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A main scientific output of the LISA Pathfinder mission is to provide a noise model that can be

extended to the future gravitational wave observatory, LISA. The success of the mission depends thus

upon a deep understanding of the instrument, especially the ability to correctly determine the parameters

of the underlying noise model. In this work we estimate the parameters of a simplified model of the LISA

Technology Package instrument. We describe the LISA Technology Package by means of a closed-loop

model that is used to generate the data, both injected signals and noise. Then, parameters are estimated

using a Bayesian framework, and it is shown that this method reaches the optimal attainable error, the

Cramér-Rao bound. We also address an important issue for the mission: how to efficiently combine the

results of different experiments to obtain a unique set of parameters describing the instrument.

DOI: 10.1103/PhysRevD.82.122002 PACS numbers: 04.80.Nn

I. INTRODUCTION

LISA Pathfinder [1] is an ESA mission, with some
NASA contributions, that aims at testing key technologies
for the future space gravitational wave observatory, LISA
[2]. The main aim is to demonstrate the ability to put a test

mass into free-fall at a level of 3� 10�14 ms�2=
ffiffiffiffiffiffi
Hz

p
at

1 mHz. The LISA Technology Package (LTP) is the main
instrument on board the LISA Pathfinder. It comprises two
test masses enclosed in inertial sensors which are in turn
housed inside individual vacuum tanks, composing the so-
called Gravitational Reference Sensor [3]. The two tanks
are then mounted to a support structure which also holds an
optical bench between the tanks. The optical bench and the
associated interferometry are part of the Optical Metrology
System [4]. In order to reach the goal stated above, the full
LTP must be characterized and optimized. This will in-
volve developing a full parametric noise model of the
instrument, which will be improved over the course of
the mission.

The LISA Pathfinder mission comprises a series of ex-
periments. Many of the experiments aim to reduce the
noise in the system so as to produce the quietest residual
acceleration measurement possible. Other experiments
will aim to characterize the instrument. This typically
involves determining the various parameters that go into
the physical model of the instrument. Clearly, a good
model is needed to be able to target and reduce particular
noise sources, whereas reducing the various noise sources
leads to a more sensitive instrument. Various experiments
will be repeated under different conditions, and as the noise
is reduced, we would expect that the determination of the
physical parameters will become more and more accurate.

One essential aspect of this multiple-experiment mission is
the ability to include the results from analyzing the pre-
vious experiments in further experiments, and, in particu-
lar, it will be necessary to combine the various experiments
to gain the best knowledge about the particular physical
parameters. The analysis procedures and software need
therefore to remain flexible in order to react to the results
of the experiments as they are performed. This paper
presents a Bayesian analysis for determining particular
physical parameters of the system. Using a Bayesian
framework leads to a natural way of combining a series
of experiments. The result of one analysis becomes prior
information in subsequent analyses. The analysis is pre-
sented for a reduced set of physical parameters in the
context of the Mock Data Challenges (MDC) [5] that are
being carried out during the development of the data
analysis procedures for the mission. In MDC1 [6] the focus
was on developing a simple model of the system, together
with establishing routines for calibrating the measured test
mass displacements back to equivalent residual external
test mass accelerations. In MDC2, the focus shifts to
parameter estimation. The analysis and procedures pre-
sented in this paper represent one of the methods being
developed for the mission.

II. THE SECOND LTP MOCK DATA CHALLENGE

The aim of the second MDC was to develop and test
reliable methods to accurately estimate the parameters of
the LTP noise model during flight operations. In order to
focus on methods and not on model complexity, it was
decided to keep a very similar model as the one analyzed
during the first MDC. The basic difference regarding the
previous challenge is that now five parameters are consid-
ered as degrees-of-freedom of the system, which need to be*miquel.nofrarias@aei.mpg.de
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determined by stimulating the system using injected sig-
nals. It is worth recalling that the first MDC did not include
any signal injection in the data, since it was designed as a
test of the calibration of displacement noise to acceleration
noise, and therefore only a noise measurement (signal free)
was simulated. The current challenge is therefore a natural
extension to the first one.

It is important to notice that, due to the nature of the
LISA Pathfinder mission, our description of the system
necessarily needs to deal with the closed-loop dynamics
of the spacecraft and test masses together.

The description that we show in Sec. II A is therefore a
closed-loop system where we take into account the feed-
back between different components and show where pa-
rameters and noise contributions enter in the nonlinear
model that is described in terms of transfer functions in
the frequency domain. We want to recall that this approach
differs from the one used to model LISA to the date. The
approaches used to model LISA [7–9] were mainly focused
on investigating LISA’s overall noise budget and its re-
sponse to astrophysical gravitational wave signals. The
main concern is, in that case, the suppression of frequency
noise due to the unequal arms, while internal technical
details are kept as simple as possible; e.g. the laser optical
path length noise is modeled as white Gaussian noise,
mainly accounting for shot noise and beam-pointing noise.
However, the performance of our instruments show a typi-
cal f�p (p ’ 1) dependence in the power spectrum below
1 mHz [4,10] that will contribute to the low frequency
performance of LISA. LTP is designed to study in detail
that particular region of the spectra and therefore our
model needs to describe these low-frequency contributions
in more detail. The noise models and the parameters used

in our approach are described in Sec. II B. The description
provided in this paper will complement the one already
existing within the LISA community and will facilitate the
interaction between both communities to a common goal,
which is a realistic understanding of the LISA instrument.
In terms of implementation, it is worth mentioning that

the current challenge is completely implemented as
LTPDA tools [5], which means that any user of this tool
has the means available to produce LTP-like data (as
described in the following section) by executing a rela-
tively simple MATLAB [11] script.

