube module so that the present version exhib-
its clean convergence to which Richardson extrapo-
lation can be applied to produce waveforms whose
numerical error due to CCE is extremely small. In
addition to improvement in consistency and accu-
racy, we have also redesigned the module to be more
efficient and user friendly. These revisions are de-
scribed in the Appendix.

(iii) In addition to thoroughly scrutinizing the PITT null
code for bugs, we made several major modifica-
tions. In previous applications requiring very high
resolution, such as the inspiral of a particle into a
black hole [35], there was excessive short wave-
length noise which affected the quality of the simu-
lation. In addition, in [8,9] it was reported that one
of the equations governing calculation of the wave-
form at Iþ had to be linearized in order to obtain
reasonable behavior. These problems have been
eliminated as a result of the modifications de-
scribed in the Appendix.

In Secs. II and III, we review the formalism underlying
characteristic evolution and the computational structure of
the PITT code. We include enough details to make clear the
difficulties underlying extraction of an accurate waveform
at Iþ and to explain the code modifications that have been
made. We also demonstrate how the use of 4th order
accurate angular derivatives improves the previous test
results of CCE presented in [5]. In Sec. IV, we describe
the design of the new worldtube module, how it treats the
Cauchy-characteristic interface and how it can be readily
applied to a Cauchy evolution.
In Sec. V, we test the new extraction tool on the Cauchy

evolution of the inspiral and merger of two equal-mass,
nonspinning black holes. We show that CCE can now be
carried out for a worldtube radius as small as 20M for a
mass M binary system, for which perturbative extraction
would not be meaningful, and which was not possible with
the prior implementation of CCE. Convergence tests now
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demonstrate clean second order global accuracy of the
evolution variables.

The waveforms are only first order accurate as a result of
the asymptotic limits required at Iþ. However, the clean
first order convergence of the waveform now allows appli-
cation of Richardson extrapolation to obtain higher order
accuracy. In this way, in Sec. VI, we construct a third order
accurate waveform, which was not possible with earlier
versions of CCE.

The ability to apply Richardson extrapolation to CCE
waveforms makes it possible to show that their numerical
error satisfies the standards required for application to ad-
vanced LIGO data analysis. The first derivation [36] of the
accuracy required for numerically generated black hole
waveforms to be useful as templates for LIGO was carried
out in the frequency domain, in which the interferometer
noise spectrum is calibrated. There are two separate crite-
ria: one ensures that the error in the model waveform does
not impact wave detection and the other ensures that the
error does not impact the scientific content of the signal.
These criteria both depend upon the noise spectrum of the
detector in a way not easily applied to a numerical simu-
lation. This has recently prompted a translation of these
requirements into the time domain in which the waveforms
are computed [1,37,38], so that they can be readily en-
forced in practice. In Sec. VII we show that the numerical
error introduced by CCE satisfies these time domain crite-
ria for an advanced LIGO detector. We also analyze the
error introduced by the choice of initial data, which has a
dependency upon the size of the extraction worldtube.

II. CHARACTERISTIC FORMALISM

The characteristic formalism is based upon a family of
outgoing null hypersurfaces emanating from an inner
worldtube and extending to infinity where they foliate
Iþ into spherical slices. We let u label these hypersurfaces,
xA (A ¼ 2, 3) be angular coordinates which label the null
rays and r be a surface-area coordinate. In the resulting
x� ¼ ðu; r; xAÞ coordinates, the metric takes the Bondi-
Sachs form [21,22]

ds2 ¼ �
�
e2�

V

r
� r2hABU

AUB

�
du2 � 2e2�dudr

� 2r2hABU
BdudxA þ r2hABdx

AdxB; (2.1)

where hABhBC ¼ �A
C and detðhABÞ ¼ detðqABÞ, with qAB a

unit sphere metric. In analyzing the Einstein equations, we
also use the intermediate variable

QA ¼ r2e�2�hABU
B
;r: (2.2)

Because the Bondi variable V ¼ Oðr2Þ at Iþ, the code
is written in terms or the renormalized variable W ¼
ðV � rÞ=r2. Here W ¼ 0 for the Minkowski metric in
null spherical coordinates.

The PITT null code employs a spherical grid based
upon an auxiliary unit sphere metric qAB, with associated
complex dyad qA satisfying qAB ¼ 1

2 ðqA �qB þ �qAqBÞ. The
Bondi-Sachs metric hAB induced on the spherical cross-
sections can then be represented by its dyad component
J ¼ hABq

AqB=2, with the spherically symmetric case char-
acterized by J ¼ 0. The fully nonlinear hAB is uniquely
determined by J, which is the principle evolution variable.
The determinant condition implies that the dyad compo-
nent K ¼ hABq

A �qB=2 is determined by 1 ¼ K2 � J �J.
We also introduce spin-weighted fields U ¼ UAqA and
Q ¼ QAq

A, as well as the complex spin-weight operators
ð and �ð [39] which represent the angular derivatives. Refer
to [40] for details regarding numerical implementation.
In this formalism, the Einstein equations decompose

into hypersurface equations, evolution equations and con-
servation conditions on the inner worldtube. As described
in more detail in [7,24], the hypersurface equations take the
form

�;r ¼ N�½J�; (2.3)

ðr2QÞ;r ¼ �r2ð�ðJ þ ðKÞ;r þ 2r4ððr�2�Þ;r þ NQ½J; ��;
(2.4)

U;r ¼ r�2e2�Qþ NU½J; �;Q�; (2.5)

V;r ¼ 1

2
e2�R� e�ð�ðe� þ 1

4
r�2ðr4ðð �Uþ �ðUÞÞ;r

þ NW½J; �;Q;U�; (2.6)

where

R ¼ 2K � ð�ðK þ 1

2
ð�ð2J þ ð2 �JÞ þ 1

4K
ð�ð �J ðJ � �ðJð �JÞ

(2.7)

is the curvature scalar of the 2-metric hAB. The evolution
equation for J takes the form

2ðrJÞ;ur � ðr�1VðrJÞ;rÞ;r
¼ �r�1ðr2ðUÞ;r þ 2r�1e�ð2e� � ðr�1VÞ;rJ

þ NJ½J; J;u; �;Q;U;W�; (2.8)

where N�½J�, NQ½J; ��, NU½J; �;Q�, NW½J; �;Q;U� and
NJ½J; J;u; �;Q;U;W� are nonlinear terms which vanish for

spherical symmetry and can be constructed from the hyper-
surface values of the variables appearing in their argument.
Expressions for these nonlinear terms as complex spin-
weighted fields and a discussion of the conservation con-
ditions are given in [7]. The hypersurface equations have a
hierarchical structure in the order ½J; �;Q;U;W� such that
the right hand sides, e.g. N�½J� only depend upon previous
variables and their derivatives intrinsic to the hypersurface.
The finite-difference grid used in the code is based upon

the compactified radial coordinate
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x ¼ r

RE þ r
(2.9)

so that x ¼ 1 at Iþ. Here RE is a parameter which in the
CCE module is chosen as the radius of the extraction
worldtube as determined by R2 ¼ �ijx

ixj in terms of the

Cartesian coordinates xi used in the Cauchy evolution
code.

The auxiliary variables

� ¼ �ðJ; B ¼ ð�; k ¼ ðK (2.10)

are also introduced to eliminate all second angular deriva-
tives. In certain applications this has been found to give rise
to increased accuracy by suppressing short wavelength
error [41].

The finite-difference scheme for integrating the hyper-
surface and evolution equations has been described in
[26,41,42]. Except for the start-up procedure described
in Sec. IV, we follow this scheme with two modifica-
tions. First, the finite-difference approximation for the
ð-operators is increased from 2nd order to 4th order accu-
racy. This can be expected to give better angular resolution
but does not affect the overall 2nd order accuracy implied
by the radial and time integration schemes. Second, when
rewritten in terms of the compactified x-coordinate, the
hypersurface equations for Q and W take the form

xð1� xÞ@xFþ 2F ¼ RHS (2.11)

where the right hand side is regular at Iþ. In order to deal
with the degeneracy of this equation at x ¼ 1, we rewrite
(2.11) in the form

@ðr2FÞ
@ðr2Þ ¼ RHS

2
(2.12)

and construct a centered finite-difference approximation
with respect to r2. Expressed in terms of the grid xi ¼
xi�i þ �x, this leads to

Fi ¼
�
xi�1ð1� xiÞ
xið1� xi�1Þ

�
2
Fi�1

þ �xðxi þ xi�1 � 2xixi�1Þ
x2i ð1� xi�1Þ2

RHS

2
(2.13)

which enforces the correct asymptotic limit Fjx¼1 ¼
RHS=2 when RHS is constant near Iþ. In practice, the
variation of RHS implies that this limit is only enforced to
first order accuracy when RHS is evaluated by the midpoint
rule. This is consistent with global second order accuracy
of Q and W when the numerical error is measured by an
L2-norm over the hypersurface, but only first order accu-
racy can be expected for their values at Iþ. However,
the asymptotic values of Q and W do not enter directly
into the calculation of the waveform at Iþ.

A. Waveforms at Iþ

For technical simplicity, the theoretical derivation of
the waveform at infinity is best presented in terms of an in-
verse surface-area coordinate ‘ ¼ 1=r, where ‘ ¼ 0 at Iþ.
In the resulting x� ¼ ðu; ‘; xAÞ conformal Bondi coordi-
nates, the physical space-time metric g�� has the confor-

mal compactification ĝ�� ¼ ‘2g��, where ĝ�� is smooth

at Iþ and, referring to (2.1), takes the form [24]

ĝ��dx
�dx� ¼ �ðe2�V‘3 � hABU

AUBÞdu2 þ 2e2�dud‘

� 2hABU
BdudxA þ hABdx

AdxB: (2.14)

As described in [5], the Bondi news function Nðu; xAÞ
and the Newman-Penrose Weyl tensor component [43]

�0
4ðu; xAÞ ¼ lim

r!1rc 4

which describe the waveform are both determined by the
asymptotic limit at Iþ of the tensor field

�̂ �� ¼ 1

‘

�
r̂�r̂� � 1

4
ĝ��r̂�r̂�

�
‘: (2.15)

This limit is constructed from the leading coefficients in an
expansion of the metric in powers of ‘. We thus write

hAB ¼ HAB þ ‘cAB þOð‘2Þ: (2.16)

Conditions on the asymptotic expansion of the remaining
components of the metric follow from the Einstein equa-
tions:

� ¼ H þOð‘2Þ; (2.17)

UA ¼ LA þ 2‘e2HHABDBH þOð‘2Þ (2.18)

and

‘2V ¼ DAL
A þ ‘ðe2HR=2þDAD

Ae2HÞ þOð‘2Þ;
(2.19)

where H and L are the asymptotic limits of � and U and
where R and DA are the 2-dimensional curvature scalar
and covariant derivative associated with HAB.
The expansion coefficients H, HAB, cAB and LA (all

functions of u and xA) completely determine the radiation
field. One can further specialize the Bondi coordinates to
be inertial at Iþ, i.e. have Minkowski form, in which case
H ¼ LA ¼ 0, HAB ¼ qAB (the unit sphere metric) so that
the radiation field is completely determined by cAB. How-
ever, the characteristic extraction of the waveform is car-
ried out in computational coordinates determined by the
Cauchy data on the extraction worldtube so that this iner-
tial simplification cannot be assumed.
In order to compute the Bondi news function in the ĝ��

frame, it is necessary to determine the conformal factor !
relating HAB to a unit sphere metric QAB, i.e. to an inertial
conformal Bondi frame [24] satisfying
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QAB ¼ !2HAB: (2.20)

(See [44] for a discussion of how the news in an arbitrary
conformal frame is related to its expression in this inertial
Bondi frame.) We can determine ! by solving the elliptic
equation governing the conformal transformation of the
curvature scalar (2.7) to a unit sphere geometry,

R ¼ 2ð!2 þHABDADB log!Þ: (2.21)

Equation (2.21) need only be solved at the initial time.
Then the geometrical properties of Iþ determines the time
dependence of ! according to

2n̂�@� log! ¼ �e�2HDAL
A; (2.22)

where n̂� ¼ ĝ��r�‘ is the null vector tangent to the

generators of Iþ. We use (2.22) to evolve ! along
the generators of Iþ given a solution of (2.21) as initial
condition.

