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Abstract

In my Bachelor thesis the theory of finite discrete groups is reviewed with respect
to the alternating group A4. Neutrinos in the standard model and the implications
of neutrino oscillations are discussed. The observation of massive neutrinos implies
physics beyond the standard model. A popular mixing pattern for the leptonic
mixing matrix the tri-bimaximal (TBM) mixing is presented. This mixing pat-
tern causes a form of the neutrino mass matrix which can be specified by means
of symmetries. These symmetries give rise to flavour symmetry models based on
finite discrete groups. The special case of an A4 flavour symmetry is examined.
Finally a general numerical analysis of the form of the neutrino mass matrix in-
duced by the 9 parameters in the neutrino sector is performed. As the possible
experimental deviations from TBM are rather large there exist some mass ranges
for normal and inverted ordering showing considerable asymmetries compared to
the pure TBM form.

Zusammenfassung

In dieser Bachelorarbeit werden einige Ergebnisse der Theorie endlicher diskre-
ter Gruppen zusammengefasst und auf die alternierende Gruppe A4 angewendet.
Des weiteren wird die Rolle von Neutrinos im Standardmodell der Teilchenphysik
und die Bedeutung von Neutrinooszillationen diskutiert. Die Existenz von Neu-
trinomassen impliziert Physik jenseits des Standarmodells. Ein populärer Ansatz
für die Beschreibung der Mischungsmatrix für Leptonen, die tribimaximale Mi-
schung (TBM), wird vorgestellt. Mit dieser Beschreibung geht eine spezielle Form
der Massenmatrix für Neutrinos einher, welche sich mittels Symmetrien festlegen
lässt. Diese Symmetrien legen Modelle für “Flavoursymmetrien”, die auf endli-
chen diskreten Gruppen aufbauen, nahe. Als Fallstudie wir ein A4-Flavourmodell
betrachtet. Schließlich wird der Einfluss der 9 Parameter im Neutrinosektor auf
die Form der Neutrinomassenmatrix numerisch untersucht. Da die experimentel-
len Abweichung von der TBM-Mischung relativ groß sind, ergeben sich für einige
Massenbereiche, sowohl für ein normales wie invertiertes Neitrinomassenspektrum,
erhebliche Abweichungen von der durch reine TBM-Mischung verlangten Form.
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1. Introduction
The observation of neutrino oscillations implies that neutrinos are massive. As the stan-
dard model predicts massless neutrinos one of the components, either renormalizability
or the particle content, are incorrect. In contrast to the other fermions neutrinos have a
tiny mass. This could be explained by the seesaw mechanism which introduces a heavy
right-handed neutrino. However, the seesaw mechanism assumes a Majorana nature of
neutrinos which is still not experimentally proven.

In general, neutrino mass models do not predict the mixing angles involved in neutrino
oscillations. In the lepton sector of the standard model the Pontecorvo-Maki-Nakagawa-
Sakata mixing matrix UPMNS which describes these oscillations has a very peculiar form
close to the tri-bi-maximal mixing (TBM).

UTBM =


√

2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2


This differs strongly from the quark sector where the CKM-matrix is close to unity. The
form of UPMNS gives rise to flavour symmetry models. These flavour symmetries which
act “horizontally” on the three known generations could explain the arising elements in
UPMNS as a consequence of group product coefficients. Assuming that the left- and right-
handed charged leptons as well as the neutrinos transform as irreducible representations
of the flavour group, these transformation properties should show up as invariances of
the mass matrix.

In this thesis I focus on one special flavour symmetry model which predicts the mixing
angles. Therefore, the nature of the invariances is further investigated. If neutrinos are
treated as Majorana particles they have a symmetric mass matrix. Combined with the
above mixing matrix the form of the neutrino mass matrix can be completely determined
by the invariance under two transformations, notably a µ-τ -symmetry and an additional
symmetry S with S2 = 1 which is one of two generators of group A4. Thus, the most
general mass matrix leading to TBM is invariant under a generator of A4. Together with
a diagonal charged lepton mass matrix which is invariant under the second generator of
A4 this suggests to consider the alternating group A4 as an appropriate flavour symmetry
group. Compared to other finite discrete groups containing these two generators A4 has
the advantage of a quite economical structure. The A4-model predicts the TBM-mixing
angles but needs a proliferation of the scalar sector. This is needed in order to explain
the µ-τ -symmetry which is in general not part of A4. The µ-τ -symmetry is realized
by a special vacuum alignment separating the spontaneous symmetry breaking of the
charged lepton sector from the neutrino sector. Additionally, the A4-model leaves the
experimentally unknown neutrino mass spectrum and mass scale more or less undeter-
mined. Some mass relations are explicitly calculated for a particular model [1] in order
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to give an estimate of the predictive possibilities of an A4-model.
The TBM-mixing assumes that θ13 in UPMNS is zero which is not compatible with

the experimental value in its 3σ-range. Hence, this deviation must be explained in the
context of the A4-model. In general this is possible because one expects the flavour
symmetry group to be broken at a higher scale. Then renormalization group evolution
could lead to deviations at a lower scale. Higher order corrections in the A4-model could
disturb the form of the mass matrix and thereby affect the mixing angles as well.

Independent from theoretical corrections, the symmetries of the neutrino mass matrix
Mν predicted by TBM-mixing are analysed. Therefore, the impact of the experimental
3σ-errors of the six parameters in UPMNS and the three neutrino masses on the form
of Mν are numerically calculated. The symmetries describing Mν are translated into
three asymmetry parameters containing entries of the mass matrix (mij = (Mν)ij).

X1 ≡
∣∣∣∣m12 −m13

m12 +m13

∣∣∣∣ X2 ≡
∣∣∣∣m22 −m33

m22 +m33

∣∣∣∣ X3 ≡
∣∣∣∣m11 +m13 −m22 −m23

m11 +m13 +m22 +m23

∣∣∣∣
I study the dependence of these asymmetry parameters on the lightest neutrino mass
and the mixing angles. This is done in more detail with respect to the θ13-dependence
in order to find out if a non-vanishing value could lead to maximal violation of the
symmetries. Due to the large number of free parameters the expressions for the asym-
metry parameters are difficult to handle analytically. Consequently, the asymmetry
parameters are maximised numerically using random numbers for the mixing param-
eters. The analysis with free mixing angles indicates stable mass ranges with nearly
constant asymmetries for a hierarchical spectrum for X1 and X2 in a normal ordering
and for X2 and X3 in an inverted ordering. For these stable mass ranges approximate
analytical expressions describing the dependencies on the angles are derived. These are
obtained by setting the smallest neutrino mass to zero and by relating the masses m2

and m3 in a normal spectrum to the rather small ratio of the solar and atmospheric mass
squared differences. For a normal hierarchical spectrum X1 depends strongly on θ13 and
X2 depends mostly on θ23. For an inverted hierarchical spectrum X2 depends largely on
θ13 and X3 depends equally on all three mixing angles. It is illustrated that for special
configurations of the three complex phases the symmetry could be maximally violated.
In an inverted spectrum for X1 a small value of θ13 forbids a maximal asymmetry. For
a normal hierarchical spectrum the minimum of Xmin

1 ≈ 0.2 is considerably above the
other minimal asymmetries which are approximately below 10−3.

The thesis starts with a recapitulation of group theory of finite discrete groups in
Section 2 . Results are applied to group A4 and certain general properties of it are
shown. In Section 3 neutrinos as a part of the standard model and the necessity of
extensions of the standard model are discussed. A “prototypical” A4-model [2, 3, 1]
in an effective description using dimension-5 operators is examined as an example of
a flavour symmetry model producing TBM-mixing in Section 4. This is followed by
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the analysis of asymmetry parameters in Section 5 and completed by a discussion in
Section 6.

2. Finite Groups
2.1. Basics
This section is intended to give a compact summary of theorems of finite groups which
are used in section 2.2 to investigate group A4. The discussion in this section is mostly
taken from [4], [5] and a lecture script on group theory [6]. Most of the proofs of the
presented theorems are given in [4].

Definition 1. A group is a set together with an operation (G, •) satisfying four axioms

1. For all a, b ∈ G, the result of the operation, a • b, is also in G. (closure)

2. For all a, b, c ∈ G, (a • b) • c = a • (b • c). (associativity)

3. There exists a e ∈ G, such that for every a ∈ G, the equation e • a = a • e = a
holds. (identity element)

4. For each a ∈ G exists an element b ∈ G such that a • b = b • a =e (inverse
element)

The multiplication is generally not commutative. If ab = ba ∀ a, b ∈ G the group is
called abelian. The order of a group [G] is the number of elements in the group. Finite
groups are groups with a finite number of elements. They possess a number of convenient
properties which are useful for building flavour symmetry models [5]. They have a finite
number of inequivalent irreducible representations (irreps), all irreps are equivalent to
unitary irreps and all numbers concerning properties of the group are finite. In addition,
if discrete groups are used, there are only easy to handle sums.

An important group is the symmetric group Sn which contains all permutations of n
objects. The notation

P =

(
1 2 . . . n
p1 p2 . . . pn

)
(2.1)

describes on which object pi the object i is mapped. The order of Sn can be derived by
looking at the possible mappings. Element 1 can be replaced by any of the n objects
1 to n. For the second element 2 there are only n − 1 objects left and so on. Thus n!
is the order of the symmetric group Sn. A more convenient notation for a permutation
is the cycle notation which is based on the fact, that for each permutation there are
independent groups of indices. A cycle containing two symbols (2-cycle) is called a
transposition, it denotes the exchange of two objects. Any permutation r-cycle can be
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expressed as a product of transpositions. For a r-cycle r − 1 transpositions are needed.
A permutation is even (odd) according to the number of transpositions. The product of
two even permutations is even again. The inverse of a product of cycles is the product of
their inverses. Evidently the identity is an even permutation. So the even permutations
form a group, the alternating group An. The order of group An can be derived from
the order of Sn. Each permutation σ ∈ Sn is defined by the values of σ(1), . . . , σ(n). If
the values of σ(1), . . . , σ(n− 2) are already fixed, the choice of the last to permutations
decide the sign of σ. So the order [An] of An is the half of Sn.

