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Abstract

Graphs are increasingly used to model a variety of loosely structured data such
as biological or social networks and entity-relationships. Given this profusion
of large-scale graph data, efficiently discovering interesting substructures buried
within is essential. ese substructures are typically used in determining subse-
quent actions, such as conducting visual analytics by humans or designing expen-
sive biomedical experiments. In such settings, it is oen desirable to constrain the
size of the discovered results in order to directly control the associated costs.
In this report, we address the problem of ĕnding cardinality-constrained connected
subtrees from large node-weighted graphs that maximize the sum of weights of
selected nodes. We provide an efficient constant-factor approximation algorithm
for this strongly NP-hard problem. Our techniques can be applied in a wide variety
of application settings, for example in differential analysis of graphs, a problem that
frequently arises in bioinformatics but also has applications on the web.
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1
Introduction

Given a large graph with weighted nodes, how can we efficiently identify a heavy,
connected subtree within a given size? When each node exhibits an individual
interestingness factor, how can we ĕnd small but highly interesting subnetworks?

e problem of discovering interesting subgraphs from large graphs has for long
attracted the attention of researchers from different streams. A variety of measures
are used for determining the interestingness of a subgraph, ranging from the sumof
scores of selected nodes or edges [16, 17, 24], edge density [14, 18], or the frequency
of its (isomorphism class) occurrence in the larger graph [19]. It is striking to see
that the proposedmethods don’t offer any support to directly control the size of the
discovered subgraph. As a consequence, the results can be extremely large, or their
size can vary as an arbitrary function of the parameters of the algorithm. ere are
many application settings where it is not enough to identify heavy or interesting
subgraphs, but it is also essential to keep their size small. A well-known application
of this problem arises in the ĕeld of bioinformatics [1, 9]. In this setting, we are
given the protein-protein interaction (PPI) network of an organism, where each
node is annotated with a score signifying its deviation from normal behavior in
response to a disease. In order to unearth the biological processes involved and thus
aid the design of targeted drugs, it is important to identify not only subnetworks
with high score, but also to limit their size in order to keep costs of biomedical trials
manageably low.
Similar needs arise in visual analytics applications of large-scale graphs. Due to
varying visual fatigue levels (either due to individuals or the device used), it is im-
portant to enable users to explicitly control the size of the output graph they are
comfortable with for navigation. While substantial progress has been made in vi-
sual exploration of large graphs [22, 25], such a control still is not in the hands of
the users.
In this report, we take ĕrst steps towards efficiently addressing these requirements
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in graph mining. Speciĕcally, we consider solving the following computationally
hard problem: Given a large undirected graph, where a weight indicating indi-
vidual score/relevance is associated with every vertex, identify a maximum-weight
connected set of nodes whose size is upper-bounded by a user-speciĕed threshold
k. is set of nodes corresponds to a subtree of k nodes with maximal weight.
Our main contribution is an efficient constant-factor approximation algorithm for
this strongly NP-hard problem. For any given cardinality k, our algorithm is guar-
anteed to discover a subtree spanning at most k vertices that sum to a weight of at
least 1

5(1+ε)
times the weight of the optimal subtree of this size.

e remainder of this report is organized as follows: In the next chapter, we lay
out the formal framework for our algorithm and show its relation to another well-
known graph mining problem. In Chapter 3 we explain our algorithm in detail.
In Chapter 4 we provide an experimental evaluation on synthetic and real-world
graphs. Implementation issues are discussed in Chapter 5. A related problem is
covered in Chapter 6 and the report is concluded in Chapter 7.

1. Introduction 3



2
Preliminaries

For a given graph G = (V, E) let T (G) denote the set of subtrees of G. For
any integer k, let Tk(G) denote the set of subtrees of G spanning not more than k
vertices:

Tk(G) :=
{

T = (VT, ET) ∈ T (G)
∣∣ |VT| ≤ k

}
.

Let f be amapping deĕnedon a set S. By abuse of notation, let f (X) :=
∑

x∈X f (x)
for a subset X ⊆ S.

2.1 Cardinality-ConstrainedWeighted Trees

We address the following combinatorial optimization problem in the remainder of
this report:

.

