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Abstract
Concepts from algebraic geometry (polynomial rings) can be used to determine analytically the station-
ary solutions in chemical reactions systems, more generally, systems of ordinary differential equations
of polynomial form. The stability analysis via the Jacobian matrix often leads to complicated expres-
sions which can hardly be analyzed. It is shown that these expressions can be simplified by forming
quotient rings of the corresponding polynomial ring. The coefficients in the characteristic equation of
the Jacobian can be represented by the normal forms obtained by generating the quotient rings so that
their sign changes in dependence of a kinetic parameter and hence the stability can be determined. The
procedure is illustrated using a well-known surface reaction.

Key words: Toric Geometry; Quotient Rings; Mass Action Kinetics; Chemical Reaction Networks; Sto-
ichiometric Network Analysis

1 Introduction
Nonlinear phenomena, such as multistability and oscillations, occur in a large number of chemical as
well as biochemical systems. The experimental results could often be reproduced with numerical so-
lutions of corresponding kinetic models by direct integration and bifurcation analysis. However the
numerical task is often rendered very tedious due to a large parameter space and because some rate
constants may be unknown (or only known approximately).

Therefore analytical methods have been developed which allow the prediction of instabilities from
the stoichiometric network corresponding to the reaction system under consideration. On the basis
of stoichiometric network analysis (SNA) [1], and concepts from algebraic geometry [5, 9–13], the
stationary solutions of a chemical reaction system can be determined. This is possible since in general
chemical reaction systems have polynomial structure due to mass action rate law or can be transformed
into polynomials by the introduction of auxiliary variables [7, 13]. The procedure is defined as follows:
the stoichiometric matrix N and the flux vector v comprising the reaction rates of the chemical reaction
system give the kinetic equations. Additionally, the intersection of the kernel of the stoichiometric
matrix with the reaction rate space gives a convex polyhedral cone containing the nonnegative stationary
∗sonja@fhi-berlin.mpg.de
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reaction rates [1]. This cone is spanned by the so-called extreme currents. A convex combination of the
currents defines each element of the cone. Hence, the flux vector v can be expressed by the sum over the
currents with convex coefficients ji.

By generating a binomial ideal of the reaction rates and its Groebner basis a variable separation is pos-
sible which leads to the restrictive polynomials. Via the restrictive polynomials the convex coefficients
ji can be solved and a further transformation gives the set of the parameterized stationary concentrations
which represents a curve in the concentration space.

Usually, a stability analysis follows via the Jacobian matrix. But if the stationary concentrations are
complicated expressions, the stability analysis will be very difficult. A simplification of the coefficients
of the characteristic polynomial is possible by using quotient rings which eliminate the concentrations
and reaction rates as much as possible [10]. With the resulting expressions, sign changes in the coeffi-
cients in dependence of the kinetic parameters can be detected. The existence of a Hopf bifurcation (and
thus oscillations) can often be predicted from SNA alone [6], and its location in the kinetic parameter
space can be found using toric geometry [11, 12]. The derivation of multistability tends to be more dif-
ficult (for a procedure based on injectivity, see [3, 4]), and a simplification of the resulting expressions
(via quotient rings) is called for.

In order to illustrate the above-mentioned concepts, particularly the quotient rings, in detail we use
an abstract Langmuir-Hinshelwood mechanism [8]. In section 2 we carry out the stability analysis, the
algebraic concepts (and the notation) follow the book by Cox et al. [2]. As a real reaction system the
well-known carbon monoxide oxidation is investigated by the same procedure in section 4.

2 Langmuir-Hinshelwood Mechanism
Most surface reactions obey the well-known Langmuir-Hinshelwood (LH) mechanism: two educts have
to adsorb on the surface before reacting.

X1 + νx1 ∗ ¿ X1,ad

X2 + νx2 ∗ ¿ X2,ad

X1,ad + X2,ad → (νx1 + νx2) ∗ +X4,

where ∗ denotes a vacant surface site, νx1 and νx2 give the number of sites which are required for
adsorption of the corresponding species X1 and X2. The product X4 has to desorb sufficiently fast,
otherwise self-poisoning of the catalyst occurs. In [6] an abstract model of an LH mechanism was shown
which exhibits bistability, except for the degenerated case when the site requirements and adsorption
kinetics of X1 and X2 are exactly the same [8]. Due to the desorption X4 is not taken into account.

