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Kurzfassung

Prozesse Darwinscher Evolution sind dynamisch, nichtlinear, und unterliegen Fluktu-
ationen. Systeme Darwinscher Evolution können mit wohl etablierten Methoden der
statistischen Physik analysiert werden. Die für evolutionäre Veränderungen wesentlichen
Mechanismen sind Reproduktion, Mutation und Selektion. Individuen reproduzieren sich
und vererben Gene und Merkmale, so dass die Population evolviert. Mutationen treten
spontan auf, z.B. durch Fehler in der Reproduktion, wodurch verschiedene neue Typen
von Genen oder Merkmalen entstehen können. Selektion wirkt auf verschiedene Typen.

Diese Arbeit konzentriert sich auf Selektion in Systemen, welche den Prinzipien Darwin-
scher Evolution, sowie Fluktuationen unterliegen. Die Wechselwirkungen verschiedener
Typen untereinander können die jeweiligen reproduktiven Raten beeinflussen. Eine
wichtige Disziplin, welche solche Wechselwirkungen betrachtet, ist die Spieltheorie. In
der evolutionären Spieltheorie identifiziert man verschiedene Typen mit verschiedenen
Strategien. Der (spieltheoretische) Erfolg einer Strategie beeinflusst deren reproduktiven
Erfolg. Eine wichtige Eigenschaft evolutionärer Spiele ist, dass der evolutionäre Erfolg
einer Strategie im Allgemeinen mit der Zusammensetzung der Population variiert.
Der Begriff Fixierung bezeichnet das Ereignis der Übernahme einer Population durch

eine Mutation. Hauptsächlich werden in dieser Arbeit die Fixierungszeiten einer mutierten
Strategie betrachtet. Sie sind ein Maß für die Zeit, die eine Population benötigt, um
von einem Zustand mit nur wenigen zu einem Zustand mit ausschließlich Mutanten zu
gelangen.
Selektion kontrolliert die Erfolgsdifferenz zwischen Typen. Dies ermöglicht die Def-

inition verschiedener Regime der Selektion. Ohne Selektion ist Evolution neutral und
Fluktuationen dominieren. Ein wichtiger Grenzfall ist schwache Selektion, welche eine
gerichtete Veränderung zu diesen zufälligen evolutionären Veränderungen hinzufügt. In
dieser Arbeit spielt die Analyse der schwachen Selektion eine bedeutende Rolle in der
Klassifikation verschiedener evolutionärer Prozesse. Sie erlaubt eine Vereinfachung der
nichtlinearen Systeme und damit eine analytische Beschreibung. Es werden approxima-
tive Formulierungen der Fixierungszeiten unter schwacher Selektion präsentiert und die

1



Kurzfassung

Universalität dieses Grenzfalls betrachtet. Auf Zwischenskalen kann man beobachten,
dass die Fixierungszeit einer vorteilhaften Mutation mit der Selektion ansteigt, obwohl
die entsprechende Fixierungswahrscheinlichkeit ebenso größer wird.
Davon ausgehend kann man zur Betrachtung starker Selektion übergehen, so dass

Selektion die Dynamik auch in kleinen Systemen dominiert. Hierbei lassen sich Segre-
gationseffekte beobachten: Das Schicksal der Population ist deterministisch durch die
Anfangsbedingung bestimmt.

Ein weiterer wichtiger Mechanismus der Evolution ist der Genfluss, welcher z.B. durch
Migration zwischen Population der selben Art erzeugt wird. In diesem Zusammenhang
kann Migration der Selektion entgegenwirken. In Systemen bistabiler evolutionärer
Dynamik kann solch ein Migrations-Selektionsgleichgewicht zu lang stabiler Koexistenz
führen. Die vorliegenden Arbeit gibt hier eine quantitative Analyse der dynamischen und
statistischen Eigenschaften. Zu diesem Zweck werden die Austerbe- oder Fixierungszeiten
des nichtlinear gekoppelten Populationssystems analysiert.
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Abstract

Processes of Darwinian evolution are dynamic, nonlinear, and underly fluctuations. A
way to analyze systems of Darwinian evolution is by using methods well established in
statistical physics. The main mechanisms that are responsible for evolutionary changes
are reproduction, mutation, and selection. Individuals reproduce and inherit genes and
traits, such that a population evolves. Mutations occur spontaneously, e.g., by errors in
reproduction, whereby different new types of genes or traits can emerge. Selection acts
on different types.
This thesis focuses on selection in systems that underlie the principles of Darwinian

evolution, as well as fluctuations. Once there are different types, their interactions with
each other can influence their reproductive rates. One important framework to look
at such interactions is game theory. In evolutionary game theory, different types are
identified with different strategies, and the payoff of a strategy affects the reproductive
success. An important property of evolutionary games is that, in general, the evolutionary
success of a strategy varies with the composition of the population.
The event of a mutation taking over a population is called fixation. The quantities

mainly considered in this thesis are the fixation times of a mutant strategy. They are
a measure for the time a population spends reaching the state of only mutants, when
starting from a few.
The role of selection is to control the payoff differences between types, which gives

rise to several regimes of selection. In the absence of selection evolution is neutral and
fluctuations dominate. An important limit case is weak selection, which introduces a
small bias to the random evolutionary changes. In this thesis, weak selection analysis
plays an important part in the classification of different evolutionary processes. This
allows to simplify the nonlinear dynamical system and thus an analytical description.
Here, approximative formulations of the fixation times under weak selection are presented,
and the universality of the weak selection regime is addressed. On intermediate scales,
one can observe that the average fixation time of an advantageous mutation increases
with selection, although the probability of fixation also increases.
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Abstract

One can then move on to strong selection, such that selection dominates the dynamics
even in small systems. Here, one can observe segregation effects, where the initial
condition determines the fate of the finite population in a deterministic way.
Another important evolutionary mechanism is gene flow, e.g., caused by migration

between populations of the same species. In this context, migration can counterbalance
selection. In systems with bi-stable evolutionary dynamics, the migration-selection
equilibrium can lead to coexistence that is stable for a long time. This thesis gives a
quantitative analysis of the dynamical and statistical properties of such a system. To
this end, the extinction (fixation) times are analyzed also in the nonlinearly coupled
population system.
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CHAPTER 1
Introduction

The step from describing inert matter
to describing biological life seems enormous,
but maybe it isn’t.

Per Bak (How Nature Works)

1.1 Motivation

Fluctuations play an important role in physical and biological systems. In particular,
far from equilibrium fluctuations are one of the most fundamental properties commonly
observed in many processes of the living world. The rigorous quantitative description
of fluctuations is performed in the field of stochastic processes. Its origins lie in the
description of Brownian motion, first systematically observed by R. Brown [Brown,
1866]. The mathematical analysis, at least from a physical perspective, started about
half a century later, conducted by A. Einstein, M. von Smoluchowski, and P. Langevin
[Einstein, 1905; Langevin, 1908; von Smoluchowski, 1906]. What first came along as a
rather heuristic chain of arguments guided by genius and intuition led to fundamental
physical equations. These equations describe a stochastic process, e.g., position or
velocity of a Brownian particle, by microscopic and macroscopic laws accounting for
thermal fluctuations. The formalism was later put on a more rigorous basis [Feller,
1968; Kolmogorov, 1956]. Since then, stochastic processes have become unavoidable in
successfully describing fundamental processes in physics, chemistry and biological physics,
where thermal or quantum fluctuations have to be accounted for, see, e.g., [Gammaitoni
et al., 1998; Gardiner, 2008; Krug, 1997; Reimann, 2002; Schnakenberg, 1976; van Kampen,
1997]. Typically, the interactions taken into account here are (quantum-)mechanic or
electromagnetic etc., i.e. they are based on the fundamental interactions in physics.
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1 Introduction

It is, however, notable that in other fields like quantitative social science or biology, a
mathematical description can often be formulated as if such physical interactions occur
and as if fluctuations are of thermal origin (from a physical point of view, in most cases
they are not). Fluctuations can be of thermal origin, but are often generally referred
to as demographic fluctuations that simply originate from discreteness and finite size.
In the quantitative description of collective motion, social (hierarchical) interactions
govern the onset (e.g., movement is induced by imitation), patterns, and phase transitions
[Helbing and Molnár, 1995; Romanczuk et al., 2010; Sumpter, 2010; Vicsek et al., 1995].
In Darwinian evolution, the outcome of mutation and selection depends on interactions
on many levels, e.g., between molecules, individuals, and/or populations of different
species. In both non-physical examples stochasticity can act in a way very similar to
physical systems: the formation of patterns in motion can stabilize in a certain regime
of fluctuations, or populations can benefit from fluctuations maintaining ’evolutionary
freedom’ or allowing ’evolutionary revolutions’ [Lenormand et al., 2009].

Complexity is another important concept in the natural and social sciences. Systems in
which macroscopic properties cannot be predicted by the properties of its microscopic parts
alone are characterized as complex. Such complex behavior typically arises in nonlinear
dynamical systems, or when problems across a wide range of scales are considered. This is
commonly the case in physics, chemistry, and engineering [Haken, 2006], traffic modeling
[Helbing, 2001], or modeling stock markets [Farmer et al., 2005], but also omnipresent in
adaptive systems, e.g., in the human brain, evolving populations, and ecological networks
[Levin, 2002; Schuster, 2002]. When microscopically defined entities such as charged
particles, molecules, neurons, or animals, interact in a complex way to form macroscopic
patterns in space and/or time, mathematical methods from theoretical physics are well
established to make predictions. Moreover, in Darwinian evolution, the fate of biological
traits in terms of reproductive success can depend on the interactions with others and
with the environment in a complex way.

In a broad sense, this thesis deals with nonlinear dynamics and fluctuations in mathe-
matical models of Darwinian evolution. Although the ’theory of evolution’ is now rather
a fact than a theory, there are theoretical approaches, which intend to make quantitative
predictions that can be tested experimentally. In the beginning of the 20th century a
(first) mathematical description of Darwin’s exciting approach to biology was on its
way. In the century before, C. Darwin and others formulated the fundamental principles
of evolution to explain life’s diversity by evolutionary mechanisms, which is based on
G. Mendel’s observations and laws of inheritance [Bateson, 1909]. For the great luck of
others, this work was neither very mathematical, nor could Darwin and Mendel know
about the molecular mechanisms of inheritance.
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1 Introduction

In the same way that led theoretical physicist to think about Brownian motion, scientists
from various fields started to think about the mathematical formalisms provoked by
Mendel’s observations and Darwin’s theory [Fisher, 1930; Haldane, 1924–1934; Hardy,
1908; Wright, 1931]. Among other topics, the ’modern synthesis’ of evolutionary theory
[Huxley, 1942] deals with two important aspects. On the one hand, the complexity of
the relevant interactions, e.g., genotype-genotype, genotype-phenotype, or phenotype-
environment, as well as patterns of inheritance, mutation, and selection have to be
analyzed. On the other hand, the formulations of appropriate stochastic processes is of
importance [Moran, 1962; Wright, 1931].
Natural selection acts through fitness, which can be measured as an individual’s

average contribution to the gene (or phenotype) pool at a later point in time. Individuals
reproduce, but a population evolves in the space of genomic sequences [Nowak, 2006a;
Wright, 1970]. The physical analogy of this high dimensional sequence space (with a
genome of length L, it is an L-dimensional lattice) is the phase space. Instead of moving
towards states with minimal energy, a population naturally evolves to sites in sequence
space with maximal fitness (or at least local optima). The map from each position in
sequence space to a reproductive rate is called the fitness landscape. Due to complex
interactions between the different types present in a population, the fitness landscape can
change while the population is moving across. While a population climbs a hill of the
fitness landscape, driven by mutations and selection, the slope itself might change and the
peak can even disappear. In general, the fitness of a specific type or strategy depends on
the relative densities of the types present. An appropriate framework to model Darwinian
evolution under density dependent fitness is evolutionary game dynamics [Hofbauer and
Sigmund, 1998; Nowak and Sigmund, 2004].
Game theory itself was established by von Neumann and Morgenstern [1944] as

a framework to analyze economic decisions in human behavior. It mathematically
analyzes how the success of a strategy depends on other strategies, based on a set of
rules. In classical game theory there is a way of finding a static ’equilibrium’ in which
any participant (player) cannot individually improve by switching to another strategy.
Assuming that only rational agents interact, J. Nash could prove that every strategic
situation has at least one (mixed) Nash equilibrium [Nash, 1950]. Based on observations
in ecology, Hamilton [1967], and Maynard Smith and Price [1973] applied game theoretic
arguments to solve problems in explaining sex ratios and conflict situations in animals of
the same species. In evolutionary game theory, the concept of rationality is replaced by
fitness: The genius of Maynard Smith and Price was to ascribe the so called payoff from
a strategic conflict situation to the fitness of individuals. Strategies, in this sense, are
genetically hardwired traits, such as body mass, aggressiveness in the competition for
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territory, or courtship behavior. A concept that is similar (but not generally identical) to
the Nash equilibrium is the evolutionary stable strategy which evaluates the invasiveness
of mutant strategies [Maynard Smith and Price, 1973]. In order to come to an evolutionary
argument, strategies have to be able to spread in a population by reproduction or cultural
learning (imitation). By anticipating that more successful (fitter) strategies spread faster,
evolutionary game theory is dynamic [Maynard Smith, 1982].

Individuals in populations play games and reproduce or imitate others. The success in
an evolutionary game is mapped to fitness (reproductive rate) or an imitation rate. Hence,
successful strategies spread by inheritance or cultural learning due to selection. Depending
on the strategic situation under consideration, this results in complex dynamical patterns
even if the dynamics is assumed to be deterministic [Hofbauer and Sigmund, 1998; Nowak
and May, 1992; Weibull, 1995]. Especially, evolutionary game theory allows to study
social dilemma situations under density dependent selection and hence the evolution of
cooperation by different mechanisms [Axelrod, 1984; Nowak, 2006b; Nowak and Sigmund,
1998; Ohtsuki et al., 2006; Sachs et al., 2004; Traulsen and Schuster, 2003].

Apart from the study of complex evolutionary game dynamics in deterministic setups
more challenges are faced when fluctuations are taken into account. A well defined
stochastic process that governs the probabilistic spreading of strategies by natural
selection has to include evolutionary mechanisms, i.e. reproduction, mutation, and
selection. Although stochastic processes are known in theoretical population genetics
[Crow and Kimura, 1970; Ewens, 2004; Moran, 1962], the traditional focus is on models
of neutral evolution (all types reproduce at equal rates) or constant selection (different
types reproduce at constant but different rates), where mutation rates are the driving
mechanism [Drossel, 2001]. Complementary to that, evolutionary game theory focuses on
cases where selection changes with the composition of the population [Imhof and Nowak,
2006; Nowak et al., 2004; Nowak and Sigmund, 2004; Santos and Pacheco, 2005; Szabó
and Fáth, 2007; Taylor et al., 2004].

This thesis almost exclusively focuses on the role of selection in stochastic evolutionary
game dynamics. When fluctuations cannot be neglected, the concept of evolutionarily
stable states is lost. What remains are a few absorbing states where the dynamics get
stuck, if no further mutations lead away from them: Typically, the absorbing states in
such non-invasive processes are those where only one strategy is left. They can be the
equivalent of stable or unstable fixed points of the deterministic dynamics. In case of
an unstable fixed point, although selection leads away from it, the stochastic dynamics
can reach the state with a certain probability. Depending on the microscopic details of
the evolutionary process, macroscopic quantities can be found, such as the probability
of reaching a particular absorbing state. In addition, one can ask for the average time

9



1 Introduction

needed to reach such a state.
The event of a mutant strategy taking over is called fixation. In general, it is of

interest how the statistical properties of fixation events behave with changes in either
the strength of selection, or the evolutionary process, by altering the complexity of the
strategy space. In the thesis at hand, various new aspects of evolutionary processes
concerning the probability of and the average time to fixation are addressed. The first
part of the results focuses on dynamics that are based on the success in an evolutionary
game, which itself changes with the densities of strategies, see Chapter 2.
One does not need, of course, to think only about strategic interactions to observe

complex patterns in evolutionary dynamics. Depending on the interaction, certain
variants of genes undergo complex evolutionary changes. Genes are parts of the genome
that encode, e.g., for proteins. A variant of a gene is called an allele. In diploid organisms,
normally, a parent passes on only half of its genome to the offspring. Hence, a child
inherits two copies of each gene; it can have the same or two different alleles. The
allelic configuration of the genotype can have an effect on fitness. This results in density
dependent changes in fitness, from the perspective of a single alleles [Hartl and Clark,
1997]. Individuals with different alleles on the same gene are called heterozygotes, whereas
we speak of homozygotes if the two variants of a gene are identical.

A concrete example is underdominance (heterozygote disadvantage), where heterozy-
gotes suffer from a fitness reduction relative to the homozygotes. Thus, a state with a
high density of the allele that causes this disadvantage is typically unstable. If migration
between sub-populations of the same genetic background is considered, the question is
whether such a state can be stabilized by a selection-migration equilibrium. The resulting
bi-stable dynamics have been proposed as a mechanism to establish genetically modified
individuals in disease vector species [Curtis, 1968]. Such a nonlinear dynamical system,
where migration between sub-populations counterbalances selection, is considered in
the second part of this thesis, see Chapter 3. In addition, the impact of demographic
fluctuations is addressed: A direct link to findings in the first part can be made by
analyzing the mean time of extinction of the genetically modified allele.
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1 Introduction

The idea of applying
game theory to animals,
and not just the higher primates,
but fish, dung beetles, fireflies,
and pond scum as well,
seemed strange at the time...

Herbert Gintis (Game Theory Evolving)

1.2 Deterministic evolutionary game dynamics

In models of Darwinian evolution it turns out to be very useful to classify interactions
within and between populations in terms of strategic interactions between different types
or strategies, i.e. in terms of games. The aim of this section is to show why this is the
case, to review how complex nonlinear dynamics can emerge, and to give some examples
which can guide our intuition. Evolutionary game theory describes evolutionary stability
and evolutionary dynamics in populations, where natural selection acts and individuals
with different strategies interact [Hofbauer and Sigmund, 1998; Maynard Smith, 1982;
Nowak, 2006a; Sandholm, 2010; Weibull, 1995].

In what follows, a brief introduction to non-cooperative games of rational agents is given,
which is non-dynamic. Here, solutions can be found by assuming rationality (as explained
below). Then, the transition to evolutionary arguments is made by first considering
the non-dynamical approach to evolutionary game theory: To find evolutionarily stable
strategies rationality can be dropped, but fitness has to be defined. Next, the resulting
deterministic nonlinear dynamics are introduced, where differences in fitness are the
driving mechanism. Throughout, examples are discussed.

1.2.1 Rational agents

The mathematical theory of games was devised by von Neumann and Morgenstern [1944].
According to Aumann [1987], game theory is an ’interactive decision theory’, where
agents interact: An agents best action for herself depends on expectations on the actions
of other agents, where, at the same time, each of the other agents actions depend on
expectations about her. As a result, ’the outcomes in question might have been intended
by none of the agents’ [Ross, 2010].
Strategic interactions of at least two agents are called games, and agents are referred

to as players. In the class of non-cooperative games players optimize their actions solely
according to their own interests. If full information about the game is given, and players
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are rational and know that the others are rational too (hyper-rationality), then rational
players can do three things: (i) rank-order outcomes of actions, especially by (ii) knowing
which (sequence of) actions lead to which outcomes, and (iii) select (choose) actions from
alternatives according to the above mentioned optimum. The set of all possible actions of
a player is called her strategy. The two standard ways to formalize games are extensive
form games and normal form games. The former is known to be more general in terms of
non-simultaneous decision making as any finite number of agents can interact in arbitrary
sequence. Nonetheless, for many of the purposes in evolutionary game dynamics it is
sufficient to focus on normal form games.

Normal form games consist of d players, a set of all strategies available to each player
(strategy space), and a payoff function for each player [Fudenberg and Tirole, 1991]. The
payoff function for a player is a mapping from the cross-product of all players’ strategy
spaces to that player’s set of payoffs. It takes the so called strategy profile, i.e. the d-tuple
of strategies chosen by each player, and puts out a real number for each player, called
payoff. The question now is: What strategy profile will rational players choose in order
to optimize their individual payoffs? For special cases, the answer was given by von
Neumann and Morgenstern [1944]. More importantly, Nash [1950] has shown a general
way of finding an optimum, the so called Nash equilibrium. Roughly speaking, a Nash
equilibrium for rational players is a d-tuple of strategies in which no single player can
improve by switching to another strategy. Strategies can be pure, or mixed. Hereby, a
mixed strategy is a probability distribution over pure strategies. A mixed strategy is
a best reply to itself if no other probability distribution, i.e. no other mixed strategy,
leads to a higher payoff for a given player. This leads to the general formulation of a
Nash equilibrium, which is defined as the state in which every player chooses a (mixed)
strategy that is a best reply to the (mixed) strategies of all other players. The one page
publication [Nash, 1950] proves that every finite normal form game has at least one mixed
Nash equilibrium. This concept, as well as other concepts that have been developed since,
tell us what (hyper-)rational players in states of full information should do when being
involved in a strategic interaction.

A case most relevant to the thesis at hand is the class of finite normal form games with
two players and two (or more) strategies. The payoffs of such games can be represented
by a payoff table, or rather a payoff matrix. This pattern emerges because of the two
players, one being the ’row player’, the other being the ’column player’. In general, each
entry consist of two numbers, the first is the payoff of the column player, the second the
payoff of the row player. For general two player games with two strategies, the column
player’s strategies can be called c1 and c2, whereas the row players strategies are called r1

and r2. Here, u is the payoff function for the column player, v is the payoff function for
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the row player. They both depend on the pair of strategies played. The general payoff
matrix reads


r1 r2

c1 u(c1,r1),v(c1,r1) u(c1,r2),v(c1,r2)

c2 u(c2,r1),v(c2,r1) u(c2,r2),v(c2,r2)

. (1.2.1)

If column plays c1 and row plays r2, they get u(s1,r2) and v(s1,r2) respectively. Let
pc(ci) and pr(ri) be the probability distributions (or mixed strategies) of column and row
player. Hence, the expected payoff of the column player amounts to ui = pr(r1)u(ci,r1) +
pr(r2)u(ci,r2) when playing strategy ci. Similarly, the row player expects the payoff
vi = pc(c1) v(c1,ri) + pc(c2)u(c2,ri) when playing strategy ri.
As an example, consider the two player game ’matching pennies’ [Traulsen et al.,

2004]. The rules of this game are as follows. The two players simultaneously announce
the side of a coin as ’heads’ or ’tails’. The according pure strategies for each of them
are H (announce heads), and T (announce tails). If the announcements are the same
(i.e. (H,H), and (T,T )), the column player wins 1 unit, and the row player loses 1 unit.
If the announcements differ (i.e. (T,H), and (T,H)), the row player wins 1 unit, and the
column player loses 1 unit. This is an example of a zero-sum game; one player looses
what the other gains. The payoff matrix explicitly reads


H T

H 1,−1 −1,1

T −1,1 1,−1

. (1.2.2)

Here, the only mixed Nash equilibrium (a pure one does not exist) is found if both players
randomize between the two pure strategies. Because of equal gain and loss, the players
play each strategy with probability 1/2, such that the expected payoffs amount to 0. To
see why this is the case, we need to find a condition that solves for the probabilities pc,pr
that either player chooses strategy H, from which follow the probabilities of the strategy
T as 1−pc,1−pr consistently. The expected payoffs for, e.g., the column player are given
by uH = pr1+(1−pr)(−1), and uT = pr(−1)+(1−pr)1. From this she wants to maximize
her overall expected payoff as she also randomizes her strategy choice: pcuH + (1− pc)uT
when playing H with probability pc, i.e. ∂pc(pcuH + (1− pc)uT ) = 2(2pr − 1) = 0. This,
and the same argument for the row player lead to pr = pc = 1/2.
One player’s loss does not have to be the other players gain; in general, we do not

consider zero-sum games. However, we stick to symmetric games where u(c1,r2) =

13



1 Introduction

v(c2,r1) = b, and v(c1,r2) = u(c2,r1) = c, as well as u(c1,r1) = v(c1,r1) = a, and
v(c2,r2) = u(c2,r2) = d. This has the notational benefit that we can write down a payoff
matrix with singular entries only. In two player games, from now on we differentiate
between the two strategies A and B, for which the payoff matrix of the symmetric
interaction reads


A B

A a b

B c d

 (1.2.3)

This matrix focuses only on the column player and by symmetry we know that the same
payoffs hold for the row player. Note that the matching pennies game is not in this class
of games because it is a bi-matrix game and does not fulfill the above symmetry. In terms
of Nash equilibria, the following situations emerge. Strategy A is a Nash equilibrium
if a ≥ c. Strategy B is a Nash equilibrium if d ≥ b. If ">" instead of "≥" holds the
equilibrium is called strict. If a < c, and d < b, there exists a mixed Nash equilibrium
where the players choose A with probability p, and B with probability 1− p. Each player
expects the payoffs uA = p a + (1 − p)b, uB = p c + (1 − p)d. The probability p can
be calculated by finding the root of ∂q(q uA + (1 − q)uB) = uA − uB, which leads to
p = (d− b)/(a− b− c+ d).
The solutions to strategic situations like the ones above are based on assuming ra-

tionality, full information and, in the games that are of interest for us, simultaneous
decisions. The matching pennies game already shows that the outcome of rationality
can be somewhat counterintuitive. In fact, it was in such situations that game theorists
explored deviations from rationality, such as a limitation of rational choice like the
trembling hand and other concepts [Myerson, 1978; Selten, 1975]. For example, a ’perfect
strategy’ has to take into account that the other players might just occasionally fail to
play rational, which can be due to a ’trembling hand, which leads to ’bounded rationality’
[Selten, 1990]. This gives rise to evolutionary learning mechanisms, replacing the standard
way of ’a priory reasoning’ [Hofbauer and Sigmund, 1998]. On top of that, it cannot be
generally assumed that the emerging dynamics in strategy space always lead to stationary
solutions. In this context, it turns out that the matching pennies game belongs to the
class of cyclic games [Cressman, 2003; Maynard Smith, 1982]. In the next subsection we
give a brief overview over a concept that is especially successful in biology. Similar to
classical game theory of rational agents, the concept of evolutionarily stable strategies
does not involve dynamics. However, it already includes a very important feature, namely
a population of strategically interacting agents.
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1.2.2 Evolutionarily stable strategies

A new perspective to and new properties of games have emerged by the work of John
Maynard-Smith and George R. Price who could answer the question of why animals of
the same species escalate in fights with an observed probability [Maynard Smith and
Price, 1973]. Their key assumptions have turned out to be fundamental to evolutionary
game theory. To understand the shift in evolutionary game theory the a posteriori
categorization by Gintis [2000] is of special appeal. First, instead of an individual
choosing from a set strategy, a population (or a society) has a set of strategies. Strategies
are hardwired to genes and thus inherited, completely new strategies and games can
arise by mutations. Next, the interactions do not take place on a one-shot basis anymore.
Instead, individuals of a population are randomly paired repeatedly, to play the game
with their genetically determined strategies. Last, Maynard Smith and Price [1973]
defined their own equilibrium, namely the set of evolutionarily stable strategies, probably
being unaware of the Nash equilibrium concept.

The idea of an evolutionarily stable strategy (ESS) is based on the potential success of
invading mutants. In a symmetric n-strategy game between two players, let the pure
strategies be A1, . . . ,An, and aij be the the payoff of Ai played against Aj (where the
player with Aj receives aji). Note, that for A1 = A, A2 = B, and thus a11 = a, a12 =
b, a21 = c, a22 = d, (1.2.3) emerges. The strategy Ak is an ESS, for ∀i 6= k, if either
akk > aik holds (which is nothing but the strict Nash equilibrium definition), or akk = aik,
and aki > aii hold.

In prose, this means that pure strategy is ESS either if it is best response to itself, or, if
any other strategy does equally well, the ESS’s payoff against this strategy is greater than
this strategy playing against itself. If in the latter statement the ’greater’ is replaced by
’greater or equal’, the strategy can be called a weak ESS [Nowak, 2006a]. The concepts
ESS and Nash equilibrium are tightly linked: Every strict Nash equilibrium is also an
ESS. Every ESS is also a weak ESS. Every weak ESS is also a Nash equilibrium.
As an example we consider the game that motivated the ESS concept in the first

place. Within species, animals face strategic conflicts over resources that influence their
fitness, such as food, territory, or mates. Some of these conflicts tend to escalate, but an
interaction between opponents without causing harm can be observed at least as often.
In nature there is a healthy mixture between a few escalators and many retreaters, who
solve a conflict either by some ’random’ process, or retreat when facing an escalator. Why
is this so? A small deviation to more escalation would lead to a huge individual fitness
advantage of those applying it. A stable coexistence can be explained by combining cost
of injury c and benefit of winning b to the more complex pattern of an evolutionary game.
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In the standard literature, the two strategies are called hawk H, and dove D. If a hawk
meets a dove the hawk simply wins b, the dove gets out with nothing. If two hawks meet,
however, the fight escalates such that both have a cost and a benefit with probability
one half, i.e. both get (b− c)/2. If two doves meet, each wins with a probability one half,
receiving the benefit, and no costs occur, both expect a payoff of b/2. The symmetric
payoff matrix that focuses on the column player (the row player’s matrix is just the
transpose) now reads


D H

D b
2 0

H b b−c
2

. (1.2.4)

The assumption here is that the cost exceeds the benefit c > b. With what we know so
far, we see that neither of the pure strategies D, or H is an ESS. To understand that
there is an ESS of mixed strategies, we need some further consideration, including mixed
strategies. The variable x1 denotes the density of strategy D, and x2 is the density of
strategy H, with x1 + x2 = 1. Hence, the expected payoffs from random pairings with
the population are πD = x1 b/2 + x2 0, and πH = x1 b + x2 (b − c)/2. The condition
πD = πH leads to x1 = 1− b/c. We see that this is an ESS because a11 = b/2 < a21 = b,
a22 = (b− c)/2 < a12 = 0.

1.2.3 Replicator dynamics

Hamilton [1967] and especially Maynard Smith and Price [1973] have studied animal
conflicts and their evolutionarily stable strategies, based on genetically determined and
heritable strategies that are cast into a game. In most cases, the ESS concept can indicate
whether a given strategic composition is prone to mutants taking over, or not, given
the game that is played between mutants and wildtypes. Also starting from a game,
Taylor and Jonker [1978], as well as Zeeman [1980] have introduced an approach to
model the actual dynamics from any possible state to (or away from) an evolutionarily
stable state by introducing a set of differential or difference equations. The resulting
deterministic equation governs the relative spread of continuously changing densities of
strategies in continuous or discrete time and is called the replicator equation [Schuster
and Sigmund, 1983]. Evolutionary game theory in form of the replicator equation can
describe genotype as well as phenotypic evolutionary dynamics [Hofbauer et al., 1979;
Hofbauer and Sigmund, 1998; Schuster, 2003].

Say a population consists of n different types, represented by pure strategies A1, . . . ,An.
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To each strategy Ai we ascribe the relative density xi (in biology, a relative abundance
or density is also called frequency). If the population is very large (infinitely large)
the densities are continuous variables, xi ∈ [0,1]. They can also be understood as the
probabilities that a randomly drawn individual has strategy (or is of type) Ai, which
implies consistently

Σ =
n∑
i=1

xi = 1. (1.2.5)

If we want to come to an evolutionary argument about the increase and decrease of
strategies over time by reproduction, we have to ascribe a fitness fi to each strategy.
Given the type Ai, the fitness function fi is the expected number of offspring of the same
type. In this case, the population average fitness is given by

〈f〉 =
n∑
i=1

fi xi, (1.2.6)

where x = (x1, . . . ,xn)T , and in general fi = fi(x). The general form of the replicator
equation is given such that the relative change of density xi is governed by how well this
particular type is doing compared to the population average (in terms of reproductive
success), i.e. ẋi/xi = fi − 〈f〉. The convex set on which the dynamics takes place is
the simplex Sn, defined by Eq. (1.2.5). In general terms using the fitness function, the
replicator equation simply reads

ẋi = xi (fi(x)− 〈f〉) , (1.2.7)

which leaves the simplex Sn invariant, which implies that every solution of Eq. (1.2.7)
that starts on Sn stays on it forever [Hofbauer and Sigmund, 1998], compare to Figure
1.1, where the simplex for n = 2,3, and 4 is depicted, respectively.

Suppose that n different types, or subgroups, Ai of a very large population interact in
a symmetric game through random pairing. Here, the symmetric game’s payoff matrix
reads

A =


a11 a12 . . . a1n

a21 . . . . . . a2n
...

...
an1 . . . . . . ann

 . (1.2.8)

Hence, in the pairing of an individual playing the pure strategy Ai against one playing
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A1A2

S2

A1

A2

A3

S3

A3

A4

A1

A2

S4

Figure 1.1: The simplex Sn is defined by all sets of states that fulfill x1 + . . .+ xn = 1. For
two strategies is a line, for three strategies it is the equilateral triangle, for four strategies it
is the tetrahedron. In general, for n strategies it is the convex hull of its n+ 1 vertices. The
replicator equation leaves the simplex invariant. Each vertex with xk = 1 is identified with
its pure strategy Ak.

the pure strategy Aj , the former receives payoff aij , while the latter receive payoff aji. An
individual with pure strategy Ai that is interacting with an ensemble q = (q1, . . . ,qn)T

of other strategies expects payoff πi,q = (A q)i. A group of individuals with a non-
singular strategy profile p = (p1, . . . ,pn)T interacting with the ensemble q expects payoff
πp,q = p · (A q). In evolutionary game dynamics modeled by the replicator equation
(1.2.7), the rate of increase or decrease of a strategy is proportional to fitness. Typically,
a strategy’s fitness is equal to (or a monotonically increasing function of) the average
payoff of a pure strategy interacting with the entire population as the ensemble of choice.
Hence, the fitness of pure strategy Ai is chosen to be fi(x) = (A x)i, and the average
fitness of the population amounts to 〈f〉 = x · (A x). The replicator equation for this
standard choice of fitness function thus reads

ẋi = xi

 n∑
j=1

aij xj −
n∑
i=1

n∑
j=1

xi aij xj

 . (1.2.9)

It is noteworthy that the choice of the fi is not unique. However, different choices only
interfere with the transient dynamics and not with the stability properties of Eq. (1.2.7),
as long as fitness is a linear function of payoff.
With this one can make statements about the dynamic variable x relating it to the

Nash equilibrium as well as to the ESS, see [Hofbauer and Sigmund, 1998] and [Nowak,
2006a], and references therein: A point z ∈ Sn is a Nash equilibrium if self interactions
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of z are more or equally successful as any other state x ∈ Sn interacting with z, i.e.

πz z ≥ πx z. (1.2.10)

A point z on the simplex Sn is called an evolutionarily stable state if

πz x > πx x (1.2.11)

for all other states x 6= z, that is if z is more successful competing with x than x
competing with itself. The two definitions do not have to be the same. Several important
observations arise from combining the replicator dynamics with the Nash equilibrium
and the ESS [Hofbauer and Sigmund, 1998; Weibull, 1995], where two of them will be
picked up. First, if z is Lyapunov stable [Strogatz, 2000], then it is a Nash equilibrium in
the sense of relation (1.2.10) [Bomze, 1986]. Secondly, if z fulfills the relation (1.2.11,) it
is an asymptotically stable fixed point of the replicator dynamics [Hofbauer et al., 1979;
Zeeman, 1980] (the converse is not true [Nowak, 1990]).

A common example of a dynamical systems is the Lotka-Volterra equation that models
species interactions [Lotka, 1910; Volterra, 1926]. Like the replicator equation, the
Lotka-Volterra equation is a special nonlinear differential equation which puts the growth
of biological species or sub-species on the basis of (ecological) interactions, most famously
between predators and prey. It has been shown by Hofbauer [1981] that the (cubic)
replicator equation (1.2.9) with n strategies can be mapped to a (quadratic) Lotka-
Volterra equation with n − 1 species, using a linear transformation from the compact
simplex Sn to the open half space Rn−1

+ . Starting from Eq. (1.2.9) consider the new
dynamic variable yi = xi/xn, with yn = 1, such that

ẏi = ẋi xn − xi ẋn
x2
n

= xi
xn

[((Ax)i − x · (Ax))− ((Ax)n − x · (Ax))]

= yi (Ax)i

= xn yi

n∑
j=1

aijyj , (i = 1, . . . ,n− 1). (1.2.12)

The first step applies product and the chain rule, the second step inserts the right hand
side of Eq. (1.2.9), and the third step uses that, without loss of generality, we can
transform the payoff matrix (1.2.8) such that ank = 0 for all k = 1, . . . ,n [Hofbauer and
Sigmund, 1998]. Rescaling time by xn and setting ri = ain as the growth or decay rate
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of species i, we end up with the Lotka-Volterra equation

ẏi = yi

ri +
n−1∑
j=1

bij yj

 , (1.2.13)

which models the growth and decay of n − 1 species in terms of their relative sizes yi
respecting their interactions bij = aij − anj . The relative densities of the strategies
xi exist on [0,1], but, naturally, the relative sizes yi = xi/xn ∈ [0,∞) do not have an
upper bound. Typically, the replicator equation is cubic, whereas the Lotka-Volterra
system is quadratic. Although we almost exclusively think of evolutionary dynamics in
terms of strategies and fitness values, the transformation to one of the powerhouses of
mathematical ecology is of practical use. The Poincaré-Bendixon theorem leads to the fact
that the two-dimensional Lotka-Volterra equation does not allow isolated periodic orbits,
compare Bomze [1995] and references therein. This statement can the be transferred
to evolutionary games between three strategies, especially when cyclic competition in a
rock-paper-scissors fashion is studied [May and Leonard, 1975; Zeeman, 1980]. However,
many (non-isolated) cycles can exist, as well as homoclinic and heteroclinic orbits on
the simplex S3, [Hofbauer and Sigmund, 1998]. Before we return to such situation of
cyclic competition, all possible scenarios of the replicator dynamics for n = 2 are briefly
discussed.

1.2.4 Evolutionary game dynamics of two strategies

All evolving organisms face multiple complex strategic situations that can affect their
Darwinian fitness: "In the game of life, organisms are the players, their heritable traits
provide strategies, their births and deaths are the payoffs, and the environment sets the
rules", where the population itself is part of the environment [Vincent and Brown, 2005].
Although it is far from clear whether the strategy space is limited to a few strategies
at a time, it is plausible to start a mathematical analysis with only a few evolutionarily
competing strategies. This assumption may limit the direct applicability to field biology
in some cases, but has been very successful in understanding fundamental aspects of
evolutionary dynamics [Nowak, 2006a]. The simplest case emerges for two strategies
(n = 2), where we will come back to the notation A = A1, and B = A2, with the payoff
matrix

A =
(
a b

c d

)
. (1.2.14)
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x is always chosen to be the relative density of strategy A. In the according replicator
equation (1.2.7) for x = (x1,x2)T , choosing the fitness function fi(x) = (A x)i, it is
sufficient to look at ẋ = x ((Ax)1 − x · (Ax)); by setting x1 = x, we have x2 = 1 − x.
Both strategies evaluate their reproductive success according to random interactions with
the entire population. The expected payoffs are

πA = (Ax)1 = a x+ b(1− x), (1.2.15)

πB = (Ax)2 = c x+ d(1− x), (1.2.16)

and the average expected payoff amounts to 〈π〉 = x · (Ax) = xπA + (1− x)πB. We note
that πA − 〈π〉 = (1− x)(πA − πB), such that we can write

ẋ = x (1− x)(πA − πB)

= x (1− x)(ux+ v)
(1.2.17)

Both expected payoffs are linear, such that that we can generally assume the linear form
πA − πB = ux + v. Naturally, this linear form depends on the payoff matrix (1.2.14),
u = a+ d− (b+ c), and v = b− d.

Other choices of linear payoff to fitness mapping are possible. However, they may only
change the transient dynamics but not the stability properties of the replicator equation.
As an example consider the fitness function fi = (1 − β) + β (Ax)i. The strength by
which selection acts on different types or strategies is parameterized by β in form of a
convex combination of a background fitness of one and the payoff from the evolutionary
game (Ax)i: For β → 0, the outcome of the evolutionary game has no effect on the
dynamics, the entire simplex consists of neutrally stable fixed points, as, trivially, ẋi = 0
everywhere. If all average payoffs (Ax)i are positive, β → 1 leads to Eq. (1.2.17). In the
intermediate regime, the appropriate replicator equation (1.2.7), for n = 2, transforms
to ẋ = x (1 − x)β (πA − πB). All other terms in the fitness difference fi − 〈f〉 vanish,
as 〈f〉 = x fA + (1 − x)fB. Hence, for all fitness functions that are linearly increasing
in selection intensity, the resulting replicator equation can be rescaled to the form of
Eq. (1.2.17). Other choices of deterministic evolutionary game dynamics which, e.g.,
are based on learning or imitation, as well as so called best response dynamics, have
also been studied [Hofbauer and Sigmund, 1998; Sandholm, 2010; Traulsen et al., 2006a;
Weibull, 1995].

Evolutionary game dynamics, given by Eq. (1.2.17), reveals a maximum of three fixed
points, one in the internal, two on the vertices. The solutions to x̂1 = 0, and 1− x̂2 = 0
always exist. The existence of a solution to u x̂3 + v = 0 on the simplex is determined by
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the payoff matrix, with u = a+ d− (b+ c), v = b− d. Their stability properties and thus
the dynamics between them crucially depends on the payoffs in (1.2.14). The neutral
case emerges if a = c, and b = d, for which the trivial case ẋ = 0 for all x ∈ [0,1] holds.
Apart from this neutral situation, the three generic scenarios are dominance, bi-stability
(coordination), and coexistence, compare to Figure 1.2.

We speak of dominance (in the game theoretic sense, not in the Mendelian sense), if x̂1

is unstable and x̂2 is stable, or if x̂1 is stable and x̂2 is unstable, where x̂3 ∈ (0,1) cannot
exist. In the former case, any arbitrarily small disturbance from the all B state leads to
an all A state, which is true for the payoff rankings a > c and b > d. Conversely, the
latter case holds for a < c and b < d. Part of this class is the non generic case of equal
gains from switching, given by a+ d = b+ c (hence u = 0) [Nowak and Sigmund, 1990].
The resulting replicator equation

ẋ = v x (1− x) (1.2.18)

describes logistic growth and has the solution

x(t) = 1
1 + 1−x0

x0
e−v(t−t0) , (1.2.19)

with the initial condition x(t0) = x0. If A is the dominant strategy, v = b− d > 0, and
the time τε, needed to get from a small density of A close to fixation, i.e. x(t0) = ε� 1,
and x(τε) = 1− ε, is given by

τε = 2
v

ln
[1− ε

ε

]
. (1.2.20)

For sufficiently small ε, the fixation time scales as τε ∼ ln[1/ε].
Bi-stable dynamics emerge in a coordination game, where the payoff rankings are a > c,

and b < d. Hence, strategy A is outperformed by strategy B when rare, but advantageous
when at high densities. Consequently, x̂1, and x̂2 are stable fixed points of the replicator
dynamics. The outcome of the bi-stable dynamics from any initial condition x0 between
0 and 1 is determined by the position of the internal unstable fixed point x̂3 = −v/u. If
it exists, the unstable fixed point in the interior is located at

x̂3 = d− b
a+ d− (b+ c)

. (1.2.21)

If x0 < x̂3, B dominates, if x0 > x̂3 A dominates.
Lastly, in an evolutionary game with two strategies A and B, stable coexistence can be
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Figure 1.2: Phase diagrams of the replicator equation (1.2.17) for different games. For
these numerical examples, the payoff matrices of he symmetric 2× 2 game are given explicitly
in the figure. If it exists, the position of x̂3, eq. 1.2.21 is given on the simplex S2 (the [0,1]
interval on the x-axis). The arrows indicate the direction of the evolutionary game dynamics.

observed. This is possible for replicator dynamics governed by the payoff matrix (1.2.14)
with a < c, and b > d. It is easy to show that x̂1, and x̂2 are unstable. In this case, x̂3,
given by Eq. (1.2.21), is the only stable fixed point.
Note also, that the general form of the right hand side of Eq. (1.2.17) is such that

x̂3 cannot be a saddle. This is not naturally the case for any replicator dynamics on
the simplex S2, which is a subset of R1, but follows here from the choice of the fitness
function fi = (Ax)i. For evolutionary games that account for interactions between pairs
the maximal number of internal fixed points of the replicator equation (1.2.9) is one,
irrespective of the number of possible strategies [Gokhale and Traulsen, 2010; Hofbauer
and Sigmund, 1998].