[An] =
n!

2
(2.2)

Each equivalence relation provides a partition of a set into disjunct classes. The
conjugation of two elements gives a partition which is quite useful for the further analysis
of group representations.

Definition 2. The conjugate class of an element a ∈ G contains all elements b ∈ G
which are conjugate to a.

(a) =
{
b ∈M

∣∣ b = gag−1, g ∈M
}

(2.3)

Definition 3. A representation is a homomorphism D : G→ GL(n,C) from the group
G to the invertible complex n× n matrices.

A group homomorphism is preserving the group structure D(g1g2) = D(g1)D(g2). Two
representations D(1)D(2) satisfying the relation

D(1)(g) = SD(2)S−1 ∀ g ∈ G (2.4)

are called equivalent. For the matrices of the representation, S can be considered as a
basis transformation. The character of a group can be used to distinguish inequivalent
representations.

Definition 4. Character χ of representation D of a group G is the set of the traces of
the representation matrices D(g)

χ = { χ(g) ≡ tr[D(g)] | g ∈ G } (2.5)

As the trace is similarity-invariant, equivalent representations have the same character.
Most of the theorems in this section are based on the following Schur lemmas.

Lemma 1. Each matrix B which commutes with all matrices D of an irreducible rep-
resentation of a group G, must be a multiple of the unit matrix

BD(g) = D(g)B ∀g ∈ G⇒ B = λ1 (2.6)
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Lemma 2. If D and D′ are irreducible representations of the group G having the same
dimensions, and if the matrix B satisfies

BD(g) = D′(g)B ∀g ∈ G (2.7)

then B = 0 or D and D′ are equivalent

From the Schur lemmas one can deduce the orthogonality relation for the matrices of
irreducible representations.

Theorem 1. (Theorem of Orthogonality) For irreducible representations D(µ) and D(ν)

∑
g∈G

D
(µ)
ir (g)D

(ν)
sj (g

−1) =
[G]

nµ

δµνδijδrs (2.8)

In general a representation is equivalent to an infinite number of representations. For
finite groups one can show additionally that every given representation is equivalent to
a unitary representation. Therefore by taking the trace in Eq. (2.8) a simple formula for
the characters follows.

1

[G]

∑
g∈G

χ(µ)(g)χ(ν)(g)∗ = δµν (2.9)

Suppose G consists of k conjugate classes Ki having ki number of elements and character
χi. Then Eq. (2.9) becomes

1

[G]

k∑
i=1

kiχ
(µ)
i χ

(ν)∗
i = δµν (2.10)

A similar orthogonality relation for the sum over the irreps allows to prove the following
theorem.

Theorem 2. The number of inequivalent irreducible representations r equals the number
of conjugate classes k.

r = k (2.11)

Reducible representations D of finite groups can be expressed as a direct sum of
irreducible representations D(ν).

D =
∑
⊕

aνD
(ν) (2.12)
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The coefficients aν ∈ N indicate how many times an irreducible representation D(ν) is
contained in the sum. They can be calculated using the orthogonality relation and the
character table of the group.

χ(g) =
∑
ν

aνχ
(ν)(g) (2.13)

⇒ aµ =
1

[G]

∑
g∈G

χ(g)χ(µ)(g−1) ≡ ⟨χ(µ), χ⟩ (2.14)

By applying this result to the regular representation, the number and dimension of
irreducible representations can be related to the order of the group. The regular repre-
sentation is a [G] dimensional representation of G. The coefficients for the decomposition
of the regular representation in irreducible representations are calculated using that only
χ(e) is non-zero.

aµ =
1

[G]
χ(e)χ(µ)(e) =

1

[G]
[G]χ(µ)(e) = χ(µ)(e) = nµ (2.15)

Setting g = e in relation

χ(g) =
∑
ν

aνχ
(ν)(g) (2.16)

leads to a formula between the order of a group and the dimension nν of irreducible
representations

[G] =
∑
ν

n2
ν (2.17)

From a physics point of view it is interesting to consider two particles with fields ψa and
ϕb transforming with two irreducible representations D(µ) and D(ν) in the following way

ψ′
α = D

(µ)
αβ (g)ψβ (2.18)

ϕ′
γ = D

(ν)
γδ (g)ϕδ (2.19)

the product field Ψαγ = ψαϕγ is transforming as

Ψ′
αγ = D

(µ)
αβ (g)D

(ν)
γδ (g)︸ ︷︷ ︸

D
(µ×ν)
αγ;βδ (g)

Ψβδ (2.20)
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Figure 2.1: Group A4 can be considered as a geometrical object, namely, the invariance
group of a tetrahedron. The two generators of the group correspond to
rotations around the indicated axes.

The representation D(µ×ν)(g) preserves the group structure and is labelled by D(µ)⊗D(ν).
A product representation of two irreducible representations is generally reducible for
interacting particles and can therefore be decomposed into a Clebsch-Gordon series

D(µ) ⊗D(ν) =
∑
⊕

aσD
(σ) (2.21)

aσ = ⟨χ(σ), χ(µ×ν)⟩ = ⟨χ(σ), χ(µ)χ(ν)⟩ (2.22)

2.2. The Alternating Group A4

A4 is the group of even permutations of 4 objects.

G = A4 = gp{S, T} with S2 = T 3 = (ST )3 = 1 (2.23)

A4 can as well be considered as the invariance group of a tetrahedron. After labelling
the vertices of a tetrahedron by 1, . . . , 4 the elements of A4 are all produced by rotations
of the Tetrahedron as indicated in Fig. 2.1.

In cycle notation, where the cycles have to be read and multiplied from the right by
convention the generators are given by

S ≡ (14)(23) T ≡ (123) (2.24)

One can easily calculate that they fulfil Eq. (2.23). Group A4 consists of 4 conjugate
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A4 C1 4C2 4C3 3C4

1 1 1 1 1
1

′
1 ω ω2 1

1
′′

1 ω2 ω 1
3 3 0 0 −1

Table 2.1: Charactertable of A4

classes

C1 = {e}
C2 = {T = (123), ST = (134), TS = (142), STS = (243)}
C3 = {T 2 = (132), ST 2 = (124), T 2S = (143), TST = (234)}
C4 = {S, T 2ST = ((12)(34), TST 2 = (13)(24)}

According to theorem 2 there are four irreducible representations. As group A4 is of order
12, it is now possible to infer the dimensions of the four irreducible representations using
Eq. (2.17).

1 + n2
2 + n2

3 + n2
4 = 12 (2.25)

This equation implies that their are three one-dimensional and one three-dimensional
representations. These will be denoted by 1,1′,1′′ and 3. These representations which
solely have to fulfil Eq. (2.23) can be expressed in terms of ω = e

2
3
πi.

1 : S = 1, T = 1

1′ : S = 1, T = ω

1′′ : S = 1, T = ω2

3 : S =

1 0 0
0 −1 0
0 0 −1

 , T =

0 1 0
0 0 1
1 0 0


(2.26)

The product of two A4 triplets is a reducible representation. Its decomposition into a
Clebsch-Gordon series can be calculated using Eq. (2.22) and the known character table
of A4. The decomposition of the product of two A4 triplets is given explicitly by

3 ⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3 (2.27)

and the following corresponding product coefficients satisfying the transformation prop-
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erties in Eq. (2.26)

1 : (e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) (2.28)
1′ : (e1 ⊗ e1 + ω2e2 ⊗ e2 + ωe3 ⊗ e3) (2.29)
1′′ : (e1 ⊗ e1 + ωe2 ⊗ e2 + ω2e3 ⊗ e3) (2.30)
3 : (e2 ⊗ e3, e3 ⊗ e1, e1 ⊗ e2) (2.31)
3 : (e3 ⊗ e2, e1 ⊗ e3, e2 ⊗ e1) (2.32)

The relevant product rules for the singlets which produce invariants are calculated in
the same way.

1 = 1⊗ 1 = 1′ ⊗ 1′′, 3⊗ 1 = 3⊗ 1′ = 3⊗ 1′′ = 3 (2.33)

Unlike the previous definition of the three-dimensional unitary representation where S is
diagonal, it is possible to choose a basis where T is diagonal. This T -diagonal basis can
be useful in flavour symmetry models where the charged lepton mass matrix is diagonal.

3 : T =

1 0 0
0 ω 0
0 0 ω2

 S =
1

3

−1 2 2
2 −1 2
2 2 −1

 (2.34)

In the T -diagonal basis the product coefficients for the multiplication of two triplets as
given in Eq. (2.33) change.

1 : (e1 ⊗ e1 + e2 ⊗ e3 + e3 ⊗ e2) (2.35)
1′ : (e3 ⊗ e3 + e1 ⊗ e2 + e2 ⊗ e1) (2.36)
1′′ : (e2 ⊗ e2 + e1 ⊗ e3 + e3 ⊗ e1) (2.37)

3s :

2e1 ⊗ e1 − e2 ⊗ e3 − e3 ⊗ e2
2e3 ⊗ e3 − e1 ⊗ e2 − e2 ⊗ e1
2e2 ⊗ e2 − e1 ⊗ e3 − e3 ⊗ e1

 , 3as :

e2 ⊗ e3 − e3 ⊗ e2
e1 ⊗ e2 − e2 ⊗ e1
e3 ⊗ e1 − e1 ⊗ e3

 (2.38)

If two indices are changed one of the triplets is totally symmetric and the other one is
totally antisymmetric. This basis allows to simplify the upcoming calculations because
the neutrino mass matrix is known to be symmetric and consequently only the symmetric
triplet has to be considered. Additionally this basis makes it easy to classify the impact
of the one-dimensional representations. The 1 is invariant under 2 − 3 exchange while
1′ is symmetric under 1− 2 exchange and 1′′ under 1− 3 exchange.