.
Problem 1: Node-Weighted k-Cardinality Tree (KCT)

Given Undirected graph G = (V, E), a non-negative weight function deĕned
on the vertices, w : V → R≥0, and a cardinality k ∈N.

Goal Identify a subtree T = (VT, ET) of G with the maximum sum of node
weights that satisĕes the cardinality constraint |VT| ≤ k:

T := arg max
T∈Tk(G)

w(VT). (2.1)

is problem was proven strongly NP-hard by Fischetti et al., using a reduction to
the node-weighted Steiner tree problem [12].
Although a large body of literature exists for similar problems (like the variant of
KCT with edge costs instead of node weights), the node-weighted KCT problem
has not received much attention yet. e existing algorithms rely on:
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• (meta-)heuristics that do not provide any guarantees, such as Tabu Search
and Genetic Algorithms [4], Variable Neighborhood Search [5], and Ant-
Colony Optimization [3], or

• Integer Programming via branch-and-bound to obtain exact solutions, how-
ever at the expense of worst-case exponential running time or

• reduction to the related k-MST problem (as described in Chapter 6).

2.2 Prize-Collecting Steiner Trees

As a subroutine, our algorithm solves carefully-chosen instances of the Prize-Col-
lecting Steiner tree problem (PCST):

.

.
Problem 2: Prize-Collecting Steiner Tree (PCST)

Given Undirected graph G = (V, E), a non-negative cost function deĕned on
the edges, c : E → R≥0, and a non-negative penalty function deĕned on
the vertices: π : V → R≥0.

Goal Identify a subtree T = (VT, ET) of G, minimizing the sum of costs of the
included edges and the penalties of the vertices not included:

T := arg min
T∈T (G)

c(ET) + π(V \VT). (2.2)

Note that this problem does not include a constraint on the size of T, rather we
assign a penalty for the nodes that are not spanned.
e PCST problem, which is known to be NP-hard [23], has been studied inten-
sively in the literature because many real-world problems – like utility network
design – can be expressed in its terms. Several good approximation algorithms
are known for the PCST. In their seminal work, Goemans and Williamson [15]
propose an O

(
n3 log(n)

)
clustering algorithm that guarantees an approximation

ratio of 2− 1
n−1 :

Theorem 1 (Goemans andWilliamson). There is a polynomial-time algorithm that, gi-
ven an instance (G, c, π) of PCST, returns a tree T ∈ T (G) such that

c(ET) + 2π(V \VT) ≤ 2 min
S∈T (G)

{
c(ES) + π(V \VS)

}
. (2.3)

In this section we give a brief description of the approximation technique of Goe-
mans and Williamson for the PCST, as described in [21]. e algorithm contains
two stages: a growth and a pruning phase. In the growth phase, initially every ver-
tex forms a singleton component (cluster). Every component is assigned a growth

2. Preliminaries 5
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potential that corresponds to the sum of penalties of all vertices included in the
component. A component is called active if it has positive remaining potential
and passive otherwise. Additionally, we maintain a residual value r(e) for every
edge e, that initially corresponds to the edge cost. e active components grow
uniformly over time, meaning that for each time increment δ, the potential of each
active component is reduced by δ. At the same time, the residual value of an edge
with one active endpoint component is reduced by δ, the residual value of an edge
with two active endpoint components is reduced by 2δ.
is growth procedure continues until either

• the potential of an active component reduces to 0 or

• the residual value r(e) of an edge e reduces to 0.

In the former case, the endpoint is marked as inactive. In the latter case (we call
the edge e tight), we merge both endpoint components of the edge into a new com-
ponent. e potential of the newly formed component corresponds to the sum of
potentials of its constituent two components. e growth phase continues until
there are no more active components. e output of the procedure is the set of
tight edges (which corresponds to a forest in the graph).
In Goemans and Williamson’s algorithm, the growth phase if followed by a prun-
ing phase. As this pruning step is not part of our algorithm, we omit its description
and refer to the literature [15, 21].
It is worth noting that in their original paper, Goemans and Williamson reduce
PCST to a rooted variant where we are given a designated vertex r, the root, which
must be spanned by the output subtree. In order to obtain the algorithm in e-
orem 1 one just runs the algorithm for the rooted version on each possible choice
of r. However, due to the large size of the problem instances, this guessing step
would be prohibitively slow for our purposes. erefore, in our implementation,
we use the algorithm of Johnson et al. [21], which is also based on the original
work of Goemans and Williamson but works in the unrooted setting and offers
an approximation guarantee of 2 while avoiding the guessing step altogether. e
time complexity of this algorithm is O

(
n2 log(n)

)
. We will denote by U-

G(G, c, π) the output of this algorithm on the PCST instance (G, c, π).