1.2.5 Cyclic evolutionary games with three strategies

The complexity of evolutionary game dynamics increases with the number of strategies,
and new phenomena can emerge. Several widely discussed examples in evolutionary game
theory and mathematical ecology are related or can directly be mapped to the dynamics
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of the Rock-Paper-Scissors game. Cyclic dominance can play a role in the evolution
of mating strategies of lizards [Sinervo and Lively, 1996], and is also observed in the
’chemical warfare’ between three strains of the bacterium E. coli [Kerr et al., 2002].

A well known child game, Rock-Paper-Scissors is the generic description of cyclic
competition: Rock crushes scissors, scissors cut paper, and paper wraps rock. In a
pairwise encounter, the winner’s payoff is 1 and the loser’s payoff is −s, but if the two
individuals play the same strategy, the payoff of a draw is zero. Hence, the payoff matrix
is given as

ARPS =


0 −s 1
1 0 −s
−s 1 0

 . (1.2.22)

Any payoff matrix describing a cyclic competition of three strategies can be transformed
to this form by elementary operations which do not change the stability properties of
the replicator equation [Weibull, 1995]. The stability of the center x̂(1/3,1/3,1/3)T ∈ S3

is controlled by s. Note, that from the Poincaré-Bendixon theorem follows that there
cannot be an isolated limit cycle on S3, hence there cannot be a Hopf-like bifurcation.
The average payoffs for the pure strategies with densities xR, xP , xS = 1− xR − xP ,

are

πR = 1− xR − xP − s xP ,

πP = xR − s(1− xR − xP ),

πS = xP − s xR,

(1.2.23)

and the replicator equation reads

ẋX = xX (πX − 〈π〉) , (1.2.24)

where X ∈ {R,P,S}, and 〈π〉 = πS + xR(πR − πS) + xP (πP − πS). The vertices of the
simplex S3 are fixed points that are saddles, and form a heteroclinic cycle together with
the edges of S3 [Hofbauer and Sigmund, 1998]. The three generic cases are s = 1 (zero
sum), s < 1 (positive sum), and s > 1 (negative sum).
First, for s = 1 we see that det ARPS = 0, 〈π〉 = 0, such that the dynamics are

given by ẋX = xX πX . In this case, x̂ is stable, but no orbit converges to it; x̂ is
surrounded by infinitely many cycles and for each of these closed orbits the time average
is x̂ [Hofbauer and Sigmund, 1998]. There exists a constant of motion H = xR xP xS ,
with Ḣ = H · (πR +πP +πS − 3 〈π〉) = 0, which only holds under the symmetry condition
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s = 1.
Next, for the positive sum game with s < 1, we have det ARPS = 1− s3 > 0, x̂ is an

asymptotically stable fixed point of the dynamics. Any orbit starting from an initial
condition in the interior of the simplex converges to x̂.
Lastly, in the negative sum game with s > 1, we have det ARPS < 0. Hence, x̂ is

unstable and any orbit starting from an initial condition in the interior of the simplex
converges to the heteroclinic cycle on the boundary.
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Mathematics without natural history is sterile,
but natural history without mathematics is muddled.

John Maynard Smith (1982)

1.3 Stochastic evolutionary game dynamics

It is natural to assume that a population consists of a finite number of individuals. Instead
of the relative densities of strategies, which are continuous variables, one considers integer
values representing the number of individuals of a certain type or strategy. Generically,
the change of these integer values over time is given by probabilistic laws. On all scales
of living systems which are subject to Darwinian evolution we observe reproducing units
that do not necessarily fit a continuous description. Genes consist of finite numbers of
base pairs, individuals consist of a finite number of cells, and populations are formed
by a finite number of individuals. Only in special cases it is justified to assume that
evolutionary change is deterministic and described by, e.g., replicator dynamics. In some
cases, a stochastic description makes the predictions of the deterministic theory more
precise. However, in many cases, it is stochastic evolution itself that gives rise to new
phenomena, such as neutral evolution, or maintenance of diversity in cases where the
replicator equation predicts extinction of all but one strategy.

1.3.1 Demographic fluctuations in finite populations

One approach is to describe the system by a set of discrete random variables representing
the number of individuals of different strategies. Although change in continuous or
discrete time is possible, the focus of this thesis is almost exclusively on discrete time
dynamics. The system is characterized by a probability density function with a discrete
support that describes the variables being at a given time in a certain state. Typically,
the systems dynamics are governed by a probability matrix that gives the the probability
for a jump in unit time from one state to another. The precise form of these transition
probabilities reflects the nature of interactions in the complex system.
Most importantly, the interactions are given by an evolutionary game. In general, if

the system has no memory, i.e. it fulfills the Markov property, the temporal change of the
probability density can be described by a master equation. From this master equation
follows a hierarchy of (stationary) moments, that define the stochastic process. All
moments scale with the system size, and especially higher moments, such as the variance,
are supposed to vanish with increasing size. This gives rise to a standard approximation
scheme; the truncated Kramers-Moyal or system size expansion. Assuming that the
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system is large enough to permit an approximate description by continuous random
variables, one often analyzes a Fokker-Planck equation the results from an expansion of
the master equation in inverse system size. As this expansion take into account only
the first two moments called drift and diffusion coefficient, in evolutionary population
dynamics it is often called a diffusion approximation. In the limit of infinitely large
population size all models are bound to approach a form of deterministic law, e.g., given
by the replicator dynamics Eq. (1.2.7).
Another possible approach is to take a set of deterministic differentials equation and

modulate a set of parameters by noise. This directly allows a description by a Fokker-
Planck equation, or equivalently, by a Langevin equation, if the noise is chosen to be
Gaussian white noise. A possible choice is to modulate a parameter u, such that the
stochastic modulation over time has zero mean and the autocorrelation of the Wiener
process, given by u dt 7→ u(dt+ dWt), where dWt is the increment of the Wiener process.
In states that are absorbing, the noise cannot have an impact as well. Hence, the
noise modulation can only be density dependent, it vanishes whenever a strategy dies
out. Langevin equations that model stochastic populations dynamics are driven by
multiplicative noise.
In many cases, a closed analytical treatment is only possible for special classes of

Markov chains or diffusion processes. The focus of this thesis is on the first approach,
the body of publications mostly deals with jump processes in discrete time. This section
concentrates on an introduction of the important features of this class of Markov chains,
linking the transition probabilities to evolutionary game dynamics.

1.3.2 Master equation and moments of the one-step process

Here, an introduction is given to the one-dimensional Markov chains that are commonly
used in evolutionary game theory and population dynamics. The case of two strategies
A and B in a population of size N can be treated with most rigor. The number of
individuals with strategy A is given by i ∈ {0, . . . ,N}, from which the number of B
follows as N − i. With this, we have a stochastic process for the state i. In physical
terms, this state can be interpreted as the position of a particle diffusing on a discrete set
of states. On the other hand, i/N might as well be the number of molecules of a chemical
reactant. If the transition rates follow simple laws, e.g., constant or linearly increasing
transition, such processes are well known in physics, see the textbooks by van Kampen
[1997] and Gardiner [2008]. In order to capture population dynamics under the influence
of Darwinian evolution, the transitions become more complex and are rather known in
the field of population genetics [Ewens, 2004; Goel and Richter-Dyn, 1974]. Generally,
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when populations in which the numbers of strategies fluctuate are addressed, one-step
processes [van Kampen, 1997] are referred to as birth-death processes. This implies that
in the time interval ∆t, only transitions from the state i to its nearest neighbor states
are considered. All other transitions are of order (∆t)2 (or higher) and can be neglected.
Given what we call the state of the system i, a set of transition probabilities is directly
associated, and also sometimes referred to as the state of the process. The range of the
process is the discrete set of N + 1 states between 0, and N . We only consider one-step
processes in discrete time. The stationary transition matrix is given by

Ti→i+1 = T+
i (1.3.1)

Ti→i−1 = T−i (1.3.2)

Ti→i = T 0
i = 1− T+

i − T
−
i (1.3.3)

Ti→i±k = 0, k > 1. (1.3.4)

To conserve the system to the set {0, . . . ,N}, an obvious boundary condition is T−0 =
T+
N = 0, but in many cases we even consider absorbing boundaries, T±0 = T±N = 0. Hence,

the transition matrix is nonzero only on the main diagonal and on the two secondary
diagonals. We will use these transition rates to simplify the master equation of the
system and solve it for the moments of the probability function to get from an initial
state to a particular boundary in a certain amount of time.

For the probability pi(t) to find the process in state i at any time t the master equation
is a gain-loss equation. It describes how pi(t) changes over time, respecting transitions
from any other state k

pi(t+∆t)
∆t

= T+
i−1 pi−1(t)− T−i pi(t) + T−i+1 pi+1(t)− T+

i pi(t). (1.3.5)

The general function pi(t) is not of great use for evolutionary questions, as it does not
specifically relate to any initial condition. However, we are interested in the statistical
properties of reaching a given state M , when starting from any possible initial condition.
This particular property of the process is important as M = 0, or M = N corresponds to
the situation of complete extinctions or complete fixation of strategy A. To this end, we
consider the function PM,i(t), which is the conditional probability density that the state
M is reached in exactly t time steps, starting from initial state i. The time t itself is a
random variable, and hence interest is focused on the mean first passage time through M .
For mean first passage problems one typically considers the backward master equation
[Gardiner, 2008; Redner, 2001]. Solutions to the forward equation are with respect to
the state at time t with some fixed initial state. Complementary, the backward equation
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gives solutions for fixed final state and variable initial condition. For PM,i(t), choosing
∆t = 1, the backward master equation, where M is fixed, reads

PM,i(t) =
(
1− T+

i − T
−
i

)
PM,i(t− 1) + T+

i PM,i+1(t− 1) + T−i PM,i−1(t− 1) (1.3.6)

The kind of solution to this equation depends on the boundary conditions. For absorbing
boundaries, T±0 = T±N = 0, no non-trivial stationary solution exists due to the lack of
detailed balance: For instance, P0,i(t) is not the probability of being at the boundary at
time t, as t is arbitrary, but the process gets absorbed in 0 after a finite time. In general,
if the backward master equation (1.3.6) permits an analytical solution that fully describes
the process, it is hard to be found [Goel and Richter-Dyn, 1974]. Thus, one resorts to
describing the process by its stationary moments in t, where the Rth conditional moment
is given by

T (R)
M,i =

∞∑
t=0

tR PM,i(t)
∞∑
t=0

PM,i(t)
, (1.3.7)

where M = 0, or M = N . The stationary normalization

φMi =
∞∑
t=0

PM,i(t) (1.3.8)

is the probability that the process reachesM for the first time [Gardiner, 2008; Karlin and
Taylor, 1975]. If M = 0, or N , φMi is called fixation probability [Ewens, 2004; Traulsen
and Hauert, 2009]. Obviously, the fixation probability is determined recursively using
what follows from Eq. (1.3.6),

φMi =
(
1− T+

i − T
−
i

)
φMi + T+

i φ
M
i+1 + T−i φ

M
i+1 (1.3.9)

with appropriate boundary conditions.
A boundary can be reflecting or absorbing. Hence, three classes of processes can be

identified. Either, the process has two reflecting, one reflecting and one absorbing, or
two absorbing boundaries, where the results presented in this thesis focus on the latter
two. In what follows, we briefly introduce the derivation of the moment generating
recursions for general transition rates with the boundary conditions T±0 = T±N = 0, and
the requirement that the Markov chain is irreducible on the set {1, . . . ,N − 1}. For the
probability distribution it follows that limt→∞ PM,i(t) = 0 for any 0 < M,i < N . Similar
recursions and results for either only T±0 = 0, or only T±N = 0, i.e. for only one absorbing
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boundary, see, e.g., the textbook by Goel and Richter-Dyn [1974]. By multiplying the
backward equation (1.3.6) with tR and summation over t, we find

∞∑
t=0

tR PM,i(t− 1) =
∞∑
t=0

(1 + t)R PM,i(t)

=
∞∑
t=0

R∑
s=0

(R
s

)
ts PM,i(t)

= φMi + φMi

R−1∑
s=1

(R
s

)
T (s)
M,i︸ ︷︷ ︸

S(R−1)
M,i

+φMi T
(R)
M,i (1.3.10)

where we rearranged the terms of the infinite sum and require PM,i(s) = 0 for any s < 0.
Thus, the recursion for T (R)

M,i depends on all lower conditional moments

φMi T
(R)
M,i = (1− T+

i − T
−
i )φMi (1 + T (R)

M,i + S(R−1)
M,i )

+ T+
i φ

M
i+1(1 + T (R)

M,i+1 + S(R−1)
M,i+1)

+ T+
i φ

M
i−1(1 + T (R)

M,i−1 + S(R−1)
M,i−1),

(1.3.11)

with T (R)
M,0 = T (R)

M,N = 0. Now, for the mean exit time in M = N , τNi = T (1)
N,i , the recursion

reads

τNi =
[
(1− T+

i − T
−
i )(1 + τNi ) + T+

i

φNi+1
φNi

(1 + τNi+1) + T−i
φNi−1
φNi

(1 + τNi−1)
]

(1.3.12)

as S(0)
N,i vanishes. Absorption in M = 0 occurs with probability φ0

i = 1−φNi . An equation
similar to Eq. (1.3.12) holds for the mean exit time τ0

i . The (unconditional) mean life
time of the one-step process confined between two absorbing states then amounts to
τi = (1− φNi )τ0

i + φNi τ
N
i , for which the recursion reads

τi = 1 + (1− T+
i − T

−
i )τi + T+

i τi+1 + T−i τi−1. (1.3.13)

This unconditional mean exit time τi is often termed unconditional fixation time. Likewise,
τNi is called the conditional fixation time of strategy A.
For non-invasive processes that have two absorbing boundaries, the following general

results hold. The fixation probability of A (i.e. reaching M = N) starting from any
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internal state i is given by

φNi =
1 +

∑i−1
j=1

∏j
k=1

T−
k

T+
k

1 +
∑N−1
j=1

∏j
k=1

T−
k

T+
k

, (1.3.14)

which follows from Eq. (1.3.8), see [Traulsen and Hauert, 2009]. For the unconditional
fixation time the recursion (1.3.13) solves to

τi =
N−1∑
k=i

k∑
l=1

1
T+
l

k∏
m=l+1

T−m
T+
m
− τ1

N−1∑
k=i

k∏
m=1

T−m
T+
m
, (1.3.15)

τ1 =φN1
N−1∑
k=1

k∑
l=1

1
T+
l

k∏
m=l+1

T−m
T+
m
. (1.3.16)

The fixation time conditioned on absorption in M = N , generally given by Eq. (1.3.12) is

τNi = 1
φNi

N−1∑
k=i

k∑
l=1

φNl
T+
l

k∏
m=l+1

T−m
T+
m
− τN1

φN1
φNi

N−1∑
k=i

k∏
m=1

T−m
T+
m
, (1.3.17)

τN1 =
N−1∑
k=1

k∑
l=1

φNl
T+
l

k∏
m=l+1

T−m
T+
m
. (1.3.18)

All higher moments follow in a similar way. Especially, the conditional moments are of
interest in evolutionary dynamics, as they are connected with extinction or fixation of a
mutation. Our particular derivation considers only discrete time events. The analysis of
one-step processes in continuos time is similar, recursions for the moments then follow
from analyzing the generating function of PM,i(t), and the respective equations associated
with the master equation [Goel and Richter-Dyn, 1974; van Kampen, 1997].

The next subsection gives a standard formulation of the transition rates in evolutionary
game dynamics in finite populations. Generally, these stationary rates are nonlinear in i
and do not allow a closed treatment of Eqs. (1.3.14)–(1.3.18). However, selective differ-
ences that introduce a deterministic bias that overlaps with otherwise purely stochastic
dynamics effectively change the expectation values of fixation or loss. This is in contrast
to the deterministic replicator dynamics in infinitely large populations, where selective
differences only affect the intermediate timescales but not the outcome of Darwinian
evolution.
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1.3.3 Stochastic evolutionary game dynamics

The interactions of the two strategies can be given by a symmetric 2 × 2 game, such
as parameterized in the payoff matrix (1.2.14). The two strategies A and B interact.
We have payoff a for the two interacting A individuals. When an A interacts with a B,
the former gets payoff b, while the latter gets c. Two B individuals obtain d. Typically,
however, in evolutionary game theory, individuals interact with an ensemble of other
individuals, which can well be the entire rest of the population. For instance one can
obtain an expected payoff from random pairwise interactions. In a system of fixed size
N , we can give the number of strategy A by i, and hence the number of strategy B by
N − i. The expected or average payoffs for the two strategies are

πA = i− 1
N − 1

a+ N − i
N − 1

b, (1.3.19)

πB = i

N − 1
c+ N − i− 1

N − 1
d, (1.3.20)

excluding self-interactions. Hence, each individual does not interact with a specific
counterpart, but rather with a mean-field of others. This is often referred to as the
well-mixed population scenario and has its pedigree in the origins in the deterministic
description by Maynard Smith [1982].
The choice of a payoff to fitness mapping is crucial in finite systems. In order to

describe the statistical properties of evolutionary games in finite populations it has to
include a parameter β that quantifies the intensity of Darwinian selection. In general,
fitness can be modeled by any non-negative function of the product of selection intensity
and payoff, f(β π) ≤ 0. Fitness is a relative quantity, but typically, the background
fitness is chosen to be one, f(0) = 1. The increase of a strategy is proportional to its
fitness. In order to construct a one-step process (1.3.1)–(1.3.4) that conserves the system
size N , one can consider simultaneous birth and death events of individuals. A randomly
chosen individual gives birth to an identical copy with a probability proportional to
fitness, e.g., Tbirth ofA ∝ i f(β πA). Next, a randomly chosen individual is removed from
the population to make way for the offspring. This event typically happens at random
without a fitness bias, e.g., Tdeath ofA ∝ i. The two possible outcomes which actually
change the composition of the population are the birth of an A and the death of a B
such that i increases by one (T+

i ), or the birth of a B and the death of an A such that i
decreases by one (T−i ). All other events, such as birth and death of the same strategy do
not change i, and occur with probability 1− T+

i − T
−
i . For this particular process, called

the Moran process after Moran [1962], also see [Ewens, 2004], the normalized transition
rates from state i to states i+ 1, and i− 1 thus read [Nowak et al., 2004; Taylor et al.,
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2004; Wu et al., 2010]

T+
i = if(βπA)

if(βπA) + (N − i)f(βπB)
N − i
N

, (1.3.21)

T−i = (N − i)f(βπB)
if(βπA) + (N − i)f(βπB)

i

N
. (1.3.22)

Here, the ratio of transition rates in one state equals the fitness ratio, e.g., T−i /T
+
i =

f(βπB)/f(βπA). The net evolutionary change of this process can be given by the gradient
of selection, T+

i − T
−
i ∝ i(N−i)(f(βπA)−f(βπB)), which is very similar to the replicator

dynamics, Eq. (1.2.7).
Other definitions of microscopic transition rates based on selection are common [Altrock

and Traulsen, 2009a; Hauert and Szabó, 2005; Traulsen and Hauert, 2009; Traulsen et al.,
2007]. They can be fundamentally different in general. However, for neutral evolution,
i.e. in the absence of a selective bias β = 0, they essentially give identical results.
Moreover, for weak selection β � 1/N , these processes have some universal properties
[Taylor et al., 2006; Wu et al., 2010].

One of these alternative one-step process, namely the Fermi process, is given in Figure
1.3. In the Fermi process two randomly chosen individuals compare their payoffs, and
switch strategy with a probability given by the Fermi distribution [Blume, 1993; Szabó
and Tőke, 1998]. The selection intensity acts as an inverse temperature, such that for β
close to zero (high temperatures), the strategy change is mostly random, but for large β
the worse imitates the better with a high probability, and the opposite becomes unlikely.
For β = 0, switching is totally random, which refers to the case of neutral evolution.

1.3.4 Neutral evolution (and the random walk)

The most important reference case in evolutionary biology is neutral evolution. It can
explain why a high (genetic) variation in nature exists when selective differences are
absent. Using models of neutral evolution, one can explain the diversity of types or
strategies (originally on the molecular level) within populations by a dynamic equilibrium
between randomly occurring mutations and their neutral fixation or extinction [Kimura,
1968]. In evolutionary biology, it is widely accepted that the vast majority of mutations
on the molecular (genetic) level are neutral or nearly neutral [Kimura, 1994; McGill et al.,
2006]. Neutral evolution allows a statistical classification in the sense that a beneficial
(deleterious) mutation fixates with a higher (lower) probability than a neutral mutation.
It also serves as an extension to the concept of evolutionary stability: A strategy is
evolutionary stable if selection acts against the complete replacement of this strategy by
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A

B

i

N

N − i

N

gB→A
T+

i
A

A

πA − πB

gB→A =
1

1 + e−β(πA−πB)

0

1

T+
i =

i(N − i)
N2

gB→A

T−i =
i(N − i)

N2
gA→B

0

Figure 1.3: The Fermi process as an example of an evolutionary one-step process in a
population of fixed size N . In one time step step, two randomly chosen individuals compare
their payoff and change their strategy with a probability given by the Fermi distribution.
For example a B player switches to strategy A with probability gB→A as given in the figure
at the left bottom. The resulting transition rates are given at the right bottom. The top
shows an example where the number of A players i increases by one, which happens with
probability T+

i .

a neutral mutation [Nowak et al., 2004].
For the replicator dynamics in infinitely large populations neutrality means nothing else

but that the rate of change in strategy space vanishes trivially everywhere, which does not
give a very meaningful prediction for the evolution of a neutral mutation. Perturbations
by finite size fluctuations have to be taken into account. Hence, in finite populations the
neutral transition rates of the one-step process do not vanish everywhere. Instead, the
limit limβ→0 f(βπA) = limβ→0 f(βπB) = const. gives

T−i
T+
i

= 1 (1.3.23)

for neutral evolution, which by no means implies that T±i = const. Rather than that,
under neutrality the transition rates of the evolutionary one-step process with absorbing
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boundaries are quadratic in i,

T±i = c
i (N − i)
N2 , (1.3.24)

where c is a constant often chosen to be one [Ewens, 2004; Nowak, 2006a], see also
Eq. (1.3.24). This is a random walk with site dependent hopping rates. Although it is
non-isotropic, T±i 6= T±j for i 6= j, the symmetries T±i = T±N−i, and T

+
i = T−i hold.

The fixation probability of the random walk simplifies to

φNi = i

N
. (1.3.25)

With some more algebra, rearranging the sums in Eq. (1.3.15), the unconditional fixation
time is given

τ1 = N

c
HN−1, (1.3.26)

τi = N

c
[N(N − i) si + iHN−1 −N Hi−1] . (1.3.27)

Here, Hk =
∑k
j=1 1/j are the harmonic numbers that diverge logarithmically in N . We

also use the abbreviation si =
∑i−1
j=1 1/(j(N − j)), and note that H0 = s1 = 0. Likewise,

from Eq. (1.3.17), for the conditional fixation time under neutral evolution (in the absence
of selection) we find

τN1 = N

c
(N − 1), (1.3.28)

τNi = N

c

N − i
i

(σi + 1), (1.3.29)

where σi =
∑i−1
j=1 1/(N − j) with σ1 = 0.

It is interesting to see how this compares to the simple random walk with T±i = 1/2,
and T±0 = T±N = 0. The unconditional mean exit time of the interval {1, . . . ,N − 1} now
reads

τi = (N − i) i, (1.3.30)

whereas for the conditional mean exit time we find

τNi = N2 − i2

3
. (1.3.31)

The asymptotic scaling behavior of fixation probability and conditional fixation time of
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neutral evolution and the simple random walk, if confined between absorbing boundaries,
are identical, φNi ∼ N−1, τNi ∼ N2 [Altrock et al., 2010a; Antal and Scheuring, 2006;
Fisher, 1930]. For the unconditional fixation time (mean life time), this is not true,
τi ∼ N logN for the one-step process of neutral evolution, and τi ∼ N for the simple
random walk.

1.3.5 System size expansion

For all Markov processes, the Chapman-Kolmogorov equation holds as a consistency
equation for the joint probability distributions. The master equation is the re-formulation
of the Chapman-Kolmogorov equation. It governs the temporal evolution of the probability
to occupy a discrete state at a given time respecting the microscopic details of the Markov
chain. Due to its complexity, in many cases the master equation itself cannot be solved.
In order to be able to find another description that complies with the temporal evolution
of a probability density describing the system, one often resorts to an expansion in inverse
system size, neglecting terms of higher order in N−1. To this end, continuous spatial
and temporal dynamics are assumed, rescaling the state space as x = i/N , and the time
increment as ∆t = 1/N . This results in a continuous stochastic process on the interval
[0,1]. The change from i, the number of type A which is an extensive variable, to the
density x being an intensive variable is crucial in the sense that it requires the rescaling
of time to lead to a convergent expansion [Gardiner, 2008].
In case of the one-step process, we start from the Markov chain

Ti→i+1 = ifA
if(βπA) + (N − i)f(βπB)

N − i
N

= T+
i , (1.3.32)

Ti→i−1 = (N − i)fA
if(βπA) + (N − i)f(βπB)

i

N
= T−i , (1.3.33)

Ti→i±k = 0, ∀k > 1, (1.3.34)

where fA, fB are the fitness values of type A, and B, respectively. In discrete space, we
define the conditional moments

Mn(i) =
N∑
j=0

(j − i)n Ti→j , (1.3.35)

and require that all such moments with n > 2 vanish in the limit of large N . Now
the transition to the continuous process allows to describe the system in terms of the
temporal change of the conditional moments. Taking Dn = 〈(xt+∆t − xt)n〉/∆t, such
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that for large N [Traulsen et al., 2005]

Dn(x) ≈ N

Nn
Mn(i), (1.3.36)

the drift term becomes

D1(x) ≈ T+
x − T−x , (1.3.37)

and the diffusion term is

D2(x) ≈ T+
x + T−x
N

. (1.3.38)

Eqs. (1.3.35) and (1.3.36) hold in general, Eqs. (1.3.37) and (1.3.38) are a particular
result of the one-step process. Especially, for the choice of the density dependent Moran
process (1.3.32)–(1.3.34), drift and diffusion can be given in terms of the fitness functions,
with 〈f〉 = x fA + (1− x)fB,

D1(x) ≈ x(1− x)fA − fB
〈f〉

, (1.3.39)

D2(x) ≈ x(1− x)
N

fA + fB
〈f〉

. (1.3.40)

The same drift and diffusion are obtained from a Taylor expansion of the master equation
(1.3.5). Setting %(x,t) = N pi(t), in the large N limit the master equation approximately
results in the Fokker-Planck equation

%̇(x,t) = − ∂

∂x
{D1(x) %(x,t)}+ 1

2
∂2

∂x2 {D2(x) %(x,t)} . (1.3.41)

This can serve as a starting point for an analysis of stochastic stability and asymptotic
behavior [Traulsen et al., 2006b], connecting microscopic stochastic evolutionary game
dynamics to the replicator equation with noise [Cremer et al., 2008; Traulsen et al., 2005],
as well as allowing a comparison with the diffusion theory in population genetics [Ewens,
2004].

The Fokker-Planck equation (1.3.41) corresponds to a Langevin equation. Using Itô’s
calculus [Gardiner, 2008; Risken, 1989; van Kampen, 1997], we find

dx = x(1− x)fA − fB
〈f〉

dt+
√
x(1− x)

N

fA + fB
〈f〉

dW (t), (1.3.42)

where dW (t) is the increment of the Wiener processes with zero mean and autocorrelation
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function 〈W (t)W (s)〉 = min{t,s}. We immediately see that in the limit N → ∞ the
noise term vanishes and we are left with a replicator equation ẋ ∝ x(1 − x)(fA − fB),
compare Eq. (1.2.7), provided the average fitness is non-zero.
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Nothing in biology makes sense
except in the light of evolution.

Theodosius Dobzhansky

1.4 Population genetics

This is a short overview over the basic population genetic principles used in Chapter 3,
which have not been covered in this introduction so far.

A gene, also often referred to as a locus, corresponds to a fixed genetically mappable
position on the genome (on a chromosome). Different variants of the same gene are called
alleles. Populations genetics studies how distributions of allele frequencies vary over time.
In biology, the so called allele frequency is the proportion of all copies of a gene that is
made up of a particular gene variant. It is often synonymous with both, the density of a
given allele in a very large population (an intensive variable), as well as the number of
copies of an allele in a finite population (an extensive variable). Given that individuals in
a population reproduce and contribute alleles to their offspring with a certain probability,
the important mechanisms for change in allele frequencies are mutation, selection, neutral
(i.e., stochastic) change, and gene flow (e.g., caused by mobility of individuals) [Hartl
and Clark, 1997]. Some classical aims of populations genetics are, e.g., to understand
how polymorphism can be maintained under Darwinian selection and how the process of
speciation takes place [Huxley, 1942; Wright, 1931].

The mathematical framework of theoretical population genetics is very similar to that
of evolutionary game dynamics [Ewens, 2004; Maruyama, 1977]. However, interest is
focused on genes (or alleles) rather that on strategies. If alleles are considered, they
usually follow interaction patterns that differ from that of a game, but in some cases, the
two descriptions coincide, or can be mapped to each other.
In most cases, the rules by which allele frequencies change comply with Mendelian

genetics [Fisher, 1930]. Traditionally, population genetics considers evolution on a fixed
but complex fitness landscape, where the evolutionary change is triggered by mutations.
Fitness is the expected number of offspring of an individual. The fitness landscape is a
mapping from the high dimensional space of all possible genotypes to a real number that
measures this expectation value. A population can be seen as a distribution in genotype
space, and thus on the fitness landscape. One then asks how the mean and variance
of this distribution change over time [Drossel, 2001]. If natural selection acts on genes,
or their variants, it is of importance to separate between haploid, diploid or polyploid
organisms, as this affects (among other things) the combinatorics that lead to possible
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new genotypes. For instance, haploids have only one set of chromosomes, diploids have
two. Hence, a diploid organism has two copies of each gene, each of which can have the
same or two different variants out of a set of possible alleles.

In general, genotype frequencies are not equal to their corresponding allele frequencies.
In haploids, the number of genotypes directly gives the number of alleles. In diploids,
the transfer from one to the other depends on the mating pattern [Hartl and Clark,
1997]. We are interested in the evolution of allele frequencies because different alleles
have different fitness effects.

1.4.1 Population dynamics under random mating

In diploids, one of the the simplest non-trivial cases emerges when a single gene locus
with to variants (alleles) is considered. We denote allele i by Ai, and each individual in
a very large population has genotype AiAj , i,j = 1,2. Then, if the ordering does not
matter, three generic genotypes are possible: A1A1, A1A2 = A2A1, and A2A2, with gene
frequencies X1, 2X2, and X3 = 1−X1 − 2X2, respectively. Every individual produces
gametes during meiosis, which are haploid, i.e. carry only one allele. Diploid offspring
are produced by two gametes. The resulting genotype is generated with a probability
according to the mating pattern. AiAi×AiAi can produce only AiAi offspring. Random
mating means that offspring from mating of mixed genotypes, such as AiAi × AiAj ,
etc., have a certain genotype with probability given from the according combinatorics,
e.g., AiAj ×AiAj produces AiAj with probability 1/2. Hence, the next generation gene
frequencies X ′i are given as

X ′1 = (X1 +X2)2, (1.4.1)

X ′2 = (X1 +X2)(X2 +X3), (1.4.2)

X ′3 = (X2 +X3)2, (1.4.3)

but from then on, in the absence of selection, the frequencies are constant, X ′′i = X ′i,
with X ′2X ′2 = X ′1X

′
3, [Ewens, 2004]. If

X2
2 = X1X3 (1.4.4)

holds as well, it is sufficient to know the frequency of allele A1, given by x = X1 +X2.
Hence, all three genotype frequencies can be expressed in terms of the one independent
variable x. Then, genotype A1A1 occurs in the population with density x2, for the other
densities see Tab. 1.1. This concept of eliminating the second independent variable,
introduced by Hardy [1908], is a fundamental assumption to ease the modeling. Even
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though it only properly works throughout the life cycle in the absence of selection, it is
assumed in many models that include selection on different genotypes (before applying
selection) [Ewens, 2004]. This so called Hardy-Weinberg law serves as the null hypothesis
of population genetics.

genotype A1A1 A1A2 A2A2
fitness w11 w12 w22
frequency x2 2x(1− x) (1− x)2

Table 1.1: Hardy-Weinberg equilibrium. Fitness values of genotypes and their frequencies
under random mating with two alleles A1, A2 (with allele frequencies x, 1− x).

To come to an (adaptive) evolutionary argument, we have to ascribe fitness values to
each genotype, wi,j is thus the constant fitness of genotype AiAj . This is the simplest
choice we can make, other choices are possible [Crow and Kimura, 1970]. With this we
can write the fitness functions of the alleles as

f1 = w11 x+ w12(1− x), (1.4.5)

f2 = w12 x+ w22(1− x), (1.4.6)

for allele A1, A2, respectively. Then, the average allelic fitness of the population amounts
to

〈f〉 = x f1 + (1− x)f2. (1.4.7)

The evolutionary change in allele frequencies due to reproductive success given by the
genotypic fitness values in Tab. 1.1 is given by sampling alleles with replacement between
discrete non-overlapping generations according to Wright [1931]. If x is the state of the
present generation, in the next generation the frequency changes to x′ = x f1/〈f〉. Hence,
the discrete time dynamics, where time is measured in generations of unit time, for the
change in allele frequencies ∆x = x′ − x is given by

∆x = x
f1 − 〈f〉
〈f〉

. (1.4.8)

This is a discrete time version of the replicator equation (1.2.9), corresponding to the
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payoff matrix


A1 A2

A1 w11 w12

A2 w12 w22

. (1.4.9)

This direct analogy between the evolution of diploid organisms and evolutionary games
only works under the random mating hypothesis in an infinitely large population with
Mendelian segregation. It is yet to be seen how far this analogy can be pushed further. In
order to cover distortions from Mendelian segregation [Ewens, 2004; Maynard Smith, 1966],
more complex strategic interaction patterns may be necessary. The frequencies/payoffs
can be adjusted to account for other mating patterns.

1.4.2 Wright-Fisher process

Much like the deterministic theory of population genetics, the stochastic modeling
considers time scaled in discrete generations. The individual genes or alleles in generation
t+ 1 are sampled with replacement from the ones in generation t. To avoid confusion,
instead of referring to individual genes or alleles, we simply refer individuals. This allows
a closer comparison with the results for one-step processes in stochastic evolutionary
game dynamics, compare to Section 1.3.
In the Wright-Fisher process without mutations, each individual of a population of

size N produces a large number of identical offspring, and dies. The next generation of
size N is then sampled randomly from this very large offspring pool [Ewens, 2004]. This
corresponds to binomial sampling from the present generation. We focus on the situation
of two alleles, or types, A1, and A2, with fitness values f1, f2. The number of A1 is given
as i, the number of A2 is thus N − i. Note that in a diploid population of size n, this
corresponds to a total of N = 2n individual alleles. We formulate a Markov chain on
{0,1, . . . ,N}, where transitions from state i to any state j are possible, and assume that
mutations are so rare that they do not occur before the process gets absorbed in 0, or in
N . The probability for a copy of A1 to occur in the next generation is proportional to
the fitness of A1, and can thus be given by

pbirth ofA = i f1
i f1 + (N − i)f2

. (1.4.10)
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Similarly, reproduction of an A2 happens with probability

pbirth ofB = (N − i)f2
i f1 + (N − i)f2

. (1.4.11)

The fitness functions are given by Eqs. (1.4.5), (1.4.6), with the replacement x = i/N .
Hence, the elements of the transition matrix Tji = Ti→j , with i,j ∈ {0, . . . ,N}, read
[Imhof and Nowak, 2006]

Ti→j =
(
N

j

)(
x f1

x f1 + (1− x)f2

)j ( (1− x)f2
x f1 + (1− x)f2

)N−j
, (1.4.12)

T0→j = TN→j = 0. (1.4.13)

The states {1, . . . ,N − 1} are transient, {0,N} are absorbing. The transition rate Ti→j is
to be interpreted a the probability that in the next generation, we have j copies of allele
A1, given that in the present generation we have i copies of allele A1. In discrete time
the probability to go from i to j in time t (measured in generations), ρ(j; i,1), fulfills

ρ(j; i,t+ 1) =
N∑
k=0

Tk→j ρ(k; i,t). (1.4.14)

The fitness values fi can be any positive function of the allele frequency x, a special form
from random mating is given by Eqs. (1.4.5), (1.4.6). Then, the simplest choice that
corresponds to neutral selection is f1 = f2 = 1, which is equivalent to w11 = w12 = w22

[Crow and Kimura, 1970]. The case of f1/f2 ≈ 1/w12 6= 1 can be obtained for, e.g.,
w11 = w12 and s = w12 −w22 � 1 by an expansion up to lowest order in s [Ewens, 2004].

In order to make analytical predictions about the statistical properties of the Markov
chain given by (1.4.12), (1.4.13) one has to resort to a system size expansion [Kimura,
1994], assuming that the process is approximately well described by the continuous
density x = i/N . Rescaling time by ∆t = 1/N as well, and expanding in orders of
1/N , Eq. (1.4.14) is approximated by the forward Fokker-Planck equation [Ewens, 2004;
Gardiner, 2008]

ρ̇(x;x0,t) = − ∂

∂x
{α(x) ρ(x;x0,t)}+ 1

2
∂2

∂x2 {β(x) ρ(x;x0,t)} . (1.4.15)

The first term accounts for selection (and mutation), the second term models random
genetic changes as a diffusion process. The latter phenomenon is often called random drift
in population genetics. However, we do not stick to this notation and always refer to it as
the diffusion term. Then, the drift term accounts for deterministic part of evolutionary
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change due to selection, and reads

α(x) = x(1− x)N f1(x)− f2(x)
xf1(x) + (1− x)f2(x)

, (1.4.16)

while for the diffusion term one finds

β(x) = x(1− x) f1(x)f2(x)
(xf1(x) + (1− x)f2(x))2 + α2(x)

N
. (1.4.17)

Note the similarities and differences to the system size expansion of the one-step process,
Eq. (1.3.41): The drift term takes the same form except for a factor N that can be
absorbed by rescaling of time. The diffusion term generally takes a different form, as the
Wright-Fisher process starts from a rather different transition matrix.

For our particular process with selection, but without mutations, no stationary distri-
bution exists. The fixation probability φ(x0) is the probability that the process exits at
x = 1 (fixation of allele A1) after any time when initiated in x0 ∈ (0,1). It can be found
by considering

φ(x0) =
1∫

0

dx̂ ρ(x̂;x0,t) (1.4.18)

and the resulting backward equation

0 = α(x0) ∂

∂x0
φ(x0) + 1

2
β(x0) ∂2

∂x2
0
φ(x0). (1.4.19)

This solves to

φ(x0) =

x0∫
0
dy ψ(y)

1∫
0
dy ψ(y)

, (1.4.20)

where

ψ(y) = exp

−2
y∫
dz
α(y)
β(z)

 . (1.4.21)

In a similar way, considering the backward equation of the generating function one can
derive recursions for the moments in time, e.g., for the mean exit times [Ewens, 2004].
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1.4.3 Neutral evolution

In the case of neutral evolution, f1 = f2, the drift term, Eq. 1.4.16, vanishes identically,
and the diffusion term simplifies to β(x) = x(1− x). Evolution is modeled by the pure
diffusion equation on [0,1] with absorbing boundaries,

ρ̇(x;x0,t) = 1
2
∂2

∂x2 {x(1− x) ρ(x;x0,t)} . (1.4.22)

This, and similar equations have been extensively studied by Kimura [1994], an explicit
solution exits. It is easy to see that now the fixation probability simply amounts to
φ(x0) = x0. Under neutral evolution, the conditional mean absorption time, i.e. the
average time (measured in generations) spend between 0 and 1, becomes

τ(x0) = −2 (1− x0)
x0

ln[1− x0]. (1.4.23)

A similar result can be obtained for the conditional mean exit times. This links the
Wright-Fisher process under diffusion approximation with other evolutionary processes,
showing universal behavior in the absence of selection, compare Eqs. (1.3.27), and (1.3.29).
This thesis mainly examines the statistical properties of stochastic evolutionary processes
under selection. In some cases the influence of selection can be analyzed analytically, e.g.,
by considering expansion similar to a high temperature expansion in physical systems
that respect the bias of selective differences. The interactions that determine selective
differences between types can be given either by a genetic background, or by considering
evolutionary games. The resulting complex dynamics of the two cases can be very similar.
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CHAPTER 2
Fixation events in well mixed populations of finite size

This chapter contains the publications [Altrock and Traulsen, 2009b], [Wu et al., 2010],
[Altrock et al., 2010a], and [Altrock and Traulsen, 2009a], in their published format.
Each manuscript is given as a section, with a short survey. The previous chapter plays a
vital part as motivation and an introduction to the methods used.

2.1 Fixation times in evolutionary games under weak selection

Neutral evolution is the reference case in biology and implies that evolutionary dynamics
are random [Kimura, 1994]. In terms of evolutionary game dynamics, weak selection
means that an individual’s payoffs based on its behavior in strategic interactions with
other strategies give only a small correction to the neutral case. This limit case has been
transferred from classical population genetics to evolutionary game theory only recently
by Nowak et al. [2004]. Weak selection allows to find analytical approximations, e.g., for
the probability that a mutation reaches fixation, even in structured populations [Antal
et al., 2009; Ohtsuki et al., 2006, 2007b; Tarnita et al., 2009a; Traulsen and Nowak, 2006].
Weak selection results can be obtained by a perturbation analysis that considers additive
changes to the neutral evolution due to an expansion in orders of the selection intensity.
This is similar to a high temperature expansion in physical systems; selection intensity
corresponds to an inverse temperature in statistical mechanics [Traulsen et al., 2006a,
2007]. Most of the recent work focuses on the fixation probability and how it changes
with the evolutionary game when selection is weak. In addition, general expressions for
the average fixation times have long been known in population genetics [Ewens, 2004;
Goel and Richter-Dyn, 1974; Karlin and Taylor, 1975], and mean exit or mean first
passage times are routinely analyzed in statistical physics [Gardiner, 2004; Redner, 2001;
van Kampen, 1997]. Here, we extend the knowledge of weak selection by particularly
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2 Fixation events in well mixed populations of finite size

addressing the mean exit times of some widely used stochastic processes that model the
dynamics under Darwinian selection in populations of finite size.
We focus on the dynamics of two strategies A and B with a symmetric interaction,

as introduced in Chapter 1. The fluctuating variable that characterizes the state of the
system is the ’density’ i, which is, e.g., the number of A players. Under the well mixed
hypothesis, the evolutionary dynamics is governed by the average payoffs πA, and πB,
both being a function of i. The payoffs πA and πB are expectation values from random
interactions of the two types (strategies) A and B. In the case of neutral evolution,
changes in density only depend on the density itself, compare to 1.3. Under weak selection,
the probabilities that the density i changes is proportional to the difference in average
payoffs ∆π = πA − πB. This difference, as a function of i, is of linear form, namely
∆π = u i+ v. The density dependent term with u ∼ (a+ d− (b+ c))/N evaluates the
accumulated success of A−A and B −B versus the accumulated success of A−B and
B − A. The term that does not depend on the density of A, with v ∼ b− d, evaluates
whether playing A against B, or B against B turns out to be better, irrespective of the
composition of the population.
The most relevant case among fixation events emerges when a single mutant, say of

type A, invades a population of B. The three important quantities here are (i) the
probability that this mutant takes over (fixes) after an arbitrary number of time steps
φA1 , (ii) the conditional mean time of exit for such an event tA1 , and (iii) the mean lifetime
of this process t1. In Section 1.3, the explicit expressions for these quantities are given
for the general evolutionary one-step (birth-death) process with absorbing boundaries.