A. Dynamical model

When compared with other space missions, the LTP is a
very flexible instrument in terms of the possible opera-
tional scenarios. It can be configured to use different
combinations of the available sensors on board, either
optical or capacitive, with the aim of performing different
geodesic measurements, or even to work as an accelerom-
eter. The aim of the second MDC was not to cover all of
these possibilities but to analyze the instrument behavior
for a fixed operating mode: the main science mode—
described as the M3 mode in [12]. Moreover, this control
scheme is reduced in this analysis to the one-dimensional
case in order to simplify the model and focus on the
analysis. In this simplified model, the x position of both
test masses is controlled by means of the optical readouts.
A first interferometer measures the relative distance be-
tween test mass 1 and the spacecraft, x1. This is a relatively
noisy measurement since the noise of the spacecraft’s
micro-Newton thrusters appears directly in the measure-
ment. A second interferometer measures the relative dis-
tance between both free-falling test masses. This channel,

FIG. 1. The LTP MDC2 model. Left: Simplified scheme of the LTP instrument. Only two out of the four heterodyne interferometers
are represented here: the one measuring spacecraft to first test mass distance, ox1, and the one measuring test mass to test mass
distance, ox�. See text for a description of terms appearing in the picture. Right: The previous is described as a control loop: the boxes
describe the interferometer (IFO), controllers and dynamics of the test masses. The circles represent noise contributions, diamonds are
signal injection points and the triangles denote cross-couplings between the first (ox1) and second channel (ox�).
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that we call x� in the rest of this paper, will be the one
giving an unprecedented quiet measurement of the differ-
ential acceleration (or displacement) between two test
masses, since the contribution of the thruster noise effec-
tively cancels out [13].

The model of the LTP dynamics control loop is shown in
Fig. 1. The right panel of this figure shows two control
loops for the two measurement channels that we just
described: x1 and x�. This schematic representation of
the closed-loop system can be analytically expressed in
terms of the following set of equations [14]:

D � ~q ¼ ~g; ~g ¼ �C � ð ~oþ ~oiÞ � ~gn;

~o ¼ S � ~qþ ~on;
(1)

where D is the dynamical matrix, C is the controller, and S
stands for the sensing matrix (the interferometer in our
case), i.e., the matrix translating the position of a test mass,
~q, into the interferometer readout, ~o. Subindex n stands for
noise quantities, either sensing noise ( ~on) or force noise
( ~gn) and subindex i stands for the injected signals ( ~oi). All
of these are 2-dimensional vectors with components refer-
ring to the x1 and x� channels, respectively,

~q ¼ x1
x�

� �
; ~o ¼ ox1

ox�

� �
; ~oi ¼ oi1

oi�

� �
;

~on ¼ on1
on�

� �
; ~gn ¼ gn1 � gN

gn2 � gn1

� �
:

(2)

The last equation shows how any noisy force applied to the
spacecraft (gN) is only measured in the first channel (if
there were no cross terms). On the other hand, the differ-
ential channel is sensitive to the difference of force noise
applied to the first and the second test mass, g1 and g2
respectively.

The matrices read as

D ¼ s2 þ!2
1 0

!2
2 �!2

1 s2 þ!2
2

 !
;

C ¼ GdfHdf 0

0 GsusHsus

 !
;

S ¼ 1 0

�21 1

 !
;

(3)

where !1 and !2 are the stiffness—the steady force gra-
dient across the test mass housing per unit mass [13]—
coupling the motion of each test mass to the motion of the
spacecraft; Gdf and Gsus are constant factors acting as
calibration factors of the controller, Hdf and Hsus. These
are the control laws of the loop and will be considered
known transfer functions in the following; �21 is the inter-
ferometer cross-coupling, a small term accounting for the
imperfection of the interferometer that will produce a
spurious signal in the differential channel when only the
first test mass moves. The interferometer has no coupling

going from o� to o1 and therefore we set �12 ¼ 0 in the
sensing matrix. The previous are the five parameters that
we will consider in the following discussion, the ones
characterizing the dynamics of the instrument.
The leading diagonal terms in Eq. (3) describe the

dynamics of each channel (for example, s2 þ!2
1 is

Newton’s law in the Laplace domain for the first test
mass, with!1 being the test mass stiffness), and the control
law (for example, GdfHdf stands for the drag-free transfer
function controller on the first test mass, multiplied by a
constant calibration factor, Gdf). The off-diagonal terms
are the cross-couplings between the two channels appear-
ing as triangles in Fig. 1. From Eq. (3) we can compute the
response of the interferometer once all the dynamical and
noise parameters are given as

~o ¼ ðD � S�1 þCÞ�1ð�C ~oi þ ~gn þD � S�1 ~onÞ: (4)

This equation describes the interferometer output and will
be the variable that we will use to evaluate the interfer-
ometer response. It may be useful to express the nominal
output as a signal and two noise terms:

~o ¼ Gsð�Þ ~oi þGnoð�Þ ~on þGngð�Þ ~gn; (5)

where � ¼ fGdf ; Gdf ; !
2
1; !

2
2; �21g are the unknown model

parameters we are interested in determining.
Our model can be thought of as a first term which filters

the input signal ( ~oi) and two further terms which filter the
noise. It must be stated that, since our final aim is to
characterize the noise model, the noise terms also contain
information about our parameters. But, since we will be
working in a high signal-to-noise ratio (SNR) regime, we
will not consider this dependence in our analysis and we
will further simplify the model with the approximations
Gnoð!;�Þ � Gnoð!Þ and Gngð!;�Þ � Gngð!Þ. This al-
lows us to rewrite Eq. (5) as

~o ¼ Gsð�Þ ~oi þ ~n; (6)

where ~n now represents the overall noise of the instrument.
The first term then contains all the model dependence that
we will be able to test with our experiments. The transfer
function in this formulation now has the following compo-
nents:

G11
s ¼ GdfHdfð!Þ

!2
1 �!2 þGdfHdfð!Þ ; (7)

G12
s ¼ 0; (8)

G21
s ¼ GdfHdfð!2

2 �!2
1 þ �21ð!2 �!2

2ÞÞ
ð!2

1 �!2 þGdfHdfÞð!2
2 �!2 þGlfsHlfsÞ

; (9)
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G22
s ¼ GlfsHlfsð!Þ

!2
2 �!2 þGlfsHlfsð!Þ ; (10)

where we can see that by injecting and measuring in the
same channel (i.e., testing the diagonal terms), we are able
to determine either fGdf ; !