Setting νx1 = 2, νx2 = 1, x3 = ∗, and assuming constant pressures of X1 and X2, the pseudo
reaction equations of this model are given by

X1
k1−→ 2 X3

2 X3
k2−→ X1

X2
k3−→ X3

X3
k4−→ X2

X1 + X2
k5−→ 3 X3 (1)

and can be represented by the network diagram in Fig. 1 (left). The stoichiometric matrix N , the flux
vector v(x, k) comprising the reaction rates vj , and the kinetic matrix κ of the chemical reaction system
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Figure 1: Left: the network diagram of a Langmuir-Hinshelwood mechanism. X1, X2 represent the adsorbed
species and X3 denotes a vacant site. Right: the extreme currents Ei of the Langmuir-Hinshelwood mechanism.
E1 and E3 are equilibrium currents and hence stable. E2 is unstable due to the higher site requirement of X1. Note
that X4 is not taken into account since it has to desorb sufficiently fast.

in (1) are given by

N =




−1 1 0 0 −1

0 0 −1 1 −1

2 −2 1 −1 3


 , v(x, k) =




k1x1

k2x3
2

k3x2

k4x3

k5x1x2




, κ =




1 0 0 0 1

0 0 1 0 1

0 2 0 1 0


 . (2)

The reaction rates vj in v(x, k) are modelled with a mass action rate law vj(kj , x) = kj

∏m
i=1 xκij ,

whereby κij correspond to the kinetic exponents of species i in the reaction j which form kinetic matrix
κ. Then the kinetic equations are given by ẋ = N v(x, k):

ẋ1 = −k1x1 + k2x
2
3 − k5x1x2

ẋ2 = −k3x2 + k4x3 − k5x1x2

ẋ3 = 2 k1x1 − 2 k2x
2
3 + k3x2 − k4x3 + 3 k5x1x2

with a conservation relation of the total number of adsorption sites:

2 x1 + x2 + x3 = const. (3)

In the following sections the kinetic equations are solved via SNA and toric geometry. Note that we
work in the reaction rate space at the beginning.

2.1 Reduction of the Reaction Rate Space
Clarke has shown that the nonnegative stationary reaction rates lie in a convex polyhedral cone Kv [1].
This cone is obtained by the intersection of the kernel of the stoichiometric matrix N (2) with the positive
orthant of the r-dimensional reaction space Rr

≥0 (r is the number of reactions):

Kv = {v ∈ Rr |N v = 0, v ≥ 0} = (kerN ∩ Rr
≥0) =

{∑

i=1

jiEi, ji ≥ 0∀i
}

. (4)

The cone is spanned by the extreme currents Ei. Each element within the cone can be represented as a
nonnegative linear combination of the currents.

The stoichiometric matrix N in (2) exhibits three extreme currents (Fig.1 on the right):

E1 =




0
0
1
1
0




, E2 =




0
1
0
1
1




, E3 =




1
1
0
0
0




. (5)
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Then the flux vector can be expressed by the convex combination of the currents: v(j) =
∑t

i=1 jiEi:

v(j) =




j3
j2 + j3

j1
j1 + j2

j2




. (6)

2.2 Restrictive Polynomials
The mentioned current cone contains all physically possible solutions for the complete parameter set. It
is therefore desirable to pick from it the solutions generated by a given set of parameters ki. Generally a
system of r reactions, n species, d of which are independent exhibits an (r−d)-dimensional current cone
and n− d conservation constraints. For "well-behaved" dissipative systems (which contain a countable
number of stationary solutions, rather than a continuity) one therefore expects to find r − n restrictive
polynomials.

A polynomial ideal is generated by the monomial reaction rates vj(x, k) which are rewritten in a
binomial form vj − vj(x, k) and span the toric ideal

J = 〈v1 − k1x1, v2 − k2x3
2, v3 − k3x2, v4 − k4x3, v5 − k5x1x2〉. (7)

The set of zeros of this ideal is called toric variety. Note that the set of zeros of the basis elements of J
is equal to the set of zeros of the whole ideal J .