The common example for a process that involves reproduction and death is the birth-
death process introduced by Moran [1962], compare to Section 1.3, Eqs. (1.3.21) and
(1.3.22). These processes include a birth and a death event, reproduction is proportional
to fitness.
Another possible evolutionary process emerges if one considers imitation. The most

famous example for an imitation process is the Fermi process [Blume, 1993; Hauert and
Szabó, 2005; Pacheco et al., 2006; Szabó and Tőke, 1998; Traulsen et al., 2006a], compare
to Figure 1.3. In each time step two randomly chosen individuals compare payoffs. The
probability to choose a random A player is i/N , a random B player is chosen with
probability (N − i)/N . The probability that one switches and adopts the other’s strategy
is given by the Fermi function. With a probability greater than 1/2 the worse imitates
the better, whereas with a probability smaller than 1/2 the better imitates the worse.
Both kind of processes are analyzed in this thesis. For weak selection, the transition

probabilities can always assumed to be a linear function of the average payoff. The
influence of the selection intensity on the fixation probability φA1 has been understood
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2 Fixation events in well mixed populations of finite size

quite well, see ,e.g., [Traulsen et al., 2007], and our focus now is on the fixation times tA1
and t1. The goal is to explicitly derive weak selection expressions for the unconditional
and conditional fixation times. The final result is deeply connected to a symmetry relation
in the conditional fixation times discussed by Antal and Scheuring [2006]; Taylor et al.
[2006], see also 2.2.
Relating back to the linear form of the average payoff from above, ∆π = u i+ v, the

following surprising simplifications hold under weak selection. The neutral terms of
φA1 , t

A
1 , and t1 only depend on N . Selection is parameterized by β and weak selection thus

means β � 1/N . While for the fixation probability φA1 the correction linear in β depends
not only on N , but also on u and v. For the mean life time t1 the linear correction is
proportional to v, whereas for the conditional fixation time tA1 , it is proportional to u
only. We have tA1 ≈ CN − uDN β and t1 ≈ EN + v FN β, where CN , DN , EN , FN are
positive constants involving only N .
With these results we can address the influence of the game parameters a, b, c, and d

on the macroscopic statistical properties, as u ∝ a+ d− (b+ c) and v ∝ N(b− d)− a+ d.
The weak selection expansion now confirms that in coordination games, i.e. when
both strategies are best replies to themselves, both fixation times always decrease with
increasing selection, as u > 0 and v < 0. In addition, when both strategies are a best
reply to the other, the system spends more time in the interior and the fixation times
increase with increasing selection, as u < 0 and v > 0. For the seemingly simple case of
one strategy performing always better, however, the situation is more diverse, see also
Section 2.3.
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1. Introduction

Systems in which successful strategies spread by imitation or genetic reproduction can be
described by evolutionary game theory. Such models are routinely analyzed in evolutionary
biology, sociology, anthropology and economics. Recently, the application of methods from
statistical physics to these systems has led to many important insights [1]–[5].

Traditionally, the dynamics is described by the replicator equations, where the growth rate
of a strategy is associated with its relative success compared with the population average [6, 7].

In the past few years, research has focused on stochastic evolutionary game dynamics in
finite populations [8]–[22]. In this context, a connection to the weak selection limit of population
genetics has been established [8]. Weak selection means that the payoff differences based on
different strategic behavior in interactions represent only a small correction to otherwise random
dynamics, similar to high temperature expansions in physics. Weak selection is considered
as a relevant limit in biology, as most evolutionary changes are driven by small fitness
differences [23]. Moreover, it allows analytical approximations that are often impossible when
selective differences in payoffs are large [8, 24, 25].

Most of the recent work that uses the weak selection approximation has been focusing
on the probability that a certain strategy takes over. The time associated with this process has
been calculated [26], but it received considerably less attention so far. Here, we present the
weak selection corrections to the conditional and unconditional mean exit or fixation times in
evolutionary 2 × 2 games with N players.

The conditional average time to fixation t A
1 is the expected time a single mutant needs to

take over the population, given that such a takeover occurs at all. The unconditional average
time of fixation t1 is the expectation value for the time until the population is homogeneous
again after the arrival of a single mutant. This is regardless of whether the mutant type takes
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over the population or becomes extinct. Equivalently, the average fixation times for such one-
dimensional random walks can also be interpreted as mean first passage times or mean exit
times [27]–[29].

Throughout this paper, we use the payoff matrix

( A B
A a b
B c d

)
. (1)

An A player interacting with another A receives a. If it interacts with B, it obtains b. Similarly,
B receives c from A and d from other Bs. Thus, the average payoffs are

πA(i) = i − 1

N − 1
a +

N − i

N − 1
b, (2)

πB(i) = i

N − 1
c +

N − i − 1

N − 1
d. (3)

A quantity that is of particular interest is the difference between the average payoffs,

�π(i) = πA(i) − πB(i) = u i + v, (4)

where

u = a + d − (b + c)

N − 1
, (5)

v = N (b − d) − (a − d)

N − 1
. (6)

We show that under weak selection, the conditional time (t A
1 ) during which a single mutant

takes over the whole population depends only on u (and, of course, on the population size).
The unconditional time (t1) during which the mutant either takes over the population or reaches
extinction depends only on v (and the population size). See figure 1 for an illustration of the
relevant quantities.

Our paper is organized as follows: in section 2, we introduce a particular evolutionary
process for our analysis. Although our results are valid for a broader class of processes, we
only present the full calculation for this evolutionary process. In section 3, we recall the
general form of fixation probabilities and times. We discuss neutral selection in section 4 as
a prerequisite to the weak selection expansion, which we explore in section 5. In section 6, we
address the frequency-dependent Moran process to underline the generality of our findings. The
consequences of our analytical results are discussed in section 7.

2. Fermi process

In a finite population of size N with two possible strategies A and B, the state of the system is
characterized by the number of type A individuals i . In general, the dynamics is stochastic. In
each time step, a randomly chosen individual evaluates its success. It compares this payoff with
a second, randomly chosen individual. If this second individual has a higher payoff, the first
one switches strategies with probability p > 1

2 . Otherwise, it switches with p < 1
2 . We assume

New Journal of Physics 11 (2009) 013012 (http://www.njp.org/)
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B A

Number of A players
0 Ni1

t1(β,N, v)

T−i (β,N, u, v) T
+
i (β,N, u, v)

tA1 (β,N,u)

φ1(β,N, u, v)

Figure 1. Illustration of the most relevant quantities. We are interested in the
evolutionary fate of a single A player. All quantities depend on the intensity of
selection β and the population size N . The payoff difference between A and
B players is given by �π = u i + v, with i as the number of A players. Both
the transition probabilities T +

i and T −
i and the probability that a single A player

takes over the population φ1 depend on u and v. But for weak selection, β � 1,
the conditional time t A

1 during which a single A player takes over a population
of B players only depends on u, whereas the unconditional time t1 until either A
or B has taken over the population only depends on v.

that the switching probability is given by the Fermi distribution. Its shape is controlled by the
intensity of selection β, which can be interpreted as an inverse temperature,

p±
i = 1

1 + e∓β(πA(i)−πB(i))
= 1

1 + e∓β�π(i)
. (7)

In previous work [30]–[32], there is a different strategy update procedure. The first individual
switches to the second’s strategy with probability p±

i . The second individual can also switch
to the first individual’s strategy with probability 1 − p±

i . This yields a factor 2 in the transition
probabilities (and, as will become clear later, a factor 1

2 in the fixation times). This process also
has a proper strong selection limit, i.e. it is possible to examine β → ∞. In this latter case, we
have p±

i → �(�π(i)), where �(x) is the step function.
The population size is constant in time, in each time step the state of the system can at most

change by one, i.e. from i to i − 1 or to i + 1. The transition probabilities T ±
i to move from i to

i ± 1 are

T ±
i = i

N

N − i

N
p±

i . (8)

The probability to stay in the current state is 1 − T +
i − T −

i . An important measure of where the
system is more likely to move is their ratio,

γi = T −
i

T +
i

= e−β �π(i). (9)

This is a quantity that describes the tendency to move from the state i to i ∓ 1, depending on
whether γi ≷ 1. Of course, T +

i > 0 is required, which follows from β < ∞. The T ±
i and thus the

γi are invariant under adding a value to each of the payoffs given in (1), whereas multiplying
the payoff matrix with a factor λ results in a change in the intensity of selection β̃ = β λ.
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Let us now focus on weak selection, β � 1. In this case, we have

p±
i ≈ 1

2
± β

4
�π(i). (10)

Weak selection corresponds to high temperature in Fermi statistics. A Taylor expansion of the
γi up to first order in β yields γi ≈ 1 − β �π(i). In this case, the probability to move from i to
i + 1 is very similar to the probability to move from i to i − 1. Weak selection links the Fermi
process to a variety of birth–death processes, cf [8, 33].

3. Fixation probabilities and fixation times

From equation (8) it follows that the two pure states all A or all B are absorbing, T ±
0 = T ±

N = 0.
In a finite population, we can calculate the probability φi that the system will fixate to the
pure state all A, starting with the mixed state i . Obviously, we have φ0 = 0 and φN = 1. For
0 < i < N , there is a balance equation for the fixation probabilities, φi = T −

i φi−1 + (1 − T +
i −

T −
i )φi + T +

i φi+1. This recursion leads to an expression for the fixation probabilities in terms of
the γi [34]–[36],

φi = 1 +
∑i−1

k=1

∏k
l=1 γl

1 +
∑N−1

k=1

∏k
l=1 γl

, (11)

which is valid for any birth–death process.
For the Fermi process, the exact equation (9) simplifies matters in an elegant way because

the products in equation (11) can be solved,
k∏

l=1

γl = exp

{
−β

k∑
l=1

�π(l)

}
= exp

{
−β

[
k2 u

2
+ k

(u

2
+ v

)]}
. (12)

Hence, equation (11) simplifies to

φi = 1 +
∑i−1

k=1 exp
{−β

[
k2 u

2 + k(u
2 + v)

]}
1 +

∑N−1
k=1 exp

{−β
[
k2 u

2 + k(u
2 + v)

]} . (13)

For large N , the sums in equation (13) can be approximated by integrals, which yields a closed
expression for the probabilities φi [33, 37].

General expressions for the unconditional and conditional mean exit times or average times
of fixation, t1 and t A

1 , are well known, especially for simple, translational invariant random
walks [26, 27, 38]. A complete derivation for the average times of fixation in finite systems
without translational invariance can be found in [26, 35, 39].

In the following, we will focus on the fixation of a single A mutant in a population of B.
Accordingly, the unconditional and conditional fixation times read

t1 = φ1

N−1∑
k=1

k∑
l=1

1

T +
l

k∏
m=l+1

γm (14)

and

t A
1 =

N−1∑
k=1

k∑
l=1

φl

T +
l

k∏
m=l+1

γm, (15)
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respectively. Time is measured in elementary time steps here. Thus, in each time step one
reproductive event occurs. In biological contexts, it is often more convenient to measure time
in generations, such that each individual reproduces once per generation on average. Time in
generations is obtained by dividing the number of time steps by the population size N . It is well
known that the variance of the exit times under weak selection can be large [39], which has
important biomedical implications [40]. Nonetheless, here we concentrate on the expectation
values and do not address the distribution of the exit times.

4. Neutral selection

An important reference case is neutral selection, which results from vanishing selection intensity
β = 0 [41]. Neutral selection is a very general limit, which is typically not affected by the details
of the evolutionary process. For neutral selection we have γi = 1, that is T +

i = T −
i in any state i .

However, we still have T ±
i �= T ±

j for i �= j , although the system is symmetric, T ±
i = T ±

N−i . This
is a difference to the simple random walk in one dimension, which is invariant with respect to
translation [29].

For the Fermi process, the neutral transition probabilities are

T ±
i

∣∣∣
β=0

= 1

2

i

N

N − i

N
. (16)

We have T +
i = T −

i , which leads to γi = 1. From equation (11), it is thus clear that the probability
of fixation to A is given by the initial abundance of A,

φi

∣∣∣
β=0

= i

N
. (17)

For the neutral unconditional time of fixation t1 we get

t1

∣∣∣
β=0

= 1

N

N−1∑
k=1

k∑
l=1

2 N 2

l(N − l)
= 2 N HN−1. (18)

Details for this calculation can be found in appendix A. We introduced the shorthand notation
for the harmonic numbers HN−1 = ∑N−1

l=1
1
l , which diverge logarithmically with N . In the same

way we can solve

t A
1 |

β=0
=

N−1∑
k=1

k∑
l=1

l

N

2 N 2

l(N − l)
= 2 N (N − 1). (19)

For neutral selection, the conditional average time of fixation of a single mutant diverges
quadratically with the system size.

5. Weak selection

In this section, we will calculate the linear corrections of the mean exit times or fixation times
t1 and t A

1 under weak selection, β � 1. Of course, all weak selection approximations are valid
only if the term linear in β is small compared with the constant term.

The fixation probabilities for small β are

φi ≈ i

N
+

i

N
(N − i)

(N + i)u + 3v

6
β, (20)

which has been derived for a variety of evolutionary processes before [8, 10, 12, 35, 36, 42].
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Next, we address the weak selection approximation of the fixation times. The expectation
value of the unconditional fixation time of a single A mutant in a population of B is in general
given by the exact equation (14). With the transition and fixation probabilities of the Fermi
process, the unconditional fixation time of absorption at any boundary simplifies to

t1 = φ1

N−1∑
k=1

k∑
l=1

N 2

l(N − l)

(
1 + e−β(u l+v)

)
exp

{
−β

k∑
m=l+1

�π(m)

}
. (21)

The weak selection approximation takes the remarkably simple form (see appendix B for
details)

t1 ≈ 2 N HN−1 + v N (N − 1 − HN−1) β (22)

with v given in (6). Thus, t1 depends only on the constant term of the payoff difference. For
large N , this yields v ≈ b − d . That is, for large populations under weak selection, the linear
correction of the average fixation time only depends on the advantage (or disadvantage) of the
A mutants in the resident population. For b > d, invasion of A mutants is likely and slows down
the time until the population is homogeneous again. For d > b, it is difficult for A to invade
a B population and extinction of the mutants is faster than in the neutral case. Note that the
payoff entries a and c have no influence on the unconditional fixation time under weak selection
corrections. Since fixation is unlikely for weak selection (the probability of fixation of a single
A mutant is approximately N−1), the unconditional fixation time is dominated by the fixation to
B. In this case, it is enough to discuss the invasion of A mutants.

Next, we address the average time to fixation given that the A mutant takes over the
population. With the general result (15) the conditional fixation time of the Fermi process to
all A reads

t A
1 =

N−1∑
k=1

k∑
l=1

φl
N 2

l(N − l)

(
1 + e−β(u l+v)

)
exp

{
−β

k∑
m=1+l

�π(m)

}
. (23)

Its linear approximation turns out to be dependent on the payoffs in a very simple way as well,

t A
1 ≈ 2 N (N − 1) − u N (N − 1)

N 2 + N − 6

18
β (24)

with u(N − 1) = a − b − c + d . The detailed calculation can be found in appendix B. Since
during the fixation process all payoffs are of importance, it is obvious that they all enter here.
For example, when it is easy to invade because few mutants have an advantage (b > d), but
difficult to reach fixation because mutants are disadvantageous once they are frequent (c > a),
we have u < 0 and the conditional time to fixation is larger than neutral. In the last section,
we discuss special classes of games to show that, under weak selection, the conditional mean
exit times of fixation (or absorption) do not always follow the intuition based on the payoff
matrix (1).

6. Frequency dependent Moran process

In this section, we address the generality of the previous findings discussing an alternative
evolutionary process. The first model that connects payoffs from a 2 × 2 game to reproductive
fitness using a weak selection approach in finite populations is the frequency dependent Moran
process [8, 9]. In this process, an individual is chosen for reproduction with probability
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proportional to its fitness f (i). The offspring replaces a randomly chosen individual. The
average payoffs (2) and (3) are mapped to the fitness such that f A(i) = 1 − β + β πA(i) and
fB(i) = 1 − β + β πB(i), where the selection intensity β > 0 is so small that f A(i) > 0 and
fB(i) > 0. The transition probabilities of the standard Moran process read

T +
i = i f A(i)

i f A(i) + (N − i) fB(i)

N − i

N
, (25)

T −
i = (N − i) fB(i)

i f A(i) + (N − i) fB(i)

i

N
. (26)

Although these transition probabilities are different from those of the Fermi process, they also
yield γi ≈ 1 − �π(i) and

∏k
m=l+1 γm ≈ 1 − β

∑k
m=l+1 �π(m) for weak selection, β � 1. Thus,

the weak selection approximations of the fixation probabilities φl of the Moran process and the
Fermi process are identical, see equation (20). But the weak selection approximations of the
transition probabilities are not identical, which leads consequently to different mean exit times.
Nevertheless, the results have the same, remarkably simple connection to the payoff matrix (1).
The mean exit times or fixation times of the frequency-dependent Moran process are

t1 ≈ N HN−1 + v
N

2
(N + 1 − 2HN ) β, (27)

t A
1 ≈ N (N − 1) − u

N 2(N 2 − 3N + 2)

36
β. (28)

Qualitatively, the dependence on the payoff matrix via u and v is the same as for the Fermi
process. Their calculation is analogous to the findings of the previous section, details can be
found in appendix B. Note that, comparing with the Fermi process, there is a factor of 2 missing
in the neutral terms. However, this can be avoided by rescaling the transition probabilities,
without changing the properties of the different processes.

7. Discussion

Finally, let us discuss the implications of our results for general 2 × 2 games. While we
concentrate on the Fermi process here, the discussion is equally valid for the frequency
dependent Moran process. An important question is whether the linear correction for weak
selection is compatible with the general features of the game and the known asymptotic behavior
for large N of the mean exit or fixation times derived by Antal and Scheuring [26]. Clearly, this
depends on the payoff matrix of the 2 × 2 game,

( A B
A a b
B c d

)
, (29)

as the payoffs enter the first exit times of absorption linearly. To analyze the difference from
the neutral case we consider the rescaled average times of fixation, τ1(β) = t1(β)/t1(0) and
τ A

1 (β) = t A
1 (β)/t A

1 (0). The rescaled unconditional fixation time reads

τ1 ≈ 1 +
1

2

N (b − d) − a + d

N − 1

(
N − 1

HN−1
− 1

)
β. (30)
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Accordingly, the rescaled conditional fixation time for absorption at all A is

τ A
1 ≈ 1 − a − b − c + d

N − 1

N 2 + N − 6

36
β. (31)

Note that for population sizes N > 2 and sufficiently small β, we always have t1(0) < t A
1 (0).

In other words, the average time until the A individual has reached fixation or gone extinct
is smaller than the conditional average time until the A individual has reached fixation. For
β → ∞, the process follows deterministically the intensity of selection and thus both fixation
times may coincide, t1(β → ∞) ≈ t A

1 (β → ∞). This ordering of the fixation times is blurred
by our rescaling, as we focus only on the change relative to the neutral case.

In the following, we discuss these two expressions for the three generic types of 2 × 2
games, namely dominance of A (a > c and b > d), coexistence of A and B (a < b and c > d)
and a coordination game (a > c and b < d).

7.1. Dominance of A

Consider a game where strategy A is always dominant, i.e. it obtains a larger payoff than B,
regardless of the fraction of A in the population. This is the case for a > c and b > d. One
special case is the Prisoner’s dilemma with b > d > a > c. The interesting feature of this game
is that the social optimum d is not the Nash equilibrium, which is a. For neutral selection, a
single A individual goes extinct with probability 1 − N−1. Thus, the unconditional fixation time
τ1 is dominated by the extinction of A. Since strategy A is favored by selection, increasing
the intensity of selection decreases the probability of the extinction of A. Since fixation takes
at least N − 1 time steps, τ1 increases with increasing intensity of selection β. For large N ,
this is obvious from our equation (30), because in this case the quantity N (b − d) − a + d is
positive. However, once extinction of A becomes unlikely, increasing β further will lead to a
decrease of τ1.

The discussion of the conditional fixation time τ A
1 is not as straightforward, because the

sign of a − b − c + d can be positive or negative. The sign of this quantity is also decisive for the
evolutionary dynamics in other contexts, see, e.g., [43]. When the advantage of an A individual
is initially large and decreases with the abundance of A (a − c > b − d > 0), then the sign of
a − b − c + d is positive and τ A

1 decreases with increasing intensity of selection. But when the
advantage of strategy A decreases with the number of A individuals (b − d > a − c > 0), then
τ A

1 increases with increasing intensity of selection. However, this apparently counterintuitive
phenomenon (after all, A dominates B) can only be observed for weak selection. For strong
selection, τ A

1 decreases again. These results are compatible with the observation that the
conditional fixation time scales as N ln N for large N [26]. In figure 2(a), we show a numerical
example for the rescaled average times. We include averages from numerical simulations of the
evolutionary process, our linear approximation as well as the exact result that can be obtained
from dividing equation (14) by (18) and equation (15) by (19), respectively. The payoff matrix
is chosen such that a + d > b + c, which means that with increasing intensity of selection τ A

1
decreases and τ1 increases.

7.2. Coexistence of A and B

As a second class, we consider games in which B is the best reply to A (c > a), but A is the
best reply to B (b > d). Important examples for such games are the Hawk–Dove game [44]
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τ1

β

β

β

τ1

τ1

Figure 2. See figure caption on next page.
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Figure 2. Expectation values of the rescaled fixation times starting with a single
A mutant in a population of B as a function of the selection intensity β. Full lines
show the normalized exact solution originating from the exact results (21) and
(23). Colored dashed lines are the linear approximations (30) and (31). Symbols
show the results from simulations based on 107 realizations, which agree nicely
with the exact results. Diamonds are for the unconditional averages, circles are
for the conditional averages. On the right-hand side, we show the payoff matrices
of the three games and illustrate the direction of selection in these games.
(a) In a game with dominance of strategy A, the unconditional fixation time
increases with the intensity of selection, but the conditional fixation time
decreases. (b) For games with stable coexistence, both fixation times increase
with the intensity of selection. (c) For coordination games, the two fixation times
become shorter when the intensity of selection is increased. In all examples, the
population size is N = 100.

or the Snowdrift game [45]. For infinite populations, the replicator dynamics predicts a stable
coexistence of A and B. In finite populations, the system typically fluctuates around that point
until eventually, fluctuations lead to absorption in one of the boundaries [46, 47]. Consequently,
the conditional fixation times increase exponentially with the population size [26]. Since
a − b − c + d is negative, we also have an increase of τ A

1 with the selection intensity for weak
selection. Further, N (b − d) − a + d is positive in large populations, such that also τ1 increases
with the selection intensity. Figure 2(b) shows that the divergence of the exact results is faster
than the linear approximation even for weak selection.

7.3. Coordination games

Finally, let us discuss coordination games in which a > c and b < d . In these games, A is
the best reply to A and B is the best reply to B. The replicator equation of such systems
exhibits a bistability: if the fraction of A individuals is sufficiently high in the beginning,
the A individuals will reach fixation. Otherwise, B individuals will take over the system. The
stronger the intensity of selection, the less likely it is that a single A individual can take over a B
population. Consequently, τ1 should decrease with β. This also follows from our weak selection
approximation: in large populations, N (b − d) − a + d is negative and thus τ1 decreases with the
intensity of selection, see equation (30). Perhaps less intuitive, also τ A

1 decreases with β, which
results from a − b − c + d > 0, cf (30). However, this is again consistent with the observation
that τ A

1 scales as N ln N in large populations. Although the fixation probability of a single A
decreases with β, if such an event occurs, it is faster than in the neutral case. A numerical
example for this behavior is shown in Figure 2(c).

The numerical examples indicate that the convergence radius of our weak selection
expansion is of the order of N−1, which is also known for many systems in population genetics.
Although N−1 might appear small, this kind of weak selection is the most relevant limit in
evolutionary biology, as evolutionary change is typically only connected with small selective
differences. We stress that we have made no assumptions on the population size, such that our
results are valid for arbitrary N .
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Our approach shows under which circumstances the general features of the game are
reflected in the fixation times under weak selection. Although the weak selection expansion
of the mean exit or fixation times is technically rather tedious, the resulting asymptotic behavior
shows remarkable simplicity.
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Appendix A. Finite double sums

Here, we collect some helpful calculations for double sums as they appear in the mean exit
times. An important observation is

N−1∑
k=i

k∑
l=1

fl

N − l
= (N − i)

i−1∑
l=1

fl

N − l
+

N−1∑
l=i

fl (A.1)

for any function fl < ∞ and l = 1, . . . , N − 1. This can be seen by writing the left-hand side
term by term, i.e.
N−1∑
k=i

k∑
l=1

fl

N − l
= f1

N − 1
+ · · · +

fi

N − i

+
f1

N − 1
+ · · · +

fi

N − i
+

fi+1

N − (i + 1)

+ · · ·

+
f1

N − 1
+ · · · +

fi

N − i
+ · · · +

fN−1

N − (N − 1)
(A.2)

= (N − i)
i∑

l=1

fl

N − l
+ (N − i − 1)

fi+1

N − (i + 1)
+ · · · + fN−1

= (N − i)
i−1∑
l=1

fl

N − l
+

N−1∑
l=i

fl .

For the case i = 1, the result is especially simple, since the first sum of the right-hand side of
equation (A.1) vanishes. This case is of special interest for the computation of t A

1 under neutral
selection with fl = 1 and for t1 with fl = 1/ l.

Another finding for double sums with M ∈ N and two bounded functions fk and gl is

M∑
k=1

k∑
l=1

fk gl =
M∑

l=1

gl

M∑
k=l

fk. (A.3)
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This becomes clear by resorting the terms again,
M∑

k=1

k∑
l=1

fk gl = f1g1 + f2(g1 + g2) + · · · + fM(g1 + g2 + . . . + gM)

= g1( f1 + · · · + fM) + g2( f2 + · · · + fM) + · · · + gM fM

=
M∑

l=1

gl

M∑
k=l

fk. (A.4)

Appendix B. Fixation times under weak selection

Here, we calculate the linear corrections of the mean exit times t1 and t A
1 for the Fermi

process in detail, compare equations (21) and (23). We aim at finding these times for weak
selection, e.g.

t1 ≈ [t1]β=0 + β

[
∂

∂β
t1

]
β=0

. (B.1)

The first term follows directly from the calculation in appendix A, see equation (18). Our goal

here is to compute the linear term
[

∂

∂β
t1

]
β=0

.

[
∂

∂β
t1

]
β=0

=
N−1∑
k=1

k∑
l=1

[
1

T +
l

∂φ1

∂β
+ φ1

∂

∂β

1

T +
l

]
β=0

−
N−1∑
k=1

k∑
l=1

[
φ1

T +
l

k∑
m=l+1

�π(m)

]
β=0

, (B.2)

where we applied [
∏k

m=l+1 γm]β=0 = 1 and [ ∂

∂β

∏k
m=l+1 γm]β=0 = − ∑k

m=l+1 �π(m). For the
fixation probability under weak selection and with �π(l) = u l + v, we have[

∂φl

∂β

]
β=0

= l

N
(N − l)

(N + l)u + 3v

6
. (B.3)

The weak selection approximation of the inverse of the transition probability T +
l , compare

equation (8), yields[
∂

∂β

1

T +
l

]
β=0

= − N 2

l(N − l)
(u l + v). (B.4)

This leads to[
∂

∂β
t1

]
β=0

=
N−1∑
k=1

k∑
l=1

(N − 1)((N + 1)u + 3v)

6N

2N 2

l(N − l)

−
N−1∑
k=1

k∑
l=1

1

N

N 2

l(N − l)
(u l + v)

−
N−1∑
k=1

k∑
l=1

1

N

2N 2

l(N − l)

k∑
m=1+l

(u m + v). (B.5)

While the first two double sums can be solved with the help of appendix A, the third term is
more complicated. For this more tedious calculation, we refer to appendix C. Eventually, the
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solution of the double and triple sums leads to[
∂

∂β
t1

]
β=0

= N (N − 1)
(N + 1)u + 3v

3
HN−1 − N (N − 1)u − N HN−1v

−N (N − 1)

(
((N + 1)u + 3v)

3
HN−1 − u − v

)
= v N (N − 1 − HN−1), (B.6)

where the last step is elementary. Combining this with equation (18) leads finally to the
unconditional mean exit time under weak selection, equation (22).

For the conditional fixation time t A
1 , the linear term

[
∂

∂β
t A
1

]
β=0

reads

[
∂

∂β
t A
1

]
β=0

=
N−1∑
k=1

k∑
l=1

[
1

T +
l

∂φl

∂β
+ φl

∂

∂β

1

T +
l

]
β=0

−
N−1∑
k=1

k∑
l=1

[
φl

T +
l

k∑
m=l+1

�π(m)

]
β=0

. (B.7)

The only difference compared with the unconditional fixation time, equation (B.2), is the
fixation probability φl instead of φ1. The linear term of the weak selection expansion of φl

is given in equation (B.3). This yields[
∂

∂β
t A
1

]
β=0

=
N−1∑
k=1

k∑
l=1

l(N − l)((N + l)u + 3v)

6N

2N 2

l(N − l)
−

N−1∑
k=1

k∑
l=1

l

N

N 2

l(N − l)
(u l + v)

−
N−1∑
k=1

k∑
l=1

l

N

2N 2

l(N − l)

k∑
m=l+1

(u m + v). (B.8)

Again, the first two double sums can be solved using the results from appendix A. The third term
follows from a calculation which is similar to appendix C, but simpler. This last term reduces to

N−1∑
k=1

k∑
l=1

l

N

2N 2

l(N − l)

k∑
m=l+1

(u m + v) = N
(N − 2)(N − 1)

18
((5N + 3)u + 9v) . (B.9)

Finally, combining the three terms again results in[
∂

∂β
t A
1

]
β=0

= N 2(N − 1)

18
((4N + 1)u + 9v) − N (N − 1)

2
(Nu + 2v)

−(N − 2)
N (N − 1)

18
((5N + 3)u + 9v)

= −u N (N − 1)
N 2 + N − 6

18
. (B.10)

In combination with equation (19), this results in the conditional mean exit time under weak
selection, equation (24).

For completeness, we briefly repeat this calculation for the mean exit times of the
frequency-dependent Moran process. With the transition probabilities (25) and (26), the fixation
probabilities under weak selection are identical to those of the Fermi process, see equation (20).
However, the inverse transition probability is different in the weak selection regime, i.e. the
linear correction is[

∂

∂β

1

T +
l

]
β=0

= − N

l
�π(l) = −N

u l + v

l
. (B.11)
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Hence, for the unconditional mean exit time we have the same starting equation (B.2). But with
equation (B.11) this gives[

∂

∂β
t1

]
β=0

=
N−1∑
k=1

k∑
l=1

(N − 1)((N + 1)u + 3v)

6N

N 2

l(N − l)
−

N−1∑
k=1

k∑
l=1

1

N
N

u l + v

l

−
N−1∑
k=1

k∑
l=1

1

N

N 2

l(N − l)

k∑
m=1+l

(u m + v), (B.12)

which differs from equation (B.5) only in the second double sum. With the previous findings
for the Fermi process times, the required calculation is straightforward and results in[

∂

∂β
t1

]
β=0

= v
N

2
(N + 1 − 2HN ) . (B.13)

That is, this linear correction has a different dependence on the system size N .
For the conditional mean exit time the situation is similar. In difference to equation (B.8),

the linear correction reads[
∂

∂β
t A
1

]
β=0

=
N−1∑
k=1

k∑
l=1

l(N − l)((N + l)u + 3v)

6N

N 2

l(N − l)
−

N−1∑
k=1

k∑
l=1

l

N
N

u l + v

l

−
N−1∑
k=1

k∑
l=1

l

N

2N 2

l(N − l)

k∑
m=l+1

(u m + v). (B.14)

This leads to [
∂

∂β
t A
1

]
β=0

= −u
N 2

36

(
N 2 − 3N + 2

)
(B.15)

for the linear correction of the conditional mean exit times of the frequency-dependent Moran
process.

Appendix C. Finite triple sums

Here, we calculate the triple sum from appendix B, that require some additional steps. Our goal
is to solve

σ =
N−1∑
k=1

k∑
l=1

1

l(N − l)

k∑
m=1+l

�π(m). (C.1)

For the sum over payoff differences, we have
k∑

m=1+l

�π(m) =
k∑

m=1+l

(u m + v) = fk − fl, (C.2)

where we introduced the function

fm = m(m + 1)
u

2
+ mv, (C.3)
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which is valid for any integer m. Using partial fraction expansion, N
l(N−l) = 1

l + 1
N−l , we obtain

σ =
N−1∑
k=1

k∑
l=1

fk

l(N − l)
−

N−1∑
k=1

k∑
l=1

fl

l(N − l)

= 1

N

N−1∑
k=1

k∑
l=1

fk

l︸ ︷︷ ︸
K1

+
1

N

N−1∑
k=1

k∑
l=1

fk

N − l︸ ︷︷ ︸
K2

− 1

N

N−1∑
k=1

k∑
l=1

fl

l︸ ︷︷ ︸
K3

− 1

N

N−1∑
k=1

k∑
l=1

fl

N − l︸ ︷︷ ︸
K4

. (C.4)

We solve each part separately, starting with the last one. For K4, we obtain with equation (A.1)
from appendix A

K4 =
N−1∑
k=1

k∑
l=1

fl

N − l
=

N−1∑
k=1

fk = N − 1

6
N ((N + 1)u + 3v). (C.5)

The second last term, K3, is a sum over a linear function and can be treated with any table of
elementary sums, e.g. [48],

K3 =
N−1∑
k=1

k∑
l=1

fl

l
=

N−1∑
k=1

k∑
l=1

(
(l + 1)

u

2
+ v

)

= N − 1

12
N ((N + 4)u + 6v). (C.6)

The remaining two terms require more effort. Both terms, K1 and K2, have the same structure
regarding functions of k and l. Using equation (A.3), we have

K2 =
N−1∑
k=1

k∑
l=1

fk

N − l
=

N−1∑
l=1

1

N − l

N−1∑
k=l

fk (C.7)

and

K1 =
N−1∑
k=1

k∑
l=1

fk

l
=

N−1∑
l=1

1

l

N−1∑
k=l

fk. (C.8)

Hence, we first have to compute the sum
∑N−1

k=l fk , which reduces to the solution of elementary
sums,

N−1∑
k=l

fk =
N−1∑
k=l

k
(
(k + 1)

u

2
+ v

)
= u

2

N−1∑
k=l

k2 +
(u

2
+ v

) N−1∑
k=l

k

= N − l

6

(
N 2 + Nl + l2 − 1)u + 3(N + l − 1)v

)
= N − l

6

(
N 2 + Nl + l2 − 1

)
u +

N − l

2
(N + l − 1) v. (C.9)

Thus, solving equations (C.7) and (C.8) simplifies in solving the elementary sums
∑N−1

l=1 ls with
s = 0, 1, 2, compare [48]. With this, we have

K2 = N − 1

6

N−1∑
l=1

((N + 1)u + 3v) +
Nu + 3v

6

N−1∑
l=1

l +
u

6

N−1∑
l=1

l2

= N − 1

36

(
(11N 2 − N − 6)u + 9(3N − 2)v

)
. (C.10)
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For K1, we obtain

K1 = 1

6

N−1∑
l=1

N (N − 1)(N + 1)u + 3N (N − 1)v

l
− 1

6

N−1∑
l=1

(
(l2 − 1)u − 3(l − 1)v

)
= N (N − 1)

6
((N + 1)u + 3v) HN−1 − N − 1

36
(N − 2)((2N + 3)u + 9v).

Summing up the terms, σ = (K1 + K2 − K3 − K4)/N , finally yields the result

σ = N − 1

6
(((N + 1)u + 3v)HN−1 − 3(u + v)) . (C.11)

Again, Hn = ∑n
l=1 1/ l are the harmonic numbers. In equation (B.9), the reasoning is very

similar, but only terms of the structure of K2 and K4 appear.
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2 Fixation events in well mixed populations of finite size

2.2 Universality of weak selection

In Section 2.1 the weak selection (or high temperature) expansion of the fixation times is
examined for two of the most common microscopic one-step processes used in evolutionary
game theory: the Fermi process and the frequency dependent Moran process. Both
describe the change of the composition of a population of size N consisting of two types
A and B, and eventually lead to an absorbing state (all A or all B). The difference of
the two processes is the following. The Fermi process is based on pairwise imitation:
In a comparison of two randomly chosen individuals the probability that the worse
imitates the better is given by a certain probability function. The Moran process maps
the performance in a strategic situation to reproductive success, a fitness function has
to be defined: An individual of a certain type is chosen to produce an identical copy
proportional to fitness. This identical offspring then replaces a randomly chosen individual.
In these models, the system size N is always constant over time.

An interesting result of stochastic evolutionary game dynamics is the so called one-third
rule. It concerns the probability of absorption in a specific state in coordination games,
i.e., games where A has a disadvantage when rare, but an advantage when at high
densities. The replicator dynamics (1.2.17) of such coordination games has two stable
fixed points in 0 and 1, and an unstable fixed point in the interior, given by x∗ ∈ (0,1),
compare to Figure 1.2. The value of the fixation probability of a single type A individual
in a population of N − 1 individuals of type B, φ1, can be related to the position of
this internal unstable equilibrium. For neutral evolution, we simply have φ1 = 1/N .
If selection acts, the fixation probability of A is larger than neutral, φ1 > 1/N , if the
unstable fixed point is at any value below one third, x∗ < 1/3 [Imhof and Nowak, 2006;
Nowak et al., 2004; Ohtsuki et al., 2007a; Traulsen et al., 2005, 2006a,b]. In a more
general consideration Lessard and Ladret [2007] have shown that the one-third rule holds
as long as the difference in reproductive success between the two types is not too large,
even for more general Markov processes. Then we can say that if the basin of attraction
of the all B state is less then half of the size of the basin of the all A state, weak selection
favors A.
This gives rise to the question of how universal weak selection results are when

comparing different evolutionary Markov processes of the one-step class. In this section
we tackle this question by systematically analyzing the fixation probability φA1 and the
conditional mean exit time tA1 for general versions of the pairwise comparison and the
Moran process. In general, the evolutionary change is based on the payoffs πA and πB
and their difference ∆π, and selection is implemented by the parameter β. Universality in
this context is to be understood in the widest sense: Starting from different microscopic
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2 Fixation events in well mixed populations of finite size

evolutionary dynamics, we find universal laws from a perturbation expansion in β, such
as the one-third rule. The order up to which such statements of universality can be made
is discussed. In addition, we can find simple examples that violate the conditions for the
one-third rule.

Our calculations can be simplified by using an identity concerning a symmetry for the
conditional moments Antal and Scheuring [2006]; Maruyama and Kimura [1974]; Taylor
et al. [2006]: The conditional mean exit times for a single A individual in a population of
B is the same as the one for a single B individual in a population of A. This finding
does not depend on the underlying strategic pattern and holds for any intensity of
selection. However, it only holds for the class of processes where the composition of
the population can change at most by one. Especially, the frequency dependent Moran
process is considered in this framework.

In the class of general pairwise comparison processes the probability that an individual
switches strategy due to imitation is a function of ∆π. We call g(∆π) the imitation
probability function. This function has to be nondecreasing, g′(∆π) ≥ 0, and nonzero for
vanishing payoff difference, g(0) > 0. The transition probabilities in state i read

Ti→i±1 = i

N

N − i
N

g(±β∆π). (2.2.1)

For general Moran processes we have to define a positive function that maps payoff to
fitness and involves the intensity of selection, f(βπ). Thus, fitness f is a monotonous
function, f ′(βπ) ≥ 0, and we set the baseline fitness to one, f(0) = 1. Birth is proportional
to fitness, whereas death is random, such that the transition probabilities now read

Ti→i+1 = i f(βπA)
i f(βπA) + (N − i)f(βπB)

N − i
N

, (2.2.2)

Ti→i−1 = (N − i)f(βπB)
i f(βπA) + (N − i)f(βπB)

i

N
. (2.2.3)

For both classes of processes the fixation probability and the conditional mean exit time
are discussed for β � 1/N . The fixation probabilities are always identical up to first
order in β, up to a rescaling. For processes in the pairwise comparison class the fixation
probabilities always are identical up to β2, but for Moran processes with general fitness
mapping a similar statement cannot be made. The mean exit times are universal always
only up to first order in β. In the cases of universality, the perturbation parameter
β can be rescaled by either the logarithmic relative change of the imitation function,
∂x[ln g(x)]0, or the absolute slope of the fitness function at the origin, ∂x[f(x)]0.

The remarkable similarity between different microscopic evolutionary update rules up
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2 Fixation events in well mixed populations of finite size

to first order in selection intensity follows from the basic assumptions of the evolutionary
game dynamics such as that the strategic interaction always is a two player game (for
extensions in this direction compare to [Gokhale and Traulsen, 2010]) and that the average
payoffs are linear in the density. Thus, universal weak selection properties generally break
down when higher orders are considered. Pairwise comparison processes reveal a higher
degree of universality, which is based on the fact that the imitation probability functions
generally have a higher degree of symmetry than the payoff to fitness mapping of the
Moran class.
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Weak selection, which means a phenotype is slightly advantageous over another, is an important limiting
case in evolutionary biology. Recently, it has been introduced into evolutionary game theory. In evolutionary
game dynamics, the probability to be imitated or to reproduce depends on the performance in a game. The
influence of the game on the stochastic dynamics in finite populations is governed by the intensity of selection.
In many models of both unstructured and structured populations, a key assumption allowing analytical calcu-
lations is weak selection, which means that all individuals perform approximately equally well. In the weak
selection limit many different microscopic evolutionary models have the same or similar properties. How
universal is weak selection for those microscopic evolutionary processes? We answer this question by inves-
tigating the fixation probability and the average fixation time not only up to linear but also up to higher orders
in selection intensity. We find universal higher order expansions, which allow a rescaling of the selection
intensity. With this, we can identify specific models which violate �linear� weak selection results, such as the
one-third rule of coordination games in finite but large populations.
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I. INTRODUCTION

In evolutionary game theory the outcome of strategic situ-
ations determines the evolution of different traits in a popu-
lation �1�. Typically, individuals are hardwired to a set of
strategies. The performance in an evolutionary game deter-
mines the rate at which strategies spread by imitation or
natural selection. Due to differences in payoff, different strat-
egies spread with different rates under natural selection. In
infinitely large well-mixed populations this is described by
the deterministic replicator dynamics �2–5�. In this set of
nonlinear differential equations the intensity of selection,
which determines how payoff affects fitness, only changes
the time scales but not the direction of selection or the sta-
bility properties. In finite populations fluctuations cannot be
neglected �6–9�. The dynamics becomes stochastic: selection
drives the system into the same direction as the correspond-
ing deterministic process, but sometimes the system can also
move into another direction. The strength of selection deter-
mines the interplay between these two forces. The absence of
selective differences is called neutral selection: moving into
one direction is as probable as moving into any other, inde-
pendent of the payoffs. If selection acts, the transition prob-
abilities become payoff dependent and thus asymmetric. The
asymmetry can be the same in each state �constant selection�
or state dependent �frequency dependent selection�. In gen-
eral, under frequency dependent selection the probability that
one strategy replaces another can be fairly complicated.
However, under the assumption of weak selection, some im-
portant insights can be obtained analytically �9–16�. It has to
be pointed out that these results do, in general, not carry over
to stronger selection.