2
1g or fGsus; !

2
2g, and it is through

the nondiagonal (cross-coupling) term that we can deter-
mine the �21 parameter and the difference between stiff-
nesses, !2

2 �!2
1. The experiments in this MDC were

designed to test these possible combinations of injected
signals, as described in the following.

B. Model parameters

Our model is defined by a total of 30 parameters, which
can be divided into two groups: noise parameters and
dynamical parameters. The first ones are those ones used
to set the noise shapes of the individual noise contribu-
tions—force noise ~gn and interferometer read-out noise ~on
in Eq. (5)—that will set the final instrument noise level.
Each contribution is described as

Sð!Þ ¼ p2
1

�
1þ 1

ð !
2�p2

Þp3
þ 1

ð !
2�p4

Þp5

�
1=2

; (11)

and therefore five parameters are required for each of them,
for a total of 25 to describe all noise contributions. We need
to add to these the five parameters that characterize the
joint dynamical behavior of the spacecraft and test masses.
Only the latter will be the parameters that we will be
interested in recovering from the data in this challenge.
As stated above these are stiffness for each test mass
ð!2

1; !
2
2Þ, calibration for each controller ðGdf ; GsusÞ and

interferometer cross-coupling (�21).
Table I contains all numerical values used in the second

Mock Data Challenge, and therefore fully characterizes the
model. Although the model allows for different noise
levels for x1 and x� interferometer noise, we did not use

this degree of freedom and set both interferometers to
behave equally. The same applies to the force noise acting
on both test masses.

C. Experiments

Three experiments were proposed for MDC2. These
were originally motivated by first studies about the sensi-
tivity attainable by injected signals during the mission [14]
and correspond to a frequency sweep in the measurement
bandwidth at four different frequencies. Our experiments
in MDC2 consider only the possibility of injected signals
as simulated interferometric signals, the so-called inter-
ferometric bias, which we have labeled in Eq. (5) and in
Fig. 1 as ~oi. The LISA Pathfinder will allow other kinds of
injected signals, for instance, forces applied to the space-
craft via the thrusters or forces directly applied to the test
masses via the capacitive sensors but, as stated above, it is
not the aim of this work to explore all capabilities of the
mission. In that sense, extending the analysis to include all
possible injection signals is one of the aims of the forth-
coming LISA Pathfinder MDCs. The three proposed ex-
periments for this challenge were the following:
(i) Experiment 1 Two signals are injected independently

into the first and second channel. Each signal is a
sequence of sinusoids with different amplitudes, fre-
quencies and duration, all of them known to the data
analysis team. This experiment is the richer in terms
of frequencies injected to the system, and the one
with best expected parameter estimates, as we show
in the following section.

(ii) Experiment 2 A signal is injected in the first channel
and both test mass stiffnesses are set to the same
value, different than the value for the two other
experiments. This configuration represents the
matched stiffness configuration in the real LISA

FIG. 2. Amplitude spectral density of a noise realization of the
LTP MDC2 noise model compared to analytical curves. We
compare the noise of the first channel (Sx1), the second channel
(Sx�) and the absolute value of the cross-spectra between both
(Sx1:x�).

TABLE I. Parameters for the LTP MDC2 model.

DYNAMICAL PARAMETERS

Parameter Value

Gdf 0.8

Gsus 1.15

!2
1 �11� 10�7

!2
2 �22� 10�7

�21 1:35� 10�4

NOISE PARAMETERS

Parameter on1=on� gn1=gn2 gN

p1 3:6� 10�12 7� 10�15 2:5� 10�10

p2 10� 10�3 5� 10�3 12� 10�3

p3 4.2 3 3.8

p4 1:8� 10�3 4� 10�4 1� 10�3

p5 8 9 8
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Pathfinder satellite. This state can be achieved by
commanding an equal bias voltage on the electrodes
of the inertial sensors at a level which dominates all
other stiffness effects thus resulting in an equal
coupling between the two test masses and the space-
craft. This scheme is particularly useful since it
would ideally decouple any external force from
the differential measurement. However, in our sim-
plified model there is already a second cross-term,
the interferometer cross-coupling, �21, mixing both
channels—see Eq. (9). Being the only remaining
cross-coupling in this experiment, this parameter

should therefore be obtained with the greatest accu-
racy when analyzing this data set.

(iii) Experiment 3 The last experiment again applies
only one signal to the first channel but without
matching the stiffness for both test masses. This
experiment tests the ability to recover the same
parameters that we determine in experiment 1,
but by only injecting signals into the first channel.

The data set in MDC2 also included a run without any
injected signal from where the instrument performance
could be evaluated. A typical noise realization for this
model is shown in Fig. 2 whereas the three MDC2 experi-

FIG. 3. The three MDC2 experiments. From left to right: scheme of injected signal, input signal and output signal. From top to
bottom: experiment 1, 2 and 3. Only x12 output is shown for experiments 2 and 3, the response of the first channel to the injected signal
is similar to the one shown in experiment 1.
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ments are represented in Fig. 3, all of them generated using
LTPDA methods. The concept behind the data generation
process is to translate the transfer functions appearing in
Eq. (5) into digital filters, and then use those filters to
translate the input signal into the measured output. Since
the measured data is a combination of signal and noise, the
data generation procedure is consequently split into two
branches that are added at the end. The generation of the
signal part is straightforward since it only requires the
filtering of a deterministic signal. In contrast, the noise
part requires the use of digital filters to color white noise
and to do it in such a way that the noise cross-correlation
properties between the two channels are correctly repro-
duced. A detailed description of this process can be found
in [15].