The news function Nðu; xAÞ is first computed by the
code in terms of the computational coordinates ðu; xAÞ, as
opposed to the inertial coordinates ð~u; yAÞ on Iþ corre-
sponding to an idealized distant observatory. The trans-
formation to inertial coordinates proceeds by introducing
the conformally rescaled metric ~g�� ¼ !2ĝ�� in which

the cross-sections of Iþ have unit sphere geometry, in
accord with (2.20). The rescaled null vector ~n� ¼ !�1n̂�

is then the generator of the inertial time translation on Iþ,
i.e. ~n�@� ¼ @~u. The inertial coordinates thus satisfy the
propagation equations

n̂ �@�~u ¼ !; n̂�@�y
A ¼ 0; (2.23)

where n̂�@� ¼ e�2Hð@u þ LA@xAÞ in terms of the computa-
tional coordinates. The inertial coordinates are obtained by
integrating (2.23), thus establishing a second pair of ste-
reographic grid patches corresponding to yA. Then the
news function is transformed into Nð~u; yAÞ. (More pre-

cisely, we should write ~Nð~u; yAÞ ¼ N̂ðu; xAÞ to distinguish
the functional form of the news in the different coordinates
but we forgo this complication of notation.)

In addition, in order for the real and imaginary parts ofN
to correspond to the plus and cross polarization modes
of a distant observatory, we need the proper choice of com-
plex polarization vector Q�, which in the inertial coordi-

nates is related to the unit sphere metric on Iþ by QAB ¼
ðQA �QB þ �QAQBÞ=2. We fix the spin rotation freedom

Q� ! e�i�Q� by requiring ~n� ~r�Q� ¼ Oð�Þ, so that
the polarization frame is parallel propagated along the
inertial time flow on Iþ. This fixes the polarization modes
determined by the real and imaginary parts of the news to
correspond to those of inertial observers at Iþ. In order to
carry this out in the computational frame we introduce the
dyad decomposition HAB ¼ ðFA �FB þ �FAFBÞ=2 where

FA ¼ qA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK þ 1Þ

2

s
� �qAJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ðK þ 1Þ

s
: (2.24)

We then set Q� ¼ e�i�!�1F� þ �~n�, where F� :¼
ð0; 0; FAÞ. The requirement of an inertial polarization

frame, ~n� ~r�Q� ¼ Oð�Þ, then determines the time depen-
dence of the phase � according to

2ið@uþLA@AÞ�
¼DAL

AþHAC
�FCðð@uþLB@BÞFA�FB@BL

AÞ: (2.25)

The Bondi news now takes the explicit form

N ¼ 1

4
e�2i�!�2e�2HFAFB

�
ð@u þLLÞcAB � 1

2
cABDCL

C

þ 2!DA½!�2DBð!e2HÞ�
�
; (2.26)

where LL denotes the Lie derivative with respect to LA.
In the inertial Bondi coordinates, the expression for the

news function reduces to the simple form

N ¼ 1

4
QAQB@ucAB: (2.27)

However, the general form (2.26) must be used in the
computational coordinates, which is challenging for main-
taining accuracy because of the appearance of second
angular derivatives of !.
Alternatively, the waveform can be obtained from the

asymptotic value of the Weyl tensor. Asymptotic flat-
ness implies that the Weyl tensor vanishes at Iþ, i.e.

Ĉ���	 ¼ Oð‘Þ in the ĝ�� conformal Bondi frame (2.14).

This is the conformal space version of the peeling property

of asymptotically flat spacetimes [23]. Let ðn̂�; ‘̂�; m̂�Þ be
an orthonormal null tetrad such that n̂� ¼ r̂�‘ and

‘̂�@� ¼ @‘ at Iþ. The radiation is described in this frame

by the limit

�̂ :¼ � 1

2
lim
‘!0

1

‘
n̂�m̂�n̂�m̂	Ĉ���	; (2.28)

which in Newman-Penrose notation [43] corresponds to

�̂ ¼ �ð1=2Þ �c 0
4: (2.29)

The limit is independent of how the tetrad is extended
off Iþ.
A major calculational result in [5] is that

�̂ ¼ 1

2
n̂�m̂�m̂�ðr̂��̂�� � r̂��̂��ÞjIþ ; (2.30)

where �̂�� is given by (2.15) and where (2.30) is indepen-

dent of the freedom

m̂ � ! m̂� þ �n̂�: (2.31)

In the same inertial polarization frame used in describ-
ing the news,

CHARACTERISTIC EXTRACTION TOOL FOR . . . PHYSICAL REVIEW D 84, 044057 (2011)

044057-5



� ¼ 1

2
!�3e�2i�n̂�FAFBð@��̂AB � @A�̂�B

� �̂�
�B�̂A� þ �̂�

AB�̂��ÞjIþ : (2.32)

An explicit expression for � in terms of the asymptotic
metric coefficients involves lengthy algebra which was
carried out using a Maple script to write it in terms of
ð operators acting on the spin-weighted computational
fields and to construct the final Fortran expression for �.

In inertial Bondi coordinates, (2.32) reduces to the single
term

� ¼ 1

4
QAQB@2ucAB ¼ @2u@lJjIþ : (2.33)

This is related to the expression for the news function in
inertial Bondi coordinates by

� ¼ @uN: (2.34)

However, as in the case of the news, the full expression for
� obtained from (2.32) must be used in the code. This
introduces additional challenges to numerical accuracy due
to the large number of terms and the appearance of third
angular derivatives.

These difficulties can be appreciated by considering
the linearized approximation, for which considerable sim-
plification arises. To first order in a perturbation off a
Minkowski background, the nonlinear expression (2.32)
for � reduces to

� ¼ 1

2
@2u@‘J � 1

2
@uJ � 1

2
ðL� 1

8
ð2ðð �Lþ �ðLÞ þ @uð

2H:

(2.35)

In the same approximation, the news function is given by

N ¼ 1

2
@u@‘J þ 1

2
ð2ð!þ 2HÞ: (2.36)

The linearized Einstein equations imply that (2.34),
i.e. � ¼ @uN, still holds in the linearized approximation.
(In the nonlinear case, the derivative along the generators
of Iþ is n̂�@� ¼ e�2Hð@u þ LA@AÞ and (2.34) must be
modified accordingly.)

The linearized expressions (2.35) and (2.36) provide a
starting point to compare the advantages between comput-
ing the radiation via the Weyl component � or the news
function N. The troublesome terms involve L, H and !,
which all vanish in inertial Bondi coordinates. One main
difference is that � contains third order angular deriva-
tives, e.g. the term ð3 �L, as opposed to second angular
derivatives in the case of N. This means that smoothness
of the numerical error is more crucial in the � approach.
Balancing this, another main difference is that N contains
the term ð2!, which is a potential source of numerical error
since ! must be propagated across the stereographic patch
boundaries via (2.22). Test comparisons of waveforms
obtained via N and � are given in the next section.

III. TESTS OF MODIFICATIONS TO THE
STEREOGRAPHIC GRID

The characteristic evolution carried out by the PITT
code integrates the Bondi-Sachs equations by means of
a finite-difference approximation [25,26]. Stereographic
coordinates xA ¼ ðq; pÞ are used to label the angles on
the outgoing null cones. In the original code, two square
stereographic patches were used, one centered about the
North pole and the other about the South pole. In the new
stereographic scheme introduced in [5], the patches were
modified to have circular boundaries located just past the
equator, and angular dissipation was introduced to sup-
press the short wavelength noise introduced by interpatch
interpolation. In addition, in the original code ð-derivatives
were approximated by second order accurate finite-
difference approximations. In the present version used in
this paper, the ð-derivatives have been increased to fourth-
order accuracy. Although the overall second-order conver-
gence rate of the PITT code remains unchanged, these
changes are expected to lead to more accurate waveforms.
There has been extensive testing of the accuracy of past

versions of the code in [5,7,26,31]. Here we repeat some of
the linear wave tests presented in [5] in order to demon-
strate the improvement obtained by fourth-order accurate
angular derivatives. First, in order to verify that the new
treatment of stereographic patches is capable of producing
a fourth-order accurate evolution, we carry out a test of
wave propagation on the sphere based upon solutions to the
2D wave equation

� @2t�þ ð�ð� ¼ 0; (3.1)

where� ¼ cosð!tÞYlm,! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

and Ylm are spheri-
cal harmonics. For the case l ¼ m ¼ 2 we measure the
convergence rate of the error. The simulations are run with
nþ 1 grid points along the axes of each patch, with the
grid sizes ranging from n ¼ 80 to n ¼ 240. For a given
grid size, we use the L1 norm to measure the error

E ð�Þ ¼ k�numeric ��analytick1 (3.2)

for the circular patches in each hemisphere. We measure
the convergence rate for Eð�Þ at a given time t, for two
consecutive grid sizes n1 and n2, by

R ¼ log2ðEð�Þn2=Eð�Þn1Þ
log2ðn1=n2Þ : (3.3)

Convergence rates for the derivatives are measured
analogously.
Excellent fourth-order convergence of Eð�Þ was ob-

tained. It is more important and challenging for assessing
waveform extraction error to measure the error in the
derivatives ð�, ð2�, and ð3�, since second angular de-
rivatives enter in the computation of the Bondi news and
third angular derivatives enter into the computation of �.
The convergence rates, measured with the L1 norm over
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the North patch, are shown in Table I based upon the
grid sizes ðn1; n2Þ ¼ ð80; 120Þ, (120, 160), (160, 200),
(200, 240).

For the coarser grids, good fourth-order convergence is
apparent for all the derivatives. As the grids are refined, the
error eventually approaches (double precision) roundoff
error and convergence becomes a moot question.

Next we compare the accuracy of waveform extraction
by computing the news function N and the Weyl tensor
component � in the test problem considered in [5], which
is based upon a periodic, linearized gravitational wave on a
Minkowski background (see Sec. 4.3 of [45]). The linear-
ized wave is expressed in Bondi-Sachs coordinates so that
it allows direct measurement of the numerical error.
The wave has period T ¼ 
 and (l ¼ 2, m ¼ 0) spheri-
cal harmonic dependence, with the maximum value of
J � 10�6. The data provided by the linearized solution at
the extraction worldtube was propagated to Iþ by the
characteristic code, where the waveform was computed
and compared to its analytic value. The computational
error in the waveform was measured with the L2 norm
over the North patch using the n ¼ 100 grid.

Figure 1 compares plots of the error in the real part of
the news function N (computed on the North patch) for
the second- and fourth-order accurate angular derivatives.