2. Preliminaries 6



3
Algorithm

In this section we formally describe our algorithm. Our approach is to solve a
number of carefully constructed PCST instances. We will use implicitly the frame-
work of Lagrangian relaxation for approximation algorithms introduced by Jian
and Vazirani [20] for location problems and by Chudak et al. [7] for Steiner tree
problems. However, we only describe the parts relevant to our analysis. More
speciĕcally, we avoid introducing the underlying linear programand its Lagrangian
relaxation.

3.1 Main Idea

ekey of our algorithm is to construct and solve instances of the PCST problem in
such a way that we can guarantee a constant-factor approximation to our original
KCT problem. roughout the rest of this section, we denote by OPT the weight
of the optimal solution to the KCT instance at hand. e following theorem states
our main result:

Theorem 2. There is an efficient algorithm that, given an instance (G, w, k) of the KCT
problem, returns a treeT of atmost k vertices such thatw(VT) ≥ OPT

5(1+ε)
for any ε > 0.

e problem is somewhat easier to solve if OPT is known beforehand, therefore
we assume for now that the value is known. Indeed this will not be the case in our
applications but we can easily guess its value up to an ε multiplicative error using
binary search, as we will show in Section 3.4. In the next subsections, we describe
the algorithm that satisĕes eorem 2 and prove its correctness.
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3.2 Basic Algorithm

Given an instance of KCT and the value OPT, we derive several instances of the
PCST problem. For this purpose, we identify the node weights with penalties and
set the cost of every edge in the graph to 1. By scaling these node penalties (that
is, multiplying them with a factor λ ∈ R>0), we can indirectly control the size of
the output solution. For instance, if we use a multiplicator λ1 = 0, the optimal
solution of the associated PCST instance is given by the empty tree, whereas for a
sufficiently large factor, e. g. λ2 > n maxe∈E c(e), the optimum is any spanning
tree of the graph.
We will use the existing algorithm of Johnson et al. [21] for the PCST (which pro-
vides a 2-approximation [11]) to obtain a tree that has a weight of at leastOPT and
is as small as possible.
e idea is to perform binary search over the range of scale factors λ ∈ [λ1, λ2].
At each step of this binary search procedure, we solve the PCST instance using the
λ-scaled penalties. If the returned tree has weight of at least OPT, we decrease λ,
thus requesting a smaller tree in the next iteration. If the returned tree has weight
less thanOPT, we increase λ, thus allowing for a larger output solution in the next
run. is binary search procedure is continued until the ĕnal interval is sufficiently
small.
As the solution for the original KCTproblem, we ĕnally extract the heaviest subtree
spanning k vertices from the tree obtained in the last solved PCST instance. For
this purpose, we use a dynamic programming procedure called TreeDP(T, w, k),
consisting of the algorithm by Blum [2]. e complete procedure is described in
Algorithm 1.
In the following we will provide a theoretical analysis of our approach and show
that it ultimately leads to a constant-factor approximation of the KCT problem.

3.3 Approximation Guarantee

Let T1 and T2 be the two trees the algorithm holds at the end of the while loop
of Algorithm 1 (just before line 12). We now establish a few important properties
about these trees. Our aim is to show that a certain convex combination of T1 and
T2 has large weight and small size. For the sake of brevity we will denote w(VTi)
by Wi and |VTi | by Si, for i = 1, 2. e coefficients of the above-mentioned convex
combination are as follows:

α1 =
W2 −OPT

W2 −W1
and α2 =

OPT−W1

W2 −W1
. (3.1)

3. Algorithm 8
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Algorithm 1: HeavySubtree(G, w, k,OPT)
Data: Graph G = (V, E), weight function w : V → R≥0, cardinality

k ∈N

1 begin
2 [λ1, λ2]←

[
0, n/(w(V)−OPT)