III. DATA ANALYSIS

A. Bayesian estimation

We would now like to infer unknown parameters from
the simulated data. To this end we need to derive the
posterior probability distribution of the parameters, that
is, the conditional probability distribution of the parame-
ters for the given data at hand. The posterior distribution
expresses the information about the parameters by assign-
ing probabilities across parameter space, and by that allows
us to derive the most likely values and their uncertainties
[16,17]. The posterior distribution is given by Bayes’ theo-
rem, and it depends on the data as well as any other prior
information I:

P ð�jD; IÞ ¼ Pð�jIÞ � PðDj�; IÞ
PðDjIÞ / Pð�jIÞ � PðDj�; IÞ:

(12)

The prior probability distribution Pð�jIÞ expresses infor-
mation we may have about the parameter values (in addi-
tion to the data D), while the likelihood function PðDj�; IÞ
describes the probabilistic relationship between parameters
and the (noisy) measurements. The evidence PðDjIÞ is
usually not of concern for parameter estimation purposes
and constitutes a normalizing constant here. In this work
we will assume uniform prior distributions for all parame-
ters, i.e., the prior density Pð�jIÞ is constant across the
allowed region.

Given the simplified model in Eq. (6) we start by assum-
ing that the noise term ~n is Gaussian. The noise in each of
the two output channels is characterized by the (known)
one-sided power spectral density functions Sx1ðfÞ and
Sx�ðfÞ, respectively. In addition, the noise is assumed to
be correlated between the two outputs, which is expressed
through the cross-spectral density Sx1:x�ðfÞ. Because of the
colored noise it will be convenient to express the likelihood
function in terms of the Fourier transformed data. The
likelihood function then is given by

pðDj�; IÞ ¼ ½ð2�ÞN=2 det���1=2

� exp

�
� 1

2
ð ~o�Gsð�Þ ~oiÞT

���1ð ~o�Gsð�Þ ~oiÞ
�
; (13)

so that (up to a multiplicative factor) the logarithmic like-
lihood is proportional to the quadratic form

logðpðDj�; IÞÞ / � 1

2
ð ~o�Gsð�Þ ~oiÞT��1ð ~o�Gsð�Þ ~oiÞ;

(14)

where � is the covariance matrix of the (Fourier domain)
noise term ~n. The covariance matrix entries are then de-
fined by the spectral and cross-spectral density values
corresponding to the Fourier frequencies. Most of �’s
entries are zero (since only the terms corresponding to
the same Fourier frequency are correlated) and the qua-
dratic form may be rearranged so that � is of a block-
diagonal form and the likelihood expression simplifies to a
sum over the blocks of correlated terms at each frequency
bin:

logðpðDj�; IÞÞ / � 1

2

X
j

ReðrjT��1
j rjÞ; (15)

where j ¼ 0; . . . ; N=2 is an index over the Fourier frequen-
cies fj, and rj and �j denote the two (complex-valued)

residual terms and corresponding covariance matrix at
frequency fj:

rj ¼
½ox1 � ðG11ð�Þoi1 þG12ð�Þoi�Þ�ðfjÞ
½ox� � ðG21ð�Þoi1 þG22ð�Þoi�Þ�ðfjÞ

 !
;

�j ¼ N

4�t

Sx1ðfjÞ Sx1:x�ðfjÞ�
Sx1:x�ðfjÞ Sx�ðfjÞ

 !
:

(16)

B. Optimal parameter estimation errors

In order to get an idea of what kind of information the
simulated experiments will provide, we will use the Fisher
information formalism to estimate the measurement errors
to be expected from the different experimental settings.
The Fisher information and the corresponding Cramér-Rao
bound (CRB) provide an estimate of the measurement
uncertainties to be expected in the limit of a large signal-
to-noise ratio (SNR) [18]. For an unbiased estimate of �,
the CRB can be expressed as

cov ð�Þ � J�1ð�Þ; (17)

where Jð�Þ is the Fisher information matrix. For our
particular case it will shown to be useful to use the
Cramér-Rao bound expressed as [19],
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½Jð�Þ�lm ¼ X
j;k

�
1

2�

Z 1

�1
d!

1

Sjkð!;�Þ
@ojð!;�Þ

@�l

� @okð!;�Þ
@�m

þ T

4�

Z 1

�1
d!

1

S2jkð!;�Þ

� @Sjkð!;�Þ
@�l

@Sjkð!;�Þ
@�m

�
(18)

where we sum over the two channels; ox1 and ox� being the
two components of the nominal output, Sjkð!;�Þ the

components of the cross-spectrum matrix and T the inte-
gration time. We are considering here the parametric de-
pendence of the noise terms—Eq. (5). Although we will
drop it in the next step, we want to explicitly state that term
since it is usually not considered in the Fisher matrix
analysis among the gravitational wave community,
although there are exceptions, for instance when dealing
with the cosmic gravitational wave background [20]. In our
case, it may turn out to be relevant in future analysis since
the noise model characterization is the final purpose of the
LTP mock data challenges. However, for this first applica-
tion, and to avoid cumbersome equations, we decided not
to include those terms considering that they will not in-
troduce any relevant information in the high SNR regime
where we are working. Switching therefore to Eq. (6) and
substituting into Eq. (18) leads to

½Jð�Þ�lm ¼ X
j;k

oi;jo
�
i;k

2�

Z 1

�1
d!

1

Sjkð!Þ
@Gjkð�Þ

@�l

@Gjkð�Þ
@�m

;

(19)

where now oi;1 and oi;� are the two components of the

input signal and Gjkð�Þ the components of the transfer

function. We will use Eq. (19) in the following to evaluate
the CRB in each experiment. It is important to keep in
mind that the three experiments analyzed here contain
different configurations of the instrument, meaning that
both the transfer function elements and the signals are
changing in each experiment.