Weak selection describes situations in which the effects of
payoff differences are small, such that the evolutionary dy-
namics are mainly driven by random fluctuations. This ap-
proach has a long-standing history in population genetics
�17,18�. In evolutionary biology, a phenotype is often found
to be slightly advantageous over another phenotype �19,20�.
Further, a recent experiment suggests that some aspects of
weak selection are reflected in human strategy updating in
behavioral games �21�. In the context of evolutionary game
dynamics, however, weak selection has only recently been
introduced by Nowak et al. �9�. The definition of weak se-
lection is unambiguous in the case of constant selection, but
there are different ways to introduce such a limit under fre-
quency dependent selection �22�.

In the simplest case, frequency dependence can be intro-
duced by an evolutionary game between two types A and B.
In a one shot interaction �where strategies are played simul-
taneously� a type A interacting with another type A receives
payoff a, two interacting B types get d each. Type A inter-
acting with B gets b, whereas B obtains c. This symmetric
2�2 game can be described by the payoff matrix

A

A

B

A B

�a b

c d
� . �1�

Let i denote the number of A individuals in a population of
constant size N. Under the assumption of a well-mixed popu-
lation, excluding self-interactions, the average payoffs for
individuals of either type are given by

�A = a
i − 1

N − 1
+ b

N − i

N − 1
, �2�

�B = c
i

N − 1
+ d

N − i − 1

N − 1
. �3�*bin.wu@evolbio.mpg.de

†traulsen@evolbio.mpg.de
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These expectation values are the basis for the evolutionary
game. In the continuous limit N→�, the state of the system
is characterized by the fraction of A individuals x= i /N. The
dynamics are typically given by the replicator dynamics ẋ
=x�1−x���A−�B�, which has the trivial equilibria x̂=0 and
x̂=1. Additionally, there can be a third equilibrium between 0
and 1, given by x�= �d−b� / �a−b−c+d�. In finite popula-
tions, the probabilistic description does not allow the exis-
tence of equilibrium points anymore. Moreover, the invari-
ance of the replicator dynamics under rescaling of the payoff
matrix �5� is lost in finite population models. Typically, the
average payoffs are mapped to the transition probabilities to
move from state i to other states; only i=0 and i=N are
absorbing states. When only two types compete and there is
only one reproductive event at a time this defines a birth-
death process. The transition probabilities from i to i+1 and
from i to i−1 are then denoted by Ti

+ and Ti
−, respectively.

They determine the probability of the process to be absorbed
at a certain boundary, usually called fixation probability, as
well as the average time such an event takes, termed average
fixation time.

An important result of evolutionary game dynamics in
finite populations under weak frequency dependent selection
is the one-third rule. It relates the fixation probability of a
single type A individual, �1, to the position of the internal
equilibrium x� in a coordination game, i.e., when a�c and
d�b. If selection is neutral, we have �1=1 /N. If the internal
equilibrium is less than 1/3, x��1 /3, then �1�1 /N. Origi-
nally, this weak selection result has been found for large
populations in the frequency dependent Moran process �9�.
Subsequently, the one-third rule has been derived from sev-
eral related birth-death processes �23–25� and also for the
frequency dependent Wright-Fisher process �26,27�, which is
still a Markov process, but no longer a birth-death process.
In a seminal paper, Lessard and Ladret showed that the one-
third rule is valid for any process in the domain of King-
man’s coalescence �28�, which captures a huge number of the
stochastic processes typically considered in population ge-
netics. Essentially, this class of processes describes situations
in which the reproductive success is not too different be-
tween different types. Thus, the generality of the one-third
rule under linear weak selection is well established. Here, we
ask a slightly different question: To which order can two
birth-death processes be considered as identical under weak
selection? Some authors have considered higher weak selec-
tion orders for specific processes �29–31�. We investigate
two classes of birth-death processes, a general pairwise imi-
tation process motivated by social learning and a general
Moran process based on reproductive fitness. In this light, we
also discuss cases which violate the one-third rule.

The paper is organized in the following way. In Sec. II we
compute the weak selection expansion of the fixation prob-
ability in a general case of our two classes of birth-death
processes. In Sec. III, we perform the same calculations for
the significantly more complicated fixation times. In Sec. IV
we discuss our analytical results and conclude. Some de-
tailed calculations can be found in Appendixes A and B.

II. PROBABILITIES OF FIXATION

A birth-death process is characterized by the transition
probabilities from each state i to its neighboring states, Ti

+

and Ti
−. We assume that this Markov chain is irreducible on

the interior states and we exclude mutations or spontaneous
switching from one type to another. Thus, the process gets
eventually absorbed at i=0 or N. For any internal state, the
probability to hit i=N starting from 0� i�N, �i, fulfills the
recursion equation �i= �1−Ti

+−Ti
−��i+Ti

−�i−1+Ti
+�i+1

�32–34�. This recursion can be solved explicitly, respecting
the boundary conditions �0=0 and �N=1. For a single A
individual in populations of B, the probability to take over
the population is �32–34�

�1 =
1

1 + �
k=1

N−1

�
i=1

k
Ti

−

Ti
+

. �4�

In any model of neutral selection, the transition probabilities
of the Markov chain fulfill Ti

− /Ti
+=1, and hence the respec-

tive fixation probability of a single mutant amounts to 1 /N.
In this section we focus on the weak selection approxima-

tion of Eq. �4�. We do this for two different approaches to
evolutionary game theory: imitation dynamics and selection
dynamics. In the former case, strategy spreading is based on
pairwise comparison and imitation, in the latter it results
from selection proportional to fitness and random removal.
The most prominent examples are the Fermi process and the
Moran process, respectively.

A. Pairwise comparison

In a pairwise comparison process, two individuals are
chosen randomly to compare their payoffs from the evolu-
tionary game �Eqs. �2� and �3��. One switches to the other
strategy with a given probability �see Fig. 1�. If selection is
neutral, this probability is constant. If selection acts, the
larger the payoff difference, the higher the probability that
the worse imitates the better. But typically there is also a
small chance that the better imitates the worse. Otherwise,
only the strategy of the more successful individual is
adopted. This would lead to a dynamics that is stochastic in
the time spent in each interior state but deterministic in di-
rection �24�. Thus, given that all interior states are transient,
the fixation probabilities are either 0 or 1, and there is no
basis to discuss a weak selection limit.

Selection is parametrized by the intensity of selection �
	0. As a first example we consider the Fermi process
�24,35,36�. Let the two randomly selected individuals X and
Y have payoffs �X and �Y. Then X adopts Y’s strategy with
probability gFermi��Y −�X�=1 / �1+e−���Y−�X��. Thus, the tran-
sition probabilities of an evolutionary game with payoffs
�Eqs. �2� and �3�� are given by

Ti

 =

i

N

N − i

N

1

1 + exp����A−�B� . �5�

The probability to stay in state i is 1−Ti
−−Ti

+. The Fermi
process is closely related to the Glauber dynamics �37�. If we
define individuals’ energy as the exponential function of pay-
off, then the Fermi process can be mapped onto the Ising
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model. The Fermi process has the comfortable property that
the ratio of transition probabilities simplifies to Ti

− /Ti
+

=e−���A−�B�, such that the products in Eq. �4� can be replaced
by sums in the exponent. Defining u= �a−b−c+d� / �N−1�
and v= �Nb−Nd−a+d� / �N−1�, such that �A−�B=ui+v,
leads to

�1��� =
1

1 + �
k=1

N−1

exp	− �
k2u

2
+ k�u

2
+ v��� . �6�

For large N, the sum can be replaced by an integral, leading
to a closed expression �24�. For weak selection, N��1, Eq.
�6� can be approximated by

�1 

1

N
+

�N − 1���N + 1�u + 3v�
6N

� . �7�

This can also be obtained directly from Ti
− /Ti

+
1−���A
−�B�. The fixation probability under weak selection is
greater than in the neutral case if the term linear in � is
positive, Nu+u+3v�0. In particular, for a coordination
game in a large population, this implies x��1 /3. Thus, natu-
ral selection favors the mutant strategy if the invasion barrier
is less than one-third, which is the well-known one-third rule
�9,24,25,28,30�. It holds when the fixation probability in a
large but finite population can be approximated up to linear
order in selection intensity.

Can we make general statements based on an expansion
of �1 concerning the probability of switching strategies,
g�
��? In a general framework, the probability that X
switches to the strategy of Y, given the difference in their
payoffs, 
�=�X−�Y, is governed by the intensity of selec-
tion. We call g�
�� the imitation probability function of a
general pairwise comparison process. In a well-mixed popu-
lation, the transition probabilities read

Ti

 =

i

N

N − i

N
g�
�
�� . �8�

The larger the payoff difference, the more likely the worse
individual switches to the strategy of the better. Therefore,
the imitation function is nondecreasing, g��
��	0. Addi-
tionally, if the payoffs of the two chosen individuals are
equal, the neutral probability of switching is nonzero, g�0�
�0 �otherwise, the process does not allow a meaningful
definition of weak selection because it would always deter-
ministically follow the direction of selection�. The fixation
probability for this general pairwise comparison process can
be expanded to the second order �see Appendix A 1�,

�1 

1

N
+ C1� + C2�2, �9�

where

C1 =
�N − 1���N + 1�u + 3v�

6N

2g��0�
g�0�

�10�

and

C2 = �u2�N + 1��N + 2� + 15uv�N + 1� + 30v2�

�
�N − 1��N − 2�

360
�2g��0�

g�0� �2

. �11�

C1 is proportional to the increase of the imitation function at

�=0 �see Fig. 2�. Note that for large N, C1�0 is equiva-
lent to Nu+3v�0, which for large N further simplifies to
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FIG. 1. �Color online� Upper panel: pairwise comparison pro-
cesses are characterized by the probability g�
�� to imitate the
strategy of someone else based on the payoff difference 
�. With
increasing payoff difference, the imitation probability becomes
higher, g��
��	0. Weak selection implies a Taylor expansion at

�=0. Thus, it can only be invoked for functions that are differen-
tiable in 0. The figure shows three examples of imitation probability
functions, g1�
�� is a linear function �selection intensity �=0.5�,
and g2�
�� is the Fermi function ��=50�. For the imitation func-
tion g3�
��, a meaningful weak selection limit does not exist since
g3�
�� is not differentiable in 0. Because g3�
��=0 for 
��0,
the associated stochastic process would be stochastic in time but
deterministic in direction. All through the paper, we focus on imi-
tation functions that are differentiable in 0. Lower panel: Moran
processes are characterized by a payoff to fitness mapping f���.
Fitness is a nondecreasing function of the payoff, f����	0. The
figure shows three examples for payoff to fitness mappings �selec-
tion intensity �=1 for all three functions�.
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x��1 /3. Thus, the one-third rule holds for all pairwise com-
parison processes that fulfill g��0��0, and g�0��0. More-
over, C1 is proportional to 2g��0� /g�0�, while C2 is propor-
tional to the square of this quantity. Thus, 2g��0� /g�0� can be
absorbed into the selection intensity by proper rescaling.
Therefore, the more rapid the increases of the imitation
function at 
�=0, the stronger is the sensitivity of the
fixation probability to changes in average payoff. For low
switching probabilities in the neutral case, 
�=0, we have
a fixation probability that changes rapidly when the payoff
difference becomes important, 
��0. While most previous
models have either considered g�0�=0 �which lies out of the

scope of our approach because it does not lead to a reason-
able definition of weak selection� or g�0�=0.5 �which is
the default case�, some authors have also explored imitation
functions with other values of g�0�. For example, Szabó
and Hauert used the imitation function g�x�=1 / �1+e−x+��,
where � is a constant �38�. In this case 2g��0� /g�0�=2 / �1
+exp�−���; thus, an increase in � is equivalent to an increase
in the �small� selection intensity.

Now it is straightforward to come up with an imitation
function that leads to a violation of the one-third rule, for
example, g�
��=1 / �1+exp�−
�3��. Obviously, g��
��
satisfies the conditions g���
��	0, and g�0��0. Further,
both the first- and the second-order expansions vanish.
Therefore, the fixation probability under weak selection can
only be approximated as

�1 

1

N
+ C3�3, �12�

where C3 can be derived in the same way as C1 and C2. In
special games, the sign of C3 can also change at x�=1 /3, but
in general this will not be the case due to the complicated
dependence of C3 on u and v. In more general terms, the
one-third rule is not sustained whenever the linear approxi-
mation of g��
�� vanishes.

B. Moran process

In the frequency dependent Moran process the payoff �,
given in Eqs. �2� and �3�, is mapped to fitness f , as illustrated
in Fig. 1. In each reproductive event, one individual is se-
lected for reproduction �producing an identical offspring�
proportional to fitness. To keep the size of the population to
the constant value N, a randomly chosen individual is re-
moved from the population subsequently. As in pairwise
comparison processes, the state i can at most change by one
per time step.

In the simplest case, fitness is a linear function of payoff.
With a background fitness of one, the fitnesses of types A and
B read fA=1+��A and fB=1+��B, respectively. The quan-
tity �	0 serves as the intensity of selection. Note that �
is bound such that fitness never becomes negative. The prob-
ability that the number of A individuals increases by 1,
i→ i+1, is given by

Ti
+ =

ifA

ifA + �N − i�fB

N − i

N
. �13�

The other possible transition, i→ i−1, occurs with probabil-
ity

Ti
− =

�N − i�fB

ifA + �N − i�fB

i

N
. �14�

When selection is neutral, �=0, we have Ti

= i�N− i� /N2. Up

to linear order in � the Moran process has the same fixation
probability as the Fermi process �Eq. �7��, such that in this
approximation the one-third rule is fulfilled. This is because
under first-order weak selection, Ti

− /Ti
+ is again a linear func-

tion of the payoff difference.
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FIG. 2. Approximation of the fixation probability of a single
mutant under weak selection. Upper panel: pairwise comparison
process with the Fermi function 1 / �1+exp�−�
��� as an imitation
function. As shown in the main text, up to the second order the
approximation is valid for any imitation function g��
�� after ap-
propriate rescaling of the selection intensity �. Lower panel: Moran
process with fitness as a linear function of the payoff, f =1+��.
Any other function leads to the same first-order approximation after
rescaling of �. However, the second order depends on choice of the
function transforming payoff to fitness. Exact analytical results are
numerical evaluations of Eq. �4�. �Parameters N=100, �=1, a=4,
b=1, c=1, and d=5 in both panels�.
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In general, let fitness be any non-negative function of the
product of payoff and selection intensity, f����, which ful-
fills f�����	0. For simplicity, we assume that the baseline
fitness f�0� is 1. The transition probabilities in a population
with types A and B read

Ti
+ =

if���A�
if���A� + �N − i�f���B�

N − i

N
, �15�

Ti
− =

�N − i�f���B�
if���A� + �N − i�f���B�

i

N
. �16�

Note that Ti
− /Ti

+= f���B� / f���A�. Up to second order in �,
the fixation probability of a single A mutant in a population
of B is �see Appendix A 2�

�1 

1

N
+ D1� + D2�2, �17�

where

D1 = �N − 1�
�N + 1�u + 3v

6N
f��0� �18�

and

D2 = �u2�N + 1��N + 2� + 15uv�N + 1� + 30v2�
�N − 1��N − 2�

360

�f��0�2 − ��2a2 + 4ab + 4cd − 10d2� + �11d2 + 2cd − c2

− 3b2 − 6ab − 3a2�N + �a2 + 2ab + 3b2 − c2 − 2cd

− 3d2�N2�
�N − 1�
24N3 �f��0�2 − f��0�� , �19�

with u and v as above. Note that the first-order term depends
on payoff differences only, but the second-order term also
depends on the payoff values directly. An example for such
an approximation is shown in Fig. 2. The first-order term D1
is proportional to the increase in fitness at �=0, f��0�. The
first-order term D1 is proportional to Nu+3v for large N.
Hence, the one-third rule holds for every Moran model for
which f��0� does not vanish under weak selection. Addition-
ally, f��0� can be absorbed into the selection intensity by
rescaling: changing this rate is equivalent to changing the
intensity of selection. Note that this is not possible with D2,
where not only the slope but also the curvature of the fitness
function at the origin play a role. However, when the expo-
nential fitness function f =exp���� is employed �39�, the
second term of Eq. �19� vanishes. This allows us to incorpo-
rate f��0� into the selection intensity even for the second-
order term.

Again, we conclude the section with an example where
the one-third rule is violated. Consider the fitness function
f����=1+�3�3, which obviously satisfies f�0�=1, and
f�����	0. Both first- and second-order corrections in �
vanish, D1=D2=0. Therefore, the first nontrivial approxima-
tion of the fixation probability is

�1 

1

N
+ D3�3. �20�

If D3 changes sign at x�=1 /3, we recover the one-third rule.
This is only the case for very special games. In analogy to
the previous section, the general one-third rule does not hold
anymore.

III. TIMES OF FIXATION

In this section we address the conditional fixation time �i
A.

In a finite population of N− i individuals of type B and i
individuals of type A, �i

A measures the expected number of
imitation or birth-death events until the population consists
of type A only under the condition that this event occurs. In
general, the probability Pi

A�t� that after exactly t events the
process moved from any i to N, which is the all A state,
obeys the master equation Pi

A�t�= �1−Ti
+−Ti

−�Pi
A�t−1�

+Ti
−Pi−1

A �t−1�+Ti
+Pi+1

A �t−1�. The average fixation time �i
A

=�t=0
� tPi

A�t� /�i is the stationary first moment of this prob-
ability distribution, resulting from a recursive solution of
�i�i

A= �1−Ti
+−Ti

−��i�i
A+Ti

−�i−1��i−1
A +1�+Ti

+�i+1��i+1
A +1�. In

a similar way one can find �i
B=�t=0

� tPi
B�t� / �1−�i�, such that

the average total lifetime of the Markov process amounts to
�i�i

A+ �1−�i��i
B �32,40,41�. Following Sec. II B we restrict

our analysis to the biologically most relevant case i=1,
which yields �32,40�

�1
A = �

k=1

N−1

�
l=1

k
�l

Tl
+ �

m=l+1

k
Tm

−

Tm
+ . �21�

Maruyama and Kimura �42�, Antal and Scheuring �41�, as
well as Taylor et al. �43� showed that the conditional fixation
time of a single mutant of either type is the same, �1

A=�N−1
B .

This remarkable identity holds for any evolutionary birth-
death process and is thus valid for any 2�2 game and for
any selection intensity. However, for j�1 we have � j

A

��N−j
B unless � vanishes. Since �1

A and �N−1
B are identical up

to any order in �, we obtain


 �n

��n�1
A�

�=0
= 
 �n

��n�N−1
B �

�=0
�22�

for any n. This symmetry can help to obtain several proper-
ties of the expansion of the conditional fixation time �Eq.
�21��, without brute force calculations.

A. Pairwise comparison

Let us first consider the fixation time in the special case of
the Fermi process �Eq. �5��. When the selection intensity
vanishes, �=0, we have �1

A�0�=2N�N−1� �13,33�. When se-
lection is weak, N��1, the conditional fixation time is ap-
proximately �1

A
�1
A�0�+���1

A��� ��=0�+��
2�1

A��� ��=0�2 /2. For
the Fermi process, the first-order term is then given by �13�


 �

��
�1

A�
�=0

= − uN�N − 1�
N2 + N − 6

18
, �23�

where u stems from �A−�B=ui+v �compare Appendix B 1�.
The first-order expansion of �1

A is only proportional to the i
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dependent term u in this special case. This can also be seen
from a symmetry argument �41,43�: since �1

A=�N−1
B , the fixa-

tion time does not change under a↔d and b↔c. Since u,
but not v, is invariant under this exchange of strategy names,
�1

A can depend under linear weak selection only on u, but not
on v. The second-order term of the conditional fixation time
for the Fermi process yields


 d2

d�2�1
A�

�=0
= E1u2 + E2uv + E3v

2, �24�

where

E1 = −
�N − 2��N − 1�N

5400
�180 − 122N + 177N2 + 59N3� ,

E2 = −
N2�6 − 7N + N3�

18
,

E3 =
1

N
E2. �25�

Now, in contrast to the first-order expansion �Eq. �23��, both
u and v enter. An interesting relation is E3=E2 /N. In the
following, we show that this is found for any pairwise com-
parison process and not only in the special case of the Fermi
process.

For general pairwise comparison processes under neutral
selection, the conditional fixation time is �1

A�0�=N�N
−1� /g�0�, where g�0��0. When selection acts �Eq. �8��, the
transition probabilities become dependent on the derivative
of the imitation function, g��0�	0. We are now interested in
the imitation function’s influence on the first- and second-
order terms in �. In general, the first-order term in � reads

�

��
�1

A = �
���=1

�
k=1

N−1

�
l=1

k

h�, �26�

h� = � ��1

���1

1

Ti
+�� ��2

���2
�l�� ��3

���3
�

m=l+1

k
Tm

−

Tm
+ � , �27�

with the multi-index �= ��1 ,�2 ,�3�, ���=�1+�2+�3 �see
Appendix B 1 for details of the calculation�. The general
structure of this term is determined by h�, which is linear in
u and v, as ��� equals 1. Thus, ���1

A ��=0=F1u+F2v is also of
this form, where F1 and F2 only depend on the population
size N. With the same symmetry argument as above, based
on �41,43�, we can conclude that F2=0. This yields

�1
A = �N−1

B 

N�N − 1�

g�0�
+ F1u� . �28�

We can now calculate the payoff independent term F1 for
any g�
�� from the special case u=1 and v=0, which reads

F1 = −
g��0�
g�0�2 N�N − 1�

N2 + N − 6

18
. �29�

Here, � can be rescaled by g��0� /g�0�2. Changing g��0� or
g�0� is equivalent to changing the selection intensity appro-

priately. In particular, when u�0, which is true, e.g., for
coordination games such as the stag-hunt game �44�, the con-
ditional time it takes on average for a mutant type to take
over decreases with the intensity of selection. Moreover, for
a�c and b�d in combination with u�0, a mutant which
is always advantageous over the wild type needs longer to
reach fixation than a neutral mutant. This phenomenon,
termed stochastic slowdown in �45�, occurs in any imitation
process since Eq. �28� only depends on u.

For the second-order term in the expansion in � we can
write

�2

��2�1
A = �

���=2
�
k=1

N−1

�
l=1

k

h�, �30�

where h� is of the form G1u2+G2uv+G3v2. Thus, ��
2�1

A ��=0 is
also of this form, where the Gi’s only depend on N. Again,
we consider the transformations a↔d and b↔c which cor-
respond to exchanging the names of the strategies. For the
transformed game, we obtain ��

2�N−1
B ��=0=G1u2+G2uṽ

+G3ṽ2 with ṽ= �Nc−Na−d+a� / �N−1�. Using Eq. �22�, we
obtain G2u�v− ṽ�+G3�v2− ṽ2�=0. With v+ ṽ=−Nu, we then
get G3=G2 /N—the symmetry discussed above for a special
case holds for any imitation function. Eventually, the second-
order term in � for general imitation probability is given by

�2

��2�1
A = G1u2 + G2uv +

G2

N
v2. �31�

The special cases u=1,v=0, as well as u=0,v=1, allow us
to compute G1 and G2 explicitly. Thus, we have �see Appen-
dix B 1�

G1 = −
�N − 2��N − 1�N

5400
�180 − 122N + 177N2 + 59N3�

�	2�g��0��2

g�0�3 � −
N2�N − 1��2N − 1�

6

g��0�

g�0�2� , �32�

G2 = −
N2�6 − 7N + N3�

18
	2�g��0��2

g�0�3 � − N2�N − 1�
g��0�
g�0�2 .

�33�

Obviously, Eq. �31� does not allow a rescaling of the inten-
sity of selection. Instead, the properties of the imitation func-
tion enter in a more intricate way. An example of this ap-
proximation is shown in Fig. 3.

B. Moran process

To close this section, we consider the Moran process,
where selection at birth is proportional to fitness and selec-
tion at death is random. For neutral selection �=0, it is well
known that �1

A�0�=N�N−1� �13,33,41�. When selection is
weak ��1, the conditional mean fixation time is approxi-
mately �1

A
�1
A�0�+���1

A ��=0�. For the Moran process with
linear fitness function, fA=1+��A, we have ���1

A ��=0
=−uN2�N2−3N+2� /36 �compare �13,43��. The first-order
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expansion of �1
A again depends only on u, but not on v. This

can be shown based on �41,43� or explicitly �13�.
With general fitness mapping f���� with transition rates

�15� and �16�, we have


 �

��
�1

A����
�=0

= − f��0�N2N2 − 3N + 2

36
u , �34�

which allows a rescaling of the intensity of selection when �1
A

is approximated up to linear order.
With general fitness function f�x�, it becomes unwieldy

to calculate higher order terms in �. However, the general

calculations are similar to that of the general pairwise com-
parison rules. Equation �19� reveals that already the second-
order expansion of the fixation probability �1 with general
fitness mapping is tedious in form. Thus, the equivalent
terms for the fixation time �1

A are even more complicated and
do not lead to further insight in this case. Since it would be
only an academic exercise to calculate them, we do not give
them explicitly here. It is clear that the weak selection ap-
proximation is not universal over a large class of processes in
second order in the fixation times.

IV. DISCUSSION

In the past years, weak selection has become an important
approximation in evolutionary game theory �9–15�. Weak se-
lection means that the game has only a small influence on
evolutionary dynamics. In evolutionary biology and popula-
tion genetics, the idea that most mutations confer small se-
lective differences is widely accepted. In social learning
models, it refers to a case where imitation is mostly random,
but there is a tendency to imitate others that are more suc-
cessful. Since weak selection is the basis of many recent
results in evolutionary dynamics �10,11,46–48�, it is of inter-
est how universal these results are. It has been shown that
they are remarkably robust and the choice of evolutionary
dynamics has only a small impact in unstructured popula-
tions �28,49�. In structured populations, however, the choice
of evolutionary dynamics can have a crucial impact on the
outcome �11,47,50–54�. For example, for a prisoner’s di-
lemma on a graph under weak selection, cooperation may be
favored by a death-birth process while it is never favored by
a birth-death process. In a well-mixed population, however,
the transition probabilities for those two processes are iden-
tical; thus, they lead to the same result. However, in general,
spatial structure has a less pronounced effect under weak
selection than under strong selection �53,54�.

We have addressed the question as to what extent two
evolutionary processes can be considered as identical by in-
vestigating the fixation probability and the fixation time. For
any given 2�2 payoff matrix, we have considered two
classes of evolutionary processes: pairwise comparison and
Moran processes. An interesting special case is the Moran
process with exponential fitness mapping, which is equiva-
lent to the Fermi process �a special case of the pairwise com-
parison rule� in terms of fixation probabilities.

For the fixation probability, the first-order term in the se-
lection intensity always has the same form, given that it does
not vanish. In addition, regardless of the choice of imitation
functions, two pairwise comparison processes are always
identical up to second-order weak selection in the fixation
probabilities. For the Moran processes, an equivalent state-
ment does not hold. Recently, a paper has shown that in
3�3 games under weak selection, the Fermi update rule can
be quite different from the Moran process and the local up-
date rule �an imitation process with linear imitation function
�23��, while the Moran process and the local update rule are
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FIG. 3. Weak selection approximation of the conditional fixation
time of a single mutant, the exact result is given in Eq. �21�. Upper
panel: the approximations are shown for the Fermi process, but they
would be identical up to the second order for any other pairwise
comparison process after appropriate rescaling of the selection in-
tensity. Lower panel: for any Moran process the first-order approxi-
mation is independent of the precise function mapping payoff to
fitness �here it is linear�. Any higher order approximation depends
on the details of the function. Note that the first-order approxima-
tion in the two panels is not identical due to a difference in the
dependence on population size N �same parameters as in Fig. 2�.
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more similar to each other �55�. Our result shows that for
weak selection in 2�2 games, these three processes can be
mapped to each other by an appropriate rescaling of the in-
tensity of selection.

For the first-order approximation of the average fixation
time, there are differences in the dependence on the system
size, but all processes depend on the game in the same way.
This follows from a symmetry in fixation times �41,43�. For
higher orders in the intensity of selection, a simple rescaling
of the selection intensity does not exist for the fixation times
and a general statement on the relation between two pro-
cesses cannot be made.

The robustness of weak selection results, i.e., the invari-
ance to changes of the underlying stochastic process, found
in the linear approximation is remarkable but follows from
basic assumptions on evolutionary dynamics. Moreover, the
universality of weak selection breaks down when higher or-
der terms are discussed.
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APPENDIX A: THIRD ORDER EXPANSION
OF THE FIXATION PROBABILITIES

Here, we expand the fixation probability �1 for general
birth-death processes up to the third order. Let �i=Ti

− /Ti
+ and


 �s

��s�i�
�=0

= psi. �A1�

Note that the first index of psi refers to the order of the
derivative and the second index gives the position in state
space. We expand Eq. �4� to the third order under weak se-
lection �i
1+ p1i�+ p2i�

2 /2+ p3i�
3 /6. Hence, we have

�
i=1

k

�i � 1 + �
j=1

k

p1j

L1k

� + ��
j=1

k

�p2j − p1j
2 � + ��

j=1

k

p1j�2�
L2k

�2

2

+ ��
j=1

k

p3j + 3��
j=1

k

p1j���
s=1

k

p2s� − 3�
j=1

k

p1jp2j�
L3k

�3

6
.

�A2�

Then, the fixation probability can be written as

�1 ��N + ��
k=1

N−1

L1k

Q1

+
�2

2 �
k=1

N−1

L2k

Q2

+
�3

6 �
k=1

N−1

L3k

Q3

�−1 �A3�



1

N
−

Q1

N2 � + 
Q1
2

N3 −
Q2

2N2��2 − 
Q1
3

N4 −
Q1Q2

N3 +
Q3

6N2��3.

�A4�

This now serves as a starting point for our particular pro-
cesses with certain choices of �i=Ti

− /Ti
+ and particular psi

resulting from this.

1. General pairwise comparison process

For general switching probabilities in a pairwise compari-
son process, we have

p1i = −
2g��0�
g�0�


�i, �A5�

p2i = �2g��0�
g�0�


�i�2

, �A6�

p3i = − 2
6�g��0��3 − 3g�0�g��0�g��0� + g�0�2g��0�

g�0�3 �
�i�3.

�A7�

Inserting these quantities into Eqs. �A2� and �A3� leads to

Q1 = −
2g��0�
g�0� �

k=1

N−1

�
i=1

k


�i, �A8�

Q2 = �2g��0�
g�0� �2

�
k=1

N−1 ��
i=1

k


�i�2

, �A9�

Q3 = 2
6�g��0��3 + 3g�0�g��0�g��0� − g�0�2g��0�

g�0�3

��
k=1

N−1

�
i=1

k

�
�i�3−
24�g��0��3

g�0�3

��
k=1

N−1 ��
i=1

k


�i���
s=1

k

�
�s�2� . �A10�

Here, Q1 and Q2 have been calculated in the main text. Note
that they only depend on g��0� /g�0�, whereas Q3 also de-
pends on higher order derivatives of the imitation function.
Thus, two pairwise comparison processes that are identical in
first order are also identical in second order. Only in third
order, differences start to emerge.

Let us briefly come back to our example of an
imitation function that violates the one-third rule,
g�x�= �1+exp�−x3��−1. In this case, we have g�0�=1 /2,
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g��0�=g��0�=0, and g��0�=3 /2. Thus, both Q1 and Q2 van-
ish and the third-order expansion of the fixation probability
is

�1 

1

N
+

N − 1

60N
��N + 1��3N2 − 2�u3 + 15�N + 1�Nu2v

+ 30�N + 1�uv2 + 30v3��3. �A11�

2. Moran processes

For the Moran processes with general fitness functions,
we have p1i=−f��0�
�i and p2i=2�f��0��2�A
�i− f��0���A
+�B�
�i. Inserting these quantities into Eqs. �A2� and �A3�
leads to

Q1 = − f��0��
k=1

N−1

�
i=1

k


�i,

Q2 = ��f��0��2 − f��0���
k=1

N−1

�
i=1

k

��A
2 − �B

2�

+ �f��0��2�
k=1

N−1 ��
i=1

k


�i�2

. �A12�

Thus, the first- and the second-order expansions of the fixa-
tion probability of such processes are given in Eqs. �18� and
�19�, respectively. In particular, for f���=1+�3, both p1i and
p2i vanish and p3i=−6��A

3 −�B
3�. In Eq. �A3�, this yields

�1 =
1

N
+

1

N2 �
k=1

N−1

�
i=1

k

��A
3 − �B

3�

D3

�3 + o��3� ,

�A13�

where

D3 = �1/60N�N − 1�2��− 3c2d�N − 2��1 + N��2N − 1�

− 3cd2�N − 2��N + 1��3N − 4� + 6a2b�N − 2��N2 − 2N

+ 2� + a�a2 + 3b2��N − 2��3N2 − 6N + 1� − c3�1 + N�

��3N2 − 2� + 2b3�1 + N − 9N2 + 6N3�

− d3�N − 2��29 − 39N + 12N2�� .

APPENDIX B: TIMES OF FIXATION

General expressions for the first- and second-order expan-
sions of the fixation time for the birth-death process have
been given in Eqs. �26� and �30�. Based on these, we show
the results for the general pairwise comparison rule first and
then discuss the Moran process.

1. General pairwise comparison process

For the first-order term of the fixation time �Eq. �26��,
each h� on the right-hand side is proportional to g��0� /g2�0�.
Thus, the first-order term of the fixation time is of the form
Rg��0� /g2�0�. In particular, when g�
�� is the Fermi func-

tion, g��0� /g2�0� is 1. Hence, the first order of the fixation
time for the Fermi process is R �cf. Eq. �23��. This leads to
the first-order expansion of the fixation time for general pair-
wise comparison rule �Eq. �29��.

For the second order, we write Eq. �30� explicitly as

�2

��2�1
A = �

k=1

N−1

�
l=1

k

h�2,0,0�

K1

+ �
k=1

N−1

�
l=1

k

h�0,2,0�

K2

+ �
k=1

N−1

�
l=1

k

h�0,0,2�

K3

+ 2�
k=1

N−1

�
l=1

k

h�1,1,0�

K4

+ 2�
k=1

N−1

�
l=1

k

h�1,0,1�

K5

+ 2�
k=1

N−1

�
l=1

k

h�0,1,1�

K6

.

�B1�

As shown in the main text, the second-order term is of the
form G1u2+G2uv+ �G2 /N�v2. Letting u=1 and v=0 leads to

K1 =
N2�N − 1��2N − 1�

6

2�g��0��2 − g�0�g��0�
g�0�3 ,

K2 = −
N2�N − 2��N − 1��17 + 63N + 16N2�

2700

2�g��0��2

g�0�3 ,

K3 =
N�− 120 + 4N + 350N2 − 65N3 − 290N4 + 121N5�

1800

�
2�g��0��2

g�0�3 ,

K4 = −
N3�N2 − 1�

12

2�g��0��2

g�0�3 ,

K5 =
N3�2 − 3N + N2�

9

2�g��0��2

g�0�3 ,

K6 = −
N2�2 + 25N − 15N2 − 25N3 + 13N4�

180

2�g��0��2

g�0�3

�B2�

after some tedious calculations using the identity �k=1
M �l=1

k

=�l=1
M �k=l

M �56�. Summing these Ki’s leads to G1 in Eq. �32�.
On the other hand, letting u=0 and v=1 yields

K1 = N�N − 1�
2�g��0��2 − g�0�g��0�

g�0�3 ,

K2 =
N2�N − 1��N − 2�

18

2�g��0��2

g�0�3 ,

K3 =
N�4N3 − 15N2 + 17N − 6�

18

2�g��0��2

g�0�3 ,

K4 = −
N2�N − 1�

2

2�g��0��2

g�0�3 ,
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K5 =
N�N − 1��N − 2�

2

2�g��0��2

g�0�3 ,

K6 = −
N2�N − 1��N − 2�

3

2�g��0��2

g�0�3 . �B3�

Adding these Ki’s yields G2 /N as in Eq. �33�. Thus, the
quantities in Eq. �31� are finally derived.

2. Moran processes

For Moran processes, the approach is fully equivalent to
pairwise comparison processes. However, the results do not
only depend on payoff differences u and v but also on the
full payoff matrix with entries a, b, c, and d. This makes the
calculations a matter of diligence and leads to quite long
expressions, but not to additional insights. Thus, we do not
give details of the derivation here.
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2 Fixation events in well mixed populations of finite size

2.3 Stochastic slowdown in evolutionary processes

The result of Section 2.1 leads to an interesting observation that is now examined and
discussed in further detail. One of the main assumptions in evolutionary game theory is
that in the limit of weak selection all relevant quantities depend on the payoff difference
∆π = u i+ v in a linear way. The parameter β, termed selection intensity, introduces
a bias which vanishes in the limit β → 0 (neutral evolution). Hence, in many cases
evolutionary game dynamics model a random walk on {0,1, . . . ,N}, biased by selection,
between (absorbing) boundaries 0, N . Of special interest here is the conditional mean
exit time of such a biased random walk to get to a particular absorbing state from its
most distant non-absorbing state. This expectation value can be a non-monotonous
function of β. If this bias decreases with the density u < 0, it has a maximum. For
sufficiently large v, this essentially means that a random walker that is biased toward a
certain boundary spends longer on average than its unbiased counterpart. This becomes
clear when observing that in confined random walks, the unbiased mean exit time is
constant in system size CN ∼ N2, whereas an approximation that accounts for the bias
linear in β always takes the form −uDN β, where DN ∼ N4. This property is universal,
see Section 2.2. Thus, one can model game theoretic setups in which one type always has
a selective advantage, be it in reproductive success or in the probability to be imitated,
but on average the advantageous type spreads slower in the population than a neutral
type that does not have any advantage disadvantage. From our intuition this should
not be the case, as the associated probability of absorption increases with the bias. We
have termed this effect stochastic slowdown; it is an essential feature of the conditional
moments given in Section 1.3. It can occur if a positive bias decreases with increasing
density i of advantageous mutants.

In systems that do not have state dependent transition rates,∆π = v, which corresponds
to constant selection in evolutionary biology, this slowdown cannot be observed; the state
dependence is crucial. We construct a simplified model with absorbing boundaries which
is a caricature of the standard microscopic evolutionary dynamics. State dependence of
the transition probabilities is introduced by a step function: Below a certain threshold
there is a bias and above the threshold the bias vanishes. Bias here means that moving
toward the absorbing boundary of interest is more likely than moving away from it. The
slowdown is thus sensitively dependent on the threshold value. The mean exit time is not
a monotonous function of the bias parameter β, which gives rise to discuss three different
features: First, there is a non-trivial value of β where the mean exit time is again equal
to the one of unbiased random walk, β∗. Next, if slowdown occurs, the mean exit time
has a maximal value τ̃ at a given bias β̃. All three quantities can be considered as a
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2 Fixation events in well mixed populations of finite size

function of the asymmetry threshold. The values of the bias β̃ and β∗ asymptotically
scale with the inverse system size, β∗,β̃ ∼ N−1; this is a typical weak selection result.
The maximal value τ̃ , however, does not scale with N ; the relative amplitude of the
slowdown remains constant if the system size increases.
There is a parameter regime of stochastic slowdown for every microscopic one-step

process that resembles a biased random walk with at least one absorbing boundary. The
question is whether this also holds for other Markov chains. A widely used Markov
chain in theoretical population genetics is the Wright-Fisher process [Ewens, 2004; Fisher,
1930; Haldane, 1924–1934; Wright, 1970], see Chapter 1. Instead of single events of
reproduction and death, which corresponds to overlapping generations, here, one time
step corresponds to one generation: All N individuals produce a large number of offspring
proportional to their fitness, and die. The next generation is then a random sample
from this huge offspring pool. This corresponds to binomial sampling proportional to
fitness [Imhof and Nowak, 2006]. For this class of processes the master equation for
the distribution of transition times does not yield solvable recursions for the moments,
such as the conditional mean exit time. Nevertheless, for large N it is meaningful to
perform an expansion in system size assuming that all but the first two moments of the
resulting continuous process vanish [Ewens, 2004; van Kampen, 1997], see Section 1.4.
This is analogous to the truncated Kramers-Moyal expansion [Risken, 1989]. Again, with
positive but state dependent bias in this Markov process the conditional mean exit time
of a single mutant increases with weak but increasing bias. The non-monotonic behavior
can be shown analytically in the diffusion approximation for large system size.

For all processes considered in this thesis, the parameter range required for the slowdown
in mean exit times can be predicted analytically by considering an expansion up first
order in bias. This is corroborated by extensive simulations of the microscopic processes.
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We examine birth-death processes with state dependent transition probabilities and at least one absorbing
boundary. In evolution, this describes selection acting on two different types in a finite population where
reproductive events occur successively. If the two types have equal fitness the system performs a random walk.
If one type has a fitness advantage it is favored by selection, which introduces a bias �asymmetry� in the
transition probabilities. How long does it take until advantageous mutants have invaded and taken over?
Surprisingly, we find that the average time of such a process can increase, even if the mutant type always has
a fitness advantage. We discuss this finding for the Moran process and develop a simplified model which allows
a more intuitive understanding. We show that this effect can occur for weak but nonvanishing bias �selection�
in the state dependent transition rates and infer the scaling with system size. We also address the Wright-Fisher
model commonly used in population genetics, which shows that this stochastic slowdown is not restricted to
birth-death processes.
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I. INTRODUCTION

Birth-death processes belong to the simplest stochastic
models and are applied in a variety of fields �1–6�. In physics
these processes are connected, e.g., to the study of one-
dimensional classical diffusion in disordered media, anoma-
lous transport, and molecular motors �7–10�. In evolutionary
biology, birth-death processes are commonly applied to
model the evolution of traits with different reproductive fit-
ness that are under natural selection �5,11�. In the context of
evolutionary game theory, this particular class of Markov
chains has been used to model the spreading of successful
strategies in a population of small size �12–20�. Naturally,
the limit of weak selection is considered to be important in
biology. It describes situations in which the effects of payoff
differences are small, such that the evolutionary dynamics
are mainly driven by random fluctuations. While this ap-
proach has a long standing history in population genetics
�21,22�, in the context of evolutionary game dynamics it has
been introduced only recently �14�. Often, from the discrete
stochastic process a continuous limit or diffusion approxima-
tion is motivated, where typically the impact of the relevant
parameters and time scales can be studied more easily
�11,23–25�. Here, we consider the Moran process from the-
oretical population genetics and related processes. We ad-
dress the speed of evolution when a resident population is
taken over by mutants that are more fit. Under the low mu-
tation rates that typically occur in biology, a mutant type
either goes extinct or takes over the population before an-
other mutation arises. Thus, for many purposes it is sufficient
to address the evolution of two types in a one-dimensional
system.

In the following, we first recall general properties of birth-
death processes �Sec. II� and then address asymmetry in the
transition probabilities �Sec. III�. In Sec. IV, we then con-

sider a more general Markov process to highlight that our
main finding is not a special property of birth-death pro-
cesses.