Knowing the product rules for two triplets and the singlets one can construct further
invariants involving the products of more than two triplets like 3⊗ 3⊗ 3 for example.
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3. Neutrino Physics
3.1. Neutrinos in the Standard Model
In contrast to the other standard model fermions neutrinos are electrically neutral. There
are at least three generations of light neutrinos, the νe, νµ and ντ , named after their
charged lepton partner particle in the charged current process. Among others neutrinos
participate in neutral current reactions including Z bosons via scattering and decay
processes like Z → νανα. Investigating this decay process, the number of light neutrino
generations Nν can be fixed. The neutrinos from the Z boson decay are not detected
directly because they are neutral but they appear as an invisible part Γν in the Z-boson
decay width ΓZ .

ΓZ = Γhad + 3Γl +NνΓν︸ ︷︷ ︸
Γinv

(3.1)

Nν =
Γinv

Γν,SM
=

(
Γinv

Γl

)
exp

×
(
Γl

Γν

)
SM

(3.2)

Nν = 2.984± 0.008 (3.3)

This number taken from Ref. [7] is very well consistent with the existence of three
neutrino flavours. Possibly existing right-handed particles which are SU(2)L × U(1)Y
singlets cannot be detected in the process described above.

Explicit mass terms ψψ for fermions are forbidden in the standard model because
the SU(2) × U(1) symmetry with the quantum numbers of the fermions tabulated in
Tab. 3.2 is not compatible with this term. The existence of ψψ would break the gauge
invariance explicitly. This problem is solved by the Higgs mechanism. The masses in
the Standard model are generated through the spontaneous symmetry breaking (SSB)
of the SU(2) × U(1) group by the Higgs doublet ϕ. The Lagrangian for this complex
scalar field is

L = (Dµϕ)
†(Dµϕ)− V (ϕ) (3.4)

with the scalar potential V

V (ϕ) = −µ2ϕ†ϕ+
λ

2
(ϕ†ϕ)2 (3.5)

The new term for the coupling of the Higgs field to the left- and right-handed fermions
is called “Yukawa” Lagrangian.

gY
(
Lϕ

)
R︸ ︷︷ ︸

(3⊕1)⊗1

= gYvfLfR = −mffLfR (3.6)
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with the vacuum expectation value v.
The standard model does not contain a right-handed neutrino. Thus the neutrino

mass is zero in the standard model. However experiments have shown that neutrinos
are massive but neutrinos are different from other standard model fermions as they have
tiny mass and huge mixing [7]. This is difficult to explain in case they get their mass
through the same mechanism as the other fermions.

3.2. Neutrino Oscillation
There are different types of natural neutrino sources like the sun or atmospheric pro-
cesses and various neutrino experiments with reactors and accelerators as sources. The
neutrinos in these sources are created in a charged current reaction with a charged
lepton. The species of the charged lepton (e, µ, τ) involved in this process defines the
“flavour” of the neutrino (νe, νµ, ντ ). Generally, the mass matrix in this flavour basis is
not diagonal. This means that the mass, or put in the words of quantum mechanics,
the free propagation eigenstates ν1, ν2 and ν3 do not coincide with the flavour states.
However, neutrinos are created and detected as flavour eigenstates and therefore their
probability to be in a different flavour state oscillates with time.

Suppose a basis change for the leptons from the mass to the flavour basis is given by
the unitary matrices U (l)

L(R) for the charged leptons and U
(ν)
L(R) for the neutrinos with

l′L(R) = U
(l)
L(R)lL(R) ν ′L(R) = U

(ν)
L(R)νL(R) (3.7)

(3.8)

The fields νR denote hypothetical right-handed neutrinos. The mechanism for diago-
nalization of the derived mass matrices is described in appendix A. There are only a
few parts of the standard model Lagrangian which are non-trivially affected by these
transformations. Beside the mass Lagrangian this is the charged current reaction coming
from the kinetic part of the fermion Lagrangian.

LCC =
g√
2
W µl′Lγµν

′
L + h.c. (3.9)

=
g√
2
W µ(U

(l)
L lL)γµ(U

(ν)
L νL) + h.c. (3.10)

=
g√
2
W µ(lL)γµ

((
U

(l)
L

)†
U

(ν)
L

)
νL + h.c. (3.11)

UPMNS ≡
(
U

(l)
L

)†
U

(ν)
L (3.12)

The matrix UPMNS is the lepton mixing matrix which is the leptonic analogue to the CKM
matrix in the quark sector. It is called Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix. The mixing matrix for N generations is a complex N × N matrix with N2
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elements and 2N2 parameters. By requiring the matrix to be unitary this number gets
reduced to N2 free parameters. The number of physical parameters can be further
restricted. Especially as not all of the complex phases in this matrix are physically
relevant, they can be absorbed in redefinitions of the fermion fields. The number of
complex phases can be calculated by comparison with a real matrix. For the real case
there is an orthogonal matrix with 1

2
N(N − 1) parameters. From the difference to the

number of free parameters of a unitary matrix we get 1
2
N(N + 1) complex phases. For

2N different fields only 2N − 1 phases can be absorbed because the Lagrangian still
posses a global U(1) symmetry. Finally there are 1

2
(N − 1)(N − 2) complex physical

relevant phases called Dirac phases. For the Majorana case, which will be discussed later
on, two additional phases have to be considered in a three-dimensional case.

The propagation of the wave function in the mass eigenbasis can be described in a
relativistic picture through

|να(t, x)⟩ = U∗
αje

i(Ejt−pjx) |νj⟩ (3.13)

The mass and flavour basis do not coincide, hence the probabilities for oscillations be-
tween various flavour states are given by the square of the transition amplitude.

Aα→β = ⟨νβ | να(t, x)⟩ (3.14)
=

∑
ij

UβjU
∗
αi

⟨
νj

∣∣ ei(Eit−pix)
∣∣ νi⟩ (3.15)

=
∑
i

UβiU
∗
αie

i(Eit−pix) (3.16)

Pαβ = |Aα→β|2 =
∑
ik

UβiU
∗
βkU

∗
αiUαke

−iϕik (3.17)

For the calculation of the oscillation amplitude Pαβ the oscillation phase ϕ must be
further evaluated. The oscillation phase is given by

ϕ = (E2 − E1)t− (p2 − p1)x (3.18)

this expression can be simplified by using the relativistic energy mass relation and the
following definitions

∆E ≡ E2 − E1, ∆E2 = E2
2 − E2

1 , E =
1

2
(E1 + E2) (3.19)
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and analogue definitions for m and p

⇒ ∆E2 = 2E∆E, ∆p2 = 2p∆p, ∆m2 = 2m∆m (3.20)

ϕ = ∆Et− ∆p2

2p
x = ∆Et− ∆E2 −∆m2

2p
x (3.21)

= ∆Et− E

p︸︷︷︸
≡v−1

∆Ex+
∆m2

2p
x (3.22)

by assuming that the neutrino has an average velocity v and x ≈ vt this results in

≈ ∆m2

2p
x ≈ ∆m2

2E
x (3.23)

Pαβ = |Aα→β|2 =
∑
ik

UβiU
∗
βkU

∗
αiUαk exp

(
−i∆m

2
ikL

2Eν

)
(3.24)

with ∆m2
ik = m2

i −m2
k and L the distance of a specific experiment. In order to illustrate

some properties of Pαβ the most simple case of two flavours n = 2 is discussed. Then U
is a two-dimensional rotation matrix and the transition probability gets the form

Pαβ = sin2(2θαβ) sin2

(
∆m2

αβL

4Eν

)
for α ̸= β. (3.25)

Now it is apparent that an appropriate value of L
Eν

is needed to observe the mass splitting.
There are three ranges of the oscillation phase ϕ. For very small values of ϕ, which
corresponds to L/E ≪ ∆m−2, their are no sizeable oscillations and Pαβ ≈ δαβ. For
very large values the oscillation is averaged out. As L and E are experimentally not
exactly determined P contains several oscillations. The average ⟨sin∆⟩ = 1/2 allows
the measurement of the amplitude in P . The best range to observe oscillations is ϕ ≳ π

2
.

The neutrino oscillation probability given by Eq. (3.24) is invariant under diagonal
phase transformations of the leptonic mixing matrix and thus not sensitive to Majorana
phases. To receive the oscillation probability for anti-neutrinos the replacement U → U∗

has to be performed. The CP violating phase can be measured through the construction
of the Jarlskog determinant as an analogue to the CKM matrix.

In the previous section it was shown that the elements of the PMNS matrix are related
to physical observables in neutrino oscillation experiments. A principal oscillation for
charged leptons cannot be measured as the mass squared differences for charged leptons
would be too large. A standard parametrization of the PMNS matrix consists of ex-
pressing it by three rotation matrices around an angle θij, a complex Dirac phase δ and
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m3

m2
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∆m2
⊙

∆m2
atm

m3

m2

m1
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∆m2
⊙

∆m2
atm

spectrum

Figure 3.1: The normal and the inverted 3-neutrino mass spectrum, taken from Ref.[8]

two complex Majorana phases α and β.

UPMNS = U23U13U12P

with

UPMNS =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 e−iδs13
0 1 0

−eiδs13 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

 diag(1, eiα, eiβ)

=

 c12c13 s12c13 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13
s23s12 − c23s13c12e

iδ −s23c12 − c23s13s12e
iδ c23c13

 diag(1, eiα, eiβ)

(3.26)

where cij and sij denotes cos θij and sin θij. The Majorana phases are discussed in
Sec. 3.3 in more detail.