The restrictive polynomials are the result of a basis change of the ideal J . The transformation via a
Groebner basis (GB) leads to separation of variables. Since we are working in the reaction rate space
we like to separate the reaction rates vj from the concentrations xi. This requires the choice of an
elimination order. To obtain the following Groebner basis GBJ we choose the pure lexicographic order

GBJ = {−k2v4
2 + k4

2v2,v3v1k5 − k3k1v5,− v4 + k4x3,−v3 + k3x2,−v1 + k1x1} (8)

with variables ordering

{x1, x2, x3, v1, v2, v3, v4, v5}. (9)

Note that the toric variety is not affected by the choice of the basis due to Hilbert’s basis theorem. The
concentrations are eliminated in the first two polynomials in (8) (bold) which represent the restrictive
polynomials or the deformed toric variety. The reaction rates are confined to both the deformed toric va-
riety and the cone Kv . Hence, the nonnegative reaction rates must lie in the intersection of the deformed
toric variety and the cone

V (Idef,tor) ∩Kv. (10)

Since there is only one conservation relation between the variables the result of this intersection is a
curve [9]: Substituting the reaction rates in convex coordinates (6) the restrictive polynomials are:

0 = j1j3k5 − k1k3j2 (11)

0 = k2
4(j2 + j3)− k2(j1 + 2j2)2. (12)

By arbitrarily choosing one of the convex coordinates as curve parameter j, the other coordinates are
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given by:

j1 = 1/2

(
jk5k4 +

√
j2k5

2k4
2 + 8 k2k3k1j

2k5 + 4 k2j
3k5

2 + 4 jk2k3
2k1

2
)

k1k3k4

k2

(
2 k3k1jk5 + j2k5

2 + k3
2k1

2
)

j2 = 1/2

(
jk5k4 +

√
j2k5

2k4
2 + 8 k2k3k1j

2k5 + 4 k2j
3k5

2 + 4 jk2k3
2k1

2
)

k4jk5

k2

(
2 k3k1jk5 + j2k5

2 + k3
2k1

2
)

j3 = j. (13)

The curve of the deformed toric variety in the space of the reaction rates is related to the set of nonneg-
ative stationary concentrations via a special mapping (this a property of the intersection in (10)).

The set of stationary concentrations which results

{x ∈ Rm
≥0|∃ ki > 0 with N v(x, k) = 0} (14)

is mapped onto the intersection set of the deformed toric variety and the cone

{v|v ∈ V (Idef,tor), v ≥ 0, N v = 0} (15)

In one direction the mapping is given by v : x 7→ v(x, k). The inverse mapping (from the intersection
curve to the set of stationary concentrations) is v−1 : v(ji, k) 7→ x(ji, k) and can be calculated by the
Hermite normal form algorithm. For details and proofs of this relationship see [10, 11].

In general, the Hermite normal form H of a rectangular matrix of integers A is its reduced echelon
form. It holds that U A = H . For our purpose the Hermite normal form H of the kinetic matrix κ (2) is
required: U κ = H , (16). Then the matrix U contains the exponents of certain slack variables w which
will form monomials substituting the variables x, i.e. x(w) (17). Thereby it is possible to represent the
reaction rates in the slack variables too, v(w) (17).




1 0 0

0 0 1

0 1 0







1 0 0 0 1

0 0 1 0 1

0 2 0 1 0


 =




1 0 0 0 1

0 2 0 1 0

0 0 1 0 1


 , (16)

x(w) =




w1

w3

w2


 , v(w) =




k1w1

k2w
2
2

k3w3

k4w2

k5w1w3




. (17)

By setting v(w) = v(j, k) the slack variables in dependence of the curve parameter w(j, k) can be
calculated and resubstituted into x(w). Note that v(j, k) is the result of (6) and (13). Then with the slack
variables w1 = j3/k1 = j2/k5w3, w2 =

√
(j2 + j3)/k2 = (j1 + j2)/k4, and w3 = j1/k3 = j2/k5w1

the set of stationary concentrations in dependence of the curve parameter x(j, k) is given by:

x(j, k) =




j
k1

1/2

(
jk5k4+

√
j2k5

2k4
2+8 k2k3k1j2k5+4 k2j3k5

2+4 jk2k3
2k1

2
)

k1k4

k2(2 k3k1jk5+j2k5
2+k3

2k1
2)

1/2 jk5k4+
√

j(jk5
2k4

2+8 k2k3k1jk5+4 k2j2k5
2+4 k2k3

2k1
2)

(k3k1+jk5)k2




(18)
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3 Stability Analysis
The stationary concentrations (18) could be calculated analytically. However, the expressions appear
quite complicated. The stability analysis via the Jacobian matrix in the phase space seems to be im-
possible, because of the radical expressions in the stationary concentrations (18). Nevertheless, the
characteristic polynomial and the Hurwitz determinants in general represent polynomials in the vari-
ables x. So one may expect some advantages from using elimination theory once again. Actually, the
appearing polynomials can be efficiently reduced evaluating them with quotient rings.