II. STATE DEPENDENT BIRTH-DEATH PROCESS

A one-dimensional birth-death process in position i can
move to i−1 or i+1 with probabilities Ti

− and Ti
+. With prob-

ability 1−Ti
−−Ti

+, the process stays in state i. We assume
T0

�=TN
�=0, such that i=0 and i=N are absorbing states. In

discrete time, the probability to reach boundary N in t steps,
starting from any i, obeys the master equation �6�.

Pi
N�t� = �1 − Ti

+ − Ti
−�Pi

N�t − 1� + Ti
−Pi−1

N �t − 1� + Ti
+Pi+1

N �t − 1� .

�1�

The stationary conditional nth moment of Pi
N�t� is given by

��i
N�−1�

t=0

�

tnPi
N�t� . �2�

The normalization constant, �i
N=�t=0

� Pi
N�t�, is the probability

that the process gets absorbed at boundary N, called fixation
probability in population genetics. For �i

N a recursion is ob-
tained from Eq. �1�, �i

N= �1−Ti
+−Ti

−��i
N+Ti

−�i−1
N +Ti

+�i+1
N .

With the boundary conditions �0
N=0 and �N

N=1, the solution
reads �4�

�i
N =

1 + �
k=1

i−1

�
m=1

k
Tm

−

Tm
+

1 + �
k=1

N−1

�
m=1

k
Tm

−

Tm
+

. �3�

A measure for the duration of the process is the conditional
mean time to absorption �average fixation time� �i

N, i.e., the
first moment of Pi

N�t�. This gives the average number of time
steps until one of the two absorbing states is reached, starting*altrock@evolbio.mpg.de
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from any i �7,13�. A recursion for �i
N is obtained by multi-

plying each side of Eq. �1� with t and summing over all t �6�,
which yields �i

N�i
N= �1−Ti

+−Ti
−��i

N�i
N+Ti

−�i−1
N ��i−1

N +1�
+Ti

+�i+1
N ��i+1

N +1�. A similar recursion can be found for the
conditional mean exit time �i

0, such that the mean life time of
the process amounts to �i

0+�i
N. Solving recursively with the

boundary conditions �0
N=0 and �N

N=0, leads to the condi-
tional mean time to reach state N, starting from i=1,

�1
N = �

k=1

N−1

�
l=1

k
�l

N

Tl
+ �

m=l+1

k
Tm

−

Tm
+ . �4�

One common example for a birth-death process with absorb-
ing states 0 and N is the homogenous random walk, Ti

�=c
�1 /2 for 0� i�N and T0

�=TN
�=0 �26�. This leads to �i

N

= i /N and �1
N= �N2−1� / �6c�. The reference case of population

genetics is neutral evolution, where the symmetric transition
probabilities are state dependent, Ti

�= i�N− i� /N2. This re-
sults in �i

N= i /N and �1
N=N�N−1� �5,11�.

III. BIASED TRANSITION PROBABILITIES

In this section, we examine how the state dependent tran-
sition probabilities influence the conditional mean exit time.
We consider processes in which a parameter � continuously
introduces a bias toward moving into one direction: for �
=0 the transition probabilities are symmetric, Ti

+=Ti
−, but for

�	0, an asymmetry arises, Ti
+
Ti

−. In evolutionary dynam-
ics, � is usually referred to as the intensity of selection. It
governs the selective advantage �or disadvantage� of mutants
in a wild-type population of finite size. Intuitively, it is clear
that the time �1

N does not depend trivially on �, cf. Eq. �4�.
With increasing �, the probability �i

N increases, but both
1 /Ti

+ and Ti
− /Ti

+ decrease in our setup. Thus, the average
time �1

N can increase or decrease with �. In other words,
despite increasing the tendency to move in the direction of a
given boundary in each state, the conditional average time
until this boundary is reached can still increase.

In the Moran process, an individual selected for reproduc-
tion proportional to fitness produces identical offspring that
replaces a randomly selected individual from the population.
We consider the evolution of two types A and B in a finite
population of size N. Type A �with fitness fA� is usually
referred to as the mutant type, B �with fitness fB� is called the
wild type. Let i be the number of individuals of type A, such
that N− i is the number of B individuals. In general, the tran-
sition probabilities are

Ti
+ =

ifA

ifA + �N − i�fB

N − i

N
,

Ti
− =

�N − i�fB

ifA + �N − i�fB

i

N
. �5�

In the following, we discuss different choices of fA and fB, as
well as closely related, but simplified asymmetric transition
rates.

A. Constant fitness

In the simplest case, the fitness of mutants is constant and
does not depend on their abundance �11�. In our model, this
can be parametrized as fA=1+� and fB=1−�. In this case,
the fixation probability of a single mutant is �11�

�1
N = �1 − ��/�1 − �N� , �6�

where �= �1−�� / �1+��. Up to linear order in � we have
�1

N�N−1+��N−1�N−1. The larger the fitness advantage, the
more likely the evolutionary takeover. For stronger selection
��	0� an advantageous mutant is expected to fixate faster
compared to neutral ��=0�.

B. Linear density dependence

In general, the fitness of the two types will depend on
their abundance. For example, the fitness f of each type can
change linearly with i, fA=1+��ai+b� and fB=1−��ai+b�.
The bias � is bound such that fitness never becomes nega-
tive. Then, the transition probabilities are

Ti
� =

1 � ��ai + b�
N − ��ai + b��N − 2i�

i�N − i�
N

. �7�

We have T0
�=TN

�=0, such that both boundaries are absorbing
�14,27�. For a�0 and aN+b	0, type A is always fitter than
type B, fA	 fB, but the conditional mean exit time �1

N is
larger than neutral in a certain parameter range, compare Fig.
1�a�. In this case, a mutant that is fitter than the rest of the
population needs more time to take over the population than

a d
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1.05
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τN
1

0 0.04 0.08
β
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0.90

τN
1

0 0.04 0.08
µ

b c
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1.10

τN
1

0 0.12 0.24
β

1.00

1.25

τN
1

0 0.80.4
β

β̃ β∗
β̃ β∗

FIG. 1. �Color online� The conditional mean exit time �1
N /�1

N�0�
�normalized� as a function of the bias �selection intensity� �, or the
mutation rate �, for the four different models discussed in the main
text. Symbols are simulations, lines show Eq. �4�. �a� Moran pro-
cess with a=−0.1 and b=2, see Eq. �7�. �b� Parabolic-step process
with i�=11, Eq. �9�. �c� Constant-step process with i�=9 and c
=0.5, Eq. �12�. �d� Birth-death process with directed mutations,

Eqs. �15� and �16�. The quantities �̃, �̃, and �� indicate the maximal
relative increase of �1

N, the according bias parameter, and the non-
trivial value of � where �1

N=�1
N�0�, respectively �also compare Fig.

2�. The system size is N=20 in all panels, averages taken over 107

realizations.
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a less fit mutant. Intuitively, this should not be the case. The
linear approximation of �1

N for �
N−1 �weak selection�
reads

�1
N � N�N − 1� − a

N2�N2 − 3N + 2�
18

� , �8�

see �28,29�. Note that the linear approximation of the condi-
tional mean exit time depends only on the parameter a, but
not on b, which holds for any system size. Hence, for small
bias � and a�0, the conditional average time grows with
increasing �. This is an effect from state dependent fitness in
finite populations, as it cannot occur for a=0.

The ratio Ti
− /Ti

+ is a measure of the stochastic flow. Sto-
chastic slowdown can occur if this ratio changes with the
position �abundance of A� i, leading to an asymmetry. When
� becomes larger, �1

N decreases again with �, which is the
strong selection behavior one would expect, compare Fig.
1�a�.

C. Steplike asymmetry

Is there a simpler process with similar characteristics? In-
deed, we can introduce asymmetry also as a step in the fit-
ness of the two types in our Moran process. This leads to
parabolic transition probabilities with an additional steplike
discontinuity,

Ti
� =

i�N − i�
N2 �1 � ���i� − i�� , �9�

where ��x� is the step function ���x�0�=0 and ��x
0�
=1�. The integer i� is the location of the step. This process
has the fixation probabilities

�i
N =�

1

�1
i

�1
i�

�1
i��N − i���i� + 1

if i � i�,

�1
i��i − i���i� + 1

�1
i��N − i���i� + 1

if i 
 i�,	 �10�

where �1
k = �1−�� / �1−�k� is the probability to get from 1 to

k, and �= �1−�� / �1+��. Note that this general formula re-
duces to the standard fixation probability for constant fitness
in the case of i�=N, cf. Eq. �6�. For weak bias, �
1 /N, we
have ��1–2�, as well as

�i
N �

i

N
+

�

N2
i��N�1 + 2i� − i� − i��1 + i���� if i � i�,

�N − i�i��1 + i�� if i 	 i�.
�
�11�

�i
N increases with � in this approximation, whereas � de-

creases with �. Hence, the mean exit time can also increase
in an appropriate parameter range. The average delay of the
absorption is rather high in this case, cf. Fig. 1�b�, where it is
10%. Fig. 2�c� illustrates that even a delay of 400% is pos-
sible, but this delay decreases with increasing i�.

An even simpler model with stochastic slowdown is the
constant-step process

Ti
� = c�1 � ���i� − i�� if 0 � i � N , �12�

and T0
�=TN

�=0, with i��N, and the constant c chosen such
that Ti

++Ti
−�1. Clearly, the fixation probability of this pro-

cess obeys Eqs. �10� and �11�. Then, the remaining sums can
be expressed by means of the exact form of �i

N, respecting
that 1 /Tl

+ only gives contributions different from 1 /c if l
� i�. The conditional mean exit time �1

N can now be written
in the form

�1
N =

�1
N

c
�
k=1

i�

�
l=1

k
�k−l�1 + ��

2�1
l +

�1
N

c
�

k=i�+1

N−1

�
l=1

i�
�i�−l�1 + ��

2�1
l

+
�1

N

c
�

k=i�+1

N−1

�
l=i�

k−1 ��k − l��i� +
1

�1
i�
 . �13�

With ��1–2� and Eq. �11� this leads to
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3

FIG. 2. �Color online� Scaling with system size for the two
models with step like asymmetry: Parabolic-step model Eq. �9�
�Fig. 1�b�� on the left, constant-step model Eq. �12� with c=1 /2
�Fig. 1�c�� on the right. �a� The threshold value N��, defined by
�1

N����=�1
N�0�. Note that ��1 permits a minimal value of i� /N

only relatively far from zero. �b� N�̃, defined as the bias parameter
where the mean exit time �1

N is maximal. When plotted against the
asymmetry parameter i�, both models approach a limit curve with

growing size N. This suggests that nontrivial values of �� and �̃ can
be found for any system size N after appropriate rescaling: the

asymptotic scaling relations are �̃�N−1, and ���N−1. �c� The
maximal increase of the mean exit time �normalized�, �̃

=�1
N��̃� /�1

N�0�, quickly approaches a limiting curve with growing N.
This suggests the asymptotic scaling relation �̃�N0. Open symbols
N=20, filled symbols N=200, lines N=2000.
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�1
N �

N2 − 1

6c
+

�N − i���N − 1 − i��i��1 + i��
3Nc

� . �14�

The constant contribution is that of the homogenous random
walk. The correction linear in � is always greater than or
equal to zero, i.e., within the range of this approximation it
just adds a positive value to the symmetric part. Also note
that �1

N��=0, i� ,c� serves as an upper bound for the mean
exit time if i�
N−1. Hence, below a certain threshold of the
bias, �1

N is always greater than or equal to the homogenous
random walk between absorbing boundaries. This is surpris-
ing as the process defined by Eq. �12� fulfills Ti

+
Ti
−, and

thus never gives a disadvantage to movement toward the
boundary i=N. Moving into the direction of N is always at
least as likely as moving into the opposite direction in this
setup. In this particular process, the stochastic slowdown can
be quite large, cf. Figs. 1�c� and 2�c�.

What is the effect of system size on this stochastic slow-
down? Let �� denote the upper bound of the parameter � for
which �1

N���	�1
N�0�, which is the parameter range in which

slowdown can be observed. Additionally, with �̃ we denote
the parameter value of maximal slowdown of the exit time
�1

N. They change with N and i� in both models with a steplike
asymmetry, Eqs. �9� and �12�. The expansions linear in � are
valid if N�
1 �13,27,29�. In Figs. 2�a� and 2�b� we show

that with increasing system size N, the quantities N�̃�i�� and
N���i�� approach limiting curves if � is rescaled appropri-
ately. Thus, stochastic slowdown does not rely on small sys-

tem size, but �� and �̃ asymptotically scale as N−1. However,
the maximal relative increase of the mean exit time itself,

�̃=�1
N��̃� /�1

N�0�, does not scale with system size, �̃�N0, as
illustrated in Fig. 2�c�.

D. Directed mutations

To stress the generality of the effect of stochastic slow-
down in asymmetric birth-death processes we briefly discuss
a model with directed mutations. Fitness does not need to be
position/state dependent to observe stochastic slowdown in
population genetics. As above we consider two types, A and
B, in a population of size N, both having the same reproduc-
tive fitness. In one reproduction step of this Moran process,
type B mutates to type A with a probability �, back-
mutations are excluded. This introduces asymmetry in the
transition rates,

Ti
+ = � i

N
+ �

N − i

N
�N − i

N
, �15�

Ti
− = �N − i

N
�1 − ��� i

N
, �16�

where i is the abundance of A. Obviously, TN
�=T0

−=0, but
with directed mutations we have T0

+
0. The process has one
absorbing boundary. The ratio of the transition probabilities
is Tm

− /Tm
+ �1−�N /m, for mutation rates �
1 /N2. For larger

�, the dependence on the inverse mutation rate makes the
calculation of an approximation of Eq. �4� unwieldy. As �

increases we expect that A has an advantage during repro-
duction and hence, the conditional fixation time �that a single
mutant takes over before going temporarily extinct� should
decrease. Nevertheless, we observe an increase in the value
of �1

N, see Fig. 1�d�. The time shows a maximum when � is
close to N−1.

A more general process is given in the Appendix. There,
we derive an expression for the fixation probability in a
Wright-Fisher model with directed mutations. Although this
quantity increases with �, the associated conditional mean
exit time also increases in a certain parameter range, com-
pare Fig. 3.

IV. STATE DEPENDENT WRIGHT-FISHER PROCESS

The phenomenon of stochastic slowdown is not restricted
to birth-death processes. It also occurs in the Wright-Fisher
process that is commonly used in population genetics
�11,30�. Again, we consider a population of two types A and
B. If i is the abundance of A, the fitness of each type is fA
=1+��ai+b�, and fB=1−��ai+b�, respectively. Birth-death
processes, such as the Moran model considered above, deal
with one reproductive event at a time. Now, one time step of
the Wright-Fisher process corresponds to one generation
where all individuals reproduce: In each generation, the N
individuals reproduce a large number of offspring propor-
tional to fitness. The new generation of size N is a random
sample from this offspring pool, which corresponds to bino-
mial sampling proportional to fitness. The transition prob-
ability to go from i to j A individuals reads �30�

Ti→j = �N

j
�� ifA

ifA + �N − i�fB
� j� �N − i�fB

ifA + �N − i�fB
�N−j

.

�17�

For this process, a closed treatment is not possible. Apart
from simulations, for large N a diffusion approximation leads

FIG. 3. �Color online� The conditional mean exit time �normal-
ized� for the Wright-Fisher model with N=1000, as a function of
the rescaled bias �selection intensity, mutation rate�. The line shows
the analytical diffusion approximation result Eq. �24�, namely
��N−1� / �2N−1�. Symbols are simulation results. Left: The state de-
pendent fitness model, Eq. �17� �2�106 realizations, a=−0.1, b
=N�a��. For relatively small bias � slowdown is observed. Right:
The directed mutations model, Eq. �A1� �5�105 realizations�.
Here, a strong slowdown effect can be observed over a wide range
of the bias, N��1. This is due to the different nature of the di-
rected mutation process, which has only one absorbing boundary.
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to analytical results �11,31–34�. With x= i /N, the process is
approximately described by the Langevin equation dx
=D1�x�dt+�D2�x�dW�t�, where W�t� is the Wiener process
with zero mean and autocorrelation �W�t�W�s��=min�t ,s�
�1�. The drift term D1�x� can be written as

D1�x� = x�1 − x�N
fA�x� − fB�x�

xfA�x� + �1 − x�fB�x�
. �18�

For the diffusion term D2�x� we find

D2�x� = x�1 − x�
fA�x�fB�x�

�xfA�x� + �1 − x�fB�x��2 +
D1

2�x�
N

. �19�

If the initial fraction of A types is x0, the probability of ab-
sorption in x=1 �fixation probability� reads

��x0� =
S�x0�
S�1�

, �20�

where

S�x� = �
0

x

dy exp�− �
0

y

dz
2D1�z�
D2�z� 
 . �21�

If there is no bias, �=0, we have fA�x�= fB�x� and hence
D1�x�=0. Thus, consistently with the previous section, we
obtain ��i /N�= i /N. For sufficiently weak bias, N�
1, we
have

2D1�z�
D2�z�

� 4N�aNz + b�� , �22�

which leads to

��x0� � x0 +
2x0�1 − x0�N�aN�1 + x0� + 3b�

3
� . �23�

The conditional mean time this process takes to exit at x=1,
��x0�, can be obtained from the associated backward Fokker-
Planck equation �11�,

��x0� = N�
0

x0

dxt1�x,x0� + N�
x0

1

dxt2�x,x0� , �24�

where

t1�x,x0� = 2
��x�
D2�x�

1 − ��x0�
��x0�

S�x�exp��
0

x

dz
2D1�z�
D2�z� 
 ,

t2�x,x0� = 2
��x�
D2�x�

�S�1� − S�x��exp��
0

x

dz
2D1�z�
D2�z� 
 .

�25�

For weak bias Eq. �22� holds, as well as S�x��x
−2 /3Nx2�aNx+3b��. This results in

��1/N� � 2N�N − 1�ln� N

N − 1



−
2

9
�N − 1��C1 + C2 ln�N − 1

N

�� , �26�

with

C1 = a�7N2 + 13N + 6� + 18b ,

C2 = 6N�aN�N + 2� + 3b� .

For large N, the right hand side of Eq. �26� simplifies, lead-
ing to

��1/N� � 2N − 1 − a
2N2�N − 3�

9
� . �27�

Hence, we can predict an increase of ��1 /N�, in the case of
state dependent bias with a�0, also for the Wright-Fisher
process, in particular when A always has a fitness advantage
over B, see Fig. 3. This goes along with the findings for the
Moran model in the previous section. Thus, the slowdown
effect can also be observed in the traditional framework of
population genetics, where times of fixation �or rather extinc-
tion� have been considered typically for constant selection
�11,35�.

V. DISCUSSION

This paper addresses several stochastic evolutionary pro-
cesses asking how long an advantageous mutation needs to
take over. We have first concentrated on birth-death pro-
cesses which model population dynamics with successive re-
productive events, like the Moran process. However, the phe-
nomenon of stochastic slowdown is also present in more
general Markov processes, e.g., the Wright-Fisher process
from population genetics. Stochastic slowdown is relevant in
the invasion and fixation of beneficial traits with small state
dependent selective advantage, which is typically assumed in
evolutionary biology �36�. However, consequences of weak,
but nonvanishing selection are hard to reveal in empirical
studies, as the dynamics are still dominated by random ge-
netic drift and averages over large ensembles are necessary.
Biological examples of weak selection include amino acid
substitutions which are only slightly advantageous or delete-
rious �37–39�. Weak state dependent fitness changes �such as
the thresholds we discuss in our model with steplike asym-
metry� may help explain situations in which a substitution is
likely, but takes a very long time.

Our finding also has applications in evolutionary game
theory �40–42�: When a group of cooperative individuals is
eventually driven to extinction by defectors, this process may
take longer than the corresponding neutral process, although
the defectors always have a fitness advantage. This observa-
tion is closely related to the fact that the conditional fixation
time of an advantageous mutation is the same as the condi-
tional fixation time of a deleterious mutation �28,35�.

To sum up, we have shown that an asymmetric bias in a
random walk, which is generic in population genetics, can
lead to a counterintuitive observation that an advantageous
mutant needs longer to take over the population than a neu-
tral mutant in the same system. This is a property of weakly
biased systems, i.e., weak selection, and is recovered for any
system size if the intensity of selection is rescaled with N−1.
The relative maximal increase in time itself is independent of
the system size. Especially in the state dependent Moran or
Wright-Fisher process, this can have a crucial impact on
macroscopic observable quantities.
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APPENDIX: STATE DEPENDENT WRIGHT-FISHER
PROCESS WITH DIRECTED MUTATIONS

Consider a finite population of size N, which consists of
two types A and B. Both types have the same reproductive
rate, which is set to one. In one generation, each type pro-
duces a large number of identical offspring proportional to its
abundance. Additionally, a directed mutation from B to A can
occur with probability �. The next generation of size N is a
random sample from the offspring pool. The transition ma-
trix reads

Ti→j = �N

j
�� i

N
+ �

N − i

N
� j�N − i

N
�1 − ���N−j

. �A1�

The conditional moments of this Markov chain are given by
�11�

Mn�i� = �
j=0

N

�j − i�nTi→j . �A2�

In a diffusion approximation we rescale the state space as
x= i /N, and the timescale as �t=1 /N, such that for large
system size and weak bias the process is well described by
the first two moments, Dk= ��xt+�t−xt�k� /�t, i.e.,

Dk�x� =
N

NkMk�i� , �A3�

k=1,2. For the given Markov chain Eq. �A1�, the drift and
diffusion terms read

D1�x� = �N�1 − x� , �A4�

D2�x� = �1 − x���1 − x��N − 1��2 + �1 − 2x�� + x� .

�A5�

Next, we derive a closed expression for the probability that
the process exits at x=1 without hitting the non-absorbing
boundary x=0 first, starting form x0, ��x0�, Eq. �20�. The
general expressions Eqs. �20� and �21�, as well as Eqs. �24�

and �25� hold. However, due to the different nature of this
process, where only one absorbing boundary at x=1 exists,
these quantities have a slightly different meaning.

We define 2D1�x� /D2�x�=2N� / D̃2�x�, where

D̃2�x� = �1 − x��N − 1��2 + �1 − 2x�� + x , �A6�

and obtain

I1�z� =� dz
2D1�z�
D2�z�

= − � ln D̃2�z� �A7�

with

� =
2N�

���N − 1�� + 2� − 1
. �A8�

Now, with D2�0�= D̃2�0� and

I2�y� = exp�− �I1�y� − I1�0��� = � D̃2�y�
D2�0�


�

�A9�

we can calculate the second integral in Eq. �21�,

S�x� = �
0

x

dyI2�y� =
1

D2
��0�

D̃2
�+1�x� − D̃2

�+1�0�
1 − ��2 − � + N�2 + ���

.

�A10�

Hence, the fixation probability, Eq. �20�, reads

��x0� =
D̃2

�+1�x0� − D̃2
�+1�0�

D̃2
�+1�1� − D̃2

�+1�0�
. �A11�

As D̃2�0�= ��N−1��+1��, D̃2�1�=1−�, and lim�→0 D̃2�x0�
=x0, we have lim�→0 ��x0�=x0. Up to first order in mutation
rate, we see that ��x0� increases with increasing bias,

��x0� � x0 − �2Nx0 ln x0�� . �A12�

With expressions �A10� and �A11� the conditional mean exit
time, Eq. �24�, can be tackled as well. However, we do not
address the conditional mean exit time analytically, as its
explicit form is elaborate and does not lead to further insight.
From a numerical solution �Eq. �24�� and from simulations
�Eq. �A1�� the mean exit time of a single mutant, ��1 /N�, as
a function of � is shown in Fig. 3.
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2 Fixation events in well mixed populations of finite size

2.4 Deterministic evolutionary game dynamics in finite populations

Weak selection does not have to be the only limit case that allows to analytically examine
statistical properties of a finite population under Darwinian evolution. An important
question has been whether it is possible to introduce a microscopic evolutionary process
that can use the parameter β to interpolate between weak and arbitrarily strong selection.
Under strong selection in the sense that we discuss here, we require that the fittest are
always selected and the least fit are alway removed. Such a limit case is difficult to
establish for the density dependent Moran process introduced in Section 1.3, because
arbitrarily high values of β can lead to negative values, if f(βπ) is linear and π < 0. On
the other hand, choosing an exponential fitness function, which would ensure f(βπ) > 0,
the classical Moran process considers random removal of individuals to ensure that the
population size remains constant. This also hinders a deterministic limit. To overcome
this, we introduce a variant of the Moran process that leads to fully deterministic
evolutionary dynamics in finite populations consisting of two strategies. When the
interplay of more than two strategies is considered the outcome of strong selection is
more complex; whether the dynamics is fully deterministic or not depends crucially on
the game parameters and the initial condition. The traditional framework has two major
difficulties with the introduction of strong selection

First, selection at birth is proportional to a positive fitness function. The fact that the
fitness function actually allows a strong selection limit β →∞ is crucial. For example
the commonly used function f = 1± βπ, where π is the payoff, does only allow this limit
for particular cases of π. The choice f = exp{±βπ}, however, allows a strong selection
limit and has the same linear properties for β � 1/N .

Secondly, even if selection at birth always chooses the fittest for reproduction, typically,
there is a probability that an individual of the very same type is randomly selected to be
withdrawn. Thus, death events have to be made nonrandom. For this we can define a
fitness at death that is reciprocal to fitness a birth, we chose f−1 = exp{∓βπ}. Large
values of β � 1/N increas the chances of the most successful type to reproduce and
decreases the chances of this type to be removed. In terms of Section 2.2, this new
process belongs to the universality class of the Fermi process.
In evolutionary games with two strategies the strong selection limit now leads to

deterministic behavior. Depending on the ranking of the average payoffs of different
types, which changes with the composition of the population, the probability that the
currently advantageous type spreads goes to one. The final state of the evolutionary
dynamics is, of course, highly sensitive to the strategic situation. If one type always has
an advantage it fixes with certainty. If the two strategies are best replies to themselves the
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2 Fixation events in well mixed populations of finite size

deterministic outcome depends on the initial condition, which is similar to the prediction
of the replicator dynamics in infinitely large populations [Weibull, 1995]. In both cases
the mean exit time converges to the distance to the boundary which is finally reached.
If the two strategies are best replies to each other the system gets trapped around the
coexistence state predicted by the replicator dynamics and the exit time diverges.

If three strategies are considered and they cyclically compete in a Rock-Paper-Scissors
like fashion [Hofbauer and Sigmund, 1998; May and Leonard, 1975], the situation is more
complex. In such games, cyclic behavior can be observed, as paper wraps rock, scissors
cut paper, and rock crushes scissors. Such a situation, the outcome of the strong selection
limit is more diverse. This is due to the fact that there can be more than one state of
the system where the composition of the population is such that the payoff hierarchy is
not unique. Hence, even with β →∞, either birth, removal or both remain stochastic,
but the transition probabilities only depend on the composition and not on the actual
payoffs. In a simplified cyclic competition of strategies, where the only parameter is the
ratio of gain to loss s, three generic cases emerge on the state space, which is the simplex
S3. The simplex S3 is the convex set of the three variables representing the densities
of the three strategies, which sum up to one, compare Section 1.2, Figure 1.1. As we
consider evolutionary games in finite populations, not every point of S2 can be accessed,
we are dealing with the discrete equivalent. Depending on the only free parameter of the
simplified evolutionary Rock-Paper-Scissors, s, three different cases emerge in the strong
selection limit.:
(i) s = 1: Fixation remains stochastic for initial conditions on a central set of states.

Outside of this set, when one strategy is almost lost, for the two remaining strategies we
observe a deterministic process.
(ii) s < 1: The state space is again divided into two sets. On an outer set, fixation is

deterministic but depends strongly on the initial condition. On an inner set, the system
spirals inwards and settles on a cycle (or rather on the discrete equivalent of a cycle).

(iii) s > 1: Fixation becomes fully deterministic but the outcome is highly sensitive to
the initial condition and depends on s.
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Evolutionary game dynamics describes the spreading of successful strategies in a population of reproducing
individuals. Typically, the microscopic definition of strategy spreading is stochastic such that the dynamics
becomes deterministic only in infinitely large populations. Here, we present a microscopic birth-death process
that has a fully deterministic strong selection limit in well-mixed populations of any size. Additionally, under
weak selection, from this process the frequency-dependent Moran process is recovered. This makes it a natural
extension of the usual evolutionary dynamics under weak selection. We find simple expressions for the fixation
probabilities and average fixation times of the process in evolutionary games with two players and two
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dynamics crucially depends on the initial condition in a nontrivial way.
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I. INTRODUCTION

Evolutionary game dynamics results from the transfer of
economic ideas to biology �1–4�. In economics, rational
players try to find the best strategy to maximize their pay-
offs. In biology, those individuals who use the best strategy
obtain the highest reproductive fitness and spread in the
population.

Traditionally, evolutionary game dynamics is considered
in infinitely large, well-mixed populations. This typically
leads to the replicator dynamics, a system of nonlinear dif-
ferential equations governing the evolutionary dynamics
�5–8�. For any composition of the population, the replicator
dynamics determines deterministically the direction and ve-
locity of evolutionary dynamics. The replicator dynamics can
be derived from microscopic models of strategy spreading,
which are typically stochastic �9–13�. The precise definition
of strategy spreading between individuals can have decisive
consequences for the dynamics, in particular in structured
populations �14–21�.

Since microscopic models of strategy spreading are typi-
cally stochastic, evolutionary game dynamics in finite popu-
lations can only be characterized in a probabilistic way. The
most important quantities are the probability that a mutant
takes over a population and the average time for this process
�22–25�. Different models for strategy spreading have been
proposed. A popular model is to choose two players, Harry
and Sally, at random and to let Harry adopt the strategy of
Sally with probability given by the Fermi function, �1
+exp�+���H−�S���−1, where �H is the payoff of Harry and
�S is the payoff of Sally �26–29�. The parameter � measures
the intensity of selection. For ��1, selection is weak and
strategy spreading is essentially random. For ��1, selection
is strong and only strategies that are more successful will be
imitated. For �→�, the direction of the process for two
strategies becomes deterministic and thus the fixation prob-
ability is either 0 or 1. However, even in this case, the pro-

cess is only semideterministic as the time of fixation remains
stochastic �29�.

Here, we introduce a variant of the Moran process, which
leads to a fully deterministic evolutionary process in finite
populations under strong selection. For weak selection, we
essentially recover the transition probabilities of the standard
frequency-dependent Moran process under weak selection.

We describe evolutionary game dynamics in symmetric
2�2 games defined by the general payoff matrix,

A B

A

B
�a b

c d
� . �1�

An A player will obtain a when playing against another A or
b when playing against B. Choosing strategy B results in
either obtaining c �against A� or d �against B�.

The average payoffs are obtained from pairwise interac-
tions with all other individuals in the population of size N.
This is the standard assumption and refers to the fact that the
population is well-mixed; i.e., there is no explicit population
structure. Excluding self interactions, this leads to

�i
A =

i − 1

N − 1
a +

N − i

N − 1
b , �2�

�i
B =

i

N − 1
c +

N − i − 1

N − 1
d , �3�

where i is the current number of A players in the population.
Individuals with higher average payoffs produce offspring
�or are imitated� with a higher probability. Thus, reproduc-
tive success is based on the payoff from the game. The in-
tensity of selection � controls the importance of success in
the game for reproductive success. The larger the intensity of
selection, the stronger the influence of the average payoff
difference on reproductive fitness.

The paper is organized in the following way. In Sec. II we
introduce the birth-death process as a general framework of
evolutionary dynamics between two types in finite, well-*altrock@evolbio.mpg.de
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mixed populations. In particular, we address the probability
and times of absorption. In Sec. III we give three explicit
analytical forms for the microscopic dynamics and we dis-
cuss the possibility to analyze strong selection in each case.
We show that the standard Moran process and a previous
generalization do not allow a fully deterministic strong se-
lection limit and propose a generalization of the Moran pro-
cess with selection at birth as well as selection at death. In
Sec. IV we perform the strong selection limit analytically for
the process. In Sec. V we consider the process with selection
at birth and death for two player games with three strategies,
namely, the rock-paper-scissors game. Finally, in Sec. VI we
conclude and discuss our findings.

II. EVOLUTIONARY GAME DYNAMICS IN FINITE
POPULATIONS

In this section, we recall some important properties of
stochastic evolutionary game dynamics in finite populations.
For simplicity, we restrict ourselves to birth-death processes
in which the number of A players can change at most by �1
in each update step.

Let i be the number of A players in a population of size
N�2. The number of B players is given by N− i. The tran-
sition probabilities to go from i to i+1 and to i−1 are de-
noted by Ti

+��� and Ti
−���, respectively. The probability to

stay in the current state is thus 1−Ti
+���−Ti

−���. These mi-
croscopic details do not have to be specified further at this
point. The only requirement is that the expressions for
Ti

�����0 are analytic in system size, payoffs and intensity
of selection. It is also assumed that the population size re-
mains constant. Mutations are excluded such that a strategy
that is lost will not reappear in the system.

In the continuous limit N→�, the state of the system x
= i /N becomes a continuous variable, strategy A can have
any abundance, and we recover a deterministic differential
equation �9–13�. This allows computation of the fixed points
of the system. There are always fixed points at x=0 and x
=1. In addition, there can be a third fixed point at x�= �d
−b� / �a−b−c+d�, which is unstable when a�c and b	d
and stable when a	c and b�d.

In finite population models, stochasticity does not allow
the definition of fixed points. However, the boundaries i=0
and i=N are absorbing due to the absence of mutations,
T0

+���=0 and TN
−���=0. For recurrent Markov chains

�Ti
�����0 for 0	 i	N�, the system will eventually be ab-

sorbed at the boundaries. The probability 
i
A��� that a given

number i	N of A players will reach the absorbing boundary
at i=N is an important quantity to describe the process. In
addition to this fixation probability, the unconditional and
conditional fixation times, ti��� and ti

A���, characterize the
stochastic process �24,30–32�. These two average times are
the expectation values of the number of time steps it needs
either to reach any homogenous state �all A or all B� or to
reach fixation at all A under the condition that this event
occurs. In the following we recall recursions for these three
quantities, which can be solved regardless of the details of
the birth-death process. Each solution is only based on the
microscopic transition probabilities Ti

����.

A. Fixation probability

The probability of fixation 
i
A��� describes the probability

that i A mutants in a population of N− i B players will reach
fixation at all A. Since the homogenous states are absorbing,
we have 
0

A���=0 as well as 
N
A���=1. For all the interme-

diate states we can write a balance equation for the probabil-
ity to fixate at all A�i=N�,

0 = Ti
−����
i−1

A ��� − 
i
A���� + Ti

+����
i+1
A ��� − 
i

A���� .

�4�

With the boundary conditions 
0
A���=0 and 
N

A���=1, this
can be solved recursively �4,24�. We obtain


i
A��� =

1 + �k=1

i−1 �m=1

k Tm
− ���

Tm
+ ���

1 + �k=1

N−1 �m=1

k Tm
− ���

Tm
+ ���

. �5�

The probability to fixate at the pure state all B starting from
i A players is given by 
i

B���=1−
i
A���.

B. Unconditional average fixation time

The average time �measured in elementary time steps� it
needs to reach fixation at one of the homogenous states �i
=0 or i=N� starting with i players of type A is denoted by
ti���. Obviously, t0���=0 and tN���=0. The unconditional
fixation times also fulfill a balance equation with the transi-
tion probabilities describing the rate of change,

ti��� = 1 + Ti
−���ti−1��� + �1 − Ti

+��� − Ti
−����ti���

+ Ti
+���ti+1��� . �6�

This is a recursion equation for the unconditional mean exit
times or average times of fixation. Its solution reads as
�32,33�

ti��� = �
k=i

N−1

�
l=1

k
1

Tl
+��� �

m=l+1

k
Tm

− ���
Tm

+ ���
− t1����

k=i

N−1

�
m=1

k
Tm

− ���
Tm

+ ���
,

�7�

t1��� = 
1
A����

k=1

N−1

�
l=1

k
1

Tl
+��� �

m=l+1

k
Tm

− ���
Tm

+ ���
. �8�

Next, we address the time it takes to reach a particular ab-
sorbing state.

C. Conditional average fixation time

Under the condition that the process reaches the absorbing
state all A, i=N, the average time of fixation starting from i,
is ti

A���. Following �24�, we start from the recursion


i
A���ti

A��� = Ti
−���
i−1����ti−1���A + 1�

+ �1 − Ti
+��� − Ti

−����
i
A����ti

A��� + 1�

+ Ti
+���
i+1����ti+1��� + 1� . �9�

The conditional average fixation time is conditioned upon
fixation at all A, which occurs with probability 
i

A���. Thus,
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the product of probability and conditional time of fixation
appears in the recursion. There can be a finite expectation
value even for vanishing fixation probability because

i

A���ti
A���→0 does not imply ti

A���→0. For the average
fixation time under the condition of absorption at all A we
find �24,32,34,35�

ti
A��� =

1


i
A��� �k=i

N−1

�
l=1

k

l

A���
Tl

+��� �
m=l+1

k
Tm

− ���
Tm

+ ���

− t1
A���


1
A���


i
A��� �k=i

N−1

�
m=1

k
Tm

− ���
Tm

+ ���
, �10�

t1
A��� = �

k=1

N−1

�
l=1

k

l

A���
Tl

+��� �
m=l+1

k
Tm

− ���
Tm

+ ���
. �11�

There is an analogous expression for the fixation time under
the condition that strategy B gets fixed in the population,
ti
B��� �32�.

As expressions �5�, �7�, and �10� are functions of the
Ti

����, the study of a strong selection limit has to be per-
formed in the transition probabilities. In the next section, we
introduce a process with the analytical strong selection limit
Ti

+��→��→1 and Ti
−��→��→0 �or the other way around�,

and we show that the resulting dynamics is fully determinis-
tic in this limit.

III. MORAN PROCESS

A. Selection at birth and random death

A standard model for evolutionary dynamics in finite
populations is the frequency-dependent Moran process �22�.
This process incorporates the following steps: an individual
is selected at random but proportional to its fitness. This
individual produces identical offspring. The offspring re-
places an individual randomly selected for death. Fitness f is
a convex combination of the average payoffs from the game,
�i

A and �i
B, and a background fitness, which is usually set to

one. Thus, we have f i
A���=1−�+��i

A and f i
B���=1−�

+��i
B. The quantity 0����max�1 determines the inten-

sity of selection. The transition probabilities of the Moran
process are thus given by

Ti
+��� =

if i
A���

if i
A��� + �N − i�f i

B���
Selection at birth

�
N − i

N
,

Random death �12a�

Ti
−��� =

�N − i�f i
B���

if i
A��� + �N − i�f i

B���
Selection at birth

�
i

N
.

Random death �12b�

Selecting proportional to fitness implies that fitness is posi-
tive. Thus, for payoff matrices with negative entries, the in-
tensity of selection � cannot exceed a threshold �max. This
process does not have a generic deterministic limit with ar-
bitrarily strong selection intensity and remains stochastic
with random death.

A possibility to extend the Moran process to higher inten-
sities of selection is to choose fitness as an exponential func-
tion of the payoff; i.e., f i

A���=exp�+��i
A� and f i

B���
=exp�+��i

B� �36,37�. Now, the intensity of selection � can
be any positive number. For �→�, the fitter individual is
always selected for reproduction �compare Eqs. �12a� and
�12b��. The direction of the process becomes deterministic.
But due to random death, the system can remain longer or
shorter in a particular state. Thus, the process remains sto-
chastic in what concerns the times to fixation. With two strat-
egies, we have a semideterministic process with determinis-
tic direction and stochastic speed �29�. If there are more than
two strategies, random death can also change the composi-
tion of the less fit types in the population. This can affect the
direction of selection as the fittest type can change due to
frequency-dependent selection.

B. Selection at birth and death

Here, we introduce a birth-death process that recovers the
usual results for weak selection but also leads to fully deter-
ministic asymptotic behavior for strong selection. The pro-
cess has deterministic microscopic dynamics if the Ti

���� are
zero or one. As in the standard Moran process, we assume
that selection at birth is proportional to fitness. In addition to
producing less offspring, individuals with a lower fitness
now have a higher probability to die. A simple way to incor-
porate this is to select at death proportional to inverse fitness.
To ensure that fitness is a positive number, we follow the
approach discussed above and define fitness as an exponen-
tial function of the payoff. This leads to the transition prob-
abilities

Ti
+��� =

ie+�b�i
A

ie+�b�i
A

+ �N − i�e+�b�i
B

Selection at birth

�
�N − i�e−�d�i

B

ie−�d�i
A

+ �N − i�e−�d�i
B

Selection at death

,

�13a�

Ti
−��� =

�N − i�e+�b�i
B

ie+�b�i
A

+ �N − i�e+�b�i
B

Selection at birth

�
ie−�d�i

A

ie−�d�i
A

+ �N − i�e−�d�i
B

Selection at death

.

�13b�

�b is the intensity of selection at birth and �d is the intensity
of selection at death. For �d=0, we recover the process dis-
cussed in Sec. III A. It is known that under weak selection
many birth-death processes have the same general properties
�25,38,39�. Especially, for �b,d�1 the behavior of the Moran
process is recovered �29,30�.

For simplicity, we assume �=�b=�d in the following.
The transition probabilities can be written as

Ti
+��� =

i

i + �N − i�e−���i

N − i

ie−���i + N − i
, �14a�

Ti
−��� =

N − i

ie+���i + N − i

i

i + �N − i�e+���i
. �14b�

Thus, as far as the payoffs are concerned, the transition prob-
abilities only depend on the difference between the
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frequency-dependent average payoffs, ��i=�i
A−�i

B.
The case of ��i=0 is a form of neutral selection. In this

case, the transition probabilities are Ti
����	�N− i� /N2, for

arbitrary �. Note that for neutral selection, moving into one
direction is equally probable as moving into the other
Ti

+�0�=Ti
−�0�. But the probability to leave a given interior

state changes with i, Ti
��0��Tj

��0� for i� j.
For arbitrary �, the ratio of the transition probabilities

reduces to an exponential function of the payoff difference,

Ti
−���

Ti
+���

= e−2���i. �15�

Hence, the fixation probabilities of the process can be ap-
proximated with the closed expressions derived in �28� after
rescaling the intensity of selection by a factor of 2. From
this, it is clear that the usual weak selection behavior is re-
covered.

IV. STRONG SELECTION

For strong selection, �→�, the asymptotic behavior of
the transition probabilities depends only on the sign of the
payoff difference. We focus on the generic cases ��i
0 to
discuss this limit. The limiting cases can be obtained from
Eqs. �14a� and �14b� and yield

lim
�→�

Ti
+��� = 
0 for ��i 	 0

1 for ��i � 0
� , �16�

as well as

lim
�→�

Ti
−��� = 
1 for ��i 	 0

0 for ��i � 0
� . �17�

Since lim�→��Ti
+���+Ti

−����=1, the probability to stay in the
state i �0	 i	N� vanishes for �→� and nontrivial payoff
difference, ��i�0. Thus, we have a fully deterministic pro-
cess for arbitrary population size. With this, we consider the
fixation probability 
i

A��� and average fixation times ti���
and ti

A��� in the limiting case of strong selection. In the fol-
lowing let 
i

A��� as well as ti��� and ti
A��� denote the finite

asymptotic ��→�� values of the fixation probability and
times. We identify them in terms of the initial frequency i,
depending on the average payoff difference for the process
introduced above under strong selection.

A. Fixation probability

Starting with equation �4� and inserting the limiting cases
of Ti

���� leads to


i
A��� = � lim

�→�
Ti

−����
�
A�i − 1� + � lim

�→�
Ti

+����
�
A�i + 1� .