]
. initial penalty interval

3 T1 ← (argmaxv∈Vw(v), ∅) . tree of heaviest node

4 T2 ← SpanningTree(G) . any spanning tree of G

5 while λ2 − λ1 ≥ 1
w(V)−OPT

do
6 λ← λ1+λ2

2
7 T ← UnrootedGrowth(G, 1, λw) . solve PCST with unit edge costs

and λ-scaled node penalties

8 if w(VT) ≤ OPT then
9 (λ1, T1)← (λ, T)

10 else
11 (λ2, T2)← (λ, T)

12 T1 ← TreeDP(T1, w, k)
13 T2 ← TreeDP(T2, w, k)
14 T ← arg maxw(V){T1, T2} . heaviest subtree of T1 or T2 hav-

ing k vertices

15 return T

Lemma 1. Let T1 and T2 be the trees right after while loop in our algorithm. Then

(i) α1W1 + α2W2 = OPT, and

(ii) α1S1 + α2S2 < 2k.

Proof. e ĕrst property follows easily from the deĕnition (3.1). Indeed, the coef-
ĕcients α1 and α2 have been deĕned so that property (i) holds.
Let T∗ be a tree on k vertices with weight OPT. For the second property we need
to exploit the approximation guarantee (2.3) of UnrootedGrowth1:

S1 − 1 ≤ 2
(
k− 1 + λ1(W1 −OPT)

)
(3.2)

S2 − 1 ≤ 2
(
k− 1 + λ2(W2 −OPT)

)
(3.3)

Taking the convex combination of these two inequalities using the coefficients (3.1)
1Even though the initial values of T1 or T2 are not the output of UnrootedGrowth, it is

easy to verify that Equations (3.2) and (3.3) hold for these trees as well.

3. Algorithm 9



Approximation Guarantee .
.
3.3

we get

α1S1 + α2S2 ≤ 2(k− 1) + (λ2 − λ1)
(
w(V)−OPT

)
+ 1

< 2k,

which gives us the second property. �

If either T1 or T2 have nomore than k vertices, then such a tree becomes a potential
solution to be returned. On the other hand, if either tree spansmore than k vertices,
we need to argue that they contain a small subtree with large weight. e following
lemma does exactly that.

Lemma 2. Let T be a tree having more than k vertices. Then there exists a subtree T
with k vertices whose weight is at least k

2|VT|
·w(VT).

Proof. We begin by doubling the edges in T and ĕnding an Euler tour C in the
resulting multi-graph. Let s denote some segment of C with k vertices. Notice that
the vertices in s induce a subtree of T with at most k vertices.

..4

.5

.3 .1

.1

.v1

.v2 .v3

.v4 .v5

.0
.4

.1

.0 .3

.1
.0.5

.v4

.v2

.v1

.v3

.v1

.v2

.v5

.v2

Figure 3.1: Tree T and its Euler tour C

For each vertex in u ∈ VT , we pick one of its copies in C and assign to that copy wu.
It is not important which of the degT(u) copies of u in C we assign the weight to,
but it is crucial that exactly one is used. Let w(s) be the weight of segment s; that is,
the weight assigned to the nodes in s. Notice that the vertices in s induce a subtree
of T whose weight is at least w(s). Hence, it suffices to show that there exists a
segment s of C with k vertices whose weight is at least k

2|VT|
w(VT). Notice that

we can start a segment at each of the 2|VT| nodes in C. Using a simple averaging
argument we get

max
s

w(s) ≥
∑

s w(s)
2|VT|

≥
∑

u∈VT
kwu

2|VT|
=

k
2|VT|

w(VT)

where the last inequality follows from the fact that each vertex u ∈ VT assigns its
weight to some copy of itself in C, which appears in k of the 2|VT| segments. �

3. Algorithm 10
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Using the results derived so far, we can now argue that the trees output by our
algorithm have at least one ĕh the weight of an optimal solution. e analysis is
broken up into two key lemmas, which consider what happens when the tree T1
has less or more than k vertices. Regarding T2, we note that if T2 has at most k
vertices then T2 is a feasible solution whose weight is W2 ≥ OPT. erefore, we
assume from now on, without loss of generality, that T2 spansmore than k vertices.

Lemma 3. If T1 has at most k vertices then the algorithm returns a tree whose weight
is at least OPT

5 .