The mass spectrum for the up- and down-quarks and for the charged leptons possess
a large hierarchy [7]. From neutrino oscillation experiments which measure the mass
squared differences it is well known that the neutrino spectrum is non-degenerated. Two
different mass splittings are observed. By convention the smaller mass-squared difference
is called “solar” mass-squared difference ∆m2

⊙ ≡ ∆m2
21 and ∆m2

atm ≡ ∆m2
31 is the larger

“atmospheric” mass squared difference. This notation is summarized in Figure 3.1.
The current neutrino data allows two different scenarios, namely, the “normal” and
the “inverted” ordering depending on the sign of ∆m2

31. The sign of ∆m2
21 is known

from coherent forward scattering effects in matter. These predict that the mass state
containing most of the νe is the lighter one. In both orderings the spectrum could still
be quasi-degenerated if m1 ≈ m2 ≈ m3 and mi ≫ ∆m2

ij. The spectrum can be called
hierarchical if the lightest mass state is much smaller than the mass squared differences
(m2

1 ≪ ∆m2
⊙ or m3 ≪ ∆m2

atm). A normal hierarchical spectrum gives a relation for the
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parameter best-fit ±1σ 2σ 3σ
∆m2

21 [10
−5eV2] 7.59+0.20

−0.18 7.24–7.99 7.09–8.19
∆m2

31 [10
−3eV2] 2.50+0.09

−0.16 2.25–2.68 2.14–2.76
−( 2.40+0.08

−0.09) −( 2.23–2.58) −( 2.13–2.67)
sin2 θ12 0.312+0.017

−0.015 0.28–0.35 0.27–0.36
sin2 θ23 0.52+0.06

−0.07 0.41–0.61 0.39–0.64
0.52+0.06

−0.06 0.42–0.61 0.39–0.64
sin2 θ13 0.013+0.007

−0.005 0.004–0.028 0.001–0.035
0.016+0.008

−0.006 0.005–0.031 0.001–0.039
δ (− 0.61+0.75

−0.65)π 0 – 2π 0 – 2π

(− 0.41+0.65
−0.70)π 0 – 2π 0 – 2π

Table 3.1: Neutrino oscillation parameters from global fits, taken from Ref. [9, 10]. The
upper (lower) row corresponds to normal (inverted) neutrino mass hierarchy,
with ∆m2

31 > 0 (∆m2
31 < 0).

“strength” of the hierarchy

∆m2
⊙

∆m2
atm

≃ m2
2

m2
3

∼ 0.03 (3.27)

Compared to the hierarchy of the charged fermions this is a quite “weak” hierarchy.
Until now the mass splitting ∆m2

31 was only examined in νµ → νµ(ντ ) oscillations where
a matter-effect is not observable. For an inverted spectrum the masses m1 and m2 are
always nearly degenerate, because ∆matm ≫ ∆m⊙.

3.3. Dirac- and Majorananeutrinos
A fermion mass term in a Lagrangian always has the form −m

2
ψψ which leads to the

Dirac equation. This can be examined further by looking at the chiral structure. So the
chiral projectors are introduced.

PL(R) ≡ (1 ∓ γ5)/2 (3.28)
P2

L(R) = PL(R) (indempotence) (3.29)
PLPR = 0 (orthogonality) (3.30)

PL + PR = 1 (completeness) (3.31)

These projectors can produce either left-handed (PLψ = ψL) or right-handed (PRψ =
ψR) spinors. Inserting the properties of the projection operators in the mass term shows
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that only terms in which different chiralities mix lead to a mass.

−m
2
ψψ = −m

2
ψ(P2

L + P2
R)ψ

= −m
2
ψ†γ0(P2

L + P2
R)ψ

= −m
2
(ψLψR + ψRψL)

If ψL and ψR are independent one has the usual Dirac mass term for the Lagrangian.
Notably there is a second possibility for a field to mix left and right chirality, namely,
by applying the charge conjugation operator.

Ĉ : ψ → ψc ≡ Cψ
T
= C

(
ψ†γ0

)T
= CγT0 ψ

∗ (3.32)

The following algebraic relations are useful for dealing with the charge conjugation.

C−1γµC = −γTµ
CT = −C = C† = C−1

(ψc)c = ψ ψc = ψTC, ψ1Aψ2 = ψc
2

(
CATC−1

)
ψc
1

(3.33)

Now it is easy to show that the charge conjugation operation changes a (right-) left-
handed particle into a (left-) right-handed antiparticle.

(ψL(R))
c = (ψc)R(L) (3.34)

For Majorana particles defined as particles which are their own antiparticles (Ψc = Ψ),
the relation above allows to decompose the Majorana field ΨM.

ΨM = ψL + ψR = (ψR)
c + ψR (3.35)

Now it is possible to write down a Majorana mass term in the Lagrangian where the
field ΨR denotes a vector in flavour space.

LMajorana = −1

2

(
Ψc

RMMΨR +ΨRM
†
MΨc

R

)
= −1

2

(
ΨT

RCMMΨR + h.c.
) (3.36)
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Eq. (3.36) reveals some further properties of the Majorana mass matrix MM. By setting
ψ1 → Ψc

R,i and ψ2 → ΨR,j with flavour indices i and j in Eq. (3.33)

Ψc
R,iΨR,j = Ψc

R,jΨR,i (3.37)

it follows that the mass matrix MM is symmetric. The diagonalization of symmetric
matrices is discussed in appendix A.

UTMMU = M̂ (3.38)

where M̂ is diagonal with nonnegative entries and U is unitary. Matrix U is not unique.
The Majorana mass term obviously does not have a U(1) symmetry like a Dirac mass

term. This U(1) symmetry is responsible for the charge conservation. Therefore charged
particles cannot have a Majorana mass term. For fermions there only remain the neutral
neutrinos as candidates for Majorana particles. Nevertheless, a Majorana mass term for
neutrinos would violate the lepton number. The Majorana phases α and β in Eq. (3.26)
are physical and cannot be absorbed into a redefinition of fields. A redefinition of the
mass eigenstates ν2 and ν3 would lead to a shift of masses m2 and m3 for example.

3.4. Upper Limits on the Neutrino Mass
The absolute neutrino mass has never been measured. Nonetheless there exist upper
bounds from particle physics and cosmology. A famous bound for the absolute neutrino
mass comes from β-decays like the decay 3H → 3He + e− + νe. The kinematics of this
decay is a general 3-body decay. The endpoint of the β-spectrum can be described
by a Kurie plot with a form given in Eq. 3.39. The νe state consists of several mass
eigenstates. Thus the measured mass mβ is a sum of them mβ =

∑3
i=1 |Uei|2mi. The

mismatch between the shape for massless neutrinos and massive neutrinos allows the
determination of an upper limit. The β-spectrum vanishes for pν = 0 at the energy
Emax = E0 − mβ, where E0 is the maximal energy for a massless neutrino.The upper
limit is mβ < 2.2 eV at 95%CL. This number is rather small compared to the absolute
energy scale the measurement takes place (E0 ≈ 18 MeV) which is why experiments need
enough precision and statistics to reduce this limit. The KATRIN experiment could once
reach a sensitivity of about ∼ 0.2 eV.

K(E) =
[√

(E0 − E)2 −m2
β(E0 − E)

] 1
2 (3.39)

3.5. Extensions of the Standard Model
Neutrino masses are zero in the Standard model because of various reasons. First of all
there are no right handed neutrinos. Thus there is no Dirac mass term. A Majorana mass
term would require either scalars which are no SU(2)-doublets or nonrenormalizable
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field SU(3)C SU(2)L U(1)Y

LQ =

(
uL
dL

)
3 2 1/3

uR 3 1 4/3
dR 3 1 -2/3

LL =

(
νL
lL

)
1 2 -1

NR 1 1 0
lR 1 1 -2
ϕ 1 2 1
ϕ̃ 1 2 -1

Table 3.2: Quantum numbers of fermions and the Higgs particle

operators. Since neutrino oscillations observe neutrino masses and mixing, there has
to be a modification of the standard model which creates the new neutrino properties.
Beside nonrenormalizable interactions which do not need a specific model input, there
are three main categories for mass models:

1. Extensions in the Higgs sector

2. Extensions in the lepton sector

3. Extensions in both sectors

In the seesaw model the Lagrangian is including the standard model particle content
plus an arbitrary number r of right handed neutrinos NR which are singlets under the
standard model gauge group. The corresponding quantum numbers are tabulated in
table 3.2. As the Lagrangian will contain a Majorana part one needs to account for
violation of Lepton numbers as well. It is possible to write down a Majorana mass term
for the right-handed neutrinos because they transform as singlets of the SU(2) × U(1)
group in contrast to the left-handed neutrinos. A Majorana mass term for the left-
handed neutrinos would require a triplet Higgs for example. In the standard model plus
NR the Higgs mechanism generates the neutrino Dirac masses.

LDirac = −NRMDνL + h.c. (3.40)

where r was set to 3 so the fields NR and νL denote three-dimensional vectors in flavour
space and MD is a generally complex 3× 3 matrix. The right-handed neutrinos form a
Majorana mass term as given in Eq. (3.36)

LMajorana = −1

2

(
ΨT

RCMRΨR + h.c.
)

(3.41)
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with the symmetric Majorana mass matrix MR. The two mass matrices for the neutrinos
can be combined into a 6× 6 matrix MD+M

Lν = LDirac + LMajorana (3.42)

=
1

2
ncMD+Mn+ h.c. (3.43)

MD+M =

(
0 MT

D

MD MR

)
and n =

(
νL
N c

R

)
(3.44)

To arrive at this form of the neutrino mass Lagrangian, the Dirac part of the neutrinos
in Eq. (3.40) has to be rewritten in terms of N c

R using the transformation properties
under charge conjugation as given in Eq. (3.33).