3.1 Jacobian Matrix
The Jacobian matrix is given by

Jac(k, x) =




−k1 − k5x2 −k5x1 2 k2x3

−k5x2 −k3 − k5x1 k4

2 k1 + 3 k5x2 k3 + 3 k5x1 −4 k2x3 − k4


 . (19)

It has been proven by SNA that there is at least one saddle-node in the system. Bistability has been
found numerically for a certain range of parameters. The question is now to determine this parameter
range more precisely. Taking into account the conservation relation of total adsorption sites, the three-
dimensional system becomes two-dimensional with the general form of the characteristic polynomial
cp = a2λ

2 + a1λ + a0:

cp =λ2 + (k4 + 4 k2x3 + k5x2 + k3 + k1 + k5x1)λ

− 2 k5x2k2x3 + 4 k5x1k2x3 + k5x2k4 + k5x2k3

+ 4 k3k2x3 − 2 k5x1k4 + k1k5x1 + k1k4 + k1k3. (20)

Bistability occurs only if a0 has at least two sign changes [1]. It is a polynomial in the concentrations x.
Substituting here the stationary concentrations, no conclusions concerning the number of sign changes
can be made because of the complexity of the expressions. Hence, quotient rings are used in order to
simplify a0.

3.2 Theory of Quotient Rings
Definition 1. Let k[x1, . . . , xn] be a polynomial ring, let I ⊂ k[x1, . . . , xn] be an ideal, and let f, g ∈
k[x1, . . . , xn]. We say f and g are congruent modulo I , written

f ≡ g mod I, (21)

if f − g ∈ I . Then congruence modulo I is an equivalence relation on k[x1, . . . , xn]. (An equivalence
relation on a set S partitions S into a collection of disjoint subsets called equivalence classes.) For any
f ∈ k[x1, . . . , xn], the class f is the set

[f ] = {g ∈ k[x1, . . . , xn] : g ≡ fmod I}. (22)

Definition 2. The quotient of k[x1, . . . , xn] modulo I , written k[x1, . . . , xn]/I , is the set of equivalence
classes for congruence modulo I:

k[x1, . . . , xn]/I = {[f ] :∈ k[x1, . . . , xn]}. (23)

A special case occurs, if we take a Groebner basis GBI for the ideal I and a polynomial
f ∈ k[x1, . . . , xn]. Fixing a monomial ordering on k[x1, . . . , xn] and applying the division algorithm
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(Buchberger algorithm), the remainder r (normal form) satisfies f = q + r, where q ∈ I . Hence,
f − r = q ∈ I , so f ≡ r mod I . In this case the remainder, i.e. the normal form, becomes unique. [2]
Note that the generation of the normal form requires a monomial ordering. We will choose the pure
lexicographic order again.

Example 1. Let I = 〈z1 − k1x1, z2 − k2x1x2, z3 − k1x2〉 be an ideal and let GBI = {gb1 =
k2z1z3−k2

1z2, gb2 = k1x2−z3, gb3 = k1x1−z1} be its corresponding Groebner basis with respect to the
pure lexicographic order {x1, x2, z1, z2, z3}. Further let f = k1k2x1 +k1x1x2−k2x

2
2 ∈ k[x1, . . . , xn]

be a polynomial the normal form of which is of interest. Then f − r can be represented as a sum of
multiples of the elements of GBI

f − r = c1gb1 + c2gb2 + c3gb3, (24)

where

c1 =
1

k1k2
, c2 = x1 − k2x2

k1
− z3k2

k2
1

, c3 = k2 +
z3

k1
,

and

r = normal f(f, GBI) = z1k2 +
k1z2

k2
− z2

3k2

k2
1

. (25)

One sees that this method eliminates the variables x1 and x2. This concept will be applied to
the coefficient a0 of the characteristic polynomial in order to obtain the number of sign changes.