Proof. Since T1 is small and T2 is large, by Lemma 2, it suffices to show that

max
{

W1,
k

2S2
W2

}
≥ OPT

5
.

Applying Lemma 1, we get

k
2S2

W2 ≥
α2

4
W2 =

OPT− α1W1

4
≥ OPT−W1

4
.

erefore,

max
{

W1,
k

2S2
W2

}
> max

{
W1,

OPT−W1

4

}
≥ OPT

5
,

which yields the desired guarantee. �

Lemma 4. IfT1 hasmore than k vertices then the algorithm returns a treewhoseweight
is at least OPT

4 .

Proof. Since both T1 and T2 are large, by Lemma 2, it suffices to show that

max
{

k
2S1

W1,
k

2S2
W2

}
≥ OPT

4
.

Applying Lemma 1, we get

k
2S2

W2 =
k

2α2S2
(OPT− α1W1) ≥

OPT− α1W1

2
(

2− α1
S1
k

) .

Notice that the expression the right hand side above is increasing in the interval
[0, 2

β ), where β = S1
k > 1. erefore, since α1 ∈ [0, 1] and α1β < 2, the expres-

3. Algorithm 11
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sion is minimized at α1 = 0 or α1 = 1. Putting everything together, we get

max

{
k

2S1
W1,

k
2S2

W2

}
≥ max

{
W1

2β
,
OPT− α1W1

2(2− α1β)

}

≥ max

{
W1

2β
, min

{
OPT

4
,
OPT−W1

2(2− β)

}}

≥ min

{
OPT

4
, max

{
W1

2β
,
OPT−W1

2(2− β)

}}

≥ OPT

4
.

is ĕnishes the proof. �

Everything is in place to present the proof of the main result in the section.

Theorem 3. Givenan instance (G, w, k,OPT)of theKCTproblem, thealgorithmHeavy-
Subtree returns a tree T of at most k vertices such that w(VT) ≥ OPT

5 .

Proof. Right before the ĕrst iteration of the while loop we have

λ2 − λ1 =
n

w(V)−OPT
,

while right at the end

λ2 − λ1 <
1

w(V)−OPT
.

In each iteration the value λ2 − λ1 is halved. erefore, aer log(n) iterations
(and thus aer that many calls to UnrootedGrowth) the algorithm terminates.
By Lemmas 3 and 4 it follows that the tree returned by the algorithm has weight at
least OPT

5 . �

3.4 Guessing the Optimal Weight

e last remaining issue is efficiently guessing OPT, the weight of the optimal
solution. Let w∗ denote the maximum weight of a node in the graph, w∗ :=
maxv∈V w(v). e value OPT must then be contained in the interval [w∗, kw∗].
Our algorithm performs binary search over this interval. We introduce an addi-
tional parameter ε > 0 to our algorithm and terminate the binary search when the
ĕnal interval [w1, w2] satisĕes w2 −w1 ≤ εw∗.

3. Algorithm 12
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Algorithm 2: Bonsai(G, w, k, ε)

Data: Graph G = (V, E), weight function w : V → R≥0, cardinality
k ∈N, error bound 0 < ε < 1

1 begin
2 [w1, w2]← [w∗, kw∗] . initial interval forOPT

3 while w2 −w1 ≥ εw∗ do
4 OPTγ ← w2+w1

2 . guessed value forOPT

5 T ← HeavySubtree(G, w, k,OPTγ)

6 if w(T) ≥ OPTγ

5 then
7 w1 ← OPTγ

8 else
9 w2 ← OPTγ

10 return T

We then run our algorithm a total of⌈
log

(
kw∗ −w∗

εw∗

)⌉
≤

⌈
log

(
k
ε

)⌉
times, thus achieving independence from graph properties like the number of nodes
and edges and the maximum node weight w∗. Using this termination criterion
will ensure that the last guessed value, OPTγ, differs in the worst-case by a factor
of 1

1+ε from the true optimum:

OPTγ(1 + ε) ≥ OPTγ + εw∗ ≥ OPT (3.4)

for the last guessed optimum value OPTγ (line 4 in Algorithm Bonsai) and the
true optimum OPT. Note that the binary search interval can be narrowed down
further, for example by computing the greedy solution of the problem and using
its weight, wgreedy as the lower bound. In fact, we use this improvement in our
implementation.