−NRMDνL = −νcLM
T
DN

c
R (3.45)

LDirac = −1

2

(
νcLM

T
DN

c
R +NRMDνL

)
(3.46)

The 6× 6 matrix MD+M is obviously symmetric and can be brought into block diagonal
form by applying a basis change for the left-handed field n and for the right-handed field
nc. This is achieved by a transformation matrix U with

UTMU ≈
(
m1 0
0 m2

)
(3.47)

U ≡
(

1 ρ
−ρ† 1

)
(3.48)

Matrices m1, m2 are symmetric and ρ =
(
M−1

R MD

)†. The mass scales m1 and m2 are
related to MD and MR

m1 = −2MT
DM

−1
R MD (3.49)

m2 =MR (3.50)

assuming that the elements of MR are much larger than the elements of MD this model
leads to small masses m1 which is approximately the mass scale of the left handed
neutrinos νL because the basis change has only a small impact on the original state

n =

(
νL
N c

R

)
= U

(
ν1
ν2

)
(3.51)(

ν1
ν2

)
=

(
νL + ρ†N c

R

N c
R − ρνL

)
= n+O(ρ) (3.52)
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Figure 3.2: Vertex from the dimension 5 operator which yields a Majorana mass matrix
for the light neutrinos, figure taken from Ref. [11].

The seesaw formula for the light neutrino mass in Eq. (3.49) allows to estimate the energy
scale of the right-handed neutrinos. A rough estimation for the coupling strength of the
Dirac terms gives a scale which would be above experimental reach.

MD ∼ mµ, v m1 ∼ mβ,
√
∆m2

atm (3.53)
⇒MR ∼ (106 − 1015)GeV (3.54)

For a fixed MD, heavier right-handed neutrinos make the left-handed neutrinos lighter.
If one does not want to enlarge the field content of the standard model because their

are no new particles at accessible energies, their still remains the possibility to explain
neutrino oscillations by introducing non-renormalizable interactions. A prototype of a
non-renormalizable interaction is the Fermi theory of weak interactions. In this theory
the effect of virtual W and Z exchange is described by an effective theory containing
four fermion interactions. The lowest dimension non-renormalizable operators in the
standard model are of dimension 5. It can be shown that there is a unique dimension
5 operator consistent with the standard model particle content, gauge invariance and
Lorentz invariance. There are seven dimension 5 expressions which can be constructed
by scalars ϕ with mass dimension 1, fermions ψ with mass dimension 3

2
and bosons

expressed as covariant derivatives D with mass dimension 1.

ϕ5, D1ϕ4, D2ϕ3, D3ϕ2, ψD2ψ, ϕDψψ, ϕ2ψψ (3.55)

Only the last expression ϕ2ψψ is consistent with these requirements. The exact form of
the fields has to be

Ldim5 = κLcLϕTϕ
SSB−−→ κv2LcL (3.56)

Surprisingly, this term describes a lepton number violating Majorana mass term. The
dimension 5 vertex is displayed in Fig. 3.2.
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4. Flavoursymmetry Models
Depending on whether neutrinos are Dirac or Majorana particles, the standard model
consists of 26 or 28 parameters. The fermion sector of the standard model contains the
majority of them. There are 9 masses for the quarks and charged leptons and 4 CKM
mixing parameters. The fact that neutrinos are massiv enlarges this with the 4 or 6
PMNS parameters and the neutrino masses. Flavour symmetries give restrictions on
the Yukawa couplings and hence might predict some parameters. In the quark sector
the CKM matrix is close to the unit matrix which does not allow a huge playground
for flavour symmetry models based on finite groups. But the up and down quark mass
spectra are known to be hierarchical which suggests to relate the mixing angles to quark
mass ratios. The Cabbibo angle for example is consistent with the following relation

sin θc ≃
√
md

ms

(4.1)

In the lepton sector the mixing matrix is completely different. A hierarchy as for charged
fermions cannot be observed. Therefore it seems less effective to start building a flavour
symmetry out of mass ratios. Instead there are several possibilities to identify the
elements of the PMNS matrix with “pure numbers” which seem to be connected to
product coefficients of an underlying flavour symmetry group

UPMNS =

O(1) O(1) ϵ
O(1) O(1) O(1)
O(1) O(1) O(1)

 UCKM =

1 ϵ ϵ

ϵ 1 ϵ

ϵ ϵ 1

 (4.2)

4.1. Tri-Bimaximal Lepton Mixing
The central assumptions of the Tri-Bimaximal mixing scheme [12] are Ue3 = 0, |Uµ3|2 = 1

2

and |Ue2|2 = 1
3

which is close to the experimental values in Table 3.1. Using these
conditions for the mixing angles, together with the unitary condition∑

i

UαiU
∗
βi = δαβ,

∑
α

UαiU
∗
αj = δij , (4.3)

the mixing matrix takes the Harrison-Perkins-Scott form

UHPS ≡
(
|Uli|2

)
=

2
3

1
3

0
1
6

1
3

1
2

1
6

1
3

1
2

 (4.4)

This means that the µ- and τ -flavour contribute maximal in the ν3 neutrino mass eigen-
state and all three flavours contribute equally in the ν2 neutrino mass eigenstate. This
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Figure 4.1: Normal and inverted 3-neutrino mass hierarchy. The coloured fractions of
each mass state correspond schematically to different |Uli|2 contributions.

feature is illustrated in Fig. 4.1. Thus the mixing pattern is sometimes called Tri-Bi-
Maximal mixing. Since the mass matrix Mν is directly related to the mixing matrix

Mν = Udiag(m1,m2,m3)U
T (4.5)

the form of Mν can be calculated if the three assumptions of the TBM mixing are
translated into specific values for the mixing parameters. One choice is θ13 = 0, θ12 =

arcsin
√

1
3

and θ23 = −π
4

which corresponds to a mixing matrix UTBM and to a neutrino
mass matrix MTBM

ν of the form

UTBM =


√

2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

 (4.6)

MTBM
ν ≡

A B B
· · · 1

2
(A+B +D) 1

2
(A+B −D)

· · · · · · 1
2
(A+B +D)

 (4.7)

The coefficients in the TBM case are given by

A =
1

3
(2m1 +m2ei2α), B =

1

3
(−m1 +m2ei2α) D = m3ei2β (4.8)
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The physical non-distinguishable choice of the sign of the mixing angles has quite a large
impact on the form of the mass matrix. For θ23 = π

4
the corresponding mass matrix

would be completely different with an opposite sign of the 12- and 13-element.

Mν =

 Ã B̃ −B̃
· · · 1

2
(Ã+ B̃ + D̃) 1

2
(−Ã− B̃ + D̃)

· · · · · · 1
2
(Ã+ B̃ + D̃)

 (4.9)

The matrix MTBM
ν instead has a µ− τ symmetry. This means that it is invariant under

Aµτ with

Aµτ =

1 0 0
0 0 1
0 1 0

 (4.10)

MTBM
ν = AµτMTBM

ν Aµτ (4.11)

This invariance can be used together with the invariance under STBM to completely
define the form of MTBM

ν as presented in Eq. (4.7), where STBM is

STBM =
1

3

−1 2 2
2 −1 2
2 2 −1

 (4.12)

MTBM
ν = STBMMTBM

ν STBM (4.13)

with [Aµτ , STBM] = 0.
A component of the above discussion is that it is worked out in a basis where the

charged lepton mass matrix Ml is diagonal. It is unknown whether Ml, which is de-
fined by the Dirac-Lagrangian for charged leptons, is symmetric like Mν . However, the
hermetian product M2

l =M †
l Ml is diagonalizable by a unitary transformation U (l)

L as de-
scribed in Appendix A. The matrix U (l)

L is the transformation matrix for the left-handed
charged leptons. The most general diagonal matrix M2

l is invariant under a diagonal
phase matrix T .

M2
l = T †M2

l T (4.14)

If the matrix T fullfills T n = 1 it generates the cyclic group Cn. For n = 3 and
ω = exp(2πi/3) a choice of T is given by

TTBM =

1 0 0
0 ω 0
0 0 ω2

 (4.15)
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4.2. A4-Model
In principle, a flavour symmetry group Gf can be continuous or discrete. However, a
specific mixing pattern is supposed to arise from a spontaneous symmetry breaking of the
flavour group. Thus, there could be unwanted Goldstone bosons in a continuous group.
Next, the symmetry group should be as simple as possible in order to make testable
predictions. This means, for example, that the flavour symmetry group is not gauged
and affects only the mass Lagrangian and the scalar potential. Generally Gf enlarges the
scalar sector. The symmetries which are not contained in Gf directly, are generated by
an alignment of the vacuum expectation values of the scalars. Of course a specific mixing
scenario like the HPS mixing still allows several different mixing matrices. Nevertheless
the TBM matrix has the advantage that it can be described in terms of three symmetries.
These symmetries are a starting point to find an appropriate flavour symmetry group.
If particles are identified with group representations the transformation properties show
up in the mass terms.

A flavour symmetry model which describes the HPS mixing should satisfy the three
conditions for the mixing angles θij and additionally describe the ratio for the solar
and atmospheric mass squared differences to be compatible with neutrino observables
as presented in Table 3.1.

1. θ13 = 0

2. sin2 θ23 =
1
2

3. sin2 θ12 =
1
3

4. r = ∆m2
⊙

∆m2
atm

∼ 0.03

The three mixing angles are automatically obtained if the mass matrix is invariant under
STBM and Aµτ . The considered symmetry group isGSM⊗Gf⊗X with the standard model
gauge group augmented by a flavour symmetry group Gf and an additional auxiliary
group X which will be motivated later on. To reproduce MTBM

ν in a flavour model,
which does not contain Aµτ , the flavour group Gf has to be broken down to GS in the
neutrino sector and to GT in the charged lepton sector.