The plots show roughly one order of magnitude improve-
ment in accuracy for the n ¼ 100 grid. The corresponding
plots of the error in the waveform measured by the Weyl
component � show again roughly one order of magnitude
improvement in accuracy. Further improvement in accu-
racy might be obtained by also increasing the radial de-
rivatives to fourth-order approximations but this could
entail nonlinear complications which could affect the nu-
merical stability of the evolution algorithm [42].
In accord with (2.34), the computation of the Weyl

component � yields an alternative numerical value for
the news

N� ¼ Nju¼0 þ
Z u

0
�du; (3.4)

where N ¼ N� in the analytic problem. Figure 2 compares
these two extraction methods in terms of the errors in N
and N� for the linearized wave test when using 4th order
accurate angular derivatives. The plots show that the two
methods are competitive although the error in N� is
slightly smaller in this case.

IV. COMPUTATIONAL INTERFACE

We have designed an interface that takes Cartesian grid
data from a Cauchy evolution and converts it into boundary
data for a characteristic evolution on a spherical grid ex-
tending to Iþ. We treat each component g��ðt; xiÞ of

the Cauchy metric as a scalar function in the xi Cartesian
coordinates which are used in the 3þ 1 evolution. In
order to make the interface as flexible as possible for use
as a community tool for waveform extraction, we have
based it upon a spectral decomposition of the Cauchy data
in the region between two world tubes or radii R ¼ R1 and

TABLE I. Convergence rates for errors in ð�, ð2� and ð3�.

E=n n1 ¼ 80 n1 ¼ 120 n1 ¼ 160 n1 ¼ 200

Eðð�Þ 4.04 4.11 4.35 4.85

Eðð2�Þ 4.07 4.24 4.80 3.95

Eðð3�Þ 3.98 3.95 3.92 3.86
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FIG. 1 (color online). Plots of the L2 errors EðNÞ vs t in the
real part of the news function extracted in a linearized gravita-
tional wave test. The plots compare the errors obtained using the
second- and fourth-order accurate angular derivatives on an n ¼
100 grid. The fourth-order method reduces the error by an order
of magnitude. The time variation of the error matches the period
of the wave.
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FIG. 2 (color online). Comparison plots of the L2 errors EðNÞ
and EðN�Þ vs t in the news function computed directly and via
the Weyl tensor for the linearized gravitational wave test. The
results were obtained using fourth-order accurate angular de-
rivatives on an n ¼ 100 grid. The two methods are competitive
although EðN�Þ is slightly smaller in this case.
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R ¼ R2, where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ijx

ixj
q

is the Cartesian coordinate

radius. Then at a given time t, we decompose g��ðt; xiÞ in
terms of Chebyshev polynomials of the second kind UkðRÞ
and spherical harmonics Ylmð�;�Þ, where ð�;�Þ are re-
lated to xi=R in the standard way. The Chebyshev poly-
nomials are conventionally defined as functions Ukð
Þ on
the interval�1 � 
 � 1. Here we map them to the interval
R1 � R � R2 by the transformation


ðRÞ ¼ 2R� R1 � R2

R2 � R1

:

Thus, for R1 <R< R2, we expand

g��ðt; xiÞ ¼
X
klm

C��½klm�ðtÞUkðRÞYlmð�;�Þ: (4.1)

For the application to waveform extraction given in
this paper, we choose l � lmax, where lmax¼ 6, and
k � kmax, where kmax ¼ 6. These values should be consid-
ered tentative and further experimentation is warranted to
optimize accuracy. In tests of binary black holes with mass
M we use a relatively small range R2 � R1 ¼ 10M and a
larger value of kmax would certainly be needed if the range
were expanded. Also, while lmax¼ 6 might be sufficient
for extraction at RE ¼ 100M, a larger value might give
improved results at RE ¼ 20M.

The coefficients C��½klm� allow us to reconstruct a

spherical harmonic decomposition of each component of
the Cauchy metric on the extraction worldtubeR ¼ RE, i.e.

g��½lm�ðt; REÞ ¼
X
k

C��½klm�ðtÞUkðREÞ: (4.2)

This decomposition is carried out at a sequence of Cauchy
time steps tn ¼ t0 þ n�t, where �t is chosen to be much
smaller than the physical time scales in the problem but, for
purpose of economy, larger than the time step used for the
Cauchy evolution. At each time step, the spectral coeffi-
cients are determined by a least squares fit to the Cauchy
metric.

The extraction module also requires the derivatives
@tg�� and @Rg�� at the extraction worldtube. The

R-derivative is obtained analytically, at each time level
tn, by differentiation of the Chebyshev polynomials. In
one option, the finite-difference option, the t-derivative is
constructed by a fourth-order accurate finite-difference
approximation based upon the sequence of Cauchy times
t ¼ tn. In a second option, the fast-Fourier-transform
(FFT) option, we modify the Cauchy data by filtering
each mode fn ¼ CklmðtnÞ to remove high-frequency noise
(both numerical noise and high-frequency gauge waves).
The filter works as follows. Let fn be the original data
ðn¼0; . . . ;N�1Þ, and gn ¼ fn � aðn�tÞ � bðn�tÞ2. The
coefficients a and b are fixed by requiring that
gN ¼ g0 (where gN is extrapolated from gN�1 and gN�2)
and g0 � gN�1 ¼ g2 � g1, i.e. the one-sided derivatives
taken at n ¼ 0 agree. This guarantees continuity of g and

its first derivative when periodically extended. We then
perform a FFT on gi, truncate the transform at high fre-
quencies, and perform an inverse Fourier transform to
obtain a filtered Gn and optionally, the inverse transform
of i!gi to obtain a smooth time derivative of Gn. We then
construct the filtered mode CklmðtnÞ ¼ Gn þ aðn�tÞ þ
bðn�tÞ2, as well as its time derivative.
The stereographic coordinates xA ¼ ðq; pÞ used to label

the outgoing null rays in theBondimetric arematched to the
spherical coordinates ð�;�Þ induced by the Cartesian
Cauchy coordinates on the extraction worldtube by a stan-
dard transformation, using the conventions in [40]. The
value of the surface-area coordinate r in the Bondi-Sachs
metric is obtained on the extraction worldtube from the
2-determinant of the Cartesian metric on the surfaces
t ¼ tn, R ¼ RE. As a result rEðtn; q; pÞ :¼ rjR¼RE

� const

on the extraction worldtube. In order to deal with this
complication, the transformation from Cartesian coordi-
nates ðt; xiÞ to Bondi-Sachs coordinates ðu; r; xAÞ is carried
out via an intermediate Sachs coordinate system ðu; �; xaÞ
[46] where � is an affine parameter along the outgoing null
rays. The affine freedom allows us to set � ¼ 0 on the
extraction worldtube. After carrying out the Jacobian trans-
formation from ðt; xiÞ to ðu; �; xAÞ, the Cartesian metric and
its first derivatives at the extractionworldtube provide a first
order Taylor expansion in� (about� ¼ 0) of the nullmetric
in Sachs coordinates. The corresponding Taylor expansion
of the metric in Bondi-Sachs coordinates then follows from
the computed values of rE and @�r at � ¼ 0, which are
obtained from the 2-determinant of the Cartesianmetric [6].
This allows us to build a grid based upon the character-

istic coordinates ðx; q; pÞ, with compactified radial coordi-
nate x given by (2.9). The grid values xi ¼ xi�1 þ �x,
1 � i � nx, are adjusted so that x1 < xE :¼ xjR¼RE

and

xnx ¼ 1. The characteristic time levels un ¼ un�1 þ�u

are chosen to coincide with the Cauchy times tn on the
extraction worldtube by choosing ðu� tÞjR¼RE

¼ 0.

In the previous version of the extraction module, the first
order Taylor expansion for the Bondi metric was used to fill
the gridpoints neighboring the extraction worldtube and
thus initiate the radial integration of the hypersurface
Eqs. (2.3), (2.4), (2.5), and (2.6). However, the hypersur-
face equations require only 6 (real) integration constants,
which can be supplied by their values at R ¼ RE. Using the
Taylor expansion to fill the neighboring gridpoints leads to
a potential inconsistency between the Bondi metric sup-
plied by the Cauchy evolution and the radial derivatives
determined by the characteristic hypersurface and evolu-
tion equations. In particular, we have found that such
inconsistencies arising from error in the Cauchy data de-
grade the convergence rate of the characteristic extraction
module. Because convergence of the extraction module is
an important test of its reliability, we proceed here in a
different manner which decouples the Cauchy and charac-
teristic extraction errors.
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In the previous version of the extraction module, the
Taylor expansions were also applied to the auxiliary vari-
ables � ¼ �ðJ, B ¼ ð� and k ¼ ðK by applying the
ð-operator to the Taylor expansions of the main variables.
This was a complicated process because the ð operator
intrinsic to the � ¼ 0 extraction worldtube is not the same
as the ð operator intrinsic to the r ¼ const Bondi spheres
(as they differ by radial derivatives). In the process, several
bugs were introduced in the radial start-up scheme. The
present version of the extraction module streamlines the
start-up of the auxiliary variables by avoiding the use of
Taylor expansions.

In this new approach, the hypersurface equations are
integrated purely in terms of the values �E, QE, UE and
WE of the hypersurface variables on the extraction world-
tube which are supplied by the Cauchy data. A mask is set
up to identify those radial grid points i � B (referred to as
‘‘B points’’) for which xi � xE � �x. These grid points are
‘‘passive’’ points which do not directly enter in the evolu-
tion. Values of the hypersurface variables are assigned at
the first active points i ¼ Bþ 1 (referred to as ‘‘Bþ 1
points’’) in the following manner, assuming that the values
JE and JBþ1 of the evolution variable J are known, as well
as the values �Bþ1 and kBþ1 of the auxiliary variables.
(We address the latter assumption below in describing the
start-up of the evolution algorithm.) Proceeding in the
hierarchical order of the hypersurface equations, we first
use (2.3) to determine �Bþ1 according to

�Bþ1 ¼ �E þ N�½J�ðrBþ1 � rEÞ: (4.3)

BecauseN�½J� only involves J and @rJ it may be evaluated

at the midpoint between xE and xBþ1 so that the resulting
error in �Bþ1 isOð�x3Þ. This also determines the auxiliary
variable B ¼ ð� at the Bþ 1 points provided the Bþ 1
points on the neighboring rays have the same grid value xi.
However, in the case of an irregularly shaped extraction
worldtube, there can be exceptions where this neighboring
ray is a B point. As a result, in cases where the B points lie
close to the boundary of the masked region they can couple
to the Bþ 1 points on neighboring rays through the ð
operator. For this reason, we also update B points by the
same scheme used for the Bþ 1 points. (If a B point is
within a small tolerance of the worldtube, we instead just
copy the worldtube value rather than risk an ill-conditioned
algorithm.) In this way, the start-up value of the auxiliary
variable BBþ1 is determined in all cases.