3.3 Normal Forms
In the following analysis two quotient rings and normal forms of a0 will be considered. The first one is
induced by the ideal J (7) with its Groebner basis GBJ (8). The second one is induced by the ideal

I =〈v1 − j3, v2 − j2 − j3, v3 − j1, v4 − j1 − j2,

v5 − j2,−k2v4
2 + k4

2v2, v3v1k5 − k3k1v5〉, (26)

see (6), with the Groebner basis

GBI ={2 k5j1
2k2j2 + k2j2

2k5j1 + k5j1
3k2 − k5j1k4

2j2 − k4
2k3k1j2,−2 k2j1j2

− k2j2
2 − k2j1

2 + k4
2j3 + k4

2j2, v5 − j2, v4 − j1 − j2, v3 − j1, k4
2v2

− 2 k2j1j2 − k2j2
2 − k2j1

2, v1k4
2 − 2 k2j1j2 − k2j2

2 − k2j1
2 + k4

2j2} (27)

with respect to the pure lexicographic monomial order with variables ordering

{v1, v2, v3, v4, v5, j3, j2, j1}. (28)

These two ideals, J and I , have in common that all of their elements vanish at steady state. This
fact is trivial for the ideal I . The elements of the ideal J vanish because the stationary reaction rates
lie in the convex flux cone and in the toric variety. This has the effect that every polynomial, which is
expanded with respect to the polynomials of the two Groebner bases, reduces to its normal form when it
is evaluated at steady state.
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The normal form of the polynomial a0 modulo the Groebner basis GBJ is a polynomial in the reaction
rates v. It reads

normal f(a0, GBJ) =
1

k1k3k4
(4 k3

2k2k1v4 + k1k5k4k3v3 + k1k5k4
2v3

− 2 k5k2k1v4v3 − 2 k5k4
2v1k3 + k5k4k1v1k3

+ 4 k5k2v4v1k3 + k1
2k3

2k4 + k1
2k4

2k3). (29)

To evaluate this term at steady state, one just has to substitute the stationary flux vector in convex pa-
rameters j. This has the advantage that one gets rid of the radical terms of the stationary concentrations.
However, since three convex parameters are reintroduced, one can hardly find the bistability region in the
space of kinetic parameters. Nevertheless, it is possible to eliminate some convex parameters, mapping
the normal form normal f(a0, GBJ) into the second quotient ring which is induced by the ideal I . In
this space one has to consider the normal form normal f(a0, GBJ) modulo the Groebner basis GBI ,
normal f(normal f(a0, GBJ), GBI)

normal f(normal f(a0, GBJ), GBI) =
1

k3
4k1k3

(k1
2k3

2k4
3 + k1

2k4
4k3 + 4 k3

2k2k1k4
2j1 + k5k4

3k1k3j1

+ k5k4
4k1j1 − 2 k5k2k1k4

2j1
2 − 2 k5k4

2k3k2j1
2 + k5k4k3k1k2j1

2

− 8 k5k2
2k3j1

3 + 16 k3
2k2k1k4

2j2 + 2 k5k4
4k3j2 − k5k4

3k3k1j2

+ 4 k5k2k3j1k4
2j2 − 2 k5k2k1k4

2j2j1 + 2 k5k4k3k1k2j1j2

− 12 k5k2
2k3j2j1

2 − 6 k5k2k3j2
2k4

2 + k5k4k3k1k2j2
2 + 4 k5k2

2k3j2
3). (30)

A sign change in this expression is equivalent to a sign change in the coefficient a0. To account for
bistability this expression must change sign at least twice.

It is now necessary to check the influence of the remaining convex parameters j1 and j2 on the number
of sign changes of normal f(normal f(a0, GBJ), GBI). For very low values of j1 the second extreme
current is predominating. In the limit j1 → 0 the expression for normal f(normal f(a0, GBJ), GBI)
reads

limj1→0normal f(normal f(a0, GBJ), GBI) =
1

k3
4k1k3

(4 k5k2
2k3j2

3 + (−6 k5k4
2k3k2 + k5k3k4k1k2)j22

+ (16 k3
2k2k1k4

2 + 2 k5k4
4k3 − k5k4

3k1k3)j2 + k1
2k3

2k4
3 + k1

2k4
4k3). (31)

For very low and very high values of j2 this expression is positive for all values of kinetic parameters.
The system is stable. Looking closer at the coefficients of the expression as a polynomial in j2

normalf(normalf(a0, GBJ), GBI) = c3j
3
2 + c2j

2
2 + c1j2 + c0

it becomes clear from Descartes’ rule of sign that there may be at most two sign changes depending on
the choice of parameters.