Table II summarizes the optimal error estimates that the
data analysis should return. The last column refers to the
achievable standard deviation in the difference between
squared stiffnesses, �!2 ¼ !2

2 �!2
1. This will be only

indirectly estimated by the analysis, but we added it to
the table, first, because the cross-coupling between both
channels depends directly on this difference, but also be-
cause the error in the estimation of the stiffnesses’ differ-
ence depends on the nondiagonal terms of the covariance
matrix. This quantity adds then some more information not
contained in the other parameters, which are extracted
purely from the diagonal terms. The��! error is computed
as

�2
�! ¼ �2

!1
þ �2

!2
� 2�!1;!2

; (20)

where �2
!1

and �2
!1

are the variances of the stiffness

squared of test mass 1 and test mass 2, and �!1;!2
is the

covariance term containing the correlation between both
stiffnesses. A remarkable result from this analysis is that a
single experiment injecting a signal in both channels (ex-
periment 1) is enough to determine all parameters with
high precision. In fact, this experiment is preferable to the
other experiments which only inject signals in the x1
channel. Only the matched stiffness experiment (experi-
ment 2) gives a slightly better estimation of the interfer-

TABLE II. Crámer-Rao bound. Values between parenthesis expressed in relative parts per
thousand (w).

Parameter Exp. 1 Exp. 2 Exp. 3

�Gdf
2� 10�5 (0.02) 5� 10�5 (0.06) 2� 10�4 (0.2)

�Gsus
3� 10�7 (0.0002) 3� 10�3 (3) 3� 10�4 (0.3)

�!1
6� 10�10 (0.5) 3� 10�6 (1000) 9� 10�8 (80)

�!2
3� 10�10 (0.1) 3� 10�6 (1000) 9� 10�8 (40)

��21
6� 10�8 (0.5) 4� 10�8 (0.2) 1� 10�7 (0.9)

��! 5� 10�10 (0.4) 6� 10�10 (� ) 3� 10�10 (0.3)

TABLE III. Correlation matrices for MDC2 experiments.

Gdf Gsus !2
1 !2

2 �21

Experiment 1

Gdf 1 0.0003 �0:1 �0:001 �0:2
Gsus 0.0003 1 �0:3 �0:5 �0:001
!2

1 �0:1 �0:3 1 0.5 0.5

!2
2 �0:001 �0:5 0.5 1 0.005

�21 �0:2 �0:001 0.5 0.005 1

Experiment 2

Gdf 1 0.4 �0:6 �0:6 0.2

Gsus 0.4 1 �0:7 �0:7 0.3

!2
1 �0:6 �0:7 1 � 1 �0:4

!2
2 �0:6 �0:7 � 1 1 �0:4

�21 0.2 0.3 �0:4 �0:4 1

Experiment 3

Gdf 1 0.03 �0:02 �0:02 0.04

Gsus 0.03 1 �0:8 �0:8 0.3

!2
1 �0:02 �0:8 1 � 1 �0:09

!2
2 �0:02 �0:8 � 1 1 �0:09

�21 0.04 0.3 �0:09 �0:09 1
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ometer cross-coupling. Precision in this parameter is
gained however at the expenses of increasing the uncer-
tainty in the determination of the absolute value of the
stiffnesses, reaching in this case 100%. In principle, if we
take into account our simplified model, experiment 3
would be redundant, not adding more information (apart
from statistical averaging) than what we get from experi-
ments 1 and 2.

Table III gives the expected correlation matrices of the
parameters for the three experiments. These results com-
plement the ones in Table II, since the diagonal terms of the
latter correspond to the values reported in the former.
Comparison between correlation matrices shows how ex-
periment 1 is disentangling the different parameters’ de-
pendences more efficiently. In particular, it is the only
experiment which is able to differentiate the contribution
of the two stiffnesses. The reason for that being that it is the
only experiment with a signal injected in the differential
channel.

C. Combining the results of experiments

1. The information propagation problem

As opposed to the usual application of Bayesian parame-
ter estimation in LISA, where a single set of data is used to
determine the parameters of a multiplicity of systems, i.e.,
astrophysical sources, in our case we use different sets of
data (experiments) to characterize a unique system, the
LTP experiment. Thus, once we have obtained the parame-
ter estimates for each experiment we still need to go further
to achieve our final goal. Since each experiment can be
adding valuable, but partial, information about the instru-
ment, we need to find a scheme that allows us to include all
the information in a final set of parameters.

The efficient combination of results is also an important
problem to solve in terms of mission operations. It should
be noted that the LISA Pathfinder mission will be a space
laboratory with approximately 100 channels being
sampled and more than 50 parameters defining its perform-
ance. It will therefore be crucial to combine the results
from one experiment with the ones following. For instance,
we may be interested in using the determination of the
stiffness to calibrate the thrusters in a forthcoming experi-
ment. Given the limited mission time and the high numbers
of experiments to be performed, the need for a clear
combination scheme is evident. We explore in the follow-
ing how to take advantage of the posterior distribution to
that end.