3.5 Complete Algorithm

We can now combine the existing parts to obtain the complete procedure – which
is subsequently called Bonsai algorithm – in Algorithm 2.
e Bonsai algorithm satisĕes eorem 2 from Section 3.1, which is repeated here:

Theorem 2. There is an efficient algorithm that, given an instance (G, w, k) of the KCT
problem, returns a treeT of atmost k vertices such thatw(VT) ≥ OPT

5(1+ε)
for any ε > 0.

3. Algorithm 13
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Figure 3.2: Execution schema of the Bonsai algorithm

Proof (Theorem 2). We guess the weight OPT of the optimal solution using the
outer binary search procedure. For every guess, we run the HeavySubtree proce-
dure which performs the inner binary search for the multiplication parameter λ.
In each step of the inner binary search we try to obtain a tree with weight of at
least OPT that is as small as possible, getting closer to this goal as the search pro-
gresses. For the last obtained trees, we retrieve the heaviest subtree T that satisĕes
our cardinality constraint, using the dynamic programming procedure TreeDP. De-
pending on the weight of tree T we proceed in the outer binary search procedure,
increasing or reducing our guess for the optimum weight until the ĕnal interval is
small enough. For the resulting tree returned in line 10 of Algorithm 2 we have
(using eorem 2):

w(T) ≥
OPTγ

5

(3.4)
≥ OPT

5(1 + ε)
. (3.5)

�

A schematic overview of the algorithm is depicted in Figure 3.2. e impact of
the cardinality constraint as well as the error bound on the required number of
iterations of HeavySubtree is shown in Figure 3.3.
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calls to HeavySubtree, which is upper-bounded by dlog(k/ε)e
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4
Experimental Evaluation

In this section, we provide the experimental evaluation of our algorithm. All ex-
periments were conducted on Dell PowerEdge M610 servers, each of which has
two Intel Xeon E5530 CPUs, 48 GB of main memory, a large iSCSI-attached disk
array, and runs Debian GNU/Linux (SMP Kernel 2.6.29.3.1) as an operating sys-
tem. Experiments were conducted using the Java Hotspot 64-Bit Server Virtual
Machine (build 11.2-b01) installed on our servers. Note that our algorithm was
implemented single-threaded.

4.1 Biological Networks

As a ĕrst example we present the results of our algorithm for a real-world graph.
We run Bonsai on the protein-protein interaction network used by Dittrich et al.
[9] for discovering functional modules. e node scores provided in this dataset
are real numbers. erefore, in order to execute our algorithm, we map the scores
to non-negative values by adding to each score the minimum score in the network.
e graph contains 2034 proteins (nodes) and 8399 interactions (edges).
Table 1 contains the experimental evaluation of this network for different cardinal-
ities k and error bounds ε. Note that the implementation of our algorithm returns
a ĕrst candidate solution aer the ĕrst execution of the UnrootedGrowth procedure,
followed by a call to the TreeDP routine. In the table, tĕnal denotes the total run-
ning time of the algorithm, tĕrst the time to return the ĕrst candidate solution and
wĕrst, wĕnal the weight of the ĕrst candidate tree and the weight of the ĕnal tree
respectively.
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k ε tĕrst [s] tĕnal [s] wĕrst wĕnal wĕrst/wĕnal

5
0.1 0.004 10.100 40.9 52.5 0.78
0.5 0.003 6.503 40.9 52.5 0.78
1.0 0.004 6.275 40.9 52.5 0.78

20
0.1 0.005 8.389 163.2 185.2 0.88
0.5 0.005 6.427 163.2 185.2 0.88
1.0 0.005 7.802 163.2 185.2 0.88

100
0.1 0.009 15.588 642.6 726.0 0.89
0.5 0.010 11.369 642.6 726.0 0.89
1.0 0.009 8.218 642.6 726.0 0.89

Table 4.1: Experimental results for the biological network

4.2 Synthetic Graphs

In the following, we demonstrate the running time and quality of our algorithm
for synthetically created graphs. We execute the Bonsai(G, w, k, ε) algorithm over
a wide variety of settings:

• as input graphs we generate power-law random graphs using the R-MAT
graph generator1 [6] with n ∈ {i · 103 | i = 2, 5, 10, 20} nodes and m ∈
{4n, 10n, 50n} edges,

• a weight function w : V → R≥0, that assigns power-law distributed values
from the interval [0, 1] to the nodes,

• cardinality constraints k ∈ {5, 10, 20, 100}, and

• error bound ε = 0.5.