Next in the hierarchy of hypersurface equations, we
determine QBþ1 in similar fashion. However, NQ½J; ��
involves B ¼ ð� which cannot be determined on the ex-
traction worldtube from the values of �E (because of the
angular variation of rE discussed above). Consequently, in
order to start up the Q-integration we evaluate NQ at xBþ1,

where BBþ1 is known. This results in an Oð�x2Þ error in
the value of QBþ1. Similar considerations apply to the
start-up of the U and W integrations. As a result, the

start-up leads to an overall Oð�x2Þ error in values at
xBþ1, which is consistent with the global Oð�x2Þ error
resulting from the remaining integration from xBþ1 to
Iþ. This radial march to Iþ proceeds in the same way
as described in [26,41,42] to determine all variables on the
hypersurface.
Having completed the radial march on the hypersurface

at time uN�1, the start-up of the integration scheme on
un ¼ un�1 þ �u begins with the determination of
JBþ1ðunÞ from the worldtube data JE, �E, QE, UE and
WE on uN and the fields already determined on uN�1.
We determine JBþ1ðunÞ using a null parallelogram algo-
rithm [47]. The evolution Eq. (2.8) for J can be rewritten as

2@u@r�� @rðA@r�Þ ¼ RHS (4.4)

where � ¼ rJ and A ¼ V=r ¼ 1þ rW. This can be inte-
grated over the null parallelogram in the ðu; rÞ subspace
bounded by the un and un�1 hypersurfaces and by two
ingoing characteristics. For constant A, the ingoing char-
acteristics satisfy r� ðAu=2Þ ¼ const. As depicted in
Fig. 3, by choosing one ingoing characteristic to pass
through rE on the un hypersurface and the other to pass
through rBþ1 on the midpoint between the un and un�1

hypersurfaces, we obtain the integral approximation

�ðun; r�Þ ¼ �ðun; rEÞ þ�ðun�1; rþÞ ��ðun�1; r0Þ

þ RHSðrþ � r0Þ�u
2

: (4.5)

FIG. 3 (color online). The start-up diagram in the ðu; rÞ sub-
space for the Bþ 1 points (shaded squares). On the left, the
extraction worldtube with fixed Cartesian radius RE moves with
respect to the null grid. The null parallelogram for the start-up
algorithm is bounded by the two outgoing characteristics at
retarded times un�1 and un and the two ingoing characteristics
indicated by dashed lines. The labels for the radial null coor-
dinate r are indicated at the four corners (shaded circles).
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Here the corners of the null parallelogram are located
at rE, r� ¼ rBþ1 � ðA�u=4Þ and r0 ¼ rE þ ðA�u=2Þ;
and the center of the null parallelogram is located at
rc ¼ ð1=2ÞðrE þ rþÞ. This determines the start-up value
�ðun; rBþ1Þ through the second-order accurate inter-
polation

�ðun; r�Þ ¼ ½�ðun; rBþ1Þ ��ðun; rEÞ�r�
rBþ1 � rE

: (4.6)

Using the worldtube data and field values on un�1, all other
quantities can be approximated consistent with second
order accuracy except for a term in RHS which is propor-
tional to @uJ. This term is treated to the required accuracy
by a two-step Crank-Nicholson iteration, as is done in the
main evolution scheme described in [26]. This leads to a
value of�ðun; rBþ1Þ, and thus Jðun; rBþ1Þ, withOð�x�u2Þ
error. As in the case of the hypersurface equation, we also
use this algorithm to update J at the B points to assure that
the auxiliary variables �Bþ1 and kBþ1 can be determined by
application of the ð operator. Now the radial march con-
tinues to the Bþ 2 points by a similar process.

A. Convergence measurements

In tests of the waveform and other variables obtained
from a binary black hole evolution there are no exact
values available for measuring error so that convergence
rates cannot be obtained by use of (3.3). Instead, we obtain
Cauchy convergence rates by using measurements ob-
tained with three different gridsizes. For grids in the ratio
�3 ¼ ��2 ¼ �2�1 the Cauchy convergence rate of a
measured quantity F is given

R ¼ log2ððF3 � F2Þ=ðF2 � F1ÞÞ
log2�

: (4.7)

For quantities that approach the continuum value F0 as
F ¼ F0 þG�2, (4.7) gives a convergence rate of 2 when
G is a smooth function independent of gridsize. In the main
part of the characteristic evolution algorithm, G is deter-
mined by the second derivatives of the evolution variables.
However, a stochastic grid-dependent source of second
order error occurs in the start-up algorithm due to the
location of the Bþ 1 points. The separation xBþ1 � xE
of this point from the extraction worldtube can vary
discontinuously under a small change in gridsize, i.e.
xBþ1 � xE ¼ ð1þ �Þ�x, where � is a random number,
0< �< 1. This random separation enters into the second
order accurate approximations made in the start-up algo-
rithm. The approach to the continuum value has the form

F ¼ F0 þ ðGþ ~G�Þ�2. Consequently, the stochastic part
of the second-order error can obscure the convergence rate

determined by (4.7) if ~G is comparable in size to G. The
only way to ensure clean convergence rates would be to
implement a third-order accurate start-up algorithm, which
would involve a considerable amount of work. Fortunately,
this source of error does not appear to be significant in the

tests we have carried out. All the main variables exhibit
second-order convergence when measured at a finite radius
for the results of the binary black hole inspiral presented in
Sec. V. However, some asymptotic quantities at Iþ display
convergence rates intermediate between first and second
order, for reasons discussed further in Sec. V.

B. Constraints on the time step

Domain of dependence considerations place a constraint
between the characteristic time step �u and the size of
the characteristic grid analogous to the CFL condition for
the Cauchy evolution. For a rough estimate, consider the
Minkowski space case with the conformally rescaled
metric

ds2 ¼ �ð1� xÞ2
R2
E

du2 � 2

RE

dudxþ qABdx
AdxB (4.8)

in the compactified stereographic coordinates ðu; x; q; pÞ
used in the code, for which the unit sphere metric takes the
form

qABdx
AdxB ¼ 4

1þ p2 þ q2
ðdp2 þ dq2Þ: (4.9)

The past light cone is determined by

du

RE

¼ �dx� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ ð1� xÞ2qABdxAdxB

p
ð1� xÞ2 : (4.10)

The restriction on the characteristic time step arising
from domain of dependence considerations is strongest at
the inner boundary, where x ¼ 1=2 (since rE ¼ RE in the
Minkowski case); and it is also strongest at the equator,
where p2 þ q2 ¼ 1. At these points

jduj
4RE

¼ dxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ ð1=4Þðdp2 þ dq2Þ

q
: (4.11)

For typical characteristic grid parameters, �p ¼ �q ¼
�x=4, the resulting restriction is

j�uj
RE

< 8K�x (4.12)

where K � 1 depends upon the details of the finite-
difference stencil. This restriction is strongest for a small
extraction radius. The characteristic code monitors the
corresponding restriction on �u determined by the curved
space version of the compactified Bond-Sachs metric. For a
Cauchy simulation of binary black holes with massM with
timestep �t ¼ M=32 (sufficient to describe the frequen-
cies typical of a binary system), (4.12) leads to

M

256RE

< K�x; (4.13)

for the choice of characteristic timestep �u ¼ �t. The
corresponding number of radial gridpoints must roughly
satisfy nx < 128RE=M. This places no limit of practical
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concern on the resolution of the characteristic evolution
even for the small extraction radius RE ¼ 20M. Thus, for
purposes of CCE, there are no demanding CFL restrictions
on the characteristic grid and timestep.

C. Initial characteristic data

The initial data for characteristic evolution consist of the
values of J on the hypersurface u ¼ T0. One way of
attempting to suppress incoming radiation in this data is
to set the Newman-PenroseWeyl tensor component c 0¼0
on the initial null hypersurface. For a perturbation of the
Schwarzschild metric, this condition implies no incoming
radiation in the linearized approximation. The condition
that c 0 vanish involves two-radial derivatives of J, which
in the compactified coordinate ‘ ¼ 1=r takes the simple
linearized form @2‘J ¼ 0. Translated into the computational

coordinate x ¼ 1=ð1þ RE‘Þ, we choose the solution

J ¼ JjxEð1� xÞxE
ð1� xEÞx ; (4.14)

which provides continuity of J with its value determined
by Cauchy data at the extraction worldtube. Since this
choice of J also vanishes at infinity, the initial slice of
Iþ has unit sphere geometry and Eq. (2.21) for the con-
formal factor has the simple solution ! ¼ 1.

V. BINARY BLACK HOLE MEASUREMENTS
AND WAVEFORMS

Here we present test results of waveform extraction from
the inspiral and merger of two equal-mass, nonspinning
black holes. For the Cauchy evolution we used the LazEv
code [48,49] along with the Cactus framework [50] and
Carpet [51] mesh refinement driver. LazEV is an eighth-
order accurate finite-difference code based upon the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion [19,20] of Einstein’s equations, which deals with the
internal singularities by the moving puncture approach
[48,52]. Our simulation used 9 levels of refinement with
finest resolution of h ¼ M=80:64, and outer Cauchy
boundary at 400M. The initial data consisted of a close
quasicircular black-hole binary with orbital frequency
M� ¼ 0:050, leading to more than a complete orbit before
merger (See [53]). We output the metric data on the ex-
traction worldtube every �t ¼ M=20.

In the Cauchy evolution, we extract c 4 on spheres of
Cartesian radius R=M ¼ 50; 60; . . . ; 100 and decompose in
spin-weighted ðl; mÞ spherical harmonic modes. We use a
perturbative formula [54] to extrapolate the perturbative
waveform Rc 4 to R ¼ 1,

lim
R!1½Rc

lm
4 ðR; tÞ� ¼ rc lm

4 ðr; tÞ � ðl� 1Þðlþ 2Þ
2

�
Z t

0
dtc lm

4 ðr; 
Þd
þOðr2Þ; (5.1)

where r is the areal radius corresponding to the Cauchy
extraction radius R. The extrapolation of the perturbative
waveform to infinity removes cumulative phase error
which otherwise would be introduced by redshift effects.
We present results for the characteristic extracted

waveform either in terms of �, related to the Bondi news
by � ¼ @uN, or, when comparing to the perturbative
waveform, in terms of the Newman-Penrose component

�4 ¼ �2 ��. For illustrative purposes, we concentrate on
the dominant (l ¼ 2, m ¼ 2) and subdominant (l ¼ 4,
m ¼ 4) spherical harmonic modes.
The highest resolution black hole waveform extraction

test was run with the following characteristic grid specifi-
cations: angular gridpoints nq ¼ np ¼ 200, radial grid-

points nx¼224. For convergence tests, we also used grids
nq ¼ np ¼ 100, nx ¼ 112 and nq ¼ np ¼ 50, nx ¼ 56,

so that the grid sizes were in the ratio � ¼ 2. We refer to
these as the n ¼ 200, 100 and 50 grids, respectively,
The characteristic time steps used for these grids were
�t ¼ M=20ðn ¼ 200Þ, �t ¼ M=10ðn ¼ 100Þ and �t ¼
M=5ðn ¼ 50Þ. The characteristic extraction was carried
out using worldtube radii RE ¼ 20M, 50M and 100M.
The Pitt null code was run on stereographic patches with

circular boundaries using the auxiliary variables (2.10) to
eliminate any second derivatives in the angular directions
and using 4th order accurate angular derivatives. Angular
dissipation was added with the coefficients �x ¼ 10�3,
�u ¼ 10�4, �Q ¼ �W ¼ 10�6, in the notation of [5].