2. The general case

a. Identical parameter sets

First consider the case where the parameter sets are
identical for the data sets to be combined (as e.g. in experi-
ments 1 and 3 above). Suppose we have a parameter vector
� and two data sets D1 and D2. Similar to the general case

in Eq. (12), the posterior distribution Pð�jD1; D2; IÞ is then
given by

where the same expression may be motivated by either
taking the likelihood to be the product of the individual
experiments’ likelihoods or by analyzing the experiments
one after the other and using the posterior from the first
experiment as the prior for the second experiment (21).

b. Differing parameter sets

In order to deal with differing parameter sets that only
partially overlap, one needs to consider the union of all the
unknowns as the set of parameters. Combining data from
different experiments then works exactly as in Eq. (21),
only that the parameter vector � is now the extended
parameter set. The likelihood functions are exactly the
same as in the individual-experiment case, with the only
difference that, as functions of the extended parameter set,
they do not depend on some of the parameters.
Consider the case where two data setsD1 andD2 depend

on parameter #1, while the parameters #2 and #3 are
specific for D1 and D2, respectively. Assuming the error
terms for both experiments to be independent, the joint
likelihood function then is the product

PðD1; D2j#1; #2; #3; IÞ
¼ PðD1j#1; #2; #3; IÞ � PðD2j#1; #2; #3; IÞ;
¼ PðD1j#1; #2; IÞ � PðD2j#1; #3; IÞ: (22)

In order to simplify things, in the following we will in-
troduce the assumption that the conditional prior
Pð#2j#1; #3; IÞ is independent of #3, i.e.,

P ð#2j#1; #3; IÞ ¼ Pð#2j#1; IÞ (23)

(since #2 and #3 were the parameters which did not jointly
affect both experiments, this may be easily satisfied,
for example, if Pð#1; #2; #3jIÞ ¼ Pð#1jIÞ � Pð#2jIÞ �
Pð#3jIÞ). When considering additional dataD2, the change
in the (marginal) posterior distribution of the two parame-
ters #1 and #2 then is given by

P ð#1; #2jD1; D2; IÞ ¼ Pð#1; #2jD1; IÞ � Pð#1jD2; IÞ
Pð#1jIÞ ;

(24)

so that in order to ‘‘update’’ the posterior distribution of #1

and #2 using the data D2 that depends on the additional
parameter #3, we only need to consider the marginal prior
and posterior distributions of the common parameter #1,
Pð#1jIÞ and Pð#1jD2; IÞ. We can see that when updating the
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posterior by another posterior (24), the (marginal) prior
needs to be cancelled out, otherwise it would enter twice
into the resulting posterior. Since by combining the poste-
riors we will only learn about the common parameter #1

here, it will be easier to also integrate out #2 and only
consider the (marginal) distributions involving #1, which
then leads to

P ð#1jD1; D2; IÞ ¼ Pð#1jD1; IÞ � Pð#1jD2; IÞ
Pð#1jIÞ : (25)

The higher-dimensional case works completely analo-
gously, just by considering the parameters #1, #2, #3 to
be subvectors.

3. The Gaussian approximation

As we will see below, the derived posterior distributions
often turn out to be well approximated by a multivariate
Gaussian distribution with mean � and covariance matrix
�:

pðxjDÞ � pðx;�;�Þ

¼ 1

ð2�ÞNj�j1=2 exp

�
� 1

2
ðx��ÞT��1ðx��Þ

�
:

(26)

If the posterior distributions are expressed as Gaussians, it
is particularly easy to analytically propagate prior and
posterior information as described in the previous subsec-
tion; in the following we will therefore apply these results
to the Gaussian case. As a further simplification, we will
also assume all prior distributions to be uniform.

Identical parameter sets In order to combine the results
coming from two experiments D1 and D2, we will need to
combine their two posterior distributions as in Eq. (21).
The results from experiments D1 and D2 will be summa-
rized by parameters’ posterior means and covariances
f�1;�1g and f�2;�2g, respectively. Assuming uniform
priors, we can now combine both as

pðxjD1; D2Þ ¼ pðxjD1Þ � pðxjD2Þ
¼ pðx;�1;�1Þ � pðx;�2;�2Þ
¼ pðx;�c;�cÞ; (27)

i.e., the product of posterior densities again is Gaussian
with mean �c and covariance �c. The parameters of the
combined posterior may then be derived using the follow-
ing relationship

ðx� uÞTU�1ðx� uÞ þ ðx� vÞTV�1ðx� vÞ;
¼ ðx� wÞTW�1ðx� wÞ; (28)

where

w ¼ W�1½Uuþ Vv�; W ¼ Uþ V; (29)

so that the new mean and covariance turn out as

��1
c ¼ ��1

1 þ��1
2 (30)

�c ¼ �c½��1
1 �1 þ��1

2 �2� (31)

[16]. The same argument is easily extended to an arbitrary
number N of experiments as

��1
N ¼ XN

i¼1

��1
i (32)

�N ¼ �N

XN
i¼1

��1
i �i: (33)

Differing parameter sets Now suppose we have results
of two experiments in which the parameter sets were not
quite identical, as in the previous Sec. III C 2 b. One may
now either directly derive estimates of the marginal distri-
bution (i.e., their means and covariances) and use those to
combine the marginal posteriors as in Eq. (25) and in the
previous section. Otherwise, if given only the joint distri-
butions (means and covariances) of the differing (but in-
tersecting) parameter sets, these may also be marginalized
analytically. For a Gaussian distribution the marginal dis-
tribution of a subset of the variables is simply given by the
corresponding subset of mean and covariance parameters,
i.e., by dropping the rows and columns corresponding to
the variables that are integrated out.

D. Implementation

Our implementation follows a four-step procedure to
analyze each experiment, all of them implemented as
LTPDA methods. The first step is to Fourier transform
the data. The noise’s power spectral density is estimated
using the Welch method [21] and applying a Blackman-
Harris window. We can then compute the log-likelihood
(13) and therefore find the maximum of the posterior
density function using a (Nelder-Mead) simplex search
algorithm [22]. Since with our strong signal injections
the likelihood surface apparently does not tend to exhibit
many secondary maxima, this step is usually sufficient to
determine the parameters to good accuracy and it is also
more efficient than waiting for the Metropolis sampler to
converge. However, if the likelihood surface shows sec-
ondary maxima, this method may lead to an erroneous
result. Next, the posterior covariance among parameters
according to input signals, noise and the relevant transfer
functions is estimated by numerically evaluating the Fisher
information matrix at the maximum determined in the
previous optimization step. And finally, we can integrate
the posterior using a Markov Chain Monte Carlo (MCMC)
approach. We use a Metropolis algorithm [16,23] that will
generate random samples from the parameters’ (five-
dimensional) posterior distribution. New proposed samples
for the distribution are drawn from a multivariate Gaussian
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FIG. 4. Histograms of the MCMC samples illustrating the individual parameters’ marginal posterior probability distributions as
computed with the last 3500 samples of the chain. All histograms are plotted with the same y axis range, up to 250 counts. Black
vertical lines illustrate the true parameter values. Parameters Gdf , Gsus and �21 are dimensionless; dimensions for stiffness parameters
are ½!2

1� ¼ ½!2
2� ¼ s�2.
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whose covariance matrix is the one previously obtained
from the Fisher matrix evaluation.