Gf
SSB−−−−→

ν-sector
GS

∼= C2 (4.16)

Gf
SSB−−−−→

l-sector
GT

∼= C3 (4.17)

The whole flavour group Gf is completely broken.
Group A4 offers good possibilities to build a flavour symmetry model on it. Be-

fore writing down invariants in the Lagrangian, a suitable assignment of transformation
properties for the fields has to be performed. The group A4 has three one-dimensional
irreducible representations and one three-dimensional irreducible representation which
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have to be allocated to three known flavours. In addition A4 is the smallest group with
a three-dimensional representation. The matrices STBM and TTBM are contained in A4,
whereas the µ-τ symmetry is explained by a special vacuum alignment. The left-handed
lepton doublets form a triplet (Le, Lµ, Lτ ) under A4. The right handed charged leptons
transform according to the three singlets. In order to achieve an independent breaking
pattern for the neutrino- and the charged lepton sector at least two A4 scalar fields
transforming as triplets are required. The observed “strong” mass hierarchy for the
charged lepton masses can be realised by an additional Frogatt-Nielson U(1)FN flavour
symmetry. The charged leptons (eR, µR, τR) get FN charges 2q, q and 0 and a scalar
field θ gets FN-charge −1. This produces a dependency between the vacuum expectation
value of the scalar field and the Yukawa coupling matrices for the charged leptons yl(θ).
Λ′ is the cutoff scale for the U(1)FN symmetry.

⟨θ⟩
Λ′ ≡ λ < 1

q=2−−→ me : mµ : mτ = λ4 : λ2 : 1 (4.18)

For q = 2 the value λ ∼ 0.25 is needed to explain the observed charged lepton mass
hierarchy. For simplicity Λ′ = Λ is assumed with Λ describing the cut-off scale of the
A4-theory. The A4 scalar fields φT , φS and ξ transform as singlets of the standard
model gauge group. Therefore, only two Higgs doublets hu,d, which are A4 singlets, are
needed. It is assumed that their vacuum expectation value is much smaller than Λ. The
transformation properties of all fields are given in Table 4.1. The A4 invariant Yukawa
interactions for leptons expressed in an expansion in powers of 1

Λ
are

Llepton =Ll + Lν

=
yeeR (φTL)1 hd

Λ
+
yµµR (φTL)1′ hd

Λ
+
yττR (φTL)1′′ hd

Λ

+
xaξ (LhuLhu)1

Λ2
+
xb (φSLhuLhu)1

Λ2
+ h.c.+ . . .

(4.19)

The dots stand for higher dimensional terms. The notation of Ref. [2] is partially used
where the product of two triplets (33)1 transforms as 1, (33)1′ transforms as 1′ and
(33)1′′ transforms as 1′′. The forbidden interchange of φT and φS will be explained by
the auxiliary group X later on. There exist models with extra dimensions explaining this
exclusion rule without auxiliary symmetries too. The aim of the model is to realise a µ-τ
symmetric mass matrix. Thus it seems reasonable to use only one singlet ξ transforming
as 1. This is the singlet with a 2-3 exchange symmetry (see Eq. (2.35)). The non-
appearance of a term (LL)1 must also be explained by an additional symmetry. Here
the discrete group C3 is used as an appropriate auxiliary group. The transformation
properties of the fields under C3 are listed in Tab. 4.1 as well.

The A4 lepton Lagrangian in Eq. (4.19) is evaluated using the product rules for the
representations (2.35) to (2.38). The cut-off scale of the theory (Λ) and the Higgs
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group L eR µR τR N c
R hu,d θ φT φS ξ ξ′ ξ′′

A4 3 1 1′′ 1′ 3 1 1 3 3 1 1′ 1′′

C3 ω ω2 ω2 ω2 · · · 1 1 1 ω2 ω · · · · · ·
U(1)FN 0 4 2 0 0 0 -1 0 0 0 0 0
SU(2)L 2 1 1 1 1 2 1 1 1 1 1 1

Table 4.1: Transformation properties of the fields. If additional (gray) fields are added
to the model an appropriate assignment of C3 transformations has to be done
for all fields

doublets hu,d are not written out explicitly for notational simplicity.

Ll = yeeR (φT1Le + φT2Lτ + φT3Lµ)

+ yµµR (φT3Lτ + φT1Lµ + φT2Le)

+ yττR (φT2Lµ + φT1Lτ + φT3Le)

(4.20)

To realize the desired breakdown to GT , the vacuum expectation values for φT2 and φT3

have to vanish. Looking at the product rules (2.35) to (2.38) a diagonal lepton mass
matrix could be equally realized by different assignments of the singlets to the charged
leptons in combination with exclusively non-vanishing ⟨φT2⟩ or ⟨φT3⟩ and appropriate
changes in the Lagrangian. In the neutrino sector the products are explicitly given by

Lν = xaξ (LeLe + LµLτ + LτLµ)

+
xb
3
[φS1(2LeLe − LµLτ − LτLµ)

+ φS2(2LµLµ − LeLτ − LτLe)

+ φS3(2LτLτ − LeLµ − LµLe)] .

(4.21)

This requires the alignment φS ≡ φS1 = φS2 = φS3 in order to break A4 down to GS.
Now the vacuum alignment for all the scalar fields after symmetry breaking is given by

⟨hu,d⟩ = vu,d ≪ Λ, ⟨ξ⟩ = u,
⟨θ⟩
Λ

= λ

⟨(φS1 , φS2 , φS3)⟩ = (vS, vS, vS), ⟨(φT1 , φT2 , φT3)⟩ = (vT , 0, 0)
(4.22)

It is assumed that the scalar potential V (φT , φS, ξ, hu,d) is of the form which produces
the above vacuum alignment. The task of the correct vacuum alignment turns out to
be difficult to realize just by implying the A4-symmetry on the scalar potential. The
minimization of two triplets φS and φT results in six equations which should be satisfied
by the two unknowns vT and vS. It turns out that this is not possible unless the scalar
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potential is further restricted [1].
The vacuum alignment in Eq. (4.22) leads to the diagonal mass matrix for charged

leptons

Ml = vd
vT
Λ

diag(ye, yµ, yτ ) (4.23)

and charged lepton masses

me = ye(λ)vd
vT
Λ
, mµ = yµ(λ)vd

vT
Λ
, mτ = yτ (λ)vd

vT
Λ

(4.24)

the neutrino mass matrix looks like

Mν = m0

a+ 2b/3 −b/3 −b/3
−b/3 2b/3 a− b/3
−b/3 a− b/3 2b/3

 (4.25)

with the substitutions

m0 =
v2u
Λ
, b = xb

vS
Λ
, a = xa

u

Λ
(4.26)

Indeed, this matrix has the form of MTBM
ν in Eq. (4.7) with

A = a+
2

3
b, B = −2

3
b, D = −a+ b (4.27)

This implies that this matrix is diagonalized by UTBM

UT
TBMMνU = m0diag(a+ b, a,−a+ b) (4.28)

with the resulting neutrino masses

m1 = a+ b, m2 = a, m3 = −a+ b (4.29)

The derived observables are just one possible example. The A4 model allows many
modifications leading to different results for the observables. Most of these modifica-
tions do not have a differing theoretical motivation and correspond only to different
assignments of transformation properties or, for example, the adding of further scalar
singlets. In contrast to the mixing angles the predictions for the observables involving
neutrino masses are rather lax. The variables a and b in Eq. (4.26) are supposed to have
the same order of magnitude. Hence, they can be chosen in order to create a small ratio
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r of the solar and atmospheric mass squared difference.

r =

∣∣∣∣12 +
|b|

4|a| cos∆

∣∣∣∣ , ∆m2
⊙ = −(|b|2 + 2|a||b| cos∆), (4.30)

∆m2
atm = |m3|2 − |m1|2 = −4|a||b| cos∆ (4.31)

with ∆ being the phase difference between a and b. The A4 flavour symmetry does in
general not exclude a specific neutrino ordering. In order to produce a realistic value
of r, cos∆ should be chosen negative in this effective model. This implies a normal
ordering. By expressing a and b in terms of r and ∆matm the neutrino masses can be
further investigated [1].

|a|
√
2m0 =

−
√

∆m2
atm

2 cos∆
√
1− 2r

(4.32)

|b|
√
2m0 =

√
1− 2r

√
∆m2

atm (4.33)

|m1|2 =
[
−r +

(
8(1− 2r) cos2∆

)−1
]
∆matm (4.34)

|m2|2 =
(
8(1− 2r) cos2∆

)−1
∆matm (4.35)

|m3|2 =
[
1− r +

(
8(1− 2r) cos2 ∆

)−1
]
∆matm (4.36)

In general the A4-model makes no prediction of the neutrino mass spectrum. Depending
on the choice of cos∆ a hierarchical (cos∆ ∼ 1) or a degenerated (small cos∆) neutrino
spectrum could be achieved. The scale Λ can be estimated [1] using Eq. (4.26) and
Eq. (4.33) to be between

7.2 × 1012 GeV < Λ < 1.8 × 1015 GeV (4.37)

A rather small value of Λ would suggest that higher dimensional operators have to be
taken into account to derive the correct form of the mass matrix. Nevertheless, even
on this scale (∼ O(1015 GeV)) higher dimensional operators lead to corrections of the
mixing angles from their tri-bimaximal values. The next to leading order corrections
(NLO) affect all three mixing angles with the same strength.

5. Analysis of Asymmetry Parameters
The motivation of the A4 flavour symmetry model presented in the privious section was
based on the assumption that TBM-mixing is a correct first order description. The TBM-
mixing scheme is linked to a special form of the neutrino mass matrix which gives rise
to symmetries. These symmetries should be provided by the flavour symmetry group.
Even though deviations arise in any realistic flavour symmetry model due to higher
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order corrections or renormalization group running, there the question whether TBM-
mixing is a good starting point remains. Especially the value of θ13 listed in Tab. 3.1
is not compatible with zero in its 3σ-range. The task of this section is to determine
how strongly the experimentally allowed deviations affect the form of the mass matrix
in Eq. (4.7). All mixing parameters are varied in their 3σ-range as given in Table 3.1.
The smallness of the ratio r = ∆m2

⊙/∆m
2
atm ≃ 0.026 . . . 0.038 is used as well. In order

to see how well TBM-mixing can be satisfied the value of θ23 is chosen to be in interval
[−π

2
, 0].