The best accuracy was obtained using the FFT option to
obtain time derivatives of the worldtube data, as described
in Sec. IV. For strong signals, e.g. the dominant (l ¼ 2,
m ¼ 2) spherical harmonic mode, the finite-difference and
FFT options are in good agreement. However, for weak
signals, e.g. the (l ¼ 4, m ¼ 4) mode, the finite-difference
option can generate noticeable high-frequency error. See
Fig. 4 for a comparison of waveforms computed with the
two options. One likely source of the high-frequency error
with the finite-difference option is the stochastic error
introduced at each time level tn on the extraction worldtube
by the least squares fit of the Cauchy data to the spectral
expansion. In the finite-difference option, this error is
amplified when taking the time derivatives necessary to
compute the waveform and becomes more prominent for
short characteristic timesteps. It also becomes more promi-
nent as the extraction radius is increased, in which case
the extracted worldtube data is smaller. Similar high-
frequency noise is apparent in the worldtube data so that
this error cannot be removed by refining the characteristic
grid. However, the filtering intrinsic to the FFT option is
effective in reducing this error. The remaining results
reported in this paper were obtained with the FFT option.
Convergence rates were measured for the (l ¼ 2,

m ¼ 2) spherical harmonic mode, which is the dominant
mode in the waveform. Table II gives the rates for the
evolution variables measured on a sphere at Bondi radius
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r ¼ 80M obtained with a small extraction radius
RE ¼ 20M at a time corresponding to the peak of the
signal (t � 200M). The rates are given for the real and
imaginary part of the variables. All quantities are very
close to second order convergent, including J;x, which is

the term which determines the waveform after transform-
ing to inertial Bondi coordinates according to (2.33).

Table III gives the corresponding convergence rates for
these evolution variables measured at Iþ, again at the time
corresponding to the peak of the signal and with extraction
radius RE ¼ 20M. In this case Q and W show deviation
from second order convergence, consistent with the asymp-
totic error analysis presented in Sec. II in relation to (2.13).
We also see that the derivative J;x deviates from second

order convergence, which indicates a need for more accu-
rate finite-difference approximations near Iþ. There are

several places in the present code where one-sided differ-
ence approximations are used for derivatives at Iþ. These
convergence rates at the peak of the signal are representa-
tive of the rates over the entire run. This is illustrated in
Fig. 5 which plots the rescaled errors of ReJ and ImQ
versus time at Iþ.
Table IV gives the corresponding convergence rates for

the waveform as measured by the Bondi news N and the
Weyl component �, again at a time corresponding to the
peak of the signal and with extraction radius RE ¼ 20M.
We also show the convergence rate of the inertial time
derivative @uN calculated directly from finite differencing
N. All show roughly first-order convergence. The rate for
@uN is slightly better than that for �, although � ¼ @uN
in the continuum limit. The convergence rates of these
quantities are affected by two chief factors: (i) the large
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FIG. 4 (color online). Comparison of the finite-difference and
FFT options for the (2, 2) (up) and (4, 4) (down) spherical
harmonic modes of the real part of the characteristic wave-
form � obtained with the n ¼ 200 grid and extraction radius
RE ¼ 20M. The two options give comparable results for the
(2, 2) mode but for the (4, 4), which is an order of magnitude
smaller, high-frequency error in the worldtube data is noticeable
in the waveform extracted with the FD option.

TABLE II. Convergence rates of the (l ¼ 2, m ¼ 2) spherical
harmonic mode on the sphere r ¼ 80M for the metric variables
measured at retarded time u � 200M near the peak of the signal.
The rates are given for the real and imaginary part of the
variables. The extraction radius was R ¼ 20M. The results
show that the evolution variables all display clean second order
convergence.

Variable RateRe RateIm

� 2.01 2.01

J 2.23 2.01

J;x 2.03 2.33

Q 2.02 2.04

U 1.99 1.96

W 1.97 2.00

TABLE III. Convergence rates of the (l ¼ 2, m ¼ 2) mode for
the metric variables measured near the peak of the signal at Iþ,
with an extraction radius R ¼ 20M. As expected from the
analysis in Sec. II, some asymptotic quantities only display first
order convergence.

Variable RateRe RateIm

� 2.01 2.01

J 1.80 2.18

J;x 1.23 1.20

Q 1.33 1.19

U 1.99 1.96

W 1.55 1.50
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FIG. 5 (color online). Convergence plots of the asymptotic
limits at Iþ of the (2, 2) spherical harmonic modes of ReJ
and ImQ obtained with resolutions n ¼ 50, n ¼ 100 and
n ¼ 200 with an extraction radius RE ¼ 20M. The plots for
ReJ are rescaled for second-order convergence (upper plot),
while the plots for ImQ (lower plot) are rescaled for first-order
convergence. The rescaled differences show that convergence
rates at the peak of the signal given in Table III are representative
of the rates over the entire run.
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number of terms involved in their calculation and (ii) their
dependence on radial derivatives of the evolution quanti-
ties at Iþ. In all cases, one-sided approximations are used
in several places to compute these radial derivatives. This
is already apparent in the convergence rate for J;x shown in
Table III.

Surface plots of the Bondi news N and Weyl component
�, measured near the peak of the signal with an extraction
radius RE ¼ 20M, are shown in Figs. 6 and 7. Both figures
display smooth angular dependence, showing that the an-
gular dissipation is effective at removing short wavelength
angular noise. In particular, there are no ‘‘spikes’’ near the
equatorial patch boundary arising from interpatch interpo-
lation. The main error in the waveform originates from
intrinsically time dependent error in the data on the ex-
traction worldtube.

The time dependence of the real part of the characteristic
extracted waveform and its comparison to the perturbative
waveform are shown in Figs. 8 and 9. Figure 8 shows
excellent agreement between these waveforms for the
dominant (l ¼ 2, m ¼ 2) mode, when both are extracted
at R ¼ 50M. The insets show that this agreement exists in
the early stages, when the amplitude is small, and persists
throughout the final ringdown. Note that the perturbative

extrapolation formula (5.1) is essential to obtain this ex-
cellent phase agreement between the perturbative and
characteristic waveforms.
Figure 9 compares the characteristic and perturbative

waveforms for the (l ¼ 4, m ¼ 4) mode. In this case, the
perturbative waveform is again extracted at R ¼ 50M but
the characteristic waveform is extracted at 20M to reduce
the high-frequency noise discussed previously. This high-
frequency noise can also be reduced by choosing a larger
timestep for the characteristic evolution, again indicating
that it arises from time derivatives of the stochastic error

TABLE IV. Convergence rates of the (2, 2) spherical harmonic
mode for the Bondi news N, @uN obtained by finite-difference,
and the Weyl component �, all measured near the peak of the
signal with an extraction radius RE ¼ 20M.

Variable RateRe RateIm

N 1.59 1.56

@uN 1.57 1.55

� 1.16 1.14
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FIG. 6 (color online). Surface plot in the North ðq; pÞ stereo-
graphic patch of the real part of the Bondi news N measured at
the peak of the wave with an extraction radius RE ¼ 20M. The
equatorial patch boundary corresponds to the circle p2 þ q2 ¼
1. The smooth angular dependence near the equator shows that
angular dissipation is effective at removing short wavelength
noise arising from interpatch interpolation.
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FIG. 7 (color online). Surface plot in the North ðq; pÞ stereo-
graphic patch of the real part of the Weyl component � mea-
sured at the peak of the wave with an extraction radius
RE ¼ 20M. The smooth angular dependence near the equator
p2 þ q2 ¼ 1 shows that angular dissipation is effective at re-
moving short wavelength noise arising from interpatch interpo-
lation.
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FIG. 8 (color online). Comparison of the (2, 2) dominant
spherical harmonic mode for �4 (characteristic) and rc 4 (per-
turbative Cauchy), both extracted at R ¼ 50M. The insets show
that the excellent agreement extends to the early stages and the
final ringdown when the amplitude is small.
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introduced in the worldtube data by the least squares fit.
The characteristic and perturbative waveforms again show
excellent agreement At very early times t=M � 15,
the characteristic waveform shows an anomalous feature
which can be attributed to ‘‘junk’’ radiation content in the
initial data in the vicinity of RE ¼ 20M. In addition, as
shown in the insert, there is another anomalous feature,
which is not understood, in the time interval about
t=M ¼ 90. This feature is also evident in the extracted
Cauchy data at RE ¼ 20M. Possible sources for this fea-
ture are gauge modes excited in the interior region or
numerical effects from the adaptive mesh refinement
used in the Cauchy evolution. A better explanation would
require further runs.

VI. RICHARDSON EXTRAPOLATION AND
CONVERGENCE OF THE WAVEFORM

The clean first-order convergence results for the news N
and Weyl component � allows us to apply Richardson
extrapolation to obtain higher order accuracy waveforms.
We apply the results from the three different resolutions
n ¼ ð50; 100; 200Þ, with grid spacing ð4�; 2�;�Þ respec-
tively, to obtain a third order accurate waveform as follows.

The truncation error in a quantity F can be represented
by a power series

Fð�Þ ¼ F0 þ F0�þ 1

2
F00�2 þOð�3Þ:

We write F1 ¼ fð�Þ, F2 ¼ Fð2�Þ F4 ¼ Fð4�Þ. Then the
extrapolated value

FE ¼ 8

3
F1 � 2F2 þ 1

3
F4

is 3rd order accurate, i.e.

FE ¼ F0 þþOð�3Þ:
In practice this can be confirmed as follows. Let FI ¼

2F1 � F2 and FII ¼ 2F2 � F4 be the second order accu-
rate waveforms obtained using data from two resolutions.
Then FII � FE ¼ 4ðFI � FEÞ þOð�3Þ, i.e.

1

4
ðFII � FEÞ ¼ FI � FE (6.1)

if we neglect the Oð�3Þ error, i.e. if we approximate
the exact value F0 by the third order accurate approxima-
tion FE.
Using the corresponding notation ðNE;NI; NIIÞ for the

news and ð�E;�I;�IIÞ for the Weyl component, we can
check the validity of applying Richardson extrapolation
to the waveform. Figs. 10 and 11 graph the rescaled
errors of the real and imaginary parts of NIðtÞ � NEðtÞ
and 1

4 ðNIIðtÞ � NEðtÞÞ and Fig. 12 graphs the correspond-

ing rescaled errors in �ðtÞ. In both cases, (6.1) is
confirmed.
These results validate the use of Richardson extrapola-

tion to obtain third order accurate waveforms NE and �E.
We can use NE and �E as fiducial exact values and
estimate the truncation error in the numerical waveforms
by comparing them with the second order accurate approx-
imates NI and�I. Thus the truncation errors in the news N
and Weyl component � are conservatively given by

�N ¼ NI � NE ¼ Oð�2Þ (6.2)

and
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FIG. 9 (color online). Comparison of the (4, 4) subdominant
mode for �4 (characteristic) extracted at RE ¼ 20M and rc 4

(perturbative Cauchy) extracted at R¼50M. There is good
agreement in the strong amplitude regime of the wave t=M >
120. At early times t=M � 15, the characteristic waveform ex-
hibits effects of junk radiation in the initial data near RE ¼ 20M.
In addition, the insert magnifies an anomalous feature, which is
not fully understood, in the interval about t=M ¼ 90.