�18�

That is, in the strong selection limit we have a very simple
recursion for the asymptotic value of the fixation probability,
depending on the sign of the payoff difference ��i. When
strategy A dominates strategy B �a�c and b�d�, we have
��i�0. For 0	 i	N, this yields lim�→� Ti

−���=0, and

lim�→� Ti
+���=1, which results in 
i

A���=1−�0,i. In other
words, the probability to reach the state with all B individu-
als is zero, except if there are no A individuals initially.
Equivalently, for dominance of strategy B we obtain 
i

A���
=�N,i. More interesting cases are found when ��i changes its
sign, which occurs at i�= �N�d−b�+a−d� / �a−b−c+d� when
a�c and d�b or when a	c and d	b. These are two im-
portant classes of games: coordination games and coexist-
ence games.

Let us first focus on coordination games �a�c and d
�b�. In these games, the threshold value i� cannot be
crossed for infinitely large systems with deterministic dy-
namics �40�. For finite systems under strong selection, we
observe something similar. The payoff difference ��i
changes sign from negative to positive and selection points
always away from i� toward the boundaries. Depending on
the initial condition i� i�, the fixation probability 
i

A��� is
one or zero.

�i� If i	 i�, ��i is negative and with Eqs. �16� and �17� we
have 
i

A���=
i−1
A ���. We start the recursion for the fixation

probabilities with 
1
A���=
0

A���=0. This yields 
i	i�
A ���

=0.
�ii� For i� i�, ��i is positive and Eqs. �16� and �17� yield

the recursion 
i
A���=
i+1

A ���. Starting with the maximal i
we obtain 
N−1

A ���=
N
A���=1 and thus 
i�i�

A ���=1.
�iii� If i� happens to be an integer value and the system

starts there, the first step has equal probabilities, Ti�
+ ���

=Ti�
− ���= 1

2 . This leads to 
i�
A���= 1

2 .
In summary, for the fixation probability we find


i
A��� = �

0 for i 	 i�

1

2
for i = i�

1 for i � i�

 . �19�

This is clearly what is to be expected because A is selected
for i� i� and B is selected for i	 i�, �see Fig. 1�. Dominance
of strategy A can be seen as a special case of coexistence
with i�	0.

Next, we consider coexistence games with a	c and d
	b. In this case, ��i changes sign from positive to negative
and selection points always away from the boundaries to-
ward i�. For strong selection, the system gets trapped and
fixation never occurs.

�i� If i� is an integer, the system switches from i� to i��1
with equal probability. From i��1, it always returns to i�.

�ii� If i� is not an integer, we observe deterministic flip-
ping between the two neighboring states i1	 i� and i2� i�.

Since fixation never occurs in coexistence games, it does
not make sense to compute the asymptotic value of the fixa-
tion probability. Formally, the probability to get absorbed in
all A converges to 1 if i��N /2 and to 0 otherwise. However,
it turns out that the fixation times diverge.

B. Unconditional average fixation time

The average time it takes for a number i of A players to
either become extinct or take over the population, ti���, can

PHILIPP M. ALTROCK AND ARNE TRAULSEN PHYSICAL REVIEW E 80, 011909 �2009�

011909-4



be found by solving Eq. �6� recursively. To examine the limit
of strong selection, we perform the limit on both sides of the
balance equation, assuming that there exists an asymptotic
value ti��� of the unconditional fixation time. With the pre-
vious analysis of the transition probabilities, this leads to

ti��� = 1 + � lim
�→�

Ti
−����ti−1��� + � lim

�→�
Ti

+����ti+1��� .

�20�

This strong selection recursion has to be analyzed for the two
different cases of behavior at the threshold i�, coordination
and coexistence. Again, we first examine the coordination
game �a�c and d�b�.

�i� For i	 i�, the payoff difference is negative, ��i	0.
The recursion amounts to ti���=1+ ti−1��� because T+�i�
→0 whereas Ti

−���→1. With t0���=0 at the boundary we
have t1���=1, t2���=1+ t1���=2, and eventually ti���= i.

�ii� For i� i� the payoff difference is ��i�0. The recur-
sion from Eq. �20� is ti���=1+ ti+1���. The transition prob-
abilities T��i� behave exactly in the opposite way as before.
The time starting from next to the absorbing boundary is
tN−1���=1+ tN���=1. Hence, we have tN−k���=k, or with k
=N− i, the unconditional average time is ti���=N− i.

�iii� If the threshold is an integer and the system is initi-
ated there the number of steps needed to fixate is i� or N
− i� with equal probability. Thus, we can compute the aver-
age time with the previous findings, ti����= �i�+N− i�� /2
=N /2.

In summary, depending on the starting point i�, the
asymptotic value for the unconditional average fixation time
in a coordination game is

ti��� = �
i for i 	 i�,

N

2
for i = i�,

N − i for i � i�.

 �21�

In the strong selection limit ti��� converges to the distance
between initial state and the final state, as expected from
deterministic motion.

We can also infer the dynamics for games in which one
strategy dominates. When strategy A dominates, we can for-
mally set i�	0 and obtain ti���=N− i �cf. Fig. 2�. When
strategy B dominates, the equivalent procedure yields ti���
= i.

In case of a coexistence game, the system gets trapped
around i� and cannot reach the absorbing boundaries. As ex-
pected, the recursions lead to ti���→�.

C. Conditional average fixation time

If i A players take over the population, the asymptotic
fixation time under this condition, ti

A���, can be obtained by
solving the balance �Eq. �9�� recursively. However, this situ-
ation is more complex as we have to consider the fixation
probability and the conditional fixation time in a combined
way. Introducing the asymptotic value �i

A���=
i
A���ti

A���,
recursion �9� yields

�i
A��� = � lim

�→�
Ti

−������i−1
A ��� + 
�

A�i − 1��

+ � lim
�→�

Ti
+������i+1

A ��� + 
�
A�i + 1�� . �22�

The formulation of a similar equation for �i
B���= �1
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FIG. 1. �Color online� The fixation probability as a function of
selection intensity for a coordination game �a�c , b	d�, given by
Eq. �5�, with selection at birth and death �Eqs. �14a� and �14b��.
From the payoff matrix given in the figure, we obtain i�= 17

22 + 5
11N,

which gives i��5.32 for our numerical example with N=10. With
increasing selection intensity �, for any l	 i� we have 
l

A���→0
�full lines�, whereas for any m� i� we have 
m

A���→1 �dotted
lines�. The 
i

A��� for each i can be identified via its neutral value

i

A�0�= i
N .
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FIG. 2. �Color online� Dominance of strategy A. We show the
probability distribution of the unconditional fixation time �measured
in elementary time steps� of a single A player in a population of
N−1 B players. For �=1 and �=2, the distribution has two peaks
corresponding to the two absorbing boundaries. For stronger selec-
tion �inset�, the probability that the advantageous A individual goes
extinct becomes small and fixation takes at least N−1 time steps. In
this case, the distribution becomes single peaked. For �→�, the
distribution converges to a delta peak at t1���=N−1 �payoff matrix
a=2.2, b=1.5, c=2, and d=0.5, population size N=100, and histo-
grams obtained from 107 realizations. Lines are guides to the eyes�.
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−
i
A���� ti

B��� is straightforward. Both are analyzed regard-
ing the different behaviors at either side of the threshold i�.

For the coordination game the system reaches the absorb-
ing boundaries after a finite time.

�i� If i� i�, the system fixates at i=N with probability

i

A���=1. Thus, �i
A���= ti

A��� and we recover the same re-
cursion as for the unconditional fixation time. This yields
ti
A���= ti���=N− i �see Fig. 3�.

�ii� If i	 i�, the system fixates at i=0, 
i
A���=0. Thus, we

cannot formulate a meaningful recursion for ti
A���. In this

case we observe Ti
−���→1, Ti

+���→0, and we can only
make a statement for ti

B���, which results in ti
B���= i.

�iii� If i= i� is an integer, the system is not fully determin-
istic as fixation of A and fixation of B are observed with

equal probability 1
2 . In this case, we obtain ti�

A���=N− i� and
ti�
B���= i�.

In a regime where A always performs better than B the
unconditional fixation time ti

A��� is equal to the conditional
fixation time ti��� �see Fig. 3�. Equivalently, when B always
performs better, we have ti

B���= ti���.
For a coexistence game, the system does not reach any of

the boundaries but is always dragged toward i�, as discussed
before. Recursion �22� for ti

A��� or its equivalent for ti
B��� is

not meaningful here because they contain the fixation prob-
abilities. However, in this case all fixation times diverge with
�.

In this section, we have derived asymptotic values for the
birth-death process with selection at birth and selection at
death. We have identified the underlying games that lead to a
fully deterministic process in the limit of strong selection. As
we have seen, the difference of the average payoffs ��i as a
function of the relative abundance of type A plays an impor-
tant role.

V. GAMES WITH THREE STRATEGIES

Here, we demonstrate that the process we have introduced
above leads to rather simple and often deterministic dynam-
ics even in more complex situations. We focus on games
with two players and three strategies with cyclic dominance
�41–51�.

Cyclic dominance among three strategies corresponds to
rock-paper-scissors games, where each strategy can be
beaten by another one: rock crushes scissors, scissors cut
paper, and paper wraps rock. In general, the payoff for win-
ning does not have to be equal to the payoff for losing, which
leads to nonzero-sum games. For simplicity, we set the pay-
off for a tie to zero. Setting the winners payoff to one and the
losers payoff to −s�0, the 3�3 payoff matrix reads as

R P S

R

P

S
� 0 − s 1

1 0 − s

− s 1 0
� . �23�

For infinite populations, the state of the system is defined by
the frequencies of the three strategies, xR, xP, and xS. Thus,
the state space is the simplex S3�R2, an equilateral triangle
between the three states all R, all P, and all S. Apart from the
three trivial equilibria, the replicator dynamics has an interior
equilibrium at �xR ,xP ,xS��= � 1

3 , 1
3 , 1

3 �, which follows from the
symmetry of the system. The parameter s determines
whether the interior equilibrium is asymptotically stable �the
system spirals inwards toward the interior fixed point for s
	1� or unstable �the system spirals out toward a heteroclinic
cycle along the boundaries for s�1�. In the zero-sum game
with s=1, the system oscillates around the interior equilib-
rium with the Hamiltonian −xRxPxS being a constant of mo-
tion �4,8�.

In finite, well-mixed populations, the state space is only a
subset of �N+1��N+2� /2 states within the simplex S3 �cf.
Fig. 4�. Moreover, the dynamics is typically stochastic. Prop-
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FIG. 3. �Color online� Unconditional �ti���� and conditional
�ti

A���� average fixation times �measured in elementary time steps�
as a function of the intensity of selection for a coordination game
�top� and a game in which A dominates �bottom�. The payoff ma-
trices of the games are given in the figures, the population size is
N=10. Top: in a coordination game �a�c , b	d�, the conditional
and unconditional fixation times converge to N− i for �→� if ini-
tially more than i�=117 /22�5.32 individuals play A �compare Eq.
�21��. The lines show the initials states i=6 �dotted lines� and i=9
�full lines�. Bottom: when A dominates B �a�c , b�d�, the uncon-
ditional fixation time t1��� first increases with �. For any initial
condition i, ti��� and ti

A��� converge to N− i in the limit of strong
selection. The initials states are i=1 �dotted lines� and i=9 �full
lines�.
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erties such as the average drift for a Moran process or the
average time to reach the absorbing boundaries are attainable
for weak selection �46,50�. To analyze the strong selection
limit, we adopt the evolutionary process with selection at
birth and death discussed above for 2�2 games. Starting
with the payoffs from Eq. �23� in a well-mixed population
the average payoffs read as

�R = iS − iPs , �24�

�P = iR − iSs , �25�

�S = iP − iRs , �26�

where iR, iP, and iS=N− iR− iP are the number of individuals
playing rock, paper, or scissors in a population of size N,
respectively. Individuals are selected proportional to fitness
at birth and proportional to inverse fitness at death, both with
the intensity of selection �. The fitness of strategy X is given
by fX=exp�+��X�. The dynamics on the discrete finite set of
states is governed by six transition probabilities in each state.
The transition probabilities in each state �iR , iP , iS� to change
to one of the six neighboring states are thus given by

TY→X�iR,iP,iS� =
iXfX

�Z
iZfZ

birth

�
iY fY

−1

�Z
iZfZ

−1

death

,

�27�

where X, Y, and Z stand for R, P, or S. Note that the prob-
ability to stay in the given state is given by TR→R�iR , iP , iS�
+TP→P�iR , iP , iS�+TS→S�iR , iP , iS�. For strong selection, �
→�, the system moves from each state into one direction
with probability one unless two payoffs are identical. In the
following we address how this direction depends on the pay-
offs in each state and on the parameter s.

Let us first assume that for given state �iR , iP , iS�, we have
the unique ordering of the average payoffs from Eqs.
�24�–�26�. Let �1 denote the largest and �3 denote the lowest
value, i.e., �1��2��3. The number of individuals playing
the according strategies can be denoted as i1, i2, and i3. For
T3→1, we have

T3→1 =
i1e��1

i1e��1 + i2e��2 + i3e��3

�
i3e−��3

i1e−��1 + i2e−��2 + i3e−��3
�28�

=
i1

i1 + i2e−���1−�2� + i3e−���1−�3�

�
i3

i1e−���1−�3� + i2e−���2−�3� + i3
, �29�

where �1−�2�0, �1−�3�0, as well as �2−�3�0. For
�→�, this leads to

lim
�→�

T3→1 = 1. �30�

All the other transition probabilities vanish. In each repro-
ductive event, an individual with the largest payoff replaces
an individual with the smallest payoff. This holds for any
unique ordering of the three payoffs.

If the payoffs are not in unique order, that is, if two or
more payoffs are equal, at least two probabilities become
nontrivial. This yields the following three scenarios:

�i� for �1��2=�3, the individual with the highest aver-
age payoff is certainly selected at birth. But selection at
death will remove an individual playing one of the two re-
maining strategies with probability given by their abundance.
We find

lim
�→�

T2→1 =
i2

i2 + i3
, �31a�

and

lim
�→�

T3→1 =
i3

i2 + i3
. �31b�

Obviously, we have T2→1+T3→1=1.
�ii� For �1=�2��3, the individual with the lowest payoff

is selected for death with certainty, but selection at birth is
still probabilistic. It is easy to see that

s = 1
N = 33

s = 1
N = 11

s < 1
N = 33

s > 1
N = 33

FIG. 4. �Color online� The discrete simplex of the rock-paper-
scissors game for the different ranges of s. The three strategies are
arranged in such a way that cyclic dominance is counterclockwise.
For N=33 and s=1 �top left�, the three lines of equal payoffs de-
fined by Eqs. �34� are parallel to the boundaries of the simplex.
Changing the population size to N=11 �top right� does not change
these lines but only the state space of the system indicated by dots.
For example, the system can no longer access the center of the
simplex. With decreasing s, the three lines of equal payoffs are
rotated clockwise �bottom left, s=0.5�. With increasing s, these
lines are rotated counterclockwise �bottom right, s=2.5�. Only in
special cases, the three lines of equal payoffs defined by Eqs. �34�
intersect with the possible states of the system. The arrows in the
upper left figure indicate the direction of selection as it is induced
by the cyclic dominance of the three strategies.
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lim
�→�

T3→1 =
i1

i1 + i2
, �32a�

and

lim
�→�

T3→2 =
i2

i1 + i2
. �32b�

Thus, T3→1+T3→2=1.
�iii� For �1=�2=�3, selection is stochastic at birth and at

death. In this case, we find

lim
�→�

TX→Y =
iX

N

iY

N
. �33�

As expected, we have �X,YTX→Y =1.
These results are valid if two or more payoffs are equal at

a given lattice site, which is only obvious for s=1 and might
not occur for any lattice site at all in the general case of s
�1.

With Eqs. �24�–�26�, we can compute the point sets in the
simplex where two or all three average payoffs are equal,
depending on the value of s. For �R=�P=�S this is only the
center of the simplex, independent of s. For two payoffs
being equal, we obtain the three linear equations

�R = �S at iP�s + 2� = N − iR�1 − s� ,

�S = �P at iP�s − 1� = Ns − iR�1 + 2s� ,

�R = �P at iP�2s + 1� = N�1 + s� − iR�2 + s� . �34�

However, it is not obvious at which of the discrete states
�iR , iP , iS� we can observe equal average payoffs of two strat-
egies if the loser’s payoff is not equal to −1 and especially if
the system size is not a multiple of three �compare Fig. 4�.

For simplicity we thus concentrate on the case of N being
a multiple of three. In general, the strong selection behavior
of the system is determined by the transition probabilities
near the lines of equal average payoffs. When the population
size N is a multiple of three, the dynamics for the three
different cases of s=1, s	1, or s�1 is as follows:

�i� for s=1, we have �R=�S at iP=N /3, �S=�P at iR
=N /3, and �R=�P at iS=N /3. Hence, there is always sto-
chastic movement induced by Eqs. �31a�, �31b�, �32a�, �32b�,
and �33�. Apart from these points, the direction of selection
is indeed deterministic, which means that an individual with
higher payoff always replaces an individual with a lower
one. In certain regimes, near the corners of the simplex and
along the edges the initial condition determines the final state
where the system fixates. In a much larger area, however, the
system fixates stochastically. In Fig. 5 we illustrate this by
showing one fixation probability obtained from numerical
simulations of the birth-death process. Due to the symmetry
of the system, this fixation probability can either be 
R, 
P,
or 
S.

For s	1, the lines where payoffs are equal rotate clock-
wise in our setup of cyclic dominance. In general, no states
of the finite population system coincide with the lines of
equal payoffs �except for special cases� �see Fig. 4�. But as
soon as the process crosses these lines, it changes direction.

Near the corners and on the edges the system fixates deter-
ministically, but in a central area the process spirals inwards
if it does not hit the boundary of the system. However, it
turns out that there is a largest limit cycle �LLC� depending
on s and N and that there can be several other limit cycles
inside the LLC. We demonstrate this finding as it is obtained
from numerical simulations in Fig. 6, showing one sample
trajectory that ends as the LLC. Note that the term cycle
actually refers to a hexagon.
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FIG. 5. �Color online� Zero-sum rock-paper-scissors game. We
show the probability that the system fixates at the lower right cor-
ner, e. g., 
R, in a system with N=33, and s=1 for strong selection
�→�, depending on the initial state �iR , iP , iS�: as discussed in the
main text, fixation is stochastic. Near the corners and along the
edges fixation is deterministic. In a central area of the simplex, the
system spirals out in a probabilistic fashion. The closer the initial
condition is to the center, the closer the probability to get absorbed
in a given state is to one-third �fixation probabilities obtained from
numerical simulations over 104 realizations�.

FIG. 6. �Color online� Positive-sum rock-paper-scissors game.
For a population size of N=33 and s=0.5, the dynamics is such that
fixation does not occur in a central area, but it is deterministic near
the corners. For instance, any initial condition in the darkest area
will lead to the pure state at the lower left. The white area marks the
sites from which, chosen as initial condition, the system does not
fixate but approaches a closed cycle. We show an example trajec-
tory of the system that ends on the largest of these cycles �central
hexagon� starting from the initial state �iR , iP , iS�= �1,9 ,23�. Inside
this largest cycle, there are other cycles such that every site except
the center is already on such a cycle.
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For s�1, as the lines of equal payoffs rotate counter-
clockwise �Fig. 4� the system spirals outwards in a determin-
istic fashion. The movement is no longer deterministic only
near the corners and along the edges but everywhere �except
for the center� �compare Fig. 7. This means that if s�1, we
observe deterministic fixation depending on the initial con-
dition.

In this section, we have shown that a birth-death process
with exponential payoff to fitness mapping and selection at
birth and death is able to induce deterministic movement in
the strong selection limit even in 3�3 games. For the tran-

sition probabilities TY→X this limit can be performed analyti-
cally. It turns out that the microscopic dynamics is dependent
only on the hierarchy of the average payoffs. As for finite
systems an analytic description of the fixation probabilities
�and times� is lacking; further examination of this system has
to be numerical. Under strong selection the patterns that
emerge show a very interesting regularity; it turns out that
apart from population size, the results are dependent on the
parameter s.

VI. DISCUSSION

The standard approaches to evolutionary game dynamics
such as the Moran process or pairwise comparison based on
the Fermi rule lead to stochastic dynamics in finite popula-
tions �12�. Even if the direction of selection becomes deter-
ministic, the time scale typically remains stochastic and leads
to a distribution of the average fixation or mean exit times
�29�. Moreover, these standard approaches do not lead to a
deterministic direction of selection in games with more than
two different strategies �52�. Here, we have introduced a pro-
cess with selection at birth and at death. This process allows
to interpolate between weak selection, usually considered in
evolutionary biology, and arbitrary strong selection, such that
in the extreme case the worst performing individual is al-
ways replaced by a copy of the best performing individual.
This kind of selection is sometimes used in evolutionary op-
timization �36,53�. While the limiting case itself may not be
of most interest for real biological or social systems, which
are always subject to stochastic noise, we have discussed the
most important features of this limit. In particular, it reveals
speed limits of evolutionary dynamics in 2�2 games that
stochastic dynamics cannot cross and shows that in games
with more than two strategies, the limiting deterministic dy-
namics can have a crucial dependence on the initial condi-
tions.
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CHAPTER 3
Stability in structured populations with heterozygote disadvantage

Here, the manuscripts [Altrock et al., 2010b], and [Altrock et al., 2011] are discussed.
Each of the following two sections is headed by a survey that serves as an additional
motivation and summarizes the main findings. Both sections deal with different aspects
of a complex evolutionary system: A model is studied where gene flow mediated by
migration between sub-populations of the same kind counterbalances selection.

In the first part, the stability properties of the deterministic equations are considered.
By certain symmetry arguments one can characterize a bifurcation pattern, evolutionary
stability is controlled by the rate of migration between the sub-populations. Consequences
of symmetry loss due to a change in parameter space are discussed.

In the second part, we specifically address demographic fluctuations by defining a two-
dimensional variant of the density dependent Moran process. The evolutionary process
is subject to migration between two sub-populations. Assuming Mendelian segregation
allows one to model the system as if individual alleles are reproducing. Size asymmetry
can be tackled, which leads to the extreme case of an evolving island population of finite
size which is coupled to a static continent of infinite size. Due to migration, there can be
a set of states where the direction of selection is reversed in the island population.
First, we give an introduction to aspects of the model that are common for both

following sections. Underdominance refers to a certain fitness configuration in diploid
organisms. We consider two alleles A and B of a single gene (i.e., on a single locus). We
will denote A the mutant type, and call B the wildtype. An application of this theory is
the genetic transformation of insect populations, where a standard genetics notation for
the wildtype allele is thus +, whereas the mutant, or transformed allele can be denoted
by T [Hartl and Clark, 1997].
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3 Stability in structured populations with heterozygote disadvantage

genotype AA AB BB
name mutant homozygote heterozygote wildtype homozygote
fitness ν ω 1
frequency x2 2x(1− x) (1− x)2

Table 3.1: Two alleles on a single locus. Genotypes are given with their fitness values
relative to wildtype fitness. A is the mutant, or transformed allele, B is the wildtype allele.
In an infinitely large population, the allele frequency of A can be give as x ∈ [0.1], the
frequency of B as 1− x. Under random mating, the continuous variable x fully characterizes
a single population. For ν < 1, we speak of fitness asymmetry.

Given that there are only two alleles, four generic fitness configurations are possible,
compare to Table 3.1.

(i) For ν = ω = 1, we are in the domain of neutral evolution, where evolutionary
change can only occur due to finite size fluctuations, see Section 1.4. In the following we
assume that there are selective difference for the three genotypes, ν 6= ω 6= 1.

(ii) The cases ν > ω > 1, or ν < ω < 1 are called directional selection. One of the
alleles always has a fitness advantage, the allele frequency shifts in one direction.

(iii) The case of heterozygote advantage is also called overdominance, ω > 1, ω > ν.
The allele frequency x has a stable equilibrium

x∗ = ω − 1
2ω − 1− ν

, (3.0.1)

as a mutant has a fitness advantage when rare, but a disadvantage when abundant.
Mutant and wildtype alleles coexist, often in form of heterozygotes.

(iv) The complement to overdominance is underdominance, which corresponds to the
fitness configuration ω < ν ≤ 1 [Fisher, 1922; Haldane, 1924–1934; Wright, 1931]. This is
also called heterozygote disadvantage. In this case there is an unstable equilibrium at
x∗, given by Eq. (3.0.1), which refers to bi-stable evolutionary dynamics: The mutant is
lost when it appears at a frequency below x∗, but fixates for initial conditions above the
unstable point.
The notation of overdominance and underdominance is not to be confused with the

term dominance or recessiveness in the laws of Mendelian inheritance [Hartl and Jones,
1998]. Overdominance and underdominance refer to fitness configurations, whereas
dominant/recessive mainly refers to a genotype-phenotype mapping.
It is the aim of this section to analyze how stable equilibria can arise in structured

populations with underdominance. The focus is on infinitely large populations that admit
a deterministic description. The system is analyzed by considering the deterministic
version of the Wright-Fisher process, which models the evolutionary change of allele
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3 Stability in structured populations with heterozygote disadvantage

frequencies by sampling alleles with replacement between discrete and non-overlapping
generations. The change of allele frequency in the next generation is proportional to the
frequency in the present generation

x′ = x
fA(x)
〈f〉

, (3.0.2)

where x, and x′ are the frequencies of allele A in the present and the next generation,
respectively.

In the analysis of the deterministic system we focus on a dynamical scheme in discrete
non-overlapping generations, which is more traditional approach in population genetics
[Hartl and Clark, 1997]. However, there is a strong relation between discrete and
continuous time evolutionary dynamics; the fixed points are the same [Maynard Smith,
1982]. If one performs the limit of infinitesimally small time steps, an adjusted replicator
dynamics in continuous time can be found [Weibull, 1995]. The difference between
choosing the timescale as either discrete generations or single reproductive events at any
time is important for the definition of a stochastic process. The stochastic model we
chose in Section 3.2 is a variant of the frequency dependent Moran process [Taylor et al.,
2004]. Hence, in the stochastic model we are in the regime of overlapping generations.

3.1 Using underdominance to bi-stably transform local populations

The simplest case of a structured population emerges when two sub-populations with
genetically identical properties are considered. The state space of the two sub-populations
is two dimensional, given by the two dynamic variables (x1,x2), with xi ∈ [0,1]. In order
to capture the gene flow due to migration between two sub-populations, the rate of
migration from each of the two populations is given by a pair of two parameters m1,m2.
There the simplest scenario assumes symmetry in migration rates, m = m1 = m2. In

this latter case, a critical migration rate can be found analytically such that for migration
rates below the critical point, there exist non-trivial stable fixed points of the evolutionary
dynamics. The coupling of the two populations is nonlinear. Introducing the migration
mixed variables x̃i = (1−m)xi +mxj with i 6= j, the discrete time dynamics are given
by

x′i = x̃i
fA(x̃i)
〈fi〉

, (3.1.1)

with 〈fi〉 being the average fitness in population i, respecting the gene flow due to
migration.
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3 Stability in structured populations with heterozygote disadvantage

For the symmetric fitness configuration 1 = ν > ω, two critical values for the migration
rate can be calculated analytically,

µ1 = 1− ω
4

, (3.1.2)

µ2 = 3−
√

5 + 4ω
4

. (3.1.3)

For m < µ2, there are two stable equilibria on the diagonal x1 = 1− x2. The symmetric
properties m1 = m2 and ν = 1 can be relaxed to come to a more general classification.
Depending on the deviation from the fully symmetric case, on can then classify the
system in terms of the maximal number of stable fixed points. To this end, a phase
diagram can be given, depending on the two difference variables 1− ν and m1 −m2.

A motivation to study bi-stable evolutionary dynamics in structured populations has its
pedigree in inventing genetic means for genetic pest management. Linked underdominant
alleles have been proposed to stably render insect resistant to diseases (with a refractory
genetic construct producing the resistance). The aim is to prevent the transmission of
a disease, e.g., malaria, to humans [Curtis, 1968]. In general, this can be achieved by
a sufficiently high release number of genetically transformed individuals in a wildtype
population. Our analysis addresses how such releases can lead to the desired outcome
of establishing the transformed type in a local population by respecting gene flow from,
or to another population. By taking into account asymmetries in fitness configuration
and migration pattern, as well as the average fitness in each sub-population, an optimal
release strategy can be found.
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a b s t r a c t

Underdominance refers to natural selection against individuals with a heterozygous genotype. Here, we
analyze a single-locus underdominant system of two large local populations that exchange individuals
at a certain migration rate. The system can be characterized by fixed points in the joint allele frequency
space. We address the conditions under which underdominance can be applied to transform a local
population that is receiving wildtype immigrants from another population. In a single population,
underdominance has the benefit of complete removal of genetically modified alleles (reversibility) and
coexistence is not stable. The two population system that exchanges migrants can result in internal
stable states, where coexistence is maintained, but with additional release of wildtype individuals the
system can be reversed to a fully wildtype state. This property is critically controlled by the migration
rate. We approximate the critical minimum frequency required to result in a stable population
transformation. We also concentrate on the destabilizing effects of fitness and migration rate
asymmetry. Practical implications of our results are discussed in the context of utilizing under-
dominance to genetically modify wild populations. This is of importance especially for genetic pest
management strategies, where locally stable and potentially reversible transformations of populations
of disease vector species are of interest.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Overview

In population genetics, underdominance, also known as
heterozygote disadvantage or homozygote advantage, refers to
the fitness configuration where diploid individuals with hetero-
zygote genotypes have a lower fitness than the corresponding
homozygous genotypes. It is thus the opposite of overdominance
or heterozygote advantage. Here lower fitness is defined as
having on average relatively fewer descendants in the following
generation.

The properties of underdominant polymorphisms have long
been well described for a single population and are characterized
by an unstable equilibrium (Fisher, 1922; Wright, 1931, 1941;
Haldane, 1942; Wiener, 1942). Thus, a mutant allele that is less fit
when heterozygous does not have the capacity to increase in
frequency when rare and is predicted to be lost from the
population. However, in an underdominant fitness configuration,
an allele is predicted to proceed to fixation when starting at a

frequency greater than the unstable equilibrium value, p̂. There-
fore, in a single population, underdominance sets up a type of
evolutionary bi-stable switch where a population is expected to
exist in one of two stable states of allele frequency, p¼0 or p¼1.
We use + to denote a wildtype allele and T to denote a genetically
modified construct (or mutant allele). In a single population, the
latter has frequency p while the former is at frequency 1"p. The
alleles are underdominant with respect to each other if the fitness
of the heterozygote, wT+, is less than both homozygote fitnesses,
wTþ owþ þ and wTþ owTT , Fig. 1(a). Assuming randommating in
a single population, the average fitness of the modified allele is
fT ðpÞ ¼wTTpþwTþ ð1"pÞ (i.e. the T allele will be paired with
another T at frequency p which will result in a fitness of wTT; at
frequency 1"p, it will be paired with a wildtype allele, leading to
a fitness of wT+). Equivalently, the average fitness of a wildtype
allele is fþ ðpÞ ¼wþ þ ð1"pÞþwTþp. At the unstable equilibrium,
with both alleles present, the two average allele fitnesses are
equal to each other, fT ðp̂Þ ¼ fþ ðp̂Þ. At this point, p̂, the two alleles
are thus neither increasing or decreasing in frequency relative to
each other. By substituting the above relationship, this predicts
that the ratio of alleles at this equilibrium is equal to the inverse
ratio of fitness differences between the respective homozygotes
and the heterozygote,

p̂

1"p̂
¼

wþ þ"wTþ

wTT"wTþ
: ð1Þ
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This can be rearranged into the more familiar form of

p̂ ¼
wþ þ"wTþ

wþ þ"2wTþ þwTT
, ð2Þ

cf. Li (1955) and Hartl and Clark (1989). Note that, without loss of
generality, we set the fitness of the wildtype homozygote to one,
w+ +¼1. All other fitnesses are positive numbers relative to this
value.

Chromosomal rearrangements, such as translocations and
inversions, are classic examples of potentially underdominant
mutations. The offspring of heterozygous individuals are pre-
dicted to have high rates of segmental aneuploidy (disrupted
number of gene copies) in their offspring. This can result in
lethality of the offspring and thus partial sterility of the
heterozygote, which reduces fitness (Snell, 1946). It has long
been recognized that, with underdominance, the probability of
fixation of a new, rare mutant is exceedingly small in populations
of more than a few individuals (Wright, 1941; Kimura, 1962;
Bengtsson and Bodmer, 1976; Lande, 1979). Yet it is clear that
mutations, including translocations, with potential underdomi-
nant effects accumulate between species and are common even
among some closely related species (Bush et al., 1977; White,
1978). Several models have been proposed to try to explain this
discrepancy (Bengtsson and Bodmer, 1976; White, 1978; Hedrick,
1981; Walsh, 1982). This is discussed in Nachman and Searle
(1995) and Rieseberg (2001).

Rather than addressing the probability of naturally establish-
ing underdominant variants as in the ‘‘chromosomal speciation’’
literature cited above, we focus on artificially establishing
underdominant polymorphisms and the stability of these systems
once established. In contrast to the predicted loss of polymorph-
ism in a single population, when there are migrants between
multiple populations an underdominant polymorphism can be
stably maintained. In the case where different neighboring
populations are at high and low allele frequencies, respectively,
the offspring of rare migrants tend to be heterozygous. Due to
their lower fitness, the rarer allele tends to be removed from the

population resulting in different migration-selection equilibria in
the neighboring populations. However, if migration rates between
the populations are sufficiently high, the rarer allele is not
removed at a sufficient rate by selection. As a result the
underdominant polymorphism becomes destabilized. An analytic
solution describing this critical point of destabilization, as a
function of the strength of selection and the migration rate
between the two demes, has been described in a fully symmetric
model (Karlin and McGregor, 1972a), and for the limiting case of
migration in a single direction where homozygotes are at
different fitness values and the allele frequency in one of the
populations is fixed at zero (Lande, 1985). Diffusion approxima-
tions describing this property have been made for the two-deme
model (Barton and Rouhani, 1991). Also, a traveling wave
approximation (Fisher, 1937) has been used to describe the
conditions permissible for the establishment and spread, despite
underdominance, of an allele in continuous habitats with a higher
homozygous genotype fitness (Barton, 1979; Piálek and Barton,
1997; Soboleva et al., 2003). However, we do not mean to imply
that underdominance is commonly responsible for the main-
tenance of polymorphism in natural structured populations. In
addition to neutral mutations (Kimura, 1968), and mutation-
selection balance (Haldane, 1924), there are many other forms of
selection that can maintain polymorphism among demes, espe-
cially local adaptation, e.g., Nagylaki and Lou (2001), Lenormand
(2002), and Bürger (2009). Here, with underdominance, we focus
on the most efficient release strategy to achieve a stable local
transformation and cases with fitness and/or migration rate
asymmetry.

Part of our motivation to focus on the stability of established
underdominant differences is the proposal to use underdomi-
nance as a means to genetically transform wild populations with
desirable alleles, e.g., to render insects resistant to diseases to
prevent their transmission to humans (Curtis, 1968). In essence,
releases of individuals are made that result in a population allele
frequency in the wild greater than p̂. The transformation of the
population is then predicted to proceed by natural selection
without additional releases or intervention. This has the desirable
properties of reversibility and geographic stability. Releases of
wildtype alleles resulting in a frequency lower than p̂, Eq. (2), are
predicted to ultimately remove all modified alleles from the wild
population. Additionally, in certain situations, modified alleles are
not expected to spread far beyond the initial release range nor be
lost from the wild. This can be an important consideration for
initial testing of refractory effector constructs (e.g., Ito et al., 2002)
in field trials and for non-native invasive disease vectors that
threaten susceptible species (e.g., Warner, 1968); local popula-
tions can be stably transformed to be refractory while a wildtype
state is maintained in the vectors native range. Despite intensive
work to this end in the 1970–1980s, using radiation induced
chromosomal rearrangements, this approach ultimately failed.
This is partially because the genetically modified homozygous
individuals suffered from dramatically reduced fitness relative to
wildtypes (e.g., Foster et al., 1972; Lorimer et al., 1972; Boussy,
1988, and references therein; see also Harewood et al., 2010).
However, with new, more precise molecular genetic technologies,
there is a growing interest in systems, including underdominance,
that have the capacity to transform wild populations (Davis et al.,
2001; Sinkins and Gould, 2006; Magori and Gould, 2006; Gould,
2008).

In the second part of the introduction we introduce a
simplified symmetrical model governing the dynamics of an
underdominant polymorphism in two populations of infinite size
coupled by migration. We review the bifurcation pattern and
the linear stability analysis that allows one to find and classify the
different equilibria. Although all stable equilibria and some

Fig. 1. (a) Genotype configuration of underdominance with the fitness of the
homozygotes set to one, w+ +¼wTT¼1. The reduced fitness of the heterozygote,
wTþ ¼o, is a positive number which is less than one. (b) Migration between the
two populations. In each generation, migrants come and go with the rate m
ð0rmo0:5Þ, such that the fraction of immigrants in each population is m. (c)
Genotype configuration of underdominance in the asymmetric case. The fitness of
the wildtype homozygotes is 1. The fitness of the transgenic type homozygotes is
nr1. The underdominant fitness of the heterozygotes isoon. (d) Non-symmetric
migration between the two populations. For each generation, the contributions of
immigrants to the next generation in each of the two populations with p1, p2 are
m1o0:5 and m2o0:5, respectively.
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unstable ones can be calculated, a full phase portrait can only be
obtained by supporting numerical methods. In Section 2 we give a
quantitative estimate for the basin of attraction emerging in the
presence of the non-trivial stable equilibria. In Section 3 we
briefly discuss how the pattern in average fitness may affect the
outcome of a transformation. In Section 4 we then discuss
situations with broken symmetry, i.e. when there is unequal
migration between the two populations and/or unequal homo-
zygote fitnesses. Section 5 is a further discussion of our results
and gives suggestions for practical applications. Finally, Section 6
serves as a summary.

1.2. Wright–Fisher dynamics

Here, we introduce the equations governing the dynamics of
the system as it evolves from one generation to the next. This is
based on the Wright–Fisher model, i.e. sampling alleles with
replacement between discrete non-overlapping generations
(Wright, 1931), in two coupled infinitely large populations. In
the single population example, the contribution of an allele to the
next generation is the allele’s average fitness multiplied by its
frequency in the present generation. This product is divided by
the total average fitness of all alleles in the population, w, to
normalize it to a frequency from zero to one. Thus, the expected
frequency of allele T in the next generation, pu, is proportional to
the frequency in the present generation, p,

pu ¼
fT ðpÞ
w

p, ð3Þ

where w ¼ fT ðpÞpþ fþ ðpÞð1"pÞ is the total average fitness. Note
that the average fitnesses are independent of the specific
evolutionary model and could also be directly used in alternative
systems such as the Moran model with overlapping generations.

In the two population case we have to account for migration
rate, m, which is defined as the proportion of immigrant
individuals entering a population prior to mating. This implies
that 1"m is the fraction of non-migrants each generation. For
symmetric interactions see Fig. 1(b). The genotypic fitnesses are
fixed values: given the value of the reduced heterozygote fitness
wTþ ¼oo1, the simplest case emerges when both homozygote
fitnesses are set to one, w+ +¼wTT¼1 (Fig. 1(a)). The average
fitness of an allele changes with its frequency: in population
i¼1,2, let pi, and 1"pi be the frequencies of alleles T (a modified
allele) and + (wildtype), respectively. The wildtype allele has
average fitness fþ ðpiÞ ¼ 1"piþopi, whereas the average modified
allelic fitness amounts to fT ðpiÞ ¼ piþoð1"piÞ, compare to the
previous subsection. Due to equal homozygote fitnesses,
w++¼wTT¼1, we have the symmetry property fT(p)¼ f+(1"p).
Taking migration into account, in population i, the frequency of
allele T is ð1"mÞpiþmpj. As we express the average fitness of
allele + in terms of the frequency of allele T, the total average
fitness in population i is

wi ðpi,pjÞ ¼ ½ð1"mÞpiþmpj'fT ðð1"mÞpiþmpjÞ
þ½ð1"mÞð1"piÞþmð1"pjÞ'fþ ðð1"mÞpiþmpjÞ, ð4Þ

where ja i. The state of the system is characterized by the two
population allele frequencies p1 and p2 ð0rp1,p2r1Þ, which
evolve from one generation to the next as

pu1ðp1,p2Þ ¼
½ð1"mÞp1þmp2'fT ðð1"mÞp1þmp2Þ

w1 ðp1,p2Þ
, ð5Þ

pu2ðp1,p2Þ ¼
½ð1"mÞp2þmp1'fT ðð1"mÞp2þmp1Þ

w2 ðp2,p1Þ
: ð6Þ

We now focus on the equilibrium points of the dynamics, namely
we are interested in all points with Dpi ¼ pui"pi ¼ 0 for i¼1,2,
depending on o and m. Some of these fixed points are
independent of the parameters, others only emerge in a certain
parameter range. Trivial equilibrium points are ðp̂1,p̂2Þ ¼ ð0,0Þ and
ðp̂1,p̂2Þ ¼ ð1,1Þ, where both populations are fixed for the wildtype
or the modified allele. In the symmetric case, there is also an
unstable equilibrium or a saddle point (depending on m) at ð12 ,

1
2Þ.

These three fixed points do not change position for any pair of
parameters o and m. For m¼0, the system behaves as two single
populations and all nine possible combinations of fixed points
exist (e.g., ð12,1Þ, ð0,

1
2Þ, etc.). For m40, we take the symmetry of the

system into account. This allows for solving only one equation, for
instance Dp1 ¼ 0. With this, we find two fixed points on the axis
(p1,1"p1), namely ðp̂1,p̂2Þ ¼ ðxi,1"xiÞ, i¼1,2, where

x1,2 ¼
1
2
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1"oÞð1"o"4mÞ

p

2ð1"oÞð1"2mÞ
: ð7Þ

Note that with m¼0, this reduces to the two fixed points
ðp̂1,p̂2Þ ¼ ð1,0Þ or (0,1). For m40, the solution is real valued if
ð1"oÞð1"o"4mÞZ0. The first term is always positive, but the
second term becomes zero at critical value of the migration rate
m, where a bifurcation occurs

m1ðoÞ ¼
1"o
4

: ð8Þ

The interior solutions (7) exist for mrm1ðoÞ.
A linear stability analysis of these fixed points yields a second

critical point, m2 (see Appendix A), given by

m2ðoÞ ¼ 1
4ð3"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ4o

p
Þ: ð9Þ

Note that we have m2ðoÞom1ðoÞ for underdominance, oo1. For
mom1ðoÞ, one eigenvalue of the Jacobian associated with the
fixed point is negative. For mom2ðoÞ, the second eigenvalue
becomes negative and a new pair of stable equilibria arises. They
are located on the diagonal (p1, 1"p1) in the joint allele frequency
space.

The bifurcation pattern is three-dimensional, given by the
coordinates (p1,p2,m) for a given heterozygote fitnesso. In Fig. 2(a)
we use a projection to the plane (p,m), where p simultaneously
stands for p1 and p2. In both planes, the pattern looks the same,
which is due to the symmetry of the system. Although the second
bifurcation obeys this symmetry as well, we are not able to
calculate its actual shape – and thus the position of the associated
unstable fixed points – analytically. The set of all possible internal
equilibria, from analytical predictions as well as from numerical
root finding, is given in Fig. 2(b). Fig. 2(c) shows how the two
bifurcation points depend on the fitness of the heterozygotes o.