In order to enhance convergence of the MCMC sampler,
we apply tempering to the posterior density function,
which is supposed to make it more tractable and keep the
algorithm from getting stuck in local optima. In the
MCMC context, tempering is commonly implemented by
applying an exponent to the probability density to be
sampled from, i.e., instead of using the posterior

pð�jD; IÞ, the tempered posterior pð�jD; IÞ1=T is consid-
ered, where T � 1 is the ‘‘temperature’’ [23,24]. The 1

T

exponent smoothens the targeted density function, which
generally allows the sampler to move more quickly and
widely through parameter space and to traverse between
local modes more easily. The following expression de-
scribes the temperature profile used in our implementation
[25],

T ¼
8><
>:
10�ð1�ðTh=TcÞ 1 � i � Th

10�ð1�ði=TcÞ Th � i � Tc

1 i � Tc;

(34)

with i indexing the samples of the Metropolis chain. We
initially applied a constant temperature (with � ¼ 3) for
the first 1000 iterations (Th ¼ 1000), which was then ex-
ponentially annealed down in the following 1000 iterations
(Tc ¼ 2000), after which the algorithm was properly gen-
erating samples from the actual posterior distribution. To

reduce the time required during the search phase we occa-
sionally rescale the covariance matrix of the proposal
distribution to explore a wider region of the parameter
space. Also, as proposed in [16,25], we correct the standard

deviation of the proposal distribution with a factor of d�1=2,
where d is the parameter space dimension.

E. Results and discussion

Figure 4 illustrates the marginal posterior probability
density functions of the individual parameters based on
the different experiments. Parameter estimates are shown
in Table IV, together with a comparison of the estimated
error and the Cramér-Rao bounds, as derived in Sec. III B.
The parameters are recovered successfully with estimation
uncertainties roughly following the corresponding CRB, as
shown in the last column of Table IV. The worse estimate
appears to be a 	2� deviation on the Gdf parameter in
experiment 2. This result is still consistent with the true
value used to generate the data. However, to further
investigate this feature we generated a new set of data
using the same tools and parameters. The analysis of the
new data did not reproduce an offset estimate, whence
we discarded a systematic bias on Gdf parameter in experi-
ment 2.
As expected, the best estimates come from the first

experiment since the signal is richer in that case. The
fact that a signal is injected on both channels makes this
experiment the most sensitive in terms of the determination
of the stiffness difference between both test masses, reach-

TABLE IV. Estimated parameters for independent experiments.

Param. Value � Estimated �̂
 � j�� �̂j=� �=�CRB

Experiment 1

Gdf 0.8 0:80002
 0:00002 1.0 1.0

Gsus 1.15 1:1500001
 0:0000003 0.4 0.9

!2
1 �1:1� 10�6 ð�1:0991
 0:0005Þ � 10�6 1.7 1.0

!2
2 �2:2� 10�6 ð�2:2001
 0:0003Þ � 10�6 0.3 1.0

�21 1:35� 10�4 ð1:3502
 0:0006Þ � 10�4 0.3 1.0

�!2 �1:1� 10�6 ð�1:1010
 0:0005Þ � 10�6 2.1 1.0

Experiment 2

Gdf 0.8 0:80011
 0:00005 2.2 1.0

Gsus 1.15 1:147
 0:004 0.8 1.0

!2
1 �2:4� 10�6 ð�5
 3Þ � 10�6 0.8 1.0

!2
2 �2:4� 10�6 ð�5
 3Þ � 10�6 0.8 1.0

�21 1:35� 10�4 ð1:3497
 0:0003Þ � 10�4 1.0 0.9

�!2 0 ð�3
 6Þ � 10�10 0.5 1.1

Experiment 3

Gdf 0.8 0:7998
 0:0002 1.2 1.1

Gsus 1.15 1:1503
 0:0003 0.8 1.0

!2
1 �1:1� 10�6 ð�1:25
 0:09Þ � 10�6 1.7 1.0

!2
2 �2:2� 10�6 ð�2:35
 0:09Þ � 10�6 1.7 1.0

�21 1:35� 10�4 ð1:350
 0:001Þ � 10�4 0.3 1.0

�!2 �1:1� 10�6 ð�1:0999
 0:0003Þ � 10�6 0.2 1.0
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ing indeed the CRB, and obviously translating into a better
estimate for the remaining parameters.

Only the second experiment allows a better estimation of
one of the parameters, �21, since in this case we are
canceling the second cross-coupling term, !2

2 �!2
1, by

forcing stiffnesses from both test masses to have the
same value. As expected, the absolute value of the stiffness
can not be determined accurately in such a case. The
reason being that the matched stiffness configuration is
precisely designed to make the experiment insensitive to
stiffness differences, which naturally turns into a poor
estimation of the parameter. It is however remarkable
that, thanks to the cross-variance terms, we can have a
good determination of the difference between the two
stiffnesses, which should be identically zero in this case.
That’s indeed the value retrieved by our analysis with an
uncertainty of 6� 10�10 s�2.