c1 = 16 k2
3k2k1k

2
4 + k3

4k5k3(2 k4 − k1)
c2 = k5k4k3k2(−6 k4 + k1). (32)

Note that the coefficients c3 and c0 are always positive. Most important is the relation between k4 and
k1. Consequently two cases must be distinguished:
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Figure 2: LH mechanism. (Left) Bistability is given for k1 = k3 = 0.25, k2 = k4 = k5 = 4, c = 4. The
curve of the stationary concentration intersects the plane of the conservation relation three times. (Right) For
k1 = 6, k2 = k4 = k5 = 4, k3 = 0.417, c = 4.5508 the two saddle-node bifurcations come together in a cusp.

k1 < 6 k4: c2 is negative. a0 and normal f(normal f(a0, GBJ), GBI) can have two sign
changes. Bistability is possible.

k1 > 2 k4: For high values of k3 both coefficients c1 and c2 are positive. It follows that a0 and
normal f(normal f(a0, GBJ), GBI) have no sign change for any constellation of kinetic parameters.
The system is monostable. For 16 k2k3 < k4k5 and low values of k3 the coefficient c1 becomes negative,
but this only leads with c2 < 0 to a sign change in normal f(normal f(a0, GBJ), GBI). A second
region of bistability can be excluded. The condition that c2 is positive before c1 becomes negative (with
increasing k1) requires a parameter constellation such that normal f(normal f(a0, GBJ), GBI) can
not have two sign changes since the other coefficients grow faster (with increasing k1 or j2) than c1.

Hence, bistability is assured by k4 > k1, see left in Fig. 2. In Fig. 2 (right), a parameter con-
stellation is given for a cusp – for higher values of k3 the system becomes monostable. In both
Figures we use the conservation relation (3) as a plane in the concentration space given by c =
2 x1 + x2 + x3. For very low values of j2 the first extreme current predominates. In the limit j2 → 0
the normalf(normalf(a0, GBbJ), GBI) reads

limj2→0normal f(normal f(a0, GBJ), GBI) =
1

k3
4k3k1

(−8 k5k3k2
2j1

3 + (−2 k5k2k1k4
2 − 2 k5k2k3k4

2 + k5k4k3k1k2)j12

+ (4 k3
2k2k1k4

2 + k5k4
3k1k3 + k1k5k4

4)j1 + k3
2k1

2k4
3 + k1

2k4
4k3) (33)

Evidently, this expression can have at most one sign change. It follows that a0 may have at most
one sign change for all values of kinetic parameters and the system cannot become bistable for high
values of j1. It is known from SNA that, in fact, the first and third extreme currents are stable equilib-
rium currents which by themselves exhibit a zero eigenvalue that is not relevant for the stability problem.

Remark Generating a normal form of a0 modulo GB requires a variables ordering for both GB
and the normal form. Assumed that the variables ordering is the same for both there are six pos-
sibilities concerning the convex parameter ji. With variables ordering {v1, v2, v3, v4, v5, j1, j2, j3}
and {v1, v2, v3, v4, v5, j1, j3, j2} no convex parameter is eliminated. {v1, v2, v3, v4, v5, j2, j1, j3} and
{v1, v2, v3, v4, v5, j2, j3, j1} lead to normal forms without j2. The ordering {v1, v2, v3, v4, v5, j3, j1, j2}
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or {v1, v2, v3, v4, v5 ,j3, j2, j1} eliminates j3 and the resulting normal forms are the same. Of course
there are more possibilities, but this problem is discussed in section 5.

4 Carbon Monoxide Oxidation
As a real reaction system the CO oxidation on platinum exemplifies the abstract LH mechanism. Both
LH mechanism and CO oxidation have been studied in detail in [6]. The CO oxidation consists of
dissociative adsorption of oxygen (which requires 2 adjacent sites), adsorption and desorption of CO (1
site), surface reaction and a step taking asymmetric inhibition into account, i. e. CO can adsorb on an
O-covered surface, where it reacts practically immediately; the desorption of oxygen is neglected.

Denoting Oad, COad, and ∗ with X1, X2, and X3, respectively, leaving out the nonessential gaseous
species and neglecting the very short coexistence of [Oad + COad] in the last process, the reactions of
the CO oxidation mechanism become the pseudoreactions

2 ∗+ O2 −→ 2 Oad 2 X3
k2−→ 2 X1

COad −→ ∗+ CO X2
k3−→ X3

∗+ CO −→ COad X3
k4−→ X2

Oad + COad −→ 2 ∗+CO2 X1 + X2
k5−→ 2 X3

Oad + CO→ [Oad + COad] →∗+CO2 X1
k1−→ X3

(34)

The corresponding network diagram is shown in Fig. 3 on the left. Note that the order of the rate
constants is adapted to the abstract model of the LH mechanism, see section 2.