0 100 200 300
-8e-05

-4e-05

0

4e-05

8e-05
1
/
4
[Re(N

II
) - Re(N

E
)]

l=2,m=2

[Re(N
I
) - Re(N

E
)]

l=2,m=2

0 100 200 300
t/M

-8e-05

-4e-05

0

4e-05

8e-05 1
/
4
[Im(N

II
) - Im(N

E
)]

l=2,m=2

[Im(N
I
) - Im(N

E
)]

l=2,m=2

FIG. 10 (color online). Plots confirming the validity of
Richardson extrapolation to obtain higher order accuracy for
the real and imaginary parts of the dominant (2, 2) spherical
harmonic mode of the news NðtÞ. The rescaled errors show that
NI and NII are second order accurate in accord with (6.1).
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�� ¼ �I ��E ¼ Oð�2Þ: (6.3)

Figure 13 plots the differences between the dominant
(l ¼ 2,m ¼ 2) mode of the Richardson extrapolated wave-
form NEðtÞ obtained with extraction radii RE ¼ 20M,
RE ¼ 50M and RE ¼ 100M. In the plot, the RE ¼ 20M
waveform begins at t ¼ 0 and the other waveforms have
been shifted backwards in time so that all three are in phase
at the peak of the wave. Two sources of extraneous junk
radiation can be seen in the figure. One arises from a
mismatch between the initial characteristic and Cauchy

data. The initial characteristic data c 0 ¼ 0 (see
Sec. IVC) implies the absence of initial radiation content
on the assumption that the geometry of the initial null
hypersurface is close to Schwarzschild. This assumption
becomes valid as the extraction radius becomes large
and the exterior Cauchy data can be approximated by
Schwarzschild data. Thus this mismatch is largest for ex-
traction at RE ¼ 20M. This results in a noticeable differ-
ence at very early times between extraction at RE ¼ 20M
and the other two radii. After t=M � 100, the three wave-
forms are in good agreement with their relative differences
less than 0.6% at the peak of the wave.
The second source of junk radiation apparent in Fig. 13

arises from the choice of conformally flat initial Cauchy
data. This arises for all three extraction radii and accounts
for the double hump in the news function in the interval
from t=M ¼ 0 to t=M ¼ 50.
It is of interest to measure the difference

�c 4 ¼
�
1

2
rc 4 þ ��

�
(6.4)

between the extracted waveform using the perturbative
extrapolation formula (5.1) and the Richardson extrapo-
lated characteristic waveform, measured in accord with the
normalization conventions indicated in (2.29). Figure 14
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FIG. 11 (color online). Plots confirming the validity of
Richardson extrapolation to obtain higher order accuracy for
the subdominant (4, 4) spherical harmonic mode of the news
NðtÞ. The rescaled errors show again that NI and NII are second
order accurate in accord with (6.1).
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FIG. 12 (color online). Plots confirming the validity of
Richardson extrapolation to obtain higher order accuracy for
the real and imaginary parts of the (2, 2) spherical harmonic
mode of the waveform �ðtÞ. The rescaled errors show that �I

and�II are second order accurate in accord with (6.1). Note that
the second-order error in � contains more high-frequency noise
than N shown in Fig. 10.
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FIG. 13 (color online). Plots of the (2, 2) mode of ReN
obtained for extraction radii RE ¼ 20M, 50M, and 100M. The
RE ¼ 50M and RE ¼ 100M waveforms have been shifted back-
ward in time so that they are in phase at the peak of the wave.
The noticeable difference in the interval from t=M ¼ 0 to
t=M ¼ 100 between the RE ¼ 20M waveform and the other
two results from a mismatch between the initial characteristic
and Cauchy data, which decreases with large extraction radii.
For the waveforms extracted at all three radii, the double hump
in the interval from t=M ¼ 0 to t=M ¼ 100 results from non-
trivial junk radiation in the initial Cauchy data. The three wave-
forms are in good agreement in the inspiral and merger stage.
At the peak of the wave, the relative difference between the
RE ¼ 20M and RE ¼ 100M waveforms is less than 0.6%.
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plots the real part of the (2, 2) spherical harmonic compo-
nent of �c 4ðtÞ, compared with the corresponding compo-
nent of Re�. The peak amplitude of �c 4ðtÞ is
approximately 1% of the peak amplitude of �, which
provides an estimate of the difference between perturbative
and characteristic extraction.

Figure 15 plots the phase difference �� between the
(2, 2) spherical harmonic components of rc 4ðtÞ=2 and
�ðtÞ, i.e

�� ¼ �½�� ��½c 4�; (6.5)

where e.g. � ¼ j�jei�½��. The phase difference is less
than 0.05 radians in the interval 40M< t < 250M begin-
ning after the initial burst of junk radiation and extending
into the late ringdown. The phase errors become large at
late times when the numerical noise in the waveform is
comparable to the true signal amplitude and at very early
times due to the inability of the codes to accurately model
the relatively high-frequency initial data burst.

Note that the magnitude and phase differences between
c 4 extraction and characteristic extraction indicated in
Figs. 14 and 15 are based upon the perturbative extrapola-
tion formula (5.1). It is also common practice to com-
pute c 4 at large radii and then extrapolate the values to
infinity, cf. the waveform comparisons in the report of
the Samurai project [55]. In carrying out the extrapola-
tion, the waveforms are translated by r	, where r	 ¼ rþ
2M logðr=2M� 1Þ is the tortoise coordinate obtained from
the areal radius of the extraction sphere r and M is the
ADM mass of the system [56]. Here we use a linear
extrapolation based upon waveforms at R ¼ 50M and
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FIG. 14. Plots of the time dependence of the real part of the
(2, 2) spherical harmonic components of �c 4ðtÞ, as defined in
(6.4), and the characteristic waveform �ðtÞ. Here �c 4ðtÞ mea-
sures the difference between the perturbative and characteristic
values of �ðtÞ. The approximate 1% ratio between the peak
amplitudes of �c 4ðtÞ and � gives an estimate of the difference
between perturbative and characteristic extraction.
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FIG. 15. Plot of the time dependence of the difference in phase
��, measured in radians, between the (l ¼ 2, m ¼ 2) compo-
nents of the characteristic waveform �ðtÞ and the perturbative
waveform rc 4ðtÞ=2. The phase differences are less than 0.05
radians in the interval 40M< t < 250M beginning after the
initial burst of junk radiation and extending into the late ring-
down. The phase errors become large at late times when the
numerical noise is comparable to the true signal amplitude and at
very early times due the inability of the codes to accurately
model the relatively high-frequency initial data burst.

0020010
t/M

−0.005

−0.004

−0.003

−0.002

−0.001

0

0.001

0.002

0.003

0.004

0.005

Re[δψ4(R=50)]
Re[δψ4(R=100)]
Re[δψ4(lin)]
Re[δψ4(pert)]

FIG. 16 (color online). Plots of the time dependence of the
difference Re½�c 4� between the (l ¼ 2, m ¼ 2) components of
the characteristic waveform�ðtÞ and the Cauchy c 4 waveforms
extracted at R ¼ 50M and R ¼ 100M, and their linear extrapo-
lation to R ¼ 1 (denoted by ‘‘lin’’). For comparison, we also
include the corresponding difference (denoted by ‘‘pert’’) using
the perturbative extrapolation (5.1). The plots show the expected
trend toward smaller errors as R ! 1. Interestingly, perturbative
extrapolation, which uses only the R ¼ 100M extraction sphere,
gives the smallest deviation.
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R ¼ 100M to obtain an extrapolation rc 4ðlinÞ on Iþ that
is accurate to order Oð1=R2Þ. The deviations from the
characteristic waveform are displayed in Fig. 16, where
we plot Re½�c 4ðR ¼ 50MÞ�, Re½�c 4ðR ¼ 100MÞ� and
Re½�c 4ðlinÞ� and in Fig. 17, where we plot the phase
differences ��ðR ¼ 50MÞ, ��ðR ¼ 100MÞ and ��ðlinÞ.
The plots show how the deviations decrease with extraction
radius. Linear extrapolation considerably reduces the de-
viation but it is interesting that perturbative extrapolation
via (5.1), which is based upon the single R ¼ 100M result,
gives the smallest deviation.

As we discuss next, such time domain comparisons can
be of deceptive value for gravitational wave data analysis.

VII. ADVANCED LIGO ACCURACY STANDARDS

It has been emphasized [57] that the direct use of time
domain errors would be an abuse of the accuracy standards
required of model waveforms to be suitable for gravita-
tional wave data analysis. The raw error envelopes �NðtÞ,
��ðtÞ and �c 4ðtÞ cannot be used to test whether the
accuracy standards are satisfied. Proper accuracy standards
must take into account the power spectral density of the
detector noise SnðfÞ, which is calibrated with respect to the
frequency domain strain ĥðfÞ. Consequently, the primary
accuracy standards must be formulated in the frequency
domain in order to take detector sensitivity into account.
Fortunately, for the purpose of calibrating waveforms from

numerical simulations, it has been possible to translate the
frequency domain accuracy requirements into require-
ments on the time domain L2 error norms which meet all
the needed criteria [1,37].
There are two distinct criteria for waveform accuracy.

First, if the numerical waveform were not sufficiently
accurate then an unacceptable fraction of real signals
would pass undetected through the corresponding filter.
Second, the accuracy impacts on whether a detected wave-
form measures the physical properties of the source, e.g.
mass and spin, to a level commensurate with the accuracy
of the observational data. The accuracy standards for
model waveforms have been formulated to prevent these
potential losses in the detection and scientific measurement
of gravitational waves.
For a numerical waveform with strain component hðtÞ,

the time domain error is measured by

E 0 ¼ k�hk
khk ; (7.1)

where �h is the error in the numerical approximation and
kFk2 ¼ R

dtjFðtÞj2, i.e. kFk is the L2 norm, which in

principle should be integrated over the complete time
domain of the model waveform obtained by splicing a
perturbative chirp waveform to a numerical waveform for
the inspiral and merger.
The error can also be measured in terms of time deriva-

tives of the strain. In our case, the first time derivative
corresponds to the error in the news

E 1ðReNÞ ¼ k�ReNk
kReNk ; E1ðImNÞ ¼ k�ImNk

kImNk (7.2)

and the second time derivative corresponds to the Weyl
component error

E 2ðRe�Þ ¼ k�Re�k
kRe�k ; E2ðIm�Þ ¼ k�Im�k

kIm�k : (7.3)

Here we measure �N and �� according to (6.2) and (6.3)
and use the 3rd order Richardson extrapolations to com-
pute kReNk, kImNk, kRe�k and kIm�k. It is also of
interest to measure the ‘‘error’’

E 2ðRe�c Þ ¼ kRe�c 4k
kRe�k ; E2ðIm�c Þ ¼ kIm�c 4k

kIm�k
(7.4)

corresponding to the difference between perturbative and
characteristic extraction, where �c 4 is normalized accord-
ing to (6.4).
In [1], it was shown that sufficient conditions to satisfy

data analysis criteria for detection and measurement can
be formulated in terms of any of the error norms Ek ¼
ðE0; E1; E2Þ, i.e. in terms of the strain, the news or the Weyl
component. The accuracy requirement derived in [1] for
detection is

0020010
t/M

−0.02

0.08

0.18

0.28

0.38 δΦ(R=50)
δΦ(R=100)
δΦ(lin)
δΦ(pert)

FIG. 17 (color online). Plots of the time dependence of the
phase difference �� between the (l ¼ 2, m ¼ 2) components of
the characteristic waveform �ðtÞ and the Cauchy c 4 waveforms
extracted at R ¼ 50M and R ¼ 100M, and the corresponding
linear extrapolation to R ¼ 1 (denoted by lin). For comparison,
we also include the corresponding �� (denoted by pert) ob-
tained by perturbative extrapolation (5.1). The plots show the
expected trend toward smaller errors as R ! 1. Interestingly,
perturbative extrapolation, which uses only the R ¼ 100M ex-
traction sphere, gives the smallest deviation.
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E k � Ck

ffiffiffiffiffiffiffiffiffiffiffiffi
2�max

p
; (7.5)

and the requirement for measurement is

E k � Ck

�c

�
: (7.6)

Here � is the optimal signal-to-noise ratio of the detector,
defined by

�2 ¼
Z 1

0

4jĥðfÞj2
SnðfÞ df; (7.7)

Ck are dimensionless factors introduced in [1] to rescale
the traditional signal-to-noise ratio � in making the tran-
sition from frequency domain standards to time domain
standards; �max determines the fraction of detections lost
due to template mismatch, cf. Eq. (14) of [37]; and �c � 1
corrects for error introduced in detector calibration. These
requirements for detection and measurement, for either
k ¼ 0, 1, 2, conservatively overstate the basic frequency
domain requirements by replacing SnðfÞ by its minimum
value in transforming to the time domain.