Figure 3 provides an overviewover the resulting running timeswith an error bound
of ε = 0.5 and different graph sizes (nodes, edges) and cardinality values using
a logarithmic scale. e lower part of each bar represents the required time for
computing the ĕrst candidate solution (UnrootedGrowth followed by TreeDP). e
full bar represents the total running time for the complete Bonsai algorithm.
e impact of the cardinality k is negligible in all the problem instances. is is
due to the fact that we use the weight of the greedy solution as the lower bound for
the value OPT, which is a much tighter bound than the maximal node weight.

1with parameters a = 0.45, b = 0.15, c = 0.15, d = 0.25
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In Figure 4 we compare the weight of the ĕrst returned candidate with the weight
of ĕnal solution over a varying number of vertices and edges for different cardi-
nalities k. It is striking that the difference between the weight of the ĕrst candidate
tree (lower part of each bar) and the weight of the ĕnal output (full bar) is in all
the cases very small, although the time to obtain it is almost an order of magnitude
lower than the total running time of the algorithm. Note also that on average in
all experiments we obtain a solution that is much better than the worst-case ap-
proximation guarantee, as – by the design of the experiments – the value OPT is
upper-bounded by k.
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Figure 3: Running times (wall-clock) for various no. of vertices, edges, and cardinalities
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Figure 4: Solution quality for various number of vertices, edges, and cardinalities
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5
Implementation Details

In this section, we brieĘy present the details of our implementation of Bonsai and
its constituent subroutines. Our algorithms were implemented using Java 1.6. To
the best of our knowledge, our algorithm is the ĕrst ever practical implementation
of an constant-factor approximation algorithm for the KCT problem.
Our implementation of UnrootedGrowth essentially follows the ideas outlined in
[21] and [10]. e key data structure used during execution of UnrootedGrowth is
a collection of Min-Heaps, each of which corresponds to a component, i. e. a con-
nected set of nodes – either active (the cluster of nodes that continues to grow),
or passive (the cluster of nodes which have stopped growing). We implemented
the Min-Heaps as FibonacciHeaps, which are known to be superior in perfor-
mance [8].
Despite a highly optimized implementation of UnrootedGrowth, a naive implemen-
tation of Bonsai exhibits super-linear growth in execution time as we increase the
size of the graph – which is not surprising in itself since UnrootedGrowth which
we call poly-logarithmically many times, has complexity in O

(
n2 log(n)

)
. As a

result, we explored the potential of optimizing the number of probes (via both the
outer and the inner binary search) we need to explicitly perform, results of which
we present next:

5.1 Optimizing the Inner Binary Search

ekey to optimizing the number of probesmade in the inner binary-search lies in
keeping track of the best results found in earlier iterations of outer binary-search,
and using them to cut down the range of values to be considered as multiplication
parameters λ. In other words, aer the ĕrst complete execution of the HeavySub-
tree routine, we can improve the range of values [λ1, λ2] that are explored in its
subsequent executions. Consider an instance of the HeavySubtree routine for one
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of the choices, sayOPTi, of the outer binary search. Also, let the weights of the ĕnal
trees obtained for already probed choices of OPT be W0, W1, . . . , Wi−1, and cor-
responding values of λ be l0, l1, . . . , li−1. If we keep track of the Wi and li values,
we can tighten the range of values explored from both sides:

(i) Improving λ1. If the weight of the ĕnal tree found in an earlier iteration is
smaller than the value ofOPTi being used in the current execution of Heavy-
Subtree, then we know that the best λ we can hope to ĕnd presently cannot
be smaller. at is, if OPTi ≤ Wj for some 0 < j < i, then li (i. e., the ĕnal
value found by the current HeavySubtree instance) is strictly lower-bounded
by lj.

(ii) Improving λ2. In every iteration of HeavySubtree, we can continue to upper-
bound the value of λ2 by the best value lj found in earlier iteration, j, where
OPTi ≥Wj.