The kinetic equations are

ẋ1 = −k1x1 + 2 k2x3
2 − k5x1x2

ẋ2 = −k3x2 + k4x3 − k5x1x2

ẋ3 = k1x1 − 2 k2x3
2 + k3x2 − k4x3 + 2 k5x1x2

with the conservation relation

x1 + x2 + x3 = const. (35)

The stoichiometric matrix N , the flux vector v, and the kinetic matrix κ are given by

N =




−1 2 0 0 −1

0 0 −1 1 −1

1 −2 1 −1 2


 , v =




k1x1

k2x3
2

k3x2

k4x3

k5x1x2




κ =




1 0 0 0 1

0 0 1 0 1

0 2 0 1 0


 . (36)

Using (4), the extreme currents which span the cone and the flux vector with convex parameters are
obtained, see (37). The extreme currents as diagrams are shown in Fig. 3.

E1 =




0
0
1
1
0




, E2 =




0
1
0
2
2




, E3 =




2
1
0
0
0




, v(j) =




2 j3
j2 + j3

j1
j1 + 2j2

2j2




. (37)

Following section 2.2 we use the Groebner basis of the toric variety which is generated by the reaction
rates vj − vj(x, k) to separate the reaction rates from the concentrations. The resulting deformed toric
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Figure 3: The network diagram DN of the CO oxidation and the extreme currents Ei. X1 represents O, X2 is
CO, and a vacant site is denoted by X3. E1 and E3 are an equilibrium respectively pseudoequilibrium current and
therefore stable, E2 is unstable.

variety – the elements of the Groebner basis which are independent of the concentrations – is intersected
with the cone, see (10). Subsequently, the convex parameters ji can be solved for and via the Hermite
normal form algorithm (see section 2.2) the parameterized set of the stationary solutions are obtained:

x(j) =




2 j
k1

1/2

(
jk5k4+

√
j2k5

2k4
2+16 k2k3k1j2k5+16 k2j3k5

2+4 jk2k3
2k1

2
)

k1k4

k2(4 jk3k1k5+4 j2k5
2+k3

2k1
2)

1/2 jk5k4+
√

j(jk5
2k4

2+16 k2k3k1jk5+16 k2j2k5
2+4 k2k3

2k1
2)

(k3k1+2 k5j)k2




(38)

4.1 Stability Analysis
Since the radical expressions of the stationary concentrations make the stability analysis via the Jacobian
matrix,

Jac(v) =




−k1 − k5x2 −k5x1 4 k2x3

−k5x2 −k3 − k5x1 k4

k1 + 2 k5x2 k3 + 2 k5x1 −4 k2x3 − k4


 , (39)

difficult, the concept of quotient rings is used to simplify the coefficient a0 of the characteristic polyno-
mial cp = λ2 + a1 λ + a0:

cp =λ2 + (k5x1 + k5x2 + 4 k2x3 + k3 + k1 + k4) λ

+ k5x2k3 + k5x2k4 + k1k3 + 4 k3k2x3 − k5x1k4

+ k1k4 + 4 k5x1k2x3 + k1k5x1 − 4 k5x2k2x3. (40)

For bistability at least two sign changes in the coefficient a0 are required. These sign changes are
investigated by the normal form of a0

normal f(normal f(a0, gbJ), gbI) =
1

k3
4k1k3

(k1
2k3

2k4
3 + k1

2k4
4k3 + 4 k3

2k2k1k4
2j1 + k5k4

3k1k3j1 + k5k4
4k1j1

− 4 k5k2k1k4
2j1

2 − 2 k5k4
2k3k2j1

2 + 2 k5k4k3k1k2j1
2 − 16 k5k2

2k3j1
3

+ 32 k3
2k2k1k4

2j2 + 2 k5k4
4k3j2 − 2 k5k4

3k3k1j2 + 8 k5k2k3j1k4
2j2

− 8 k5k2k1k4
2j2j1 + 8 k5k4k3k1k2j1j2 − 48 k5k2

2k3j2j1
2 − 24 k5k2k3j2

2k4
2

+ 8 k5k4k3k1k2j2
2 + 64 k5k2

2k3j2
3). (41)
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As in section 3.3 we examine the influence of the convex parameters on the number of sign changes of
the normal form (41). Note the remaining convex parameters are the same as in (30): j1 and j2. For
very small j1, one obtains