The values of Ck for the inspiral and merger of non-
spinning, equal-mass black holes have been calculated in
[1] for the advanced LIGO noise spectrum. As the total
mass of the binary varies from 0 ! 1, C0 varies between
:65>C0 > 0, C1 varies between :24<C1 < :8 and C2

varies between 0<C2 < 1. Thus only the error E1 in the
news can satisfy the criteria over the entire mass range.
The error in the strain E0 provides the easiest way to satisfy
the criteria in the low mass case M 
 M� and the error
in the Weyl component E2 provides the easiest way to
satisfy the criteria in the high mass case M � M�.

We first concentrate on the error in the news, for which
the accuracy requirement for detection is

E 1 � C1

ffiffiffiffiffiffiffiffiffiffiffiffi
2�max

p
; (7.8)

and the requirement for measurement is

E 1 � C1

�c

�
: (7.9)

Table V gives values of several versions of the E1 error
for the inspiral and merger of nonspinning, equal-mass
black holes described in Sec. V. For practical purposes,
the error norms were computed over the time period of the
simulation rather than for a complete model waveform
obtained by splicing to a post-Newtonian chirp waveform.
Assuming that the nonlinear error in the chirp waveform is
small compared to the error in the numerical waveform, the
effect is to overestimate the error norms by underestimat-
ing the denominators in (7.1), (7.2), and (7.3). However, it
has been pointed out in [58,59] that splicing to a chirp
waveform can produce significant error unless the numeri-
cal waveform extends to a large number of orbits, which
can be computationally prohibitive; otherwise, only for
binary masses * 100M� is the splicing error negligible.

An advantage of the E1 error norm based upon the news
function is that the denominator in (7.1) is directly related
to the radiated energy. As a result, the factor by which

E1ðNÞ is overestimated is F�1=2, where

F :¼ �EðNumericalÞ
�EðChirpÞ þ �EðNumericalÞ (7.10)

and �E denotes the energy radiated in the indicated time
periods. The total energy radiated during the post-
Newtonian inspiral and merger can be estimated from the
difference between the final black hole mass MH and the
mass M0 of the binary for a large initial orbit. The energy
�EðNumericalÞ radiated during the numerically modeled
time period can be obtained from the Bondi mass-loss
formula. For the binary inspiral being considered here,
the final black hole mass is MH � 0:965187; the initial
mass of the system at infinite separation (given by the sum
of the individual black hole masses) isM0 � 1:01447; and
�EðNumericalÞ � 0:0346. This leads to the fraction of
energy F � :702 radiated during the numerical period, or

F �1=2 � 1:19 (7.11)

for the factor by which the E1 errors in Table V are over-
estimated. We reemphasize that the values in the Table do
not include the error introduced by splicing the post-
Newtonian and numerical waveforms.
Besides the values E1ðNÞ of the numerical truncation

error in the real and imaginary part of the news function
extracted at RE ¼ 20M, 50M and 100M, Table V includes
the corresponding truncation error E1ðN�Þ obtained from
integrating � via (3.4). The Table also includes the mod-
eling errors E1ðN�Rð20;100ÞÞ and E1ðN�Rð50;100ÞÞ in the news

which results from the differences NR¼20 � NR¼100 and
NR¼50 � NR¼100 obtained from extracting the waveform
at radii RE ¼ 50M and RE ¼ 20M compared with extrac-
tion at RE ¼ 100M. In computing these error norms, we
integrate over the interval corresponding to t=M 
 100 in
Fig. 13 to eliminate effects of the initial junk radiation.

TABLE V. Error norms of the (2, 2) spherical harmonic mode
for the Bondi news N, its counterpart N� (obtained by time
integral of the Weyl component �) and for the differences N�R

comparing extraction at radii RE ¼ 20M and RE ¼ 50M to
extraction at RE ¼ 100M.

Variable Re Im

E1ðNÞR¼20 8:76� 10�4 8:74� 10�4

E1ðNÞR¼50 2:62� 10�4 2:60� 10�4

E1ðNÞR¼100 1:21� 10�4 1:22� 10�4

E1ðN�ÞR¼20 1:08� 10�3 1:12� 10�3

E1ðN�ÞR¼50 3:33� 10�4 2:93� 10�4

E1ðN�ÞR¼100 2:30� 10�4 1:68� 10�4

E1ðN�Rð20;100ÞÞ 5:41� 10�3 5:55� 10�3

E1ðN�Rð50;100ÞÞ 4:28� 10�3 4:51� 10�3
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Consider first the criterion for detection where we set
�max ¼ :005, which for advanced LIGO ensures less than a
10% signal loss, a target which is often adopted in LIGO
searches for compact binaries [37]. For this target, (7.5)
reduces to E1 � 0:1C1, or E1 � :024 for the low mass
bound C1 � :24. This criterion is easily satisfied by all
the error norms in Table V. Thus the advanced LIGO
detection criterion is satisfied by CCE waveforms obtained
from either the news or Weyl component throughout the
entire binary mass range. In addition, the detection crite-
rion is unaffected by modeling errors introduced by choice
of extraction radius. Note that the E1ðNÞ and E1ðN�Þ errors
decrease with larger extraction radius. This is expected
since the truncation error introduced by the characteristic
evolution code depends upon the size of the integration
region between the extraction worldtube and Iþ.

The criterion for measurement is more stringent. For a
calibration factor given by the expected lower bound
�min ¼ 0:4 and for the lower bound C1 � :24 correspond-
ing to the small mass limit, (7.9) reduces to

E 1 � C1

�c

�
¼ 9:6� 10�2

�
: (7.12)

For the most optimistic advanced LIGO signal-to-noise
ratio, which is expected to be � � 100 for the strongest
and best tuned events, the requirement for measurement is
then E1 � 9:6� 10�4. Thus, comparing (7.12) to the val-
ues in Table V, the advanced LIGO measurement criterion
is satisfied throughout the entire binary mass range by
the numerical truncation error E1ðNÞ in the CCE wave-
form obtained from the news function. The E1ðN�Þ error
obtained from the Weyl component for extraction radii
RE 
 50M also satisfy this full range of measurement
standards. The value of E1ðN�Þ for RE ¼ 20M would
satisfy the full range of measurement standards for

�<100 if reduced by the factor F�1=2 given in (7.11).
Note also that the truncation error is being conservatively
measured by the Oð�2Þ error (6.3), rather than the third
order accurate error in the Richardson extrapolated
waveform.

These results can be compared with the measurement
criterion for advanced LIGO data analysis reported in the
Samurai project [55], which was also based upon a non-
spinning, equal-mass binary black hole inspiral and
merger. There it was found that the mismatch between
perturbative waveforms obtained using various Cauchy
codes limited the measurement application to signal-to-
noise ratios � & 25. This is consistent with our experience,
and that reported in [9], that the additional truncation error
introduced by applying CCE to a Cauchy simulation of a
binary inspiral is much smaller than the numerical error
resulting from the Cauchy code.

The values of E1ðN�RÞ in Table V give an estimate of
the modeling error introduced by different choices of ex-
traction radius. The error E1ðN�Rð50;100ÞÞ, introduced by

extraction at RE ¼ 50M as compared to RE ¼ 100M,
only satisfies the full range of measurement standards for
signal-to-noise ratios � < 21, or � < 25 if (7.11) is taken
into account. This would cover the most likely advanced
LIGO events. These modeling errors primarily result from
initialization effects which we have discussed and which
would be less significant in simulations with a higher
number of orbits. The results suggest that the choice of
extraction radius should be balanced between a sufficiently
large radius to reduce initialization effects and a suffi-
ciently small radius where the Cauchy grid is more highly
refined and outer boundary effects are better isolated. For
the Cauchy grid setup in the present case, there is a factor
of 2 in refinement at r ¼ 50M compared to r ¼ 100M,
which for 8th order finite differencing has considerable
impact on the error. Future experiments with longer runs
involving more orbits will supply valuable guidance for
optimizing the extraction radius.
Table VI gives some pertinent E2 error norms for

the (2, 2) spherical harmonic component. Besides the
numerical truncation error E2ð�Þ obtained for character-
istic extraction at RE ¼ 20M, RE ¼ 50M and RE ¼ 100M,
the table includes the error norm E2ð�c Þ measuring the
difference between perturbative and characteristic extrac-
tion, as defined in (7.4), obtained at RE ¼ 50M and
RE ¼ 100M. The table also includes the modeling error
E2ð��Rð50;100ÞÞ resulting from the difference �R¼50 �
�R¼100 obtained using characteristic extraction at radii
RE ¼ 50M and RE ¼ 100M, as well as the corresponding
error norm E2ðc 4;�Rð50;100ÞÞ resulting from the difference

obtained using perturbative extraction at RE ¼ 50M and
RE ¼ 100M, i.e.

E2ðRec 4;�Rð50;100ÞÞ

¼ kRe½ðrc 4=2Þjr¼100M � ðrc 4=2Þjr¼50M�k
kRe�k (7.13)

TABLE VI. E2 error norms for the (2, 2) spherical harmonic
mode of the CCE waveform � obtained using extraction world-
tube radii RE ¼ 20M, RE ¼ 50M and RE ¼ 100M and the
norms of the difference �c between � and the perturbative
c 4 waveforms extracted at 50M and 100M. We also tabulate the
modeling error E2ð��Rð50;100ÞÞ resulting from the difference in

extracting� at 50M and 100M, and the corresponding modeling
error E2ðc 4;�Rð50;100ÞÞ for extraction via c 4.

Variable Re Im

E2ð�ÞR¼20 1:14� 10�3 1:17� 10�3

E2ð�ÞR¼50 4:04� 10�4 3:53� 10�4

E2ð�ÞR¼100 2:81� 10�4 2:09� 10�4

E2ð�c ÞR¼50 5:09� 10�3 5:08� 10�3

E2ð�c ÞR¼100 6:81� 10�3 6:32� 10�3

E2ð��Rð50;100ÞÞ 1:94� 10�2 1:91� 10�2

E2ðc 4;�Rð50;100ÞÞ 3:13� 10�2 3:14� 10�2
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E2ðImc 4;�Rð50;100ÞÞ

¼ kIm½ðrc 4=2Þjr¼100M � ðrc 4=2Þjr¼50M�k
kIm�k : (7.14)

All norms are again computed over the time interval
t=M 
 100 indicated in Fig. 13 to reduce effects of initial
junk radiation.