MTBM
ν =

A B B
· · · 1

2
(A+B +D) 1

2
(A+B −D)

· · · · · · 1
2
(A+B +D)

 (5.1)

mαβ ≡
(
MTBM

ν

)
αβ

=
∑
i

UαiUβimi (5.2)

the form of MTBM
ν can be obtained by imposing three conditions on the elements mij

m12 = m13, m22 = m33, m11 +m13 = m22 +m23 (5.3)

These are used to define three asymmetry parameters.

X1 ≡
∣∣∣∣m12 −m13

m12 +m13

∣∣∣∣ X2 ≡
∣∣∣∣m22 −m33

m22 +m33

∣∣∣∣ X3 ≡
∣∣∣∣m11 +m13 −m22 −m23

m11 +m13 +m22 +m23

∣∣∣∣ (5.4)

In order to investigate the resulting asymmetry values, the following definitions for the
deviations from TBM-mixing for the angles and from zero for the parameter r are used.

ϵ12 ≡ θ12 +
π

4
with |ϵ12| < 0.07, (5.5)

ϵ23 ≡ θ23 − arcsin
(

1√
3

)
with |ϵ23| < 0.14 (5.6)

ϵ13 ≡ θ13 with 0.03 < ϵ13 < 0.2, ϵr ≡
√
|r| with 0.160 < ϵr < 0.196, (5.7)

ϵ ≡ max (ϵ12, ϵ13, ϵ23, ϵr) (5.8)

The symmetric neutrino mass matrix is expressed by the 9 free parameters in the PMNS
mixing matrix in Eq. (3.26) and the diagonalization equation (4.5). A computer program
is generating random numbers in the 3σ-range of the three mixing angles and the Dirac
phase as listed in Tab. 3.1. The Majorana phases take values from 0 to 2π. The
asymmetry parameters are plotted as functions of the smallest neutrino mass according
to the respective mass spectrum. The other two masses are generated as random numbers
respecting the 3σ-range of ∆m2

atm and ∆m2
⊙. If the minimal value is not plotted or given

in the text it is supposedly smaller than O(ϵ2r,13). In the same way non-plotted maximal
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Figure 5.1: Minimal and maximal X1 for fixed mass m1 and a normal spectrum.

values correspond to large or possibly even infinite asymmetry parameters.

5.1. Normal Spectrum
The first asymmetry parameter X1 has a stable range for small neutrino mass m1 with
a minimal value X1 ≈ 0.2 and a maximal value X1 ≈ 4 as displayed in Fig. 5.1. For
m1 > 0.002 the value X1 becomes unstable. In the stable range no mass dependency
on m1 is observable. Hence, in order to investigate the θ13 dependence m1 is set to zero
and the mixing angles are evaluated by a Taylor expansion around their TBM values.

X1 ≈
∣∣∣∣θ13 ( eiδ√

2
− 3e−2i(α−β+δ/2)

√
2ϵr

)
+ c1ϵ12 + c2ϵ23 +O(ϵ2)

∣∣∣∣ (5.9)

The coefficients c1 and c2 are O(1). For a minimal asymmetry parameter X the de-
viations of θ12 and θ23 are set to zero. The term in parentheses involving the phases
obviously cannot become zero. Therefore, the expression gets a minimal X1 > O(ϵ2)
which is achieved by small θ13 and large ϵr

Xmin
1 ≈

∣∣∣∣θ133e−2i(α−β+δ/2)

√
2ϵr

+O(ϵ)

∣∣∣∣ ≈ 10.8× θ13 +O(ϵ) ≈ 0.3 +O(ϵ) (5.10)
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Figure 5.2: θ13-dependence of the maximal X1 for a normal spectrum plotted in the mass
range 10−6 eV ≤ m1 ≤ 0.5 × 10−3 eV
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Figure 5.3: θ13-dependence of the minimal X1 for a normal spectrum
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This reproduces the numerical result quite accurately. The prefactor (∼ 10.8) of θ13
describes the linear dependence in Fig. 5.3 well. The largest possible X1 is approxi-
mately given by large θ13, small ϵr and phases that produce opposite signs for the two
exponentials

Xmax
1 ≈ 2.8 +O(1) (5.11)

Now there are some extra terms coming from the non-TBM structure of θ12 and θ23
which are of the order of one. Hence, the analytic expression is compatible with the
numerically calculated value Xmax

1 ≈ 4 in Figure 5.1. The maximal asymmetry X1 is
equally depending linearly on θ13 as shown in Fig. 5.2. The stability of Xmax

1 in the
θ13-m1 space for small m1 can be further analysed. A maximal asymmetry of X1 would
correspond to a vanishing denominator of X1 in Eq. (5.4).

m12 +m13 = 0 (5.12)∑
i

U1i (U2i + U3i)mi = 0 (5.13)

setting m1 to zero results in

m2

m3

= − U23 + U33

U12 (U22 + U32)
U13 (5.14)

with |U13|2 = sin2 θ13 this can be translated into a relation for θ13.

θ13 = c (U12, U22, U23, U32, U33)
m2

m3

(5.15)

c ≃ ei(2α−β)c12s12(c23 − s23)

c23 + s23
(5.16)

|c| ≃ c12s12(c23 − s23)

c23 + s23
(5.17)

Parameter c is required to be small enough in order to be compatible with the allowed
values for θ13 and r. The coefficient |c| gets small for maximal ϵ23 while ϵ23 → 0 produces
an infinite c. This leads to the requirement |c| ≲ 1.3 but numerically one finds |c| ≳ 3.1 in
the 3σ-range of the angles θ12 and θ23. Hence, Xmax

1 has no singularities in a hierarchical
spectrum.

The numerical maximal X2 in Fig. 5.4 shows a stable range for small mass m1 but
no significant θ13 dependence. Similarly as for X1, an expression for X2 is derived via
Taylor expansions. X2 is mostly depending on the deviations of θ23. Thus, the maximal
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Figure 5.4: Maximal value of X2 for a normal spectrum and fixed mass m1.
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Figure 5.5: θ13-dependence of the maximal X2 for a normal spectrum



5. Analysis of Asymmetry Parameters 39

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

-0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.65

X
2

θ23 [rad]

Figure 5.6: θ23-dependence of the maximal X2 for a normal spectrum plotted in the mass
range 10−6 eV ≤ m1 ≤ 10−2 eV

value for X2 is approximately given by the maximal ϵ23.

Xmax
2 ≈

∣∣−2ϵ23 +O(ϵ2)
∣∣ ≈ 0.3 +O(ϵ2) (5.18)

This explains why X2 shows no remarkable θ13 dependence in Fig. 5.5. For θ23 being at
its best-fit value this corresponds to Xmax

2 < 0.1. That means that Xmax
2 could become

rather small compared to the maxima of the other asymmetry parameters. In order to
obtain a minima of X2 the angle θ23 can be set to its TBM value. The lower bound
is given by products of the non vanishing values ϵ13 and ϵr. The analytically derived
linear dependence of θ23 with a slope of approximately 2 is reflected in Fig. 5.6. The
numerically stable value of X2 in a hierarchical spectrum in Fig.5.4 suggests that there
are no singularities. This can be further investigated by looking at the explicit form of
X2.

X2 =
. . .

e2iβc213m3 + c212(e
2iαm2 + e2iδs213m1) + s212(m1 + e2i(α+δ)m2s213)

(5.19)

The denominator will be denoted by DX2 . With the assumption of a nearly degenerated
spectrum this simplifies to

DX2 = e2iβc213 + c212(e
2iα + e2iδs213) + s212(1 + e2i(α+δ)s213) (5.20)



5. Analysis of Asymmetry Parameters 40

 0.01

 0.1

 1

 10

 100

10-6 10-5 10-4 10-3 10-2 10-1 100

X
3

m1 [eV]

Figure 5.7: Maximal value of X3 for a normal spectrum and fixed mass m1.

This turns zero for α = 0, β = δ = π
2

leading to a maximal asymmetry X2. Clearly this
could only happen if the masses become totally equal which is impossible. A suitable
choice of the phases where α, β, δ are functions of the three masses would probably min-
imize the denominator. In a normal spectrum the denominator DX2 takes the following
form under the assumptions m1 → 0 and m2 = rm3

DX2 ≈ m3

(
e2iαc212 + e2i(α+δ)s212s

2
13

)
r︸ ︷︷ ︸

≪cos2 θ13

+m3e
2iβc213 ̸= 0 (5.21)

DX2 cannot become zero for all possible complex phase configurations because the second
term has a much larger absolute value than the first.

The mass dependence of X3 in Fig. 5.7 differs from the other two asymmetry param-
eters. It has large values for small mass m1 and a small stable range for m1 > 0.2 eV
with Xmax

3 ≈ 1.7 and a light θ13 dependence. After a Taylor expansion the parameter
X3 is roughly given by

X3 ≈
∣∣∣∣3e2iβ−iδm3

2
√
2m1

θ13 + ϵ23

(
3e2iβm3

2m1

)
+O(ϵ2)

∣∣∣∣ ≈ O(1) (5.22)

This relation certainly only holds for a nearly degenerate spectrum because the O(ϵ2)
contains terms with m3

m1
which becomes much larger than epsilon for small m1. The

numerical plot of X3 in the m1-θ13 space given in Fig. 5.8 suggests that for values at the
lower bound of θ13 the maximal asymmetry stays finite.
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Figure 5.8: θ13-dependence of the maximal X3 for a normal spectrum

5.2. Inverted Spectrum
For the inverted spectrum all three asymmetry parameters can become minimal (Xi <
10−3) for the whole mass range. This is in contrast to the normal spectrum where
Xmin

1 > 0.2 for small masses in Fig. 5.1. The maximal asymmetry X1 is large for all
masses and free parameter θ13. Just for the lowest possible values of θ13 and small m3

the asymmetry X1 becomes roughly of order 10 as indicated in Fig. 5.9.
The asymmetry parameter X2 given in Fig. 5.10 shows a stable range again. An ap-

proximate expression is once more derived by a Taylor expansion under the assumptions
m3 → 0 and m1 ≈ m2 for an inverted spectrum.