limj1→0normal f(normal f(a0, GBJ), GBI) =
1

k3
4k1k3

(64 k3k5k2
2j2

3 + (−24 k5k2k3k4
2 + 8 k5k4k3k1k2)j22

+ (32 k3
2k2k1k4

2 + 2 k5k4
4k3 − 2 k5k4

3k3k1)j2
+ k1

2k3
2k4

3 + k1
2k4

4k3). (42)

The coefficients are

c0 = k1
2k3

2k4
3 + k1

2k4
4k3

c1 = 32 k3
2k2k1k4

2 + 2 k5k4
3k3(k4 − k1)

c2 = 8 k5k4k3k2(k1 − 3 k4)

c3 = 64 k3k5k2
2. (43)

c0 and c3 are always positive. c1 and c2 are similar to the coefficients in (32). We know that a sign
change in normal f(normal f(a0, GBJ), GBI) is given if either c2 is negative or both coefficients c1

and c2 are negative and bistability for high values of k1 can be excluded. Additionally, this situation is
physically impossible since the two processes (reactive removal of adsorbed O and adsorption of CO)
are both (practically) equal to the impingement rate of CO, hence k1 . k4. Consequently, the conditions
for bistability have to be obtained from c2, namely k1 < 3 k4.

The parameter constellation is approximately the same as before to show bistability and the cusp, see
Fig. 4.

The influence of a small second extreme current can be derived by the expression

limj2→0normal f(normal f(a0, GBJ), GBI) =
1

k3
4k1k3

(−16 k3k5k2
2j1

3 + (−4 k5k2k1k4
2 − 2 k5k2k3k4

2 + 2 k5k4k3k1k2)j12

+ (4 k3
2k2k1k4

2 + k5k4
3k1k3 + k1k5k4

4)j1 + (k1
2k3

2k4
3 + k1

2k4
4k3)), (44)

which can have at most one sign change. Hence, the system cannot become bistable for high values of
j1.

5 Discussion
We analytically showed the existence of bistability in typical LH mechanisms. Since the solutions
resulted in complicated expressions, a simplification via quotient rings was introduced successfully. The
relevant coefficient of the characteristic polynomial of the Jacobian matrix was simplified by substituting
variables which can be partially eliminated. This led to polynomial expressions, normal forms, a sign
change in the coefficients of which could be found and parameter constellations were given to show
bistability and a cusp.

The problem of the concept of quotient rings is to find the best variables ordering determining the
convex parameter j which is possibly eliminated concerning the resulting normal forms. Three con-
vex parameters means there are six possibilities of ordering assuming the ordering is preserved for the
corresponding Groebner basis and the resulting normal form. Since it is known from SNA that the sec-
ond extreme current is unstable, the resulting normal form has to contain this extreme current. Hence,
orderings which eliminate j2 can be neglected since the resulting normal forms have at most only one
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Figure 4: CO oxidation. (Left) Bistability results for k1 = 0.5, k3 = 0.25, k2 = k4 = k5 = 4, c = 2.1.
The curve of the stationary concentration intersects the plane of the conservation relation three times. (Right) For
k1 = 6, k2 = 4, k3 = 0.4136, k4 = k5 = 4, c = 2.71856 a cusp occurs.

zero, excluding bistability. Several orderings do not lead to an elimination of any convex parameter and
complicate the stability analysis. Different variables ordering for Groebner basis and resulting normal
form were not tested. In this context it should be helpful to use not the affine toric ideal J , but its
homogeneous form, a projective toric ideal.

It has been shown that the application of the projective toric ideal reduces the number of normal forms
using all possible variables orderings [2]. These expressions enable an investigation of the individual
influences of the kinetic parameters. In our case the resulting projective toric variety is a plane in the
flux cone. If it is cut by a normalizing plane, it becomes a curve. This means that the curve of stationary
fluxes is projected onto a plane 1−∑

i=1 ji. The stability analysis for the steady states on this curve is
equivalent to the stability analysis for the whole flux cone. This concept including projective varieties
and quotient rings may offer a more detailed and more easily applicable stability analysis and will be the
subject of further investigations.
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