Although the E2 norms are not effective for low mass
binaries, they give some useful information for comparing
extraction at various radii and comparing characteristic and
perturbative extraction. In the high mass limit for which
C2 ¼ 1 and with the same lower limits for �max and �c as
for the E1 norms, the detection criterion (7.5) reduces to

E 2 �
ffiffiffiffiffiffiffiffiffiffiffiffi
2�max

p ¼ 0:1 (7.15)

and the measurement criterion (7.6) reduces to

E 2 � �c

�
¼ 0:4

�
: (7.16)

All the error norms in Table VI satisfy the detection
requirement for this high mass limit. The truncation errors
E2ð�Þ decrease with extraction radius as in the case of the
E1ðN�Þ errors. The values at all three extraction radii
satisfy the measurement requirement for the most optimis-
tic advanced LIGO signal-to-noise ratio � ¼ 100. These
results are consistent with the E1ðN�Þ error in Table V
obtained by integrating �.

The norms E2ð�c Þ measure the difference between
characteristic and perturbative extraction. The results in
the Table show that this difference is fairly independent of
whether the waveforms are extracted at RE ¼ 50M or
RE ¼ 100M. In the high mass limit in which (7.16) is
valid, these errors impact the measurement criterion only
for signal-to-noise ratios � > 59 but they could be ex-
pected to be more significant for low mass binaries.
Whether the E2ð�c Þ error can be attributed to character-
istic extraction or to perturbative extraction cannot be
decided from this single test and deserves further inves-
tigation. A definitive answer would of course require
knowledge of the ‘‘exact’’ waveform.

The modeling error E2ðc 4;�Rð50;100ÞÞ, which results

from comparing perturbative extraction at RE ¼ 50M and
RE ¼ 100M, is considerably larger than the corresponding
modeling error E2ð��Rð50;100ÞÞ for characteristic extraction.
This confirms the expectation that perturbative extraction
requires a large extraction radius. Both of these modeling
errors are substantial, which further emphasizes the im-
portance of an optimal choice of extraction radius.

VIII. CONCLUSION

We have developed a new characteristic waveform
extraction tool. Bugs and inconsistencies in the previous
version have been eliminated. The extracted wave-
form from a binary black hole inspiral now shows clean

convergence. We have demonstrated that this allows the
use of Richardson extrapolation to obtain third order
accurate waveforms whose numerical truncation error sat-
isfies the advanced LIGO standards for detection and
measurement. Characteristic waveform extraction from a
binary black hole inspiral can now be obtained without any
recourse to linearization and from extraction radii as small
as R ¼ 20M. The Cauchy interface has been simplified in
terms of a spectral decomposition.
There are still elements where accuracy could be im-

proved. Some of these, such as more accurate start-up
algorithms for the radial integrations at the extraction
worldtube and more accurate asymptotic limits at Iþ,
might be handled by small modifications but others, such
as extending the overall accuracy to 4th or higher order,
would entail a more major overhaul of the underlying PITT
code. This is perhaps long overdue, but a proper treatment
would require a better understanding of the underlying
mathematical problem. The well-posedness of the gravita-
tional worldtube-nullcone initial-boundary value problem
upon which the code is based has not yet been established.
Only recently has well-posedness been demonstrated for
the corresponding nonlinear scalar wave problem [60]. The
PITT code was developed in the early days of numerical
relativity when considerations of well-posedness did not
arise in the formulation of Cauchy as well as characteristic
codes. The development of a stable characteristic code
involved ‘‘educated guesses’’. Today, the numerical rela-
tivity community is more aware of the benefits that a well-
posed problem can bring. Most important, a proof of
well-posedness of the continuum problem by means of
energy estimates can be converted to ensure stability
of the corresponding finite-difference problem by the
analogous estimates obtained by summation by parts.
A new characteristic code based upon this approach would
be of great value. Of equal value would be the implemen-
tation of Cauchy-characteristic matching (CCM), in which
the characteristic evolution is used to supply outer bound-
ary data for the Cauchy evolution. So far, CCM has only
been successfully applied to a harmonic Cauchy code in
the linearized regime [61].
Although there is room for further improvement in the

CCE tool presented here, there also is pressing interest
from several numerical relativity groups to apply the tool
to extract waveforms from binary black hole inspirals. The
emerging importance of this problem to the future of
gravitational wave astronomy has created an urgency to
make characteristic waveform extraction widely available.
Simulations of binary black hole inspirals are too computa-
tionally expensive to be carried out solely for the purpose
of wave extraction tests. This would conflict with the
demands to apply computational resources to results of
importance to gravitational wave astronomy and binary
black hole astrophysics. However, the extra computational
expense of adding characteristic extraction to a Cauchy
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simulation is fractionally small. For our tests, where we
extracted twice as often as required, the interpolation,
decomposition, and saving of the metric data used only
� 6:9% of the total simulation time. The application of
characteristic extraction to simulations of astrophysical
importance will at the same time provide a practical ap-
proach to improving the extraction tool by comparing
results obtained with different formulations, different nu-
merical techniques and different grid specifications. In
particular, our test results emphasize the need for a better
understanding of the optimal choice of extraction radius,
which would balance between the discretization error in
the Cauchy code, the initialization error, the error originat-
ing at the outer Cauchy boundary and the relatively small
discretization error from CCE.

We have demonstrated here how the module can be
applied to the LazEv code, which is a finite-difference
BSSN code, to produce calibrated binary black hole wave-
forms. Wewelcome applications to codes based upon other
formulations of the Einstein equations, e.g. the harmonic
formulation, and based upon other numerical methods,
e.g. spectral methods. In particular, characteristic extrac-
tion offers a way to unambiguously compare binary black
hole waveforms obtained from the same initial data using
codes based upon different formulations of the Einstein
equations, different numerical techniques, different evolu-
tion gauges and different methods of treating the internal
singularities (by punctures or by excision). Such compari-
sons would be of especial importance in the case of pre-
cessing binaries composed of high spin black holes, where
the reliability of perturbative extraction has not been ex-
tensively tested.

We have made the present characteristic waveform ex-
traction tool publicly available as part of the Einstein
Toolkit [62].
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APPENDIX: CODE REVISION

Revisions to the worldtube module:
(i) The numerical error in the previous version of the

worldtube module did not converge properly upon
grid refinement. We have traced this problem to an
inconsistency in the start-up algorithm for the inte-
gration of the characteristic equations away from the
extraction worldtube. Data from the Cauchy code
had been used in an overdetermined manner to sup-
ply the integration constants for the characteristic
equations. As a result, the Cauchy evolution intro-
duced inconsistencies with the characteristic equa-
tions which degraded convergence of the numerical
error. We have revamped this start-up algorithm so
that the worldtube module now has clean second
order accuracy with respect to grid size.

(ii) We have found and corrected bugs which had been
introduced in the implementation of features de-
signed to improve code performance. In particular,
in parallelizing the code using the Cactus frame-
work [50], a complex spin-weighted term in the
evolution module was incorrectly declared to be a
real variable. In addition, it had been suggested that
improved accuracy could be obtained by reducing
second derivatives in the angular directions to first
order form by the use of auxiliary variables [41]. In
the process of doing so, values of certain variables in
the subroutines for the data at the extraction world-
tube were inadvertently interchanged between the
North and South stereographic patches. The intro-
duction of these bugs made the resulting code in-
consistent with the Einstein equations. (From
tracing through the code archive, we determined
that the bugs were introduced in 2002 or later so
that they do not affect the validity of results prior to
2002. C. Reisswig has informed us that he recom-
puted some of the results in [8,9] using the corrected
code and found good qualitative agreement with the
original results.)

(iii) The matching interface has been simplified by in-
troducing a pseudospectral decomposition of the
Cauchy metric in the neighborhood of the extrac-
tion worldtube. This provides more economical
storage of the inner boundary data for the charac-
teristic code so that the waveform at Iþ can be
obtained with small computational burden com-
pared to the Cauchy evolution.

(iv) Interpolation error arises because the characteristic
grid points do not lie exactly on the extraction
worldtube determined by the Cauchy coordinates.

CHARACTERISTIC EXTRACTION TOOL FOR . . . PHYSICAL REVIEW D 84, 044057 (2011)

044057-21



The interpolation stencils change in a discontinuous
way when the grid is refined. Consequently, al-
though this interpolation error is second order in
grid size, there is a small stochastic component
relative to the choice of grid. This can obscure the
results of convergence tests. We have reduced such
sources of error so that convergence tests can be
used to validate the interface modules.

(v) We have streamlined the start-up procedure at the
extraction worldtube by initializing the auxiliary
variables (introduced to remove second angular de-
rivatives) directly in terms of the main variables.

(vi) In previous applications of the extraction module, it
was expedient to set the characteristic data on the
initial hypersurface to zero outside some radius.
This necessitated a transition region to obtain con-
tinuity with the initial Cauchy data, which requires
nonzero initial characteristic data at the extraction
worldtube. Here we initialize the data by requiring
that the Newman-Penrose component of the Weyl
tensor intrinsic to the initial null hypersurface van-
ish, i.e. c 0 ¼ 0. For a linear perturbation of the
Schwarzschild metric, this condition eliminates in-
coming radiation crossing the initial null hypersur-
face. Since c 0 consists of a second radial derivative
of the characteristic data, this condition allows both
continuity at the extraction worldtube and the de-
sired asymptotic falloff of the characteristic data at
infinity.

Modifications of the PITT code:
(i) A source of error in characteristic evolution is the

intergrid interpolations arising from the stereo-
graphic patches used to coordinatize the spherical
cross-sections of the outgoing null hypersurfaces.
The previous version of the code used two square
stereographic patches centered about the North and
South poles, each overlapping the equator. This
has now been modified by shrinking the overlap
region so that each patch has a circular boundary
located slightly past the equator, as is the practice in
the use of stereographic grids in meteorology [63].

This eliminates the region near the corners of the
square patch where the numerical error was most
troublesome. Angular numerical dissipation has also
been introduced and shown to be effective in con-
trolling the short wavelength noise arising from the
intergrid interpolations across the stereographic
patches. Tests show that the resulting waveforms
have smooth numerical error as functions on the
sphere [5].
Characteristic codes based upon a six patch covering
of the sphere [64,65] offer the potential for better
accuracy but they have not yet been developed to
handle waveform extraction. See [5] for a compari-
son of the six patch and the stereographic approaches
on a test problem.

(ii) The accuracy of the angular derivatives has been
increased to a fourth-order finite-difference ap-
proximation, as opposed to the second-order accu-
racy in the original code. The radial derivatives and
time integration remain second order accurate.

(iii) Some of the differential equations governing
propagation along the characteristics become de-
generate at Iþ and affect the accuracy of asymp-
totic quantities such as the Bondi news function.
The correct asymptotic behavior has now been
incorporated into the finite-difference approxima-
tion in order to increase accuracy. In addition,
the accuracy of certain one-sided finite-difference
approximations necessary at Iþ has also been
improved.

(iv) In addition, the code has been extended to supply
the waveform at Iþ in terms of the radiative com-
ponent of the Weyl tensor as well as the Bondi news
function. For tests in the linearized regime, extrac-
tion via the Weyl tensor was found to be slightly
more accurate than via the news function when
large gauge effects are introduced in the character-
istic coordinates [5]. On the other hand, the higher
derivatives involved in computing the Weyl tensor
lead to less smoothness in the numerical error.
Overall, the two methods are competitive.
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