X2 ≈ 2

∣∣∣∣∣ϵ23 +
√
2eiδ (−1 + e2iα)

1 + 2e2iα
θ13

∣∣∣∣∣+O(ϵ2) (5.23)

this becomes maximal for α = π
2

Xmax
2 ≈ 0.3 + 5.7× θ13 (5.24)

This describes quite well the linear dependence of the maximal X2 in Fig. 5.11. In both
spectra, normal and inverted, X2 becomes large if the value of the lightest neutrino mass
corresponds to a nearly degenerated spectrum m1,3 > 0.1.

Like the normal spectrumDX2 in Eq. (5.19) cannot become zero if the smallest neutrino
mass, now m3, is tending to zero. With m1 = m2 + ϵm and s212 = 1/3 the scale of each
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Figure 5.9: θ13-dependence of the maximal X1 for an inverted spectrum
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Figure 5.10: Maximal value of X2 for an inverted spectrum and fixed mass m3.



5. Analysis of Asymmetry Parameters 43

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

X
2 

θ13 [rad]

Figure 5.11: θ13-dependence of the maximal X2 for an inverted spectrum plotted in the
mass range 10−6 eV ≤ m3 ≤ 10−3 eV

term in DX2 can be evaluated by only considering its absolute value and using that s213
is of order 10−2.

DX2 =
m2

3

2 (e2iα + e2iδs213)︸ ︷︷ ︸
≈e2iα

+(1 + e2i(α+δ)s213)︸ ︷︷ ︸
≈1

+ ϵm(
2

3
e2iδs213 +

1

3
)︸ ︷︷ ︸

ϵm
3

√
4s413+1+4s213 cos(2δ)≈ ϵm

3

(5.25)

≈ m2

3

(
2e2iα + 1

)
+
ϵm
3

≈ m2

3

√
5 + 4 cos(2α)︸ ︷︷ ︸

>1

+
ϵm
3

(5.26)

Even if the two terms involvingm and ϵm are antiparallel in the complex plane (arg(m2ϵ
∗
m) =

π) they cannot cancel each other out because m2 >
√

∆m2
atm ≫

√
∆m2

⊙ = |ϵm|. Thus
in the strong hierarchical case there are no singularities in X2.

A Taylor expansion of the last asymmetry parameter X3 yields a linear dependence
of X3 on the deviations ϵ12, ϵ23 and on θ13 for both the hierarchical and the nearly
degenerate spectrum. In the hierarchical case the assumptions m3 → 0 and m1 ≈ m2

are used once again.

X3 =

∣∣∣∣− 3ei(2α+δ)

2
√
2(1 + 2e2iα)︸ ︷︷ ︸

∼1.0×θ13<0.2

θ13 −
3e2iα

2 + 4e2iα︸ ︷︷ ︸
∼1.5×ϵ23<0.21

ϵ23 −
9(1− e2iα)

2
√
2(1 + e2iα)︸ ︷︷ ︸

∼6.4×ϵ12<0.45

ϵ12 +O(ϵ2)

∣∣∣∣ (5.27)
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Figure 5.12: Maximal value of X3 for an inverted spectrum and fixed mass m3.
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Figure 5.13: θ13-dependence of the maximal X3 for an inverted spectrum
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Figure 5.14: θ12-dependence of the maximal X3 for an inverted spectrum plotted in the
mass range 1 × 10−6 ≤ m3 ≤ 1 × 10−2

This expression is dominated by the ϵ12 dependence and coincides with the numerical
results in Fig. 5.14. The numerical analysis in Fig. 5.12 diplays that X3 has no singular-
ities over the whole mass range. The exact value of X3 has an upper limit of X3 ≲ 1.8.
A summarizing discussion of the asymmetry parameters in the context of TBM-mixing
and flavour symmetry models is given in the next section.

6. Discussion
All three asymmetry parameters acquire sizeable values for both mass spectra and the
whole mass range of the lightest neutrino mass. Even though TBM-symmetries are not
maximally violated for some mass ranges with Xi ≈ O(1), the deviations still indicate a
large discrepancy. Only for a hierarchical normal spectrum the maximal asymmetry X2

becomes smaller than one (Xmax
2 ≈ 0.4) as displayed in Fig. 5.4. For the minimal possible

asymmetry the normal hierarchical X1 in Fig 5.1 differs from the other asymmetries.
With Xmin

1 ≈ 0.2 it is considerably above the other minimal asymmetries (< 10−3).
As a consequence, both normal and inverted ordering allow considerable deviations

from the TBM-symmetry assumptions. In some stable mass ranges a linear dependence
on the angles can be observed. These dependencies are further investigated analytically.
For normal ordering two asymmetry parameters X1 and X2 have a stable range for a
hierarchical spectrum and maximal asymmetries for a nearly degenerate spectrum. The
third parameter X3 shows opposite behaviour having large asymmetry for a hierarchi-
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cal spectrum and a stable range for a nearly degenerate spectrum. For an inverted
spectrum the second asymmetry parameter X2 has a similar mass dependence to the
normal case. The first parameter X1 in an inverted ordering could become both maxi-
mal and minimal over the whole mass range. Whereas the third parameter X3 is stable
and large but non-maximal over the whole mass range. The maximal asymmetries are
mostly caused by the phases which can vary in the total [0, 2π] range as they are not
experimentally restricted. Asymmetries rely moderately on θ12. Only maximal X3 in
an inverted spectrum (see Fig. 5.14) shows significant θ12-dependence. Since the other
two mixing angle deviations contribute with the same order to X3 the θ12-dependence
is softened. For X1 in an inverted hierarchical ordering a maximal asymmetry is only
possible for θ13-values considerably above the lower three sigma bound (see Fig. 5.9). It
is not surprising that the “strength” of the asymmetries is mostly driven by the angles
θ13 and θ23. The µ-τ -symmetry can already be explained by a maximal θ23 and zero θ13
without a fixed angle θ12. This information is completely contained in X1 and X2 which
therefore depend merely on θ23 and θ13. The third asymmetry parameter X3 which is
more related to the experimentally quite well known θ12 cannot become maximal at all.

One needs to know if the deviations are explainable in an A4 model. First of all there
are certain mass ranges which are not compatible with the predictions of a particular A4-
model. In the effective A4-model in Sec. 2.2 for example only the normal ordering would
be relevant. If a symmetry is maximally violated this could generally be accommodated
within an A4 flavour symmetry as long as it allows deviations of the mixing parameters.
Nevertheless, it poses the question whether the symmetry was a good starting point.
Other forms of the neutrino mass matrix possibly allow for different flavour symmetries
with less additional assumptions. The A4-model presented in Sec. 2.2 had to introduce
three A4 scalar fields together with 14 new parameters in the scalar potential. In return
it predicts the three mixing angles of UPMNS but leaves the absolute mass range and
the complex phases more or less undetermined. Most of the introduced parameters
were restricted by the vacuum alignment which is not easy to explain using only the A4

symmetry.
In addition to non-vanishing θ13, asymmetries are induced by many unknowns of neu-

trinos. Especially it is still unclear whether neutrinos are Majorana or Dirac particles.
The existence of the Majorana nature of neutrinos allows to describe mass models in
which the smallness of neutrino masses is explained but requires to introduce two ad-
ditional phases in UPMNS. These mass models still leave the absolute mass scale and
the ordering undetermined. However, this information would be essential to distinguish
flavour symmetry models once the mixing angles are fixed.
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A. Diagonalization of the Fermion Mass Matrix
In this section the problem of diagonalization of the matrices, arising in the Mass-
Lagrangian, shall be illustrated. For this purpose the following theorem will be used.
Theorem 3. Any complex n×n matrix M ∈ GL(n,C) can be diagonalized by a biunitary
transformation

V †MU = M̂ = diag(m1,m2, . . . ,mn) (A.1)

with V and U unitary
The fermion masses are usually generated through the coupling of left- and right-

handed fields.

Lmass = ψi,LMijψj,R (A.2)

If the fermion masses result from the coupling of the fermions to the Higgs-field the mass
matrix is given by the Yukawa-Coupling matrix Y times the Higgs vacuum expectation
value. The basis changes for the left and right-handed fields are done by two independent
unitary transformations U and V . Because the elements of the diagonal matrix are
interpreted as the physical masses, they should be nonnegative real numbers. This can
always be achieved by a redefinition of the unitary matrices U and V by a multiplication
with a diagonal phase matrix. The above theorem can be motivated by looking at the
hermitian matrix M †M . Suppose this matrix is diagonalized by the unitary matrix U .

U †M †MU = M̂2 (A.3)
M̂−1U †M †︸ ︷︷ ︸

≡V †

MU = M̂ (A.4)

now one just has to show that V † is unitary

V †V = M̂−1U †M †MU
(
M̂−1

)†

︸ ︷︷ ︸
=M̂−1

(A.5)

= M̂−1M̂2M̂−1 (A.6)
= 1 (A.7)

For a symmetric matrix M one can choose V = U∗ which results in

UTMU = M̂ (A.8)

This choice can be seen immediately by taking the transpose of Eq. (A.1). That means
that a complex symmetric matrix M can be brought to diagonal form with nonnegative
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entries by one unitary matrix. Obviously Eq. (A.8) is no eigenvalue equation. In conse-
quence an eigenvalue of M is not necessarily a physical mass. But for the matrix M †M
one can calculate the masses via the solution of the eigenvalue problem.
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