In Fig. 3 we show several slices of the (p1,p2)-plane for different
pairs of parameters ðo,mÞ; the phase portrait changes with the
control parameter m. Note that we have m2ðoÞom1ðoÞ for oo1.
For mom1ðoÞ, we have l1o0. In addition for mom2ðoÞ, we get
l2o0. A new pair of stable internal equilibria arises. They are
located on the diagonal (p1,1"p1) in the state space.

In Appendix B, we further discuss the system, also showing
that for sufficiently low migration rates, the dynamics are well
captured by a linearized system of equations. This is especially
interesting for further analytical examinations that go beyond the
scope of this manuscript, e.g., when a larger system of interacting
populations is considered.

Taking advantage of the symmetry in the system of two
populations coupled by migration allows one to analytically
calculate the emergence of stable internal equilibria depending on
the heterozygote’s fitness o. With the additional aid of numerical
methods we can also find the saddle points. In the next section we
discuss the pattern in more detail, addressing the problem of
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finding the basins of attraction that belong to the internal stable
equilibria.

In Appendix C, we present results when considering three
alleles with underdominance, which necessarily becomes more
complicated and has implications for transformation strategies.
However, in certain situations bi-stable population transforma-

tions are still possible, even if underdominance is not present
between all pairs of alleles. Also, in the two population case, even
at the non-trivial stable equilibria, if only underdominance is
present, alleles are expected to be lost and the system returns to
the two-allele case. This suggests that in certain contexts the
results for a two-allele system are applicable to systems with
initially more than two alleles.

2. The basin of attraction

What is the region in the state space where the system is
attracted to a non-trivial stable equilibrium? Once the two non-
trivial stable equilibria are present, i.e. for 0omom2ðoÞ there is a
region where the system, once initiated there, will ultimately
reach one of the stable equilibria along (xi,1"xi), Eq. (7). This
region is the basin of attraction. Here, we give two estimates of
this subset of the state space and compare it to simulations.

Consider the boundaries of the system. In one population the
frequency of the transgenic type is fixed to zero or one, and in
the other it can have any value between zero and one. Due to the
symmetry in homozygote fitnesses and migration rate, we only
have to consider those parts of the boundaries where for instance
p2¼0, as in this case p2¼1 follows directly from that.

In the neighborhood of the boundaries, we expect the com-
ponents of the (two-dimensional) flow parallel to the boundaries to
be similar to the (one-dimensional) flow along the boundaries.
Wherever the flow along the boundaries vanishes there are points
of vanishing flow of the quasi-one-dimensional system. They can be
stable or unstable, depending on the slope of the one-dimensional
flow at these points, @pDp1ðp,0Þ, or @pDp2ð0,pÞ. Their position will
give an estimate of where the basin of attraction meets the
boundaries, assuming low migration. Consequently, we need the
solutions of the one-dimensional system, Dp1ðr,0Þ ¼Dp2ð0,rÞ ¼ 0,
which are given by

r7 ¼
3"mð1"oÞ"3w7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1"oÞð1þm2ð1"oÞ"2mð3þoÞ"oÞ

p

4ð1"mÞð1"oÞ
:

ð10Þ

If both equilibria exist r"rrþ . Additionally, ðr",0Þ is unstable,
since @pDp1ðp,0Þjp ¼ r"

40 and hence ðr",0Þ is a naı̈ve minimum of
a possible initial condition at the boundary that leads to the
stable equilibrium (x2,1"x2), compare Eq. (7) and Fig. 4. Thus,
possible estimates for the regions where the dynamics leads to one
of the stable equilibria given by the coordinates (xi,1"xi),
Eq. (7), for 0rmom2ðoÞ, are rectangles, for example the one
limited by the four points ðr",0Þ,ð1,0Þ,ð1,1"r"Þ and ðr",1"r"Þ, cf.
Fig. 4. At high migration rates this increasingly underestimates the
basin. In addition, we can give another estimate, which is the deltoid
(kite) limited by the four points ð12 ,

1
2Þ,ð1,1"r"Þ,ð1,0Þ, and ðr",0Þ. For

low migration this in an overestimate of the basin of attraction,
which itself is obtained by numerical simulations, see Fig. 4.

Fig. 2. (a) Projection of the bifurcation diagram showing the allele frequency p1,2
in one of the two populations as a function of the control parameter m. The
positions of the critical points m1ðoÞ ¼ 0:05 and m2ðoÞ ( 0:0341 are indicated
by arrows. (b) Projection of the bifurcation diagram to the state space, i.e. the
positions of equilibria for any migration rate. Dashed lines and curves describe
unstable, dashed-dotted curves describe saddle, and full curves and lines
describe stable fixed points in both figures. In both, (a) and (b), the fitness of
the heterozygote’s is fixed to o¼ 0:8. Note the difference to Karlin and McGregor
(1972a), where a figure of this bifurcation wrongly suggests a different pattern.
(c) The two critical points of the fully symmetric system, m1 (black), and m2

(shaded), and the approximation of the latter stemming from the linearized
system, ~m2 (dotted), as a function of the fitness of the heterozygotes ðþTÞ, o.
While m1 is a linear function in o, m2 and ~m2 exhibit square root behavior
(compare inset and Eqs. (8), (9), and (33) in the main text). ~m2 approaches m2 for o
sufficiently large; The difference vanishes for o-1.

P.M. Altrock et al., / Journal of Theoretical Biology 267 (2010) 62–75 65



3. Average fitness

Do the patterns of reduced average fitness affect the strategy
for achieving transformation? For the symmetric model, the mean
population fitness at the central unstable equilibrium can be
found by substituting p̂i ¼ 1

2 into Eq. (4). This results in
wi ¼ ð1þoÞ=2. Near this point is the optimal strategy for
transforming a target population with a minimum release of
individuals (see Section 5). However, this is also the point where
mean population fitness is at its lowest. At the approximate
threshold for transformation with a single population release,

ðp1,p2Þ ¼ ðr",0Þ, ð11Þ

the average fitness in each population is

wi ðr",0Þ ¼
1
4ð1"mÞð3"mþoð1þmÞ

"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1"oÞðð1"oÞð1þm2Þ"2mð3þoÞÞ

q
Þ, ð12Þ

which only results in a small increase in mean fitness except at
very high migration rates, see Fig. 5, where the approximation is
less accurate and stability of the system is almost lost. Thus, the
strategy to minimize release numbers probably has more
advantages than maximizing average population fitness during
the transformation.

Interestingly, the mean population fitness at the stable non-
trivial fixed point, where the system is in migration-selection
equilibrium, appears to be independent of the heterozygote
fitness, o. This point is given by p̂1,2 ¼ x1,2, Eq. (7). The point is
stable for 0omom2, Eq. (9). Substituting this into Eq. (4) yields
wi ¼ 1"2m, which is only a function of the migration rate.
Intuitively, if heterozygotes are less fit then the rarer allele will
have a lower frequency, at equilibrium, in the population,
producing fewer heterozygotes each generation. Conversely, if
heterozygotes are more fit the rarer allele will attain a higher
frequency producing more heterozygotes each generation. The
number of heterozygotes produced and their fitness cancel out in

Fig. 3. For the bifurcation pattern with fixed heterozygotes fitness o¼ 0:5 and critical points m1 ¼ 0:125 and m2 ( 0:0886, four slices (1–4) with different migration rates m

are shown. In each of them the state space of the system, ð½0,1' ) ½0,1'Þ, is depicted with a phase portrait (arrows) and the absolute rate of change
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDp1Þ2þðDp2Þ2

q

(shading). The darker the shading the slower the dynamics, the brighter the faster. The equilibrium points are given by disks. Empty disks are unstable (or saddles), disks
with a dot are the stable equilibria. (1) For m¼0.13 there exist only the two trivially stable equilibria at (0,0) and (1,1) as well as the saddle fixed point at the center
(0.5,0.5). (2) If migration rate decreases below m1, for m¼0.1, we observe two new saddles along the axis (p1,1"p1), cf. Eq. (7), and the center becomes fully unstable. (3)
For migration below m2,m¼0.07, the former saddles at (x1,2,1"x1,2), Eq. (7), become stable and four new equilibria (also saddles) emerge, cf. Figure 1 of Barton and Rouhani
(1991). Although they also obey the mirror symmetry, for the four new unstable points an analytical description of their positions is cumbersome; we only locate them via
numerical root finding algorithms. (4) For vanishing migration rate the case of two distinct populations with underdominance is recovered.
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terms of the average effect in the population. This is similar to the
effects of deleterious mutations at mutation-selection equili-
brium, in which case the average fitness of a population is only a
function of the mutation rate (Haldane, 1937).

4. Unequal homozygote fitnesses and non-symmetric
migration

So far all results are based on the symmetry of the system of two
coupled populations with an underdominant locus. In this section, we
show how the phase portrait changes for non-symmetric migration
between the two populations and if restriction of the model to equal
homozygote fitnesses is relaxed, see Fig. 1(c). We allow migrants in
one population, coming from the other, to have an abundance mi,
with m1am2 in general, see Fig. 1(d). For example, migration bias
can arise between upstream (or upwind) and downstream (down-
wind) populations, in the direction of an invasive front with a
demographic expansion, or when migration occurs between popula-
tions of unequal size. Typically, the genetically modified type suffers
from a fitness reduction compared to the wildtype with a fitness of
one (Boussy, 1988). This reduction results in a lower fitness wTT ¼ n,

with 0ooonr1. Discarding the simplifying assumptions that lead
to a high degree of symmetry disrupts the symmetrical arrangement
of the phase portrait. As a result, the critical values in parameter space
and thus the stable equilibria can no longer be calculated analytically.

With wþT ¼o, wTT ¼ n, and w++¼1, the respective average
allelic fitnesses in population i are

fþ ðpiÞ ¼ 1"piþopi, ð13Þ

fT ðpiÞ ¼ npiþoð1"piÞ ð14Þ

for wildtype + and modified type T. Note that both fitness
functions are linear in p, but in general f ðmpÞamf ðpÞ. Never-
theless, observe that f ðð1"mÞpiþmpjÞ ¼ ð1"mÞf ðpiÞþmf ðpjÞ holds
for all values of o and n. More importantly, fT(p) equal to f+(1"p)
no longer holds either, which is due to loss of symmetry in
homozygote fitness. Similar to Eq. (4) the average fitness in
population i thus reads

wi ðpi,pjÞ ¼ ð1"miÞ2½pifT ðpiÞþð1"piÞfþ ðpiÞ'
þmið1"miÞ½pifT ðpjÞþð1"piÞfþ ðpjÞ'
þð1"miÞmi½pjfT ðpiÞþð1"pjÞfþ ðpiÞ'

þm2
i ½pjfT ðpjÞþð1"pjÞfþ ðpjÞ', ð15Þ

where ja i. As we consider infinitely large populations with
random mating taking place after migrants are exchanged, mj

neither gives a contribution to wi nor does it directly influence the
frequency of allele T in the next generation, pui:

pu1ðp1,p2Þ

¼
ð1"m1Þ2p1fT ðp1Þþð1"m1Þm1ðp1fT ðp2Þþp2fT ðp1ÞÞþm2

1p2fT ðp2Þ
w1 ðp1,p2Þ

,

ð16Þ

pu2ðp1,p2Þ

¼
ð1"m2Þ2p2fT ðp2Þþð1"m2Þm2ðp1fT ðp2Þþp2fT ðp1ÞÞþm2

2p1fT ðp1Þ
w2 ðp2,p1Þ

:

ð17Þ
From the shift in fixed points and rate of allele frequency

change, when considering a phase portrait (Fig. 6) we can see that
unequal migration rates result in a loss of bilateral symmetry.
Unequal homozygote fitnesses result in a loss of rotational

Fig. 4. We show the basin of attraction for heterozygotes fitness of o¼ 0:5
ðm2ð0:5Þ ( 0:0886Þ in the lower right quarter of the state space. The migration rates
are m¼0.05 (top) and m¼0.07 (bottom). The basin in darker shading results from
simulations of the dynamic system in discrete time, Eqs. (5) and (6). The thick lines
are estimates from the reduction to the one-dimensional flow along the
boundaries, cf. Eq. (10): The square in full lines is a conservative underestimate,
whereas the quadrilateral limited by the dashed lines and the boundaries serve as
an overestimate when p2 is not too small and p1 is not too high (in natural
populations, the migration rate ensures these properties). Although migration is
low, it becomes clear that with m increasing both estimates become conservative
in a neighborhood of the r" boundaries.

0.500

0.625

0.750

0.875

0.00 0.05 0.10 0.15

Fig. 5. Total mean population fitness of the central unstable equilibrium,
w ¼ ð1þoÞ=2 (full lines), and of the one-dimensional edge approximation for
single population release, Eq. (12) (dotted curves), are shown with four different
values of heterozygote fitness o (values given in the figure) Z=1. The two
estimates are essentially equal except at relatively high migration rates.
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symmetry. With both of these effects, all forms of symmetry are
lost as illustrated in Fig. 6 (IV). Furthermore, from this asymmetry
it becomes apparent that situations exist where a stable, local
transformation of a less fit allele is possible in only one of the two
coupled populations. The stability properties under symmetry
distortion can be represented in a ‘‘phase diagram’’ Fig. 7. From
this example it can also be seen that both unequal migration rates
and unequal homozygote fitnesses are required to result in non-
trivial stability in only one of the two populations. In this doubly
asymmetric case, higher migration rates and lower homozygote
fitnesses can result in single population stability outside the range
of parameter values necessary for symmetric stability in two
populations: e.g., the lower right tip of zone B in Fig. 7 has a lower
homozygote fitness and a higher migration rate than is found for
any area of zone A. In this regime, lower homozygote fitnesses are
counterbalanced to some degree by higher emmigration and
lower immigration rates.

As homozygote fitnesses become more asymmetrical, the non-
trivial stable fixed points move closer to the boundaries of the
system. Solving (16) for the edge of the system, p2¼0, as done in
Section 2 for the fully symmetrical model, and assuming
stationarity, Dp1 ¼ 0, gives the non-trivial solutions

r7 ¼
2þnð1"mÞ"oð3"mÞ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn"oÞ2ð1þmÞ"2mð2nð1"oÞþn2"o2Þ

q

2ð1"mÞð2o"n"1Þ
,

ð18Þ

where rþ is stable and r" is the unstable internal fixed point in
the one-dimensional system. Setting r" ¼ rþ , the point, where
stability is lost according to the flow along the edge (when the
argument in the square root is zero), gives

m3ðo,nÞ ¼ nð2"2oþnÞ"o2"2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1þn"2oÞðn"o2Þ

p

ðn"oÞ2
: ð19Þ

Fig. 6. Symmetry breaking. We show four different scenarios with different degrees of symmetry.o denotes the fitness of the heterozygotes, n is the fitness of the transgenic
homozygous type, which is equal or less than the fitness of the wildtype, with fitness of one. In population i¼1,2, the frequency of immigrants which contribute to the next
generation is mi. The exact values of fitnesses and migration rates are given in the boxes above each plot. Disks indicate equilibrium points; empty disks are unstable (or saddle
points), disks with a dot are stable equilibria. (I)Maximal symmetry is maintained when the fitness of both homozygotes is equal to one and migration issymmetric,m1¼m2. In this
example there is a point symmetry and one finds two symmetry axes. The important symmetry here isp1-1"p1. (II) When migration is asymmetric both symmetry axes are lost,
but there is still a point symmetry in the center (0.5,0.5). (III) For symmetric migration but lower fitness of the transgenic homozygotes,oono1, the point symmetry and the
important symmetry axis are lost. The unstable equilibrium in the central area is shifted along the axis (p1,p1). (IV) For unequal migration rates and unequal homozygotes fitness all
symmetry is lost, but the central unstable equilibrium remains at the axis (p1,p1). In this case, only one non-trivial fixed point is stable.
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This is an approximation of the critical migration rate allowing
stability in the case of unequal homozygote fitnesses. As can be
seen in Fig. 8 this edge-approximation works very well when
no ðoþ1Þ=2 or when the transgenic homozygote fitness is less
than the average of the heterozygote and wildtype fitnesses.
Above this area there is an increasing deviation as the symmetric
critical migration rate m2 is approached. An ad hoc non-linear
weighted average between m2 and m3 of

mwðo,nÞ ¼ m3ðo,nÞð1"nÞþ m2ðoÞðn"oÞ2

ð1"oÞ2
ð20Þ

gives a good fit across the entire range.

It can also be casually observed in Fig. 6 that the central
unstable equilibrium always falls along the p1¼p2 axis despite
various forms of parameter asymmetry. Solving Eqs. (16) and (17)
for an unstable fixed point along this axis (similar to Appendix A)
yields

p̂1 ¼ p̂2 ¼
1"o

1"2oþn : ð21Þ

Thus, the central unstable equilibrium is independent of migra-
tion and identical to the unstable equilibrium in the single
population case, Eq. (2). This makes intuitive sense if one
considers that this is also the stable equilibrium point in the case
of overdominance (i.e. heterozygote advantage) and that at this
equilibrium all populations should arrive at the same allele
frequency. At this point the migrants between populations have
no effect on changing allele frequencies.

5. Discussion

At high and very low migration rates the dynamics of the two
population system approaches that of a single population system,
either as two independent populations or as a single combined
population. Here we have explored the interesting cases between
these two extremes where the dynamics are more complex.
A two-population single-locus system can have up to nine
equilibrium points, two of which can be non-trivially stable. We
have focused on the conditions of this non-trivial stability and
how the system can arrive at these points. First, however, it is
important to be clear about the assumptions and limitation of the
necessarily simplified model.

The system described here assumes selection acting on a single
locus, which is appropriate for certain kinds of chromosomal
rearrangements, such as paracentric inversions and fusions,
discussed by Lande (1979), and single gene effects, similar to Rh
factor, e.g., Wiener (1942). Yet, in general the biological examples
provided for underdominance are reciprocal chromosomal trans-
locations, which of course involves two (or more) loci. In plants,
fungi and protists that undergo alternation of generations where
diploid stages are separated by multicellular haploid
gametophytes, unbalanced translocations can be lethal at the
gametophyte stage (Ray et al., 1997). In this simple case of
complete lethality, the system behaves as a single locus with
o¼ 1

2 (Wright, 1941). In typical animals, gametes that have an
unbalanced set of chromosomes can function normally and
produce a zygote (Snell, 1946). Thus, there is a small chance that
two unbalanced gametes could complement each other upon
fertilization, so unbalanced zygotic lethality in animals can
behave as a single locus with o slightly greater than 1

2 (Wright,
1941). Of course, even with full unbalanced lethality, other factors
in various species such as competition among offspring, parental
care, some fraction of vegetative reproduction, and/or alternate
chromosome segregation patterns can result in an effective o
substantially greater than one-half (Lande, 1979). However, if an
organism with an unbalanced translocation can survive to
reproduce, as is perhaps the case with some human diseases
and translocations that involve smaller chromosomal regions, e.g.,
Koochek et al. (2006), then the system can no longer be expected
to behave according to the single-locus model presented here.

Another important limitation is the simplifying assumption of
an infinitely large population size, where only migration and
selection are the sole determinants of allele frequency change.
A finite population will ultimately reach the absorbing states at
p1¼p2¼0 or p1¼p2¼1. However, the time until these points are
reached may be very large, in particular when the corresponding
deterministic system has stable interior fixed points and selection

Fig. 7. Phase diagram of a system of two populations with an underdominant allele
coupled by two migration rates. We show the difference of migration rates,m1"m2,
on the ordinate and the difference in homozygote fitnesses,wþ þ"wTT ¼ 1"n, on the
abscissa. For each pair of these differences, we evaluate whether the system reaches
an internal (non-trivial) stable fixed point, given it has been initiated inside the basin
of attraction (compare Fig. 4). The system has been simulated using Eqs. (16) and
(17). We can identify three different phases: (A) The system has two internal stable
fixed points (darkest shading). (B) The system has only one internal stable fixed point
(intermediate shading). (C) The system does not have any internal stable fixed point
(light shading). We also link back to Fig. 6 and locate the plots in this phase diagram:
(I) Full symmetry is maintained, cf. Fig. 3. (II) The system is moved along the axis of
equal homozygote fitness, 1"n¼ 0. (III) The system is moved along the axis of equal
rates of migration,m1"m2¼0. (IV) No symmetry is maintained and we find only one
internal stable fixed point.

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00

Fig. 8. Critical migration rates with unequal homozygote fitnesses for a range of
illustrative heterozygote fitness values, o. The right edge of the plot, n¼ 1,
corresponds to m2 in the fully symmetric model (n¼ 1, arrows). As the TT
homozygote fitness declines relative to the wildtype, ++, the critical migration rate
also declines as the system is destabilized. This has been determined numerically
(dots) and the simulated result approaches the approximation analytically,
derived from the edge of the system for smaller n (black). A simple non-linear
weighted average approximates critical values of m across the range of n and o
(shaded), compare Eq. (20).
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is relatively strong. An interesting question in this case is how
long until a local transformation is lost and, in the case of
asymmetry, what are the relative likelihoods of ultimate fixation
for the wildtype versus transgenic alleles. This is briefly presented
in Appendix D.

If a stable transformation of a population is possible, from an
applied point of view, r" from Eq. (10) gives the approximate
minimum frequency that must be surpassed to result in a stable
transformation, by releasing the transgenic construct into a single
target population. In order to attain a target frequency p*, releases
must be made of size P¼p*/(1"p*) relative to the wild population
(i.e. after the release of P individuals homozygous for a modified
allele into a wildtype population of relative size 1, the allele
frequency becomes p*¼P/(1+P). This function increases steeply
towards positive infinity as p*-1, thus small differences in p* can
have large effects and, for practical reasons, larger p*’s should be
avoided. Because of this, stable transformations might be more
efficiently achieved with smaller, asymmetrical releases into both
populations (i.e. closer to the central unstable equilibrium point,
which is at the tip of all basins of attraction, Fig. 4). For example,
starting at p1¼p2¼0, a total of a twofold equivalent of a single
wildtype population is required for equal releases into two
populations to result in the central unstable point, p*1 ¼ p*2 ¼

1
2

(with equal homozygote fitness). While a larger minimum of a
fourfold equivalent is required to enter the basin of attraction by a
single population release, if for example the threshold, Eq. (10), is
at p*¼0.8. Specifically, the proposed minimal-number strategy is
a p* close to, but less than, p̂, Eq. (2), in non-target, neighboring
populations, and a p* close to, but greater than, p̂ in the target
population. Estimating the central equilibrium point has the
advantage of less uncertainty due to its independence from rates
of migration, see Section 4. However, the basin near the central
equilibrium is a smaller target area and entering near there raises
the risk of accidentally transforming both populations or only the
non-target population. If this is an undesirable outcome, it must
also be considered. These calculations naı̈vely assume released
individuals are equivalent to wildtype in terms of mating success
and that both sexes will be released. In reality it is likely that
released individuals are less fit and may even be discriminated
against by wild female mate choice (Lance et al., 1998; McInnis
et al., 1996), and that (in many disease vectoring insect species)
releases of only males would be made necessitating more than
one generation of release to achieve p*41

2. However, the basic
strategy of more efficient transformations closer to the central
equilibrium remains unchanged.

Sterile insect technique (SIT) is a widely used and in
some cases very successful genetic pest management (GPM)
approach where the goal is suppression and elimination of the
wild population, rather than transforming the population, and
incidentally often requires larger release sizes than those
predicted here for underdominant transformation (Asman et al.,
1981; Krafsur, 1998). However, SIT can be less effective in species
that have high density-dependant population size regulation such
as mosquitoes, i.e. a high reproductive potential allowing a
rapid rebound from a small number of individuals (Prout, 1978;
Dye, 1984). In contrast, underdominant mediated population
transformation may have advantages in species with high
density-dependant regulation. Part of the original interest in
underdominance was due to its potential population suppression
effects, similar to SIT, rather than population replacement,
e.g., Vanderplank (1944) and Laven (1969). This population
suppression is greatest near unstable equilibriums where the
mean population fitness is minimized (Serebrovskii, 1940).
One potential problem in a species with low density dependence
is that during an underdominant transformation the wild
population size may start to decline as the populations transits

through low average fitnesses near unstable equilibria (see
Section 3). This population size effect is dependent on additional
fecundity parameters not modeled here, but it is easy to imagine
that the target population may become more susceptible to
immigration from other wild populations during this phase
(similar to a ‘‘migrational meltdown,’’ Ronce and Kirkpatrick,
2001; Tufto, 2001). Hence, it may be difficult to locally transform
certain species in such a case. However, in species with high
reproductive potential, where only a few individuals can quickly
produce enough descendants to return to carrying capacity, this
should not be as large of an issue because the population is
continuously maintained near carrying capacity. This is precisely
the situation where SIT can be very ineffective. Thus, under-
dominant mediated population transformation is an excellent
alternative to SIT in GPM strategies because the two approaches
are likely most effective at opposite ends of the density-
dependent spectrum. Note also that at mid-spectrum the two
methods might be usefully combined to first reduce the wild
population by SIT, followed by population replacement by
underdominance.

6. Summary

In summary, Section 1 introduces the problem and gives the
criteria permissible to a stable transformation in a single target
population, which is a function of the migration rate, Eq. (9). This
is based on a stability analysis (Appendix A). Appendix B extends
this approach to a simplified linear treatment of the dynamics,
which can be useful in more complicated and realistic population
models beyond the simple two-deme system analyzed here. In
Appendix C we illustrate underdominant dynamics for more than
two alleles, which in some cases is similar to the expectations of a
two-allele system.

In Section 2 we identify the full basin of attraction numerically
and approximate it analytically. For a stable local transformation,
this is important when considering release strategies.

In Section 3 we determine the effect of a local population
transformation on the average fitness of the population. Counter-
intuitively we find that average fitness is independent of the
genotypic fitness parameters and only a function of the migration
rate.

In Section 4 we analyze cases of asymmetric fitness and/or
asymmetric migration rates, which generally act to destabilize the
system. Initially surprising results are that there are cases where
stable-local transformations are only possible in one of the popula-
tions and the central unstable equilibrium is independent of
migration. We also derive an approximation for critical migration
rates permissive to stability with asymmetric fitness, Eq. (19).

The expected sensitivity to fecundity of underdominance
complements alternative population management techniques.
This, and other consequences of the model for practical use are
discussed in Section 5: In general there is very little difference in
fitness for alternative strategies to enter the basin of attraction. In
future studies of finite populations the fecundity of the organism
can be included in the model to directly quantify this effect.

Finally, in Appendix D we give numerical results from
simulations of stable transformations in finite populations. We
find that if effective population sizes are large (( 100 diploid
individuals) and the system is not near critical boundaries
(migration rates and heterozygote fitnesses are relatively low) a
local transformation can remain stable for a very long time (for
more than 104 generations). If homozygotes for the modified
allele are only slightly less fit than the wildtype allele, the finite
system is likely to ultimately result in loss of the modified allele
from both populations, rather than fixation in both.
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Appendix A. Linear stability analysis

A system similar to Eqs. (4)–(6) can be found in Karlin and
McGregor (1972a) (see also Karlin and McGregor, 1972b), where a
linear stability analysis has also been performed. Here we briefly
repeat this procedure. Additionally, this formalism can also be
applied to the linearized system (Appendix B), and used to solve
for the central unstable equilibrium along the (xi,xj) axis in the
asymmetric model (Section 4).

Linear stability analysis reveals whether a fixed point of a
dynamical system is attracting or repelling (Hofbauer and
Sigmund, 1998; Strogatz, 2000; Murray, 2007). The idea is the
following: Given an equilibrium point, if we perturb the system,
will it move away from that point or return to it? This property is
expressed by the eigenvalues of the Jacobian matrix at the
equilibrium point ðp̂1,p̂2Þ, Jjðp̂1 ,p̂2Þ. The Jacobian matrix is the
matrix of all partial derivatives,

Jðx,yÞ ¼

@Dp1
p1

""""
ðx,yÞ

@Dp1
p2

""""
ðx,yÞ

@Dp2
p1

""""
ðx,yÞ

@Dp2
p2

""""
ðx,yÞ

0

BBBB@

1

CCCCA
, ð22Þ

where Dpi ¼ pui"pi, see Eqs. (5) and (6). Assuming that
the perturbation is small and that the Jacobian does not vanish,
we obtain a linear equation that governs the temporal evolution of
that perturbation. Its solutions can be written as a superposition of
eigenmodes, pelkt , where lk is the kth eigenvalue of the Jacobian.
Thus, a perturbation will become smaller over time if all
eigenvalues are negative. As soon as a single eigenvalue is positive,
the perturbation increases and the corresponding equilibrium
point is not stable. The eigenvalues govern the behavior of the
system in a vicinity of an equilibrium point (Strogatz, 2000). The
explicit form of our Jacobian at (xi,1"xi), Eq. (7), is

Jðx1,1"x1Þ ¼

o"1"mðw"6Þ"6m2

ð1"2mÞ2
mð2mþoÞ
ð1"2mÞ2

mð2mþoÞ
ð1"2mÞ2

o"1"mðw"6Þ"6m2

ð1"2mÞ2

0

BBBB@

1

CCCCA
,

ð23Þ

which is the same for i¼1 or 2, due to the symmetry of the system.
The eigenvalues are the solutions of the characteristic polynomial
detðJ"lIÞ ¼ 0. They are given by

l1 ¼"
1"o"4m
1"2m

, ð24Þ

l2 ¼"
1"oþ2mð2m"3Þ

ð1"2mÞ2
: ð25Þ

Both roots are always real valued. A local bifurcation occurs when a
parameter change causes the stability of an equilibrium to change,
such that new equilibria can arise. Stability changes when the lk
change signs. Thus, we can compute the critical points from l1 ¼ 0,
and from l2 ¼ 0. In the former case, we obtain m1ðoÞ ¼ ð1"oÞ=4.
The latter case yields the critical point of the second bifurcation,

m2ðoÞ ¼ 1
4ð3"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ4o

p
Þ, ð26Þ

where we can neglect the second branch of the root due to
consistency.

Appendix B. Linearized dynamics

The original symmetric system, Eqs. (5) and (6), is of the shorthand
form puiðp1,p2Þ ¼jiðp1,p2Þ=wi ðp1,p2Þ. A fixed point of the dynamics
occurs if Dpiðp1,p2Þ ¼ puiðp1,p2Þ"pi ¼ 0. The position of fixed points
and the stability properties do not change if we examine
dpiðp1,p2Þ ¼Dpiðp1,p2Þwi ðp1,p2Þ ¼jiðp1,p2Þ"wi ðp1,p2Þpiðp1,p2Þ. This
condition is quadratic in the control parameter m and can be
rearranged as ðia jÞ

dpiðp1,p2Þ ¼ ð1"oÞpið3pi"2p2i "1Þ

"ð4ð1"piÞpi"oð1"2piÞ
2Þðpi"pjÞm

þð1"oÞð1"2piÞðpi"pjÞ2m2: ð27Þ

Note that only the relative coordinate, (pi"pj), scales with m. The
above set of equations has exactly the same fixed points as the system
(5) and (6). However, the Jacobian matrix and its eigenvalues are of
different form. Namely, the latter now read

l̂1 ¼"1þoþ4m, ð28Þ

l̂2 ¼"
1"oþ2mð2m"3Þ

1"2m
, ð29Þ

i.e. l̂i ¼ ð1"2mÞli, compare Eqs. (24) and (25). With l̂1,2 ¼ 0 solved
for m, this leads again to the critical points from Appendix A, see also
Eqs. (8) and (9).

Up to linear order inmwe have approximately dpi ( dLpiðp1,p2Þ
¼ ð1"oÞpið3pi"2p2i "1Þ"ð4ð1"piÞpi"oð1"2piÞ

2Þðpi"pjÞm, such
that dLpiðp1,p2Þ ¼ 0, solved along the diagonal (p1,1"p1) leads to
the pair of internal equilibria ðp̂1,p̂2Þ ¼ ðyi,1"yiÞ given by

y1,2 ¼
1
2
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1"4mÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1"oÞð1"o"4mÞ

p

2ð1"oÞð1"2mÞ
, ð30Þ

which only differ from Eq. (7) by the factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1"4m

p
in the

second term. The eigenvalues of the Jacobian Jðyi,1"yiÞ, computed
similar to Appendix A, read

~l1 ¼ l̂1 ¼"1þoþ4m, ð31Þ

~l1 ¼
1þ16m2"2mð4"oÞ"o

1"4m
: ð32Þ

The condition ~l1 ¼ 0 yields (once more) ~m1ðoÞ ¼ m1ðoÞ ¼ ð1"oÞ=4
for the first critical point. Moreover, ~l2 ¼ 0 gives

~m2ðoÞ ¼ 1
16ð4"o"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oð8þoÞ

p
Þ, ð33Þ

such that if migration rate is lower than ~m2ðoÞ, we observe stable
internal fixed points of the dynamics described by Eq. (27) up to
linear order. In Fig. 2(c) we compare the second critical point of
the original system with its equivalent from the approximation
linear in m. Note that for oo1, we have m2ðoÞo ~m2ðoÞ, whereas
~m2ðoÞ"m2ðoÞ-0 for o-1. If o is above 0.012, the relative error
j ~m2"m2j=ð ~m2þm2Þ is smaller than 10%, i.e. the prediction of stable
internal equilibria is relatively robust to cutting away information
on higher order migration effects.

Appendix C. Three alleles

Here we introduce a third allele, R, to the system at frequency
q. Thus, the frequency of the original wildtype allele now becomes
1"p"q. In the most general case the RR homozygote has a unique
homozygote fitness of nRR and we now write the TT homozygote
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fitness as nTT relative to a wildtype homozygote fitness of one. The
corresponding heterozygote fitnesses are oþT , oþR, and oRT .

The average fitnesses of the three alleles can be written as

fT ¼ nTTpþoRTqþoþT ð1"p"qÞ, ð34Þ

fþ ¼ ð1"p"qÞþoþTpþoþRq, ð35Þ

fR ¼ nRRrþoRTpþoRþ ð1"p"qÞ: ð36Þ

In general, the expected frequency of the ith allele in the next
generation, pui, is the product of the alleles frequency pi and fitness
fi normalized by the sum of this product over all alleles,

pui ¼
fiP
jpjfj

pi: ð37Þ

With three alleles, the fixed points along the edges of the simplex,
where the frequency of one allele is zero, are equivalent to the
corresponding two-allele case presented above. The remaining
internal fixed point can be found by setting the three averages
fitnesses equal to each other and solving the set of simultaneous
linear equations. This gives the coordinates of the central unstable
(assuming underdominance) equilibrium as

p̂ ¼
1
a nRðoTþ"1ÞþoRþ ðoRþ"oTþ"oRT ÞþoRT ð38Þ

and

q̂ ¼
1
ao

2
Tþ þnT ðoRþ"1ÞþoRT"oTþ ðoRþ þoRT Þ, ð39Þ

where

a¼o2
Tþ"nR"nT ð1þnR"2oRþ Þþ2oTþ ðnR"oRþ"oRT Þ

þðoRþ"oRT Þ2þ2oRT ð40Þ

which exists if both p̂40, q̂40 and p̂þ q̂o1.
If there is three-way underdominance between all alleles, the

minimum transformation threshold for the modified allele can be
lower than if a pair of alleles are considered individually, Fig. 9A.
In terms of transformation strategies, if a linked effector gene
results in a substantial fitness cost, a population transformation
might be more achievable by a two step process, first transform-
ing the population with a sightly less fit modified allele; then
transforming the modified population with a combined under-
dominant-effector construct. Similarly, if there are multiple
wildtype alleles that together have a heterozygous fitness
advantage, the transformation threshold is higher than if it is
inferred with respect to a single wildtype allele, Fig. 9B. Regard-
less of how many alleles are in underdominance with respect to
each other, in this system, fixation of the modified allele p¼1 is
stable if its homozygous fitness is greater than both of its
heterozygote fitnesses, nT4oTþ and nT4oRT , and bi-stability
with wildtype can be maintained even if there is no under-
dominance with respect to the third allele. This is illustrated in
Fig. 9C and D.

Three alleles predict a maximum of seven fixed points in a
single population. This predicts a maximum of 72 fixed points,

Fig. 9. Dynamics of a three-allele model in a single population. The shading indicates rate of change in joint allele frequencies on a scale from dark (slow) to light (fast).
Arrows indicate direction of change. Unstable equilibria as well as saddles are indicated with an empty disk, stable fixed points are black dotted disks. At the vertexes of the
simplex the population is fixed for one of the three alleles, and the corresponding allele is lost from the population at points along the opposing edge. In all four panels the
representation is wildtype + in the lower right corner, type R in the lower left corner, and type T in the top corner. The genotypic fitness values are given in each panel: near
the vertices the homozygote fitnesses ðnþ þ ¼ 1,nRR ,nTT Þ, along the edges the heterozygote fitnesses ðoþR ,oRT ,oþT Þ. (A) Full three-way underdominance.
oþR ¼oRT ¼oþT ¼ 0:5, and nþ þ ¼ 1,nRR ¼ 0:85,nTT ¼ 0:75. With fitness asymmetry among the homogenous genotypes, the central unstable point moves towards higher
frequencies of the less fit genotypes. (B) Overdominance between two wildtype alleles. oþR ¼ 1:1,oRT ¼oþT ¼ 0:5, and nþ þ ¼ 1,nRR ¼ 0:9,nTT ¼ 0:85. Overdominance
between the remaining alleles raises the transformation threshold of the modified allele. (C) oþR ¼ 0:9,oRT ¼ 0:825,oþT ¼ 0:5, and nþ þ ¼ 1,nRR ¼ 0:85,nTT ¼ 0:8. If
directional selection with R exists with fitness increasing away from a less fit TT homozygote, fixation of T is unstable despite heterozygote disadvantage (underdominance)
with wildtype. This may provide insight into how some types of underdominant changes can evolve between species, by transiting via intermediate alleles. (D)
oþR ¼ 0:9,oRT ¼ 0:85,oþT ¼ 0:5, and nþ þ ¼ 1,nRR ¼ 0:8,nTT ¼ 0:9. If directional selection exists and RR is less fit than the other homozygotes, underdominance can remain
bi-stable between TT and wildtype ++.
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when migration rates are low, in a coupled two-deme system.
Nine of these points can be stable equilibria (three are trivial
fixations), one central point is unstable and all others are saddle
points, if they exist for a given migration rate. Since a two-
dimensional simplex exists for each population ðS2Þ the joint state
space for the coupled populations is four-dimensional ðS2 ) S2Þ;
however, the state space is not simply a pentachoron simplex (S4,
a four-dimensional triangle) but exists over a broader area. This is
because the allele frequencies, when considered jointly for both
populations, can be at any position within their respective S2’s
(also, allele frequencies do not sum to one when considered
jointly for both populations). This is analogous to the simpler case
in Fig. 3 where an S1 ) S1, for two alleles in two populations,
exists on a two-dimensional square rather than an S2 triangle. If a
dimension is assigned to each allele frequency in each population,
we can say the S1 ) S1 coupled system is in a plane across R4

rather than the S2 plane in R3, but both are two-dimensional.
Similarly S2 ) S2 is distributed across R6 rather than as S4 in R5,
but both S2 ) S2 and S4 are four-dimensional.

Even with three-way pairwise underdominance, at a stable
migration-selection equilibrium there cannot be more alleles
present than the number of populations (a detailed argument is
given in Karlin and McGregor, 1972a), so even if migration rates in
the two-deme model are permissive to stable maintenance of
polymorphism, one of the three alleles is expected to be lost. Thus,
starting from the point of view of a fully underdominant system in
stable equilibrium, the critical migration rates derived for the
two-allele case are applicable even if additional underdominant
alleles are possible. To illustrate three alleles in two populations

we modify p and q in Eqs. (34)–(36) to read, after migration, as p1
¼(1"m)p1+ mp2 and q1¼(1"m)q1+ mq2 for the first population
and the corresponding terms are also written for allele frequen-
cies in second population, where, for example, p1 is the frequency
of p in population 1, and m is the fraction of migrants each
generation as given previously for the two-allele case. The stable
maintenance of two alleles (in underdominance) in two coupled
populations for this three-allele system is illustrated in Fig. 10.

Appendix D. Fluctuations

Ultimately, in populations of finite size, the concept of stability
is not applicable any more. The only two absorbing states are
complete fixation or complete loss of one of the alleles. However,
with underdominance, the loss of polymorphism in coupled
populations may take a very long time if population sizes are large
and selection is very strong relative to migration. For a given set of
parameter values, if a polymorphism is stable in infinite
populations, we can ask the question of how long until
polymorphism is lost in finite populations. To answer this we
have provided illustrative examples from simulations using
Kimura’s pseudosampling method (Kimura, 1980): Pseudosam-
pling rescales a uniform random variate to have the same variance
of that expected under genetic drift as an approximation to the
diffusion of alleles in a finite population. The change in an allele’s
frequency due to deterministic forces, here selection and migra-
tion, is then adjusted in each generation. The adjustment is
according to the appropriately scaled random variate. This
method is a computationally efficient and gives reasonably
accurate approximation of genetic drift (Kimura, 1980). Some
illustrative results for various configurations in parameter space
are given in Fig. 11. Simulations have been performed with alleles
starting at the non-trivial stable equilibrium point (in a determi-
nistic sense) and were jointly iterated each generation until the
difference in allele frequencies between the populations collapsed
to less than 1% and the minor allele frequency in each population
was less than 1%. We set a maximum upper time bound of 105

generations in the simulations, and for plotting purposes have a
maximum of 104 generations. Because of this bound, an expecta-
tion cannot be accurately calculated. Instead we show a range of
more informative lower percentiles for the time until loss. As
modeled here, if the population size is large (4100 diploid
individuals) and parameter configurations are far from critical
boundaries, a difference in allele frequencies can be maintained
for 104 generations with a probability greater than 99%. As
population sizes decrease, or critical boundaries are approached
(with increasing migration, and/or heterozygote fitness, and/or
decreasing asymmetric homozygote fitness) the time until loss
monotonically decreases.

Note that the evolution of modifying factors such as mate
choice discrimination or genetic suppression can be quite rapid in
circumstances where there is strong selection (e.g., Soans et al.,
1974; McInnis et al., 1996; Charlat et al., 2007). Because of this we
are hesitant to make predictions beyond 104 generations.