It should be noted that the inner search optimization presented above does not lead
to any loss in the quality of results found.

5.2 Early Termination of the Outer Binary Search

In the outer binary search, the goal is to keep improving the estimated OPT value
which then is passed as an input to the instance of HeavySubtree. Clearly, these es-
timates keep improving with each iteration, since we update them using the weight
of the ĕnal tree we obtain at each iteration. However, in practice we observed that
aer ĕrst few rounds of outer binary search, the weight of the ĕnal tree is already
very close to the tree we eventually ĕnd. us, it may be possible to terminate the
outer binary search early on, without introducing a signiĕcant error to the ĕnal so-
lution of Bonsai. Another way of looking at this is to assume that we are given with
a fairly weak ε value to begin with, which brings out another nice practical beneĕt
of Bonsai, namely, its ability to incrementally improve the result quality. is fea-
ture enables users, especially in interactive environments such as visual analytics
of graph data, to obtain initial coarse results very quickly and reĕne them if they
feel the need to.

5. Implementation Details 22



6
RelatedWork

e edge-weighted variant of the KCT problem, which is better known as the k-
MST problem, has attracted more attention in literature than its vertex-weighted
counterpart. In that setting, we are interested in the least-cost subtree spanning
k vertices of a graph with non-negative edge costs c : E → R≥0 and no vertex
weights. A large body of literature exists on constant-factor approximation algo-
rithms, the latest result being a 2-approximation devised byGarg [13]. All of theses
approaches rely on the primal-dual method.
Johnson et al. [21] propose a way to derive anO(1)-approximation algorithm for
the k-cardinality tree problem by reducing it to the k-MST problem:
As a ĕrst step, the vertex-weighted graph Gv is transformed into an edge-weighted
instance Ge: Every vertex v with weight wv is being replaced by a root vertex rv
connected to wv − 1 leaf nodes. e root is connected to each of the leaves via
a zero-cost edge. For every edge {u, v} ∈ Gv of the original graph, an edge
{ru, rv} with cost 1 is introduced between the respective root nodes. en, by
setting k to 2n ·OPT (OPT again denoting the weight of the optimal solution to
the KCT problem), we can run an existing k-MST algorithm based on the Unroot-
edGrowth subroutine on this new graph. is algorithm has pseudo-polynomial
running time, however by implicitly merging of the zero-cost edges we can obtain
a polynomial algorithm. e algorithm also contains the guessing step to obtain
the optimum weight OPT. is transformation is approximation-guarantee pre-
serving. By using the current-best approximation algorithm for k-MST, which is
the 2-approximation devised by Garg [13] we thus obtain a 2-approximation algo-
rithm for our original KCT problem. However, this algorithm will entail a much
higher execution time, as the UnrootedGrowth subroutine must be executed poly-
nomial many times whereas in our algorithmwe execute this subroutine only poly-
logarithmic many times.
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7
Conclusions

In this report we have provided a practical constant-factor approximation algo-
rithm for the KCT problem, named Bonsai. Our algorithmworks by reducing KCT
to certain instances of the related PCST problem. We have exploited an existing
approximation algorithm for this related setting and derived an algorithm with
approximation guarantee of 1

5(1+ε)
for the KCT problem. Furthermore, we pro-

posed various optimizations to our algorithm that lead to an implementation that
is very Ęexible and runs reasonably fast on the problem instances considered. Us-
ing a mixture of synthetic and real-world graphs we were able to demonstrate the
practical viability of our approach. e Bonsai algorithm can return a ĕrst can-
didate solution aer the ĕrst execution of the PCST subroutine. We have shown
empirically that the quality of this ĕrst solution is in all considered cases close to
the optimum.
As we do not make any assumption on the distribution of the node weights, our
algorithm is suitable for a variety of application scenarios. Possibilities include
practical applications such as identifying themost-deviant parts of protein-protein
interaction networks for designing biomedical trials, as well as others like using
weights based on the structural properties of the graph (like node degrees or Page-
Rank values) or interestingness-scores (like activity measures for articles in the
Wikipedia graph to extract an active topical core). Interesting future work en-
compasses running our algorithm for these choices of weights and on graphs from
various data sources. Other possible future directions include solving the KCT
problem in the presence of both edge and node weights.
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