It is worth comparing here the results obtained with the
analysis to measured quantities. Although the numerical
values may differ, it may be relevant to compare the un-
certainties of the values in order to check that our model is
in quantitative agreement with experiments being per-
formed. To do so we take the stiffness as our figure of
merit since it has been extensively characterized in the
torsion pendulum facility [10]. Recent experiments in
this facility report a remnant stiffness coupling the test
masses to the surrounding GRS prototype of ð�2:5

0:1Þ � 10�9 N=m [26]. When scaled by the mass of the
LTP test masses (1.96 kg) so to be expressed in terms of
force per unit mass, this figure becomes ð�1:28
 0:05Þ �
10�9 s�2, which could be compared to the uncertainty in
the estimation of the stiffness in our model, which reaches
3� 10�10 s�2 for the second test mass stiffness in experi-

ment 1. The simplified noise model that we used for the
analysis therefore seems to be consistent with the numbers
coming from experiments. Both numbers are, however,
orders of magnitude below the required remnant stiffness
on board the satellite of 14� 10�7 s�2 [27].
The data analysis during LISA Pathfinder operations

will be strongly conditioned by the operations schedule.
In Sec. III C we describe how to exploit the posterior
distribution in order to combine results from different
experiments. We applied that scheme to our results in order
to produce a unique set of parameters for both cases
previously described: all parameters being identical (ex-
periment 1 and 3) and experiments with different numeri-
cal values of the parameters (combining all experiments).
Given the approximately normal distribution of the pa-
rameters that we get from the Monte Carlo integration in
Fig. 4, it is justified to apply the Gaussian formalism that
we introduced in Sec. III C. In particular, we just need to
apply Eq. (25) to our set of experiments. Results in Table V
show an improvement in the uncertainty of the estimate.
According to (21), the same scheme could be obtained by
considering the posterior distribution of one experiment as
a prior for the following one. This would also improve the
convergence time of the search, which could be an impor-
tant consideration during operations.

IV. SUMMARYAND FUTURE WORK

We have shown how a Markov chain Monte Carlo
method can be used for parameter estimation in the LISA
Pathfinder mission. In order to demonstrate so, we gener-
ated data from a simplified model of the main experiment
on board the mission, the LTP. This data set contains runs
where we injected signals to test the instrument, which
must allow the recovery of the parameters, and also some
runs without any injection, used to evaluate the noise
performance of the instrument. We think that the model
used in our analysis serves as a complementary approach to
the already existing LISA simulators, since it includes
some more detail in the test mass dynamics and its cou-
pling to the test mass motion, precisely one of the key
points that LISA Pathfinder aims to investigate.
The analysis presented here includes an estimate of the

optimal error achievable (for an unbiased estimate) for a
given injected signal and a configuration of the experiment.
These results are of relevance for the mission since they
show that it is as important to develop data analysis tools as
it is to carefully design the experiment to be performed in
flight. With our model, injecting signals into different input
ports of the system allows the estimation of some of the
parameters to be significantly improved—by up to 2 orders
of magnitude in the case of the test-mass stiffnesses (com-
pare experiment 1 to experiment 3 in Table II). Although
the expected parameter uncertainties in the real mission
will be larger than the ones reported here, the dependencies
on the parameters are representative. Thus, the decrease on

TABLE V. Combination of results for different experiments.
Two values are reported when combining all experiments for
parameters !2

1, !
2
2 and �!2. The top one is the result obtained

by combining the values for experiment 1 and 3; the bottom one
corresponds to the matched stiffness experiment.

Parameter Estimated

Experiment 1 and 3 All experiments

Gdf 0:80002
 0:00002 0:80003
 0:00001

Gsus 1:1500001
 0:0000003 1:1500009
 0:0000003

!2
1

(� 10�6)

(� 1:1000
 0:0004) (� 1:1000
 0:0004)
(� 5
 3)

!2
2

(� 10�6)

(� 2:2001
 0:0003) (� 2:2000
 0:0003)
(� 5
 3)

�12

(� 10�4)

(1:3498
 0:0005) (1:34967
 0:00002)

�!2

(� 10�6)

(� 1:1002
 0:0002) (� 1:1002
 0:0002)
(� 0:0003
 0:0006)
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the optimal error could be applicable to the real mission as
well. We will need however to confirm this result with
more realistic models.

The method developed here to analyze the data reaches
roughly the optimal attainable error for each single experi-
ment. The combination of the results for different experi-
ments obviously reduces the uncertainty on the parameters,
reaching lower errors than the ones originally derived from
the Cramér-Rao bound for each independent experiment.
When combining different experiments, our analysis took
advantage of the Gaussian posterior obtained during the
sampling of the likelihood surface, so that a simple alge-
braic operation between Gaussian distribution was enough
to derive a combined estimate of all experiments. However,
the framework is general enough to include non-Gaussian
profiles, given that the full profile of the posterior is
obtained during the sampling of the likelihood surface.

The combination of estimates was performed here as an
offline operation, i.e. after all experiments were analyzed.
A natural extension to this work would be to use the
posterior distribution for a given experiment as a prior
for the next one, as motivated in Eq. (21). This concept
of a chain of experiments is particularly suitable for the
LISA Pathfinder since, during flight operations, we will
naturally need to include results of previous experiments in
the next foreseen ones. In other words, if the test mass
stiffnesses are clearly determined in an experiment we may

want to use that information for forthcoming experiments
in order to effectively reduce the dimension of our prob-
lem. The method described here provides a way to include
this information in the analysis in a clear way. Moreover,
the capability to use this information could be a powerful
advantage during operations due to the reduction of con-
vergence time that it implies.
An increase in the uncertainty on the estimates is to be

expected when dealing with a more realistic model due to
the increase in dimensions of the parameter space. This is
precisely the step that we will face in the forthcoming
activities in preparation for the LTP data analysis. Our
aim is to study in detail the experiments defined to be
implemented in flight, now that the basic functionality of
the parameter estimation tool is already demonstrated. In
that sense, next steps will include a three-dimensions
model and more complex injected signals that will make
use of the full capabilities of the spacecraft. This work is
ongoing and will be presented in due time.
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