If the two-deme system is fully symmetrical, n¼ 1, fixation or
loss of the T allele in both populations is equally likely. However,
it is found that with even small asymmetries in homozygote
fitnesses, no1, the probability of fixation of the allele corre-
sponding to the less fit homozygote is dramatically reduced. The
proportion of fixation out of the total number that were fixed or
lost within the time period considered was 9)10"3 for n¼ 0:98,
8)10"4 for n¼ 0:97. No fixations were observed out of 104

replicates for nr0:96. It is likely that genetically modified
organisms resulting in underdominance will have reduced fitness
relative to wildtypes. This provides a degree of fail-safe into the

Fig. 10. A schematic illustrating the fixed points and their stability in slices of the
four-dimensional state space of three alleles in two populations. (A) A useful
visualization in this context is a two-dimensional simplex for population 1 ðS2

1Þ,
and at each point within this simplex an additional two-dimensional simplex also
exists for population 2 (S2

2, four total dimensions). Consider the large outlined
triangle to be S2

1, within this illustrative S2
2’s are arranged according to their

relative positions within S2
1. In this example, all homozygotes have equal fitnesses,

all heterozygotes have half the fitness of the homozygotes (cf. Fig. 9A), and the
migration rate is m¼0.06. The approximate positions of fixed points are indicated
with open circles, which may not exist in precisely these illustrative slices, but are
expected to be nearby in the four-dimensional space. The central unstable
equilibrium is outlined in white, saddle points in gray, and stable equilibria in
black. Note that some points that appear to be stable equilibria in two dimensions
are actually saddle points in four dimensions. At this migration rate six of the 49
possible fixed points have merged and disappeared, so a total of 43 fixed points are
indicated. Of interest are the non-trivial stable fixed points on the outside edges of
the ‘‘corner’’ S2

2’s, where the allele is at a high frequency in one population and at
low frequency in the alternate population. (B) The actual positions of the internal
simplexes in panel A are indicated as points within the first population simplex.
Except for the central point, these are closer to the edges than can be shown in A.
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reversibility of the system; when a local population transforma-
tion is disrupted, it is much more likely that the genetic
modification will be lost from the wild rather than achieving full
fixation.
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effect of small population sizes is illustrated. (B) The destabilizing effect of unequal
homozygote fitnesses. (C) The effect of increasing heterozygote fitness. (D) The
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3 Stability in structured populations with heterozygote disadvantage

3.2 Heterozygote disadvantage in subdivided populations of finite size

The deterministic evolutionary dynamics of heterozygote disadvantage respecting popula-
tion structure has been well established and studied under various aspects, compare to
Section 3.1, as well as works by Karlin and McGregor [1972a] and Karlin and McGregor
[1972b]. In contrast, stochastic evolutionary dynamics in structured populations that
exhibit heterozygote disadvantage have so far attracted much less attention. Typical
approaches to spatially extended evolutionary dynamics consider the individuals on a
spatial setting, e.g., on a lattice or network [Hauert and Szabó, 2005; Nowak and May,
1992; Ohtsuki et al., 2006; Perc and Szolnoki, 2010; Szabó and Fáth, 2007; Traulsen and
Claussen, 2004]. In order to model coupling between populations of identical genetic
background, we have to take a different path. The system of two population exchanging
migrants is modeled as one macro-system. Thus, we define a Moran process that only
considers one reproductive event at a time, which excludes simultaneous changes in
the two sub-populations. Models of interacting populations that occupy patches are no
novelty. Typically, infinitely long chains of populations, or growing fronts are considered
to study local differentiation Kimura and Weiss [1964], or range expansions, see [Korolev
et al., 2010] and references therein.
The two alleles at a single locus are called A and B, and follow the fitness pattern

given in Table 3.1. The two populations are of finite sizes, N1, and N2. Under random
mating, see Section 1.4, we can sufficiently describe the two-population system with the
pair of allele numbers (i1,i2), where ik ∈ {0, . . . ,Nk}. Given the state (i1,i2), the five
possible transitions are

(i1,i2)→ (i1,i2)

(i1,i2)→ (i1 + 1,i2)

(i1,i2)→ (i1 − 1,i2)

(i1,i2)→ (i1,i2 + 1)

(i1,i2)→ (i1,i2 − 1).

(3.2.1)

The only absorbing states are (0,0), and (N1,N2). All other states on the boundaries
({0,N},i2), (i1,{0,N}), with 0 < ik < Nk, are reflecting for m > 0. This two dimensional
one step process does not have a non-trivial stationary distribution. However, we can
look at histograms of the transient stochastic dynamics, at the probability of fixation or
loss of the underdominant allele, and the associated mean fixation or extinction times
numerically.
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3 Stability in structured populations with heterozygote disadvantage

Some of the questions we can address with this model are the following. How does the
ratio of loss to fixation depend on the initial condition and on the fitness differences?
How long can we expect a successfully transformed local population to maintain the
modified allele? If one population is considerably larger than the other, what is the
extinction time in the resulting island-continent model?
Whether the system is more likely to exit in (0,0), or (N1,N2) depends on the initial

condition. For 1 > ν > ω, the central unstable fixed point moves to higher values
along the diagonal x1 = x2, and thus the absorbing state (0,0) is reached with higher
probability for most initial conditions. Especially, for systems that reach the corner
where the desired allele is fixed only in one population, ultimate loss becomes more likely
than complete fixation as the fitness asymmetry increases. Fitness asymmetry provides a
kind of fail-safe mechanism. Complete fixation of the genetically modified allele, linked
to the underdominant one, becomes unlikely. This is a desired situation in genetic pest
management. In fact values of ν below the fitness of wildtype homozygotes are almost
exclusively the case, because wildtype homozygotes have already adapted over a long
time and are typically most fit.

In agreement with the deterministic prediction, see Section 3.1, the time spent before
absorption depends on the value of migration rate. By simulations, a clear separation
between two phases can be found. The associated critical value of migration rate is
very close to the boundary between two different power law regimes. Below the critical
value the process spends a long time in the neighborhood of the state where the allele of
interest is fixed in one and almost lost in the other population.
In case of a size asymmetry N2 � N1 we suggest an adiabatic elimination of one

dynamics variable: In the large population, the underdominant allele cannot invade, the
small population experiences loss to and influx from a large basin of wildtype alleles.
The limit case N2 →∞ leads to a one-dimensional Markov chain on {0, . . . ,N1}, where
N1 is reflecting and 0 is absorbing. For such a process an analytical treatment in the
spirit of Section 1.3 is possible [Goel and Richter-Dyn, 1974]. In contrast to the typical
evolutionary dynamics of two types, compare to Section 1.2, due to migration, there
can be a second internal fixed point of the replicator dynamics in the island population.
Hence, we observe a reversal of local drift induced by migration between island and
continent.
From these findings, conclusions can be drawn concerning the technical difficulties of

establishing an underdominant allele which can establish resistance in potential disease
vector species.
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Heterozygote disadvantage, or underdominance, is a component
of natural evolution and can be used to establish genetic constructs
in wildtype populations. In single populations underdominance
leads to bistable evolutionary dynamics: Below a certain mutant
frequency the wildtype succeeds. Above this point, the potentially
underdominant mutant fixes. In very large subdivided populations
that exchange migrants there can be an evolutionary stable state
with coexistence of wildtype and modified individuals. This is due
to a migration-selection equilibrium (selection against rare recent
immigrant alleles that tend to be heterozygous). Here, we focus
on the stochastic evolutionary dynamics of such a system, where
demographic fluctuations in the two coupled populations are the
main source of internal noise. We construct a variant of the Moran
process in which the mutant can only fix or become extinct after
a certain time. We discuss the influence of fitness, migration rate,
and the relative sizes of the two populations on the mean extinction
times of a group of underdominant mutants.

Introduction

A population can evolve due to differences in relative reproductive suc-
cess over a life cycle. Fitness, in an evolutionary genetic sense, is de-
fined as the relative expected number of descendants in the next gener-
ation based on an individuals genotype. In diploid organisms, two alle-
les can result in three genotype combinations, two homozygous geno-
types with two copies of the same allele and heterozygotes with one
copy of each allelic type. Heterozygote disadvantage in reproductive
success is termed underdominance: individuals that have heterozygous
genotypes have a lower relative fitness than homozygotes. The funda-
mental properties of underdominance are well known [1, 2, 3]. One of
these is that underdominance acts as an evolutionarily bi-stable switch.
An underdominant allele is expected to be lost, if the initial frequency
is below a certain threshold, but can also proceed to fixation, if the
initial frequency is above this threshold. This threshold frequency is
determined by the fitness values of the genotypes involved [4, 5]. The
evolutionary dynamics induced by underdominance are similar to the
evolutionary dynamics of a coordination game, such as the stag hunt
[6, 7, 8, 9].

Under natural conditions underdominance can be caused by chro-
mosomal rearrangements [10]. For example, individuals that are het-
erozygotes for a reciprocal translocation suffer from reduced fertility
due to a disrupted number of copies of genes in the affected chromo-
somal region (i.e. segmental aneuploidy) [11]. Interestingly, chromo-
somal rearrangements that can result in underdominance are known to

sometimes accumulate between closely related species [12, 13]. Addi-
tionally, they may simultaneously contribute to fitness differences and
reproductive isolation during speciation [14].

As an artificial genetic construct, underdominance has been pro-
posed as a method to stably establish linked alleles with desirable prop-
erties in the wild; for example, rendering insect populations resistant to
diseases that otherwise can be transferred to humans (or other species),
such as malaria or Dengue fever [15]. The bi-stable nature of the evo-
lutionary dynamics suggests that a sufficient release of transformed
individuals will ultimately result in complete fixation of the allele in
a population. Additionally, release of sufficient numbers of wildtypes
can then bring the population back to its original state, if desired; thus,
the system is reversible.

Underdominant polymorphism is eventually lost or completely fixed
in single populations. However, it is known that it can become stable
at mixed frequencies due to a migration-selection equilibrium in large
populations that exchange a fraction of migrants [16, 17, 18]. There is a
bifurcation point of the migration rate between two populations below
which an underdominant polymorphism is maintained in an infinitely
large population. Migration rates above this point result in sufficient
mixing that the two population system reduces to a single population
and polymorphism is lost. This critical value and the mere existence
of migration-selection equilibria sensitively depend on the genotypic
(constant) fitness configuration, as well as on migration rate asymmetry
[18].

Initial testing of genetic pest management systems is likely to take
place on more isolated physical or ecological islands [19, 20, 21],
which will also have smaller insect population sizes that may not be
well approximated by dynamics under an infinite population assump-
tion. Here, we focus on extending the understanding of underdomi-
nant dynamics in multiple demes to include stochastic effects that stem
from finite population size. Generations are overlapping in species that
do not strictly follow discrete time reproductive patterns. Hence, we
concentrate on Moran models describing the stochastic invasion and
fixation of transformed or mutant alleles in a system of coupled popu-
lations. A Moran process considers a single reproductive event in one
time step such that in a population of size N , after N steps each in-
dividual has reproduced once on average. If the timescales are such
that further mutations that potentially alter the evolutionary dynamics
can be excluded, loss or fixation of a given allele are the only possi-
ble outcomes. As a simplification of our stochastic model, we assume
that the two populations involved in exchanging migrants do this at the
same rate. If that is not the case, symmetry is broken further, which
lies beyond our scope here. However, we briefly discuss coupled pop-
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ulations of different size which results in asymmetric rates of birth and
death events between the populations. Relevant questions are: How
likely are a certain number of genetically transformed underdominant
alleles, released into both populations, to take over or become extinct?
How long can we expect a successfully transformed local population
to maintain the modified allele, and what is the ratio of outcomes when
the system ultimately breaks down (complete loss verses complete fix-
ation in both populations). If one population is much larger than the
other, such that the mutant cannot invade, what is the extinction time
in the resulting island-continent model?

The manuscript is organized in the following way. The next part of
this section briefly repeats the mathematical aspects of evolutionary dy-
namics in an infinitely large population. Then, we introduce a Moran
model in two dimensions. The section ends with the introduction of
a one-dimensional island continent model. In the Methods section
we first give the precise formulation of the discrete stochastic model
in two dimensions and argue how we access its properties by simu-
lations. Secondly, in the Methods we introduce the island-continent
model, which allows a prediction for the mean extinction times of the
underdominant allele in a small island population. All results are dis-
cussed and summarized in the final section.

Replicator dynamics

With B we denote the wildtype allele, whereas A represents a trans-
formed (or mutant) allele. Given a single locus two allele model of
diploid organisms, there are three genotypes possible: BB, AB, and
AA. We set the average allelic fitness of wildtypes (BB) to 1 and
all other fitness values are measured relative to this value; We use ω
to parameterize the fitness of heterozygote genotype (AB), and ν to
measure the fitness of homozygous mutants (AA). The fitness config-
uration ω < ν ≤ 1 leads to underdominance or heterozygote disad-
vantage. Under random mating, we can describe the population by the
frequencies of the alleles (i.e., random union of gametes predicts the
relative abundance of initial zygotic genotypes in the population before
applying selection). For allele A with relative abundance p in a single
population, the average fitness is then given by fA = ν p+ ω(1− p).
Likewise, for the wildtype allele B we have fB = (1 − p) + ω p.
In general, for overlapping generations, a replicator equation describes
the change in allele frequency in an infinitely large (well mixed) popu-
lation in continuous time:

ṗ =
`
fA − f

´
p

= (fA − fB) (1− p) p. (1)

Here, ṗ = dp/dt denotes the temporal derivative and f = p fA+(1−
p)fB is the total average fitness of the population. The zeros of Eq. (1)
give the evolutionarily stable states, p̂k. In the case of underdominance,
ω < ν ≤ 1, it is easy to show that p̂1 = 0, p̂2 = 1, or p̂3 = (1 −
ω)/(1+ν−2ω), where p̂1,2 are stable fixed points and p̂3 is an unstable
fixed point.

One way of treating the case of two local populations that exchange
migrants is to introduce a parameter m as the rate of migration. In the
arbitrarily small time interval dt, the fraction of immigrants entering
one population, coming from the other, is mdt. Hence, (1 −m)dt is
the fraction of non-migrant individuals. In the two population case, let
pj be the frequency of allele A in population j = 1, 2. With migration
pumping in alleles from the other population, the mixed frequencies
that contribute to the change in pi over time are consequently p̃j =

(1−m)pj+mpk, where k 6= j in both populations. The total average
fitness in either population can now be given as fi = p̃i fA(p̃i) +

(1− p̃i) fB(p̃i). Hence, the replicator equation for the coupled system

(i, j = 1, 2, i 6= j) reads

ṗi = (fA(p̃i)− fB(p̃i)) (1− p̃i) p̃i
−m (pi − pj) fi.

(2)

These dynamic equations follow from Eq. (1), ṗi = fA(p̃i) p̃i − pi fi
[18]. The number of fixed points and their stability properties are con-
trolled by the rate of migration. The points (0, 0) and (1, 1) are always
stable. Migration has no effect on the diagonal p1 = p2, because
exchanging alleles between populations at equal frequencies results
in no change in either of them. For sufficiently small migration rate
p1 = p2 = (1 − ω)/(1 + ν − 2ω) is an unstable fixed point (a sad-
dle otherwise), similar to the singe population case. Another important
result is that for ν = 1, if m ≤ µc = (3 − √5 + 4ω)/4 there are
evolutionary stable states in the interior of the joined allele frequency
space, i.e. where A is neither fixed, nor lost. These stable fixed points
of the dynamics are located on the symmetry axis, p2 = 1 − p1. For
general fitness values ν ≤ 1, this symmetry is broken, but approxima-
tions of the critical migration rate µc can be made [18].

Moran process

Here, we introduce a Moran model that describes a Markov chain by
probabilistic birth and death events in two dimensions. Our main as-
sumption is that mate choice is random. In this case individuals in the
population can be thought of as passing through the Hardy-Weinberg
expectations at some point in the life-cycle before selection. Hence,
we can consider the system as if individual alleles (i.e. gametes) re-
produce and die. Reproduction is proportional to fitness, death is ran-
dom, and population sizes are held constant. Such discrete stochastic
processes are commonly examined in evolutionary biology, mostly in
one dimension. They are typically used to describe the microscopic
evolutionary dynamics in single uncoupled populations of finite size
[22, 23, 24], and are particularly famous in evolutionary game the-
ory [25, 26, 27]. From the microscopic dynamics, one is interested
in macroscopic quantities such as the probability of extinction start-
ing from a given allele frequency and the associated average extinction
time.

Our two populations are of sizeN1,N2, respectively. Hence, the two
stochastic variables that jointly describe the state in the two population
case are denoted i1 and i2, which are the number of individual copies
of allele A (type A) in each population. Thus, type B has frequencies
N1 − i1, N2 − i2, respectively. For convenience we introduce the
fractions x1 = i1/N1 and x2 = i2/N2. For the average allelic fitness
functions we can now write

fA(xj) = ν xj + ω (1− xj) , (3)

fB(xj) = (1− xj) + ω xj . (4)

For a consistent stochastic model several events have to be considered
independently in one time step of the Moran process.

First, with probability α a reproductive event occurs in popula-
tion 1. With probability 1 − α a reproductive event occurs in pop-
ulation 2. We can exclude simultaneous reproductive events in both
populations. This makes it possible to treat the two population sys-
tem as one Markov chain with the two absorbing states (0, 0), and
(N1, N2). One population, say the one of smaller size, may change
more rapidly than the other. This difference is captured in the rates
α and 1 − α. If we think of the α’s as reproductive rates, a possible
choice is α ∝ N1/(N1 + N2), and thus 1 − α ∝ N2/(N1 + N2).
Hence, for the study of two populations of comparable size, it is con-
venient to set α = 0.5. The choice of α does not change the migration-
selection equilibria predicted by the replicator system Eq. (2), compare
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Figure 1: Phase portrait of the stochastic flow (N1,2 = 1000). The arrows (length rescaled) indicate the highest probable net direction of selection, i.e. the
vector {(P+

1 −P−1 ), (P+
2 −P−2 )}T . The shading indicates the average speed of selection, namely [(P+

1 −P−1 )2 +(P+
2 −P−2 )]1/2: The darker she shading,

the faster the system is expected to leave the given state. All panels share the same fitness valley with ω = 0.5 and ν = 0.9. Stable fixed points of the replicator
dynamics are given by full disks. Unstable fixed points and saddles are given by empty disks. Left panel: The migration rate is below the critical value, such that
the replicator dynamics has internal stable fixed points. m = 0.05 < µc, and the number of alleles changes equally fast in both populations α = 0.5. Central
panel: For the same migration rate, but with one population changing three times as fast compared to the other (α = 0.75), the pattern changes. However, number
and positions of (stable) fixed points of the replicator dynamics Eq. (2) associated with the parameter choice remains the same. Right panel: Stability of the
replicator dynamics changes critically with the migration rate m. For sufficiently frequent migrations, m > µc, the system proceeds very fast to a simultaneous
all or nothing state.

Fig. 1. Only the rates of change between fixed points are increased in
the larger population that contains more events per unit time.

Secondly, in population j, an individual allele gives birth to an
identical copy with a probability proportional to the average fitness
of the allele. In such an event, however, we have to consider that
with probability m, the birth giving individual allele is from the other
population (i.e., an immigrant). Hence, type A produces an identi-
cal offspring with probability proportional to [(1 −m)xj + mxk] ×
fA((1 − m)xj + mxk). A similar probability holds for type B,
[(1−m)(1− xj) +m(1− xk)]× fB((1−m)xj +mxk).

Thirdly, in each population, the total number of alleles is held con-
stant. This implies that for each birth event, there is an independent
death event: a randomly chosen individual allele is removed from the
population. A type A allele is removed with probability xj = ij/N , a
type B allele is removed with probability 1− xj = (Nj − ij)/Nj .

Overall, given the two population state (i1, i2), there are five events
possible. Four of them involve a change in allele frequency i1, or i2.
Hence, we have to define four transition probabilities in each state,
{P±1 (i1, i2), P

±
2 (i1, i2)}, such that migration and selection only con-

tribute to birth and not to random death, which occurs independently
in each population. Note that, in general, fixation or loss in both popu-
lations are the only absorbing states, i.e. P±j (N,N) = P±j (0, 0) = 0.
Due to migration, there is a non-vanishing flow perpendicular the
boundaries in state space. When the allele of interest is lost or fixed
only in one population immigrants can push the system back into the
interior, where typeA is present in both populations, compare to Fig. 1
and Fig. 2.

Island and continent

Above, we introduced an α parameter to allow unequal population
sizes. The logical limit of this process is where one population be-
comes infinite and the other remains finite. This leads to the simplified
island and continent situation. Here, the focus is on an island popu-
lation of relatively small size N that is coupled to an essentially infi-
nite continent population in which the allele of interest is not present
(i.e. the wildtype allele is fixed). With this the genetic modification

will not invade the continent. This gives rise to a non-vanishing fit-
ness contribution due to migration to the island: With rate m the
one-dimensional island system receives wildtype immigrants from, and
loses migrants of any type to, the continent. Given the fitness functions
Eqs. (3) and (4) the equivalent limit case is x2 = i2/N2 → 0. Apply-
ing this limit to the transition rates {P±j (i1, i2)}, the single stochastic
variable becomes i = i1, and time can be rescaled such that α = 1.

Hence, a one-dimensional Markov chain between {0, 1, . . . , N −
1, N}, with transition probabilities T+

i , T−i , is generated by T+
i =

limN2→∞ P
+
1 (i, i2) and T−i = limN2→∞ P

−
1 (i, i2). However, we

have to respect that for instance limi2→0 fX((1 − m)i1 + mi2) =

(1 − m)fX(i) + mfX(0), (X = A,B), where fA(0) = ω, and
fB(0) = 1. The continent can only contribute to the birth of wildtype
homozygotes. For non-vanishing migration between island and conti-
nent we have T−0 = T+

0 = T+
N = 0, and T−N > 0. In the Methods

section we show how the moments τri of the extinction times associ-
ated with this process can be determined from a recursion. The rth

moment follows successively from

τri =
iX

j=1

N−jX
k=0

τr−1
N−k
T−N−k

N−jY
l=k+1

T+
N−l/T

−
N−l, (5)

where τ0
i = 1 is the probability that allele A vanishes in the island

population, and τ1
i is the mean life time, or average extinction time of

allele A.

Methods

Moran process for two coupled populations

Introducing the migration influenced number of A alleles in each pop-
ulation, x̃1 = (1−m)x1 +mx2, and x̃2 = (1−m)x2 +mx1, where
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Figure 2: Typical trajectories for the loss of the extinction process of an underdominant allele in a system of two populations of the same size, N1 = N2.
We show different realizations of the two dimensional Markov chain for ν = 0.9, α = 0.5, and different N , ω, and m. The initial condition is the unstable
equilibrium near the center i1 = i2 ≈ N1,2(1−ω/(1+ν−2ω)) (rounded to an integer), the final state is (0, 0) in all three cases. Black states are never visited,
colored sites are visited at least once. The brighter the color, the more often the respective state has been visited. Left panel: N1,2 = 50, m = 0.01, ω = 0.5.
The process typically spends a long time near the (0, N2), (N1, 0) corners, where the waiting times are highest. Central panel: N1,2 = 50, m = 0.2, ω = 0.2.
The process proceeds fast to extinction of the underdominant allele, but slows down near (0, 0). Right panel: N1,2 = 100, m = 0.01, ω = 0.5. The process
spends most of the time in the (N, 0) corner. Once it proceeds to extinction, it moves fast.

x1 = i1/N1, x2s = i2/N2, the transition probabilities are given by

P+
1 (i1, i2) = α x̃1

fA(x̃1)

F1
(1− x1), (6)

P−1 (i1, i2) = α(1− x̃1)
fB(x̃1)

F1
x1, (7)

P+
2 (i1, i2) = (1− α)x̃2

fA(x̃1)

F2
(1− x2), (8)

P−2 (i1, i2) = (1− α)(1− x̃2)
fB(x̃2)

F2
x2, (9)

where F1 = x̃1fA(x̃1)+(1− x̃1)fB(x̃1), and F2 defined likewise are
the total average fitness values in each population respecting migration
between them. The probability that the state (i1, i2) does not change
(e.g. when a type A dies and another type A is born) is thus given by
P 0(i1, i2) = 1−P+

1 (i1, i2)−P−1 (i1, i2)−P+
2 (i1, i2)−P−2 (i1, i2).

The only trivial boundary conditions can be formulated on the states of
total extinction of one allele, as P±j (0, 0) = 0, and P±j (N,N) = 0

for j = 1, 2. No non-trivial measure for the probability to find the
system in a certain state after a given time exists.

An analytical solution of the moment generating recursions for the
stationary moments is unfeasible because of insufficient boundary con-
ditions. For instance the probability of extinction φ0

i,j after an infi-
nite number of time steps (above a given minimum) fulfills the rate
equation φ0

i,j = P 0(i, j)φ0
i,j + P+

1 (i, j)φ0
i+1,j + P−1 (i, j)φ0

i−1,j +

P+
2 (i, j)φ0

i,j+1 +P−2 (i, j)φ0
i,j−1. To make predictions about the evo-

lution of the system we directly simulate the stochastic process de-
scribed by Eqs. (6) – (9).

Lifetime in an island population close to a continent

The average allelic fitness values in the island population of sizeN are

gA(i) =ω +
i

N
(1−m)(ν − ω), (10)

gB(i) = 1− i

N
(1−m)(1− ω). (11)

Note here that for the rescaled variable q = (1−m) i/N , we just have
gA(i) = fA(q), as well as gB(i) = fB(q), compare Eqs. (3) and (4).
The transition probabilities of the one-dimensional Moran process can

be formulated as

T+
i =(1−m) i

gA(i)

G(i)

N − i
N

, (12)

T−i = ((1−m)(N − i) +mN)
gB(i)

G(i)

i

N
, (13)

where the normalization (total fitness) is given by G(i) = (1 −
m) i gA(i) + ((1 − m)(N − i) + mN)gB(i). Let fn,m(t) be the
probability that the process moves from state m to state n after exactly
t time steps. For this probability function the master equation

fn,i(t+ 1)− fn,i(t)
= T+

i fn,i+1(t) + T−i fn,i−1(t)−
`
T+
i + T−i

´
fn,i(t)

(14)

holds, for which we can compute the moments in the following way.
The only absorbing state is i = 0, as i = N is reflecting, T+

N = 0,
T−N 6= 0 for m > 0. We call τri the rth moment of the life time of
the process starting from any i = 1, 2, . . . N . For these moments, the
following moment generating recursions hold [22, 24, 28]:

r τr−1
i =

`
T+
i + T−i

´
τri − T+

i τri−1 − T−i τri−1, (15)

where for the zeroth moment we have τ0
i = φ0

i = 1, which is the
probability that the system fixes at i = 0 after an arbitrary number of
(but at least i) steps. Hence, for the mean life time, τi = τ1

i , i.e. the
first moment of the process, we find

1 =
`
T+
i + T−i

´
τi − T+

i τi−1 − T−i τi−1, (16)

which we can solve recursively. Introducing vi = τi − τi−1, we get

vi = T+
i /T

−
i vi+1 + 1/T−i , (17)

which, respecting the boundary condition and starting from vN =

1/T−N , solves to

vN−j =

jX
k=0

1/T−N−k

jY
l=k+1

T+
N−l/T

−
N−l. (18)

Changing N − j to j (and the upper limits of sum and product accord-
ingly), we see that

Pi
j=1 vj = τi, such that the mean life time, starting

from any i > 0, fulfills

τi =
iX

j=1

N−jX
k=0

1

T−N−k

N−jY
l=k+1

T+
N−l
T−N−l

. (19)

Similarly, all moments follow from Eq. (15), leading to Eq. (5) [24].
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Results and Discussion

Extinction events in two populations of comparable size

First, let us address the ratio of fixation to loss in the system of two sub-
populations of equal size. An ideal case for a locally controlled genetic
pest management strategy emerges when the resistant alleleA is at high
frequency in one local population and at very low frequency in another.
We can then ask: Given the situation of almost-allA in one population,
and almost-no A in the other, what is the probability of the allele A to
become extinct in both populations, φ0

i,j , relative to the probability to
reach complete fixation, φNi,j? The answer is given in Fig. 3, where
we give the ratio φNN−1,1/φ

0
N−1,1, for N1,2 = N = 40, as a function

of increasing fitness asymmetry 1 − ν, with the heterozygote fitness
kept constant at ω = 0.5. The ratio of loss to fixation of A approaches
zero for sufficiently low fitness ν. The rate of decay decreases with
increasing migration rate, which is to be expected as for low values of
m the system spends long times in the interior, compare Fig. 4.
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Figure 3: Initial condition near the internal stable state, i1 = N − 1, i2 = 1.
We show the ratio of fixation to loss of the underdominant allele in a system of
two populations of sizesN1,2 = 40, as a function of the difference of homozy-
gote fitness values 1 − ν. Results are obtained from 0.5 × 106 independent
simulations with a heterozygote fitness of ω = 0.5.

The replicator dynamics in two dimensions predicts a bifurcation
pattern and a maximum of nine fixed points (Fig. 1). Number and
stability of the interior fixed points are sensitively controlled by mi-
gration [18]. A stable interior equilibrium, if it exists, at migration-
selection balance is disturbed by the demographic fluctuations and will
ultimately result in fixation or loss of one of the alleles. Hence, one
is interested in the average extinction time under various parameter
configurations. To grasp an idea of how the system behaves in a sin-
gle realization, we draw three typical stochastic trajectories, Fig. 2. In
these examples, an important feature becomes evident. Naively one
would expect the system to spend more time near interior stable equi-
libria. However, the process spends most of its time in the adjacent
edges and corners of the joint allele frequency space. The system exits
the regions around stable points (e.g. near the (N1, 0) corner) via the
edge rather than on internal trajectories, see Fig. 2. This is because
the demographic noise is proportional to xi(1 − xi) [22]. Hence, in
the non-absorbing corners we expect long waiting times, between cor-
ners and along the symmetry axis i1 = i2 the system evolves relatively
fast. An example histogram of extinction events is given in Fig. 4. For
instance, the mean extinction time in a system with N1 = N2 = 40

alleles is approximately 1.4× 104 (or 350 generations) for very small
rates of migration. The extinction process spends most of its time near
the (N1, 0) or (0, N2) corner. For a very long time the underdominant
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Figure 4: Histogram of the extinction process and the according extinc-
tion times as functions of the migration rate in two equally large populations;
N1,2 = N , ν = 0.9, ω = 0.5, α = 0.5. The initial condition is the unstable
equilibrium near the center i1 = i2 ≈ N(1−ω/(1+ν−2ω)) (rounded to an
integer), the final state is (0, 0) in all cases. Top: Histogram across the entire
state space, conditioned on extinction, for N = 40, m = 0.025 (106 realiza-
tions). For each coordinate we give a record of the time spent. Black sites are
never visited, colored sites are visited at least once. The brighter the color, the
more often the respective site has been visited. Bottom; The mean extinction
time in generations (divided by N1,2 = N , averaged over 105 realizations) for
three different system sizes as a function of m, in a double logarithmic plot.
N1,2 = 20 (squares), N1,2 = 40 (circles), N1,2 = 80 (triangles).

allele is almost fixed in one population and almost lost in the other.
However, if migration becomes larger, the length of this quasi-stable
period decreases. Above certain population size dependent value of
migration (m ≈ 0.06 for N1,2 = 40) the slope changes significantly,
compare to Fig. 5.

The impact of system size in two equally large populations can now
be quantified in terms of the average extinction time of type A. Dif-
ferent sizes N1 = N2 lead to significantly faster divergence of the
extinction time. Fig. 4 indicates that the migration rate below which
extinction of the underdominant allele is strongly delayed, (i.e., below
the deterministic critical point) shifts the times to higher values with
increasing system size.

In general, considering the extinction time as a function of the mi-
gration rate reveals the transition from one power law to another in the
region of the critical migration rate of the replicator system. Depend-
ing on the migration rate, we can identify two regimes. In the first
regime, m < 0.05 the extinction time scales as∝ m−γ1 , with γ1 > 2.
In the second regime, m > 0.1 the extinction time scales as ∝ m−γ2 ,
with γ2 < 0.5. The two power law regimes for N1 = N2 = 40

are given in Fig. 5 for a realistic choice of genotypic fitness values
ν = 0.9 and ω = 0.5. This parameter configuration yields a criti-
cal value of µc ≈ 0.06, which can be determined numerically from
the replicator equation (2). Fig. 5 analyzes this transition quanti-
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Figure 5: The mean extinction time as a function of the migration rate (106

realizations) for N1,2 = 40, in a double logarithmic plot. Migration reaches
from 1.5 to 15 percent, mutant homozygote fitness ν = 0.9, heterozygote
fitness ω = 0.5. The initial condition is on the diagonal near the determin-
istic unstable equilibrium i1 = i2 ≈ N(1 − ω)/(1 + ν − 2ω). The arrow
indicates the value of critical migration rate of the deterministic replicator dy-
namics, Eq. (2), calculated numerically as µc ≈ 0.06. Inset: The probability
of extinction. This probability starts at approximately 2/3 (m = 0.015) and
settles to the value 0.531 (m > 0.1).
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Figure 6: Initial condition near the central unstable point i1 = i2 ≈ N(1 −
ω/(1 + ν − 2ω)) (rounded to an integer) with N = N1,2. We show the mean
extinction time (rescaled by N) as a function of the ’intensity of selection’ 1−ν
for N = 100 and different migration rates (105 realizations). The difference
between mutant homozygote fitness and heterozygote fitness is held constant,
ν − ω = 0.005. Circles: m = 0.01. Triangles: m = 0.15.

tatively for N1,2 = 40. The initial condition is chosen such that
i1 = i2 are at or close to the deterministically unstable equilibrium
i1,2 = N(1−ω)/(1+ν−2ω), which is near the most efficient release
strategy in terms of minimum release numbers [18]. In the regime of
low migration, m < 0.06, we find γ1 ≈ 2.54, whereas for m > 0.06,
we come to γ2 ≈ 0.25.

For the typical fitness configurations of ω being low and ν being al-
most one, the extinction probability becomes very high. Although our
model refers to the case of strong selection in population genetics [4],
we can implement weak selection, where fitness differences are of the
order of (or less than) 1/2N . Choosing ν = 1− δ and ω = ν− δ with
δ � 1 is such an example of weak fitness influence. It is surprising in
this context that the extinction time can have a maximum at intermedi-
ate values of δ, see Fig. 6. This, however, highly depends on the initial
condition, but not on the rate of migration. In the regime of weak selec-
tion (small fitness differences), as the system departs from neutrality,
there is increasing selective pressure to move away from joint fixation
in the two populations. In this case trajectories that may have almost
fixed initially continue to segregate and may ultimately become lost,

which results in a net increase in fixation times.

Temporary maintenance of polymorphism in an island population

The transition of one population approaching infinite size, while the
other remains relatively small, leads to a birth-death process in one
dimension. The one-dimensional case can be treated analytically in
the sense that we can solve the recursions for the moments. However,
the structure of the general solution Eq. (5) does not allow much further
insight at this point, an expansion of the ratio T+

k /T
−
k in orders of m

or δ = 1 − ν does not simplify the products and sums to a satisfying
degree. Hence, also here, we analyze the island population mostly
numerically, or by simulations.

The transition from high to low migration leads to a local change of
the gradient of selection T+

i − T−i , Eqs. (12) and (13). The boundary
i = 0 is absorbing, while i = N is reflecting,

T−N =
m(m(1− ω) + ω)

m(m(ν − 2ω + 1)− 2(ν − ω)) + ν
, (20)

which does not depend on the size of the island population. Further-
more, T+

i − T−i = 0 has the trivial solution i = 0, and depending on
m, ν, and ω, two non-trivial solutions are given by

i+,−
N

=
(3−m)ω − (1−m)ν − 2

2(m− 1)(ν − 2ω + 1)

±
p
ν ((1−m)2ν − 4m) + (1 +m)2ω2 − 2(1−m)2νω

2(m− 1)(ν − 2ω + 1)
,

(21)

which exists if ν
`
(1−m)2ν − 4m

´
+(1+m)2ω2 ≥ 2(1−m)2νω.

Hence, we obtain a point µ1D such that for

m <
ν(ν + 2)− 2νω − ω2 ± 2

p
ν(1 + ν − 2ω) (ν − ω2)

(ν − ω)2
(22)

the deterministic one-dimensional dynamics has a stable fixed point at
i−/N , and an unstable one at i+/N . In Fig. 7 we show histograms
from simulations of the one-dimensional island model (12) and (13).
For different migration rates, we see that the distribution changes sig-
nificantly: In our example, for very low migration rates the underdom-
inant allele is expected to be maintained in the system for more than
400 generations, when starting from an optimal release of i = N .

Summary and Conclusion

We have proposed a very simple model to predict the influence of small
system size connected with system size asymmetry on the evolutionary
dynamics of an underdominant allele in structured populations. As a
first step, the population structure itself is chosen to be as simple as
possible: We consider sub-populations of the same kind that exchange
migrants at a given rate. This has the benefit of allowing a comparison
with the predictions in infinitely large coupled populations [18, 16].

Firstly, for fitness asymmetry, extinction rather than total fixation of
the potentially underdominant allele is the most likely outcome, if this
allele has been at high frequency in one of the populations. Secondly,
we find that the migration rate has a strong impact on the extinction
times. Much like in the replicator dynamics, we identify a threshold
below which the potentially underdominant allele can be maintained
for a rather long time. We have confirmed that with increasing system
size, the extinction times diverge for sufficiently low migration rate.
Thirdly, the limit case of one population becoming very large also re-
veals that the underdominant allele can be kept in the small population
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Figure 7: Histograms of the extinction time on an island population for dif-
ferent migration rates in a log-linear plot. The other parameters are N = 10,
ν = 0.85, ω = 0.5. The data are from 107 independent simulations with initial
condition N . In the figure, each arrow indicates the mean extinction time τN ,
Eq. (19) (r = 0), where the values from simulation and the exact formula agree
nicely.

for long times. This refers to the desired situation in which one is in-
terested in the local establishment of disease resistance (caused by an
effector gene), driven by underdominance.

If selection is strong, even in small populations, for migration rates
not near critical boundaries, underdominance can maintain a polymor-
phic state for a very long period of time. This bodes well for using un-
derdominance to control initial testing of genetically modified insects
in isolated settings so that the natural species remains untransformed
in its broader range. For a wide range of parameter values the system
may be stable for so long that additional factors are likely to be more
important in ultimately disrupting the system. Such additional fac-
tors can be the occurrence of new mutations and/or behavioral changes
[29, 30, 31].

However, results from infinite population assumptions may, in some
cases, be misleading when observing finite allele frequencies. Un-
der demographic fluctuations with variances that are quadratic in allele
frequencies the stochastic process slows down near corners and along
edges. Due to this nature of the random drift we observe large wait-
ing times near the corners and transitions along edges, instead of long
periods near the stable internal equilibria.

It is likely that genetically modified chromosomes will be less fit
than wildtype as homozygotes, see [32] and references therein. This
homozygote fitness asymmetry provides a degree of failsafe into the
system. If stability is lost, the system is more likely to result in a return
to a natural wildtype state, rather than reaching fixation of an artificial
genetic modification across demes.
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CHAPTER 4
Conclusions

We see nothing of these slow changes in progress,
until the hand of time has marked the long lapses of ages,
and then, so imperfect is our view
into long past geological ages,
that we only see that the forms of life
are different now from what they formerly where.

Charles Darwin (The Origin of Species)

The results presented in this thesis concern two different approaches in the quantita-
tive description of population dynamics under Darwinian selection. On the one hand,
evolutionary game dynamics are considered with respect to the time to fixation of a given
strategy. On the other hand, a population genetic system of structured populations is
examined.
In the first part, the focus is on stochastic dynamics in evolutionary game theory

and the role of selection. Essentially, all models analyze the role of selection acting on
different strategies and how this effects the fixation probabilities and average fixation
(or extinction) times. They deal with finite populations in which two different classes
of one-step processes can be responsible for the evolutionary change. In the Moran
class of processes the reproductive success of a strategy is determined by the strategic
interactions through a payoff to fitness mapping. In the Fermi class, the population
evolves due to individual switching of strategies based on a pairwise comparison. Selection
is parameterized by a quantity called selection intensity and evolutionary dynamics can
be divided into different regimes.

The regime of neutral evolution has been studied in classical population genetics [Ewens,
2004; Kimura, 1994], and can be compared to the random walk in physics [Gardiner, 2008].
When the bias from selection is weak, many important insights can be obtained from the

130



4 Conclusions

weak selection expansion, which corresponds to a high temperature expansion in physical
systems. This concerns structured and unstructured systems alike [Gokhale and Traulsen,
2010; Kurokawa and Ihara, 2009; Nowak et al., 2004; Ohtsuki et al., 2006; Tarnita
et al., 2009a; Traulsen and Nowak, 2006]. Most analytical results in this regime focus
on the fixation probability, and make predictions for in which cases a mutation can be
classified as beneficial. In this thesis, contributions to such weakly biased systems in well
mixed populations have been presented. First, for the two most common representatives
of the classes mentioned above, the weak selection expansion for the average fixation
times are given. This reveales an interesting relation between the symmetry of the
underlying strategic interactions and the linear perturbation terms. Next, the weak
selection expansion is considered in a broader context, addressing the universality of
weak selection. The fact that this is been done for well mixed systems leaves the open
question of how such considerations will transfer to spatially heterogeneous populations.
Approaches to analytically tackle fixation times in weakly biased population dynamics
with evolutionary rules on networks are yet to be formulated. Typical weak selection
results for fixation times are invariant to changes in the microscopic dynamics. Can this
be carried over to systems with spatially heterogeneous interactions? In contrast to well
mixed populations, the outcome of evolutionary game dynamics crucially depends on
the microscopic rules, e.g., on the sequence of birth and death events in the evolutionary
update [Ohtsuki and Nowak, 2006a,b].
The regime of strong selection is less accessible analytically. For instance, the ’low

temperature’ limit of the one-step processes considered in this thesis in not analytical
in the selection intensity. However, a variant of the Moran process is discussed, such
that a deterministic strong selection limit is accessible. The resulting dynamics resemble
some properties of the deterministic replicator dynamics [Hofbauer and Sigmund, 1998].
The process builds a bridge between the biologically relevant case of weak selection
[Bustamante et al., 2002; Fay et al., 2002; Ohta, 1997], and results typically obtained
in evolutionary optimization [Mitchell, 1996; Prugel-Bennett and Shapiro, 1994]. Some
properties of the fixation probability and fixation times for slightly stronger selection
have been discussed recently [Mobilia and Assaf, 2010]. The co-evolutionary nature
of evolutionary game theory plays a fundamental role, namely that the advantage or
disadvantage of an invading mutant can change with its density [Drossel, 2001]. The
asymptotic scaling of the fixation times with system size in this context has been
known [Antal and Scheuring, 2006; Cremer et al., 2008], and for weak mutation rates
stationary distributions have been found [Claussen and Traulsen, 2005]. On intermediate
scales, between weak and strong selection, the average fixation times can behave non-
monotonically with increasing bias (selection). In this thesis, it is observed that for
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the typical classes of stochastic processes, e.g., for the one-step processes mentioned
above, ’stochastic slowdown’ can occur. This means that for biased random walks on
a (bounded) interval [Goel and Richter-Dyn, 1974; Redner, 2001], the mean exit time
increases with the bias, which is only possible if the transition rates depend on the density.
It will be interesting to compare the results of interactions between two strategies with
appropriately formulated measures in systems with more strategies.
In the second part, this thesis examines structured systems in terms of migration

between sub-populations with the same genetic fitness configuration. The goal is a
quantitative description of a migration-selection equilibrium with a bi-stable fitness
configuration, which can emerge in the case of heterozygote disadvantage in a specific
migration regime. The analysis of coupled populations is based on a rather simple
scheme with two coupled populations. This has the benefit of being widely traceable
analytically in the deterministic case. In addition, the stochastic model can be reduced
to an analytically accessible case when one population becomes much larger than the
other.

The resulting predictions aim at a technique for genetic pest management. In mosquitos,
the bi-stable dynamics can be coupled to a gene that causes resistance against a parasite
or a virus, which could prevent the virus from spreading to humans [Curtis, 1968].
Here, future research can include the effect of genotypic interactions that give rise to
more complex fitness configurations [Park and Krug, 2010]. This is of special interest
in structured populations, e.g., a small island and a large continent population, that
exchange migrants. The bi-stable nature of the direction of selection can guarantee some
degree of reversibility of such genetically modified systems even in coupled populations.
Here, it has to be mentioned that genetic modifications of insects are not new, but usually
consider other mechanisms, such as male sterility [Krafsur, 1998]. The approach using
heterozygote disadvantage to locally stabilize resistance can act as a complement to
those mechanisms. In this context is also desirable to study larger networks of migrant-
exchanging populations, where a profound description of heterozygote disadvantage has
been lacking so far.

In summary, this thesis is concerned with the process of fixation of a mutant strategy
or allele in finite populations, where fluctuations are a major feature. It concentrates
on the average time associated with this process. In the limit cases of weak and strong
selection, analytical approximations can be made. But also intermediate regimes, as well
as migration patterns between populations are analyzed and discussed.

With the methods presented here, we aim at understanding more about the influence
of Darwinian selection on stochastic dynamics in finite populations, and thus advance
the knowledge of the dynamics of evolution.
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