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Abstract. The standard for the analysis of distorted voices is perceptual rating
of read-out texts or spontaneous speech. Automatic voice evaluation, however,
is usually done on stable sections of sustained vowels. In this paper, text-based
and established vowel-based analysis are compared with respect to their ability
to measure hoarseness and its subclasses. 73 hoarse patients (48.3 ± 16.8 years)
uttered the vowel /e/ and read the German version of the text “The North Wind
and the Sun”. Five speech therapists and physicians rated roughness, breathiness,
and hoarseness according to the German RBH evaluation scheme. The best
human-machine correlations were obtained for measures based on the Cepstral
Peak Prominence (CPP; up to |r | = 0.73). Support Vector Regression (SVR) on
CPP-based measures and prosodic features improved the results further to r ≈ 0.8
and confirmed that automatic voice evaluation should be performed on a text
recording.

1 Introduction

Evaluation of voice distortions is still mostly performed perception-based. Perception
of voice qualities, however, is too inconsistent among single raters to establish a
standardized and unified classification. The average opinion of a panel of raters is more
consistent, but this approach is not suitable for clinical application. The ideal solution
would be objective, automatic assessment.

The perception experiments are applied to spontaneous speech, read-out standard
sentences, or standard texts. In contrast, already used methods of automatic analysis
rely mostly on sustained vowels [13]. The advantage of speech recordings, however, is
that they contain phonation onsets, variation of F0 and pauses [16]. Furthermore, they
allow to evaluate speech-related criteria, such as intelligibility [5]. For this reason, also
for the automatic evaluation, speech recordings should be used. This paper focuses on
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the automatic assessment of hoarseness and its subclasses by means of prosodic and
cepstral analysis.

Hoarseness is a psycho-acoustically defined measure which was originally believed
to be distinct of the other two categories roughness (or harshness) and breathiness.
Nowadays, hoarseness is often seen as the superclass of these categories [1]. The
Roughness-Breathiness-Hoarseness (RBH) evaluation scheme [15] takes this into
account. It is an established means for perceptual voice assessment in German-speaking
countries and serves as the reference for the automatic analysis presented in this paper.

Most studies on automatic voice evaluation use perturbation-based parameters, such
as jitter, shimmer, or the noise-to-harmonicity ratio (NHR, [13]). However, perturbation
parameters have a substantial disadvantage. They require exact determination of the
cycles of the fundamental frequency F0. In severe dysphonia it is difficult to find an
F0 due to the irregularity of phonation. This drawback can be eliminated by using the
Cepstral Peak Prominence (CPP) and the Smoothed Cepstral Peak Prominence (CPPS)
which represent spectral noise. They do not require F0 detection and showed high
human-machine correlations in previous studies [2,6,9].

The questions addressed in this paper are the following: How do cepstral- and text-
based prosodic measures perform in comparison to established, vowel-based measures?
How well does cepstral-based analysis correspond to perception-based RBH evaluation
when it is supported by prosodic analysis?

In Sect. 2, the audio data and perceptual evaluation will be introduced. Section 3
will give some information about the cepstral analysis, Sect. 4 describes the vowel
analysis with the Praat software. An overview of the prosodic analysis and Support
Vector Regression will be presented in Sect. 5 and 6, and Sect. 7 will discuss the results.

2 Test Data and Subjective Evaluation

73 German subjects with chronic hoarseness (24 men and 49 women) between 19 and
85 years of age participated in this study. The average age was 48.3 years with a standard
deviation of 16.8 years. Patients suffering from cancer were excluded. Each person
uttered the vowel /e/ and read the text “Der Nordwind und die Sonne” (“The North
Wind and the Sun”, [11]), a phonetically balanced standard text which is frequently
used in medical speech evaluation in German-speaking countries. It contains 108 words
(71 distinct) with 172 syllables. The data were recorded with a sampling frequency
of 16 kHz and 16 bit amplitude resolution using an AKG C 420 microphone (AKG
Acoustics, Vienna, Austria).

The text recordings were evaluated perceptually by 5 speech therapists and physi-
cians according to the German Roughness-Breathiness-Hoarseness (RBH) scale [15].
Each of the three criteria can be evaluated on a 4-point scale where ‘0’ means “ab-
sent” and ‘3’ means “high degree”. In order to capture the fact that hoarseness is the
superclass, the H rating must have either the same or a higher rating than R or B. RBH
represents a short version of the GRBAS scale [10], with the categories “asthenia” and
“strain” omitted.



Automatic Rating of Hoarseness by Cepstral and Prosodic Evaluation 575

3 Cepstral Analysis

The Cepstral Peak Prominence (CPP) is the logarithmic ratio between the cepstral
peak and the regression line over the entire cepstrum at this quefrency. A strongly
distorted voice has a flat cepstrum and a low CPP due to its inharmonic structure.
The computation of CPP and the Smoothed Cepstral Peak Prominence (CPPS) was
performed by means of the free software “cpps” [8] which implements the algorithm
introduced by Hillenbrand and Houde [9]. The cepstrum was computed for each
10 ms frame, CPPS was averaged over 10 frames and 10 cepstrum bins. The vowel-
based results will be denoted by “CPP-v” and “CPPS-v”. For the automatic speech
evaluations (“CPP-NW” and “CPPS-NW”), the first sentence only (approx. 8–12
seconds, 27 words, 44 syllables) of the read-out text was used. Sections in which the
patients laughed or cleared their throat were removed from the recording for this pilot
experiment by hand.

4 Analysis of Sustained Vowels with Praat

The automatic analysis of the sustained vowels (/e/) with respect to established
irregularity measures was performed using the software Praat 5.1 [4]. An overview
of the features is given in Table 1. For this vowel analysis, sections of at least 0.5
seconds duration of stable phonation excluding onset and offset were evaluated. From
17 speakers, a section of 0.7 seconds could be extracted; from 36 speakers, a full second
was available. Although several measures are F0-based, men and women were not
analyzed separately for this study. The reason is that the goal of the analysis was to
find measures which can be used independently of the speaker’s gender, just like the
human raters do not need different evaluation methods for men and women.

5 Prosodic Features

In order to find automatically computable counterparts for the RBH criteria, also a
“prosody module” was used to compute features based upon frequency, duration and
speech energy (intensity) measures.

The prosody module processes the output of a word recognition module [5] and
the speech signal itself. Hence, it can use the time-alignment of the recognizer
and the information about the underlying phoneme classes. For each speech unit of
interest (here: words), a fixed reference point has to be chosen for the computation of the
prosodic features. This point was chosen at the end of a word because the word is a well-
defined unit in word recognition, it can be provided by any standard word recognizer,
and because this point can be more easily defined than, for example, the middle of the
syllable nucleus in word accent position. For each reference point, 28 prosodic features
are computed which refer to a single word or the pause between two words. Ten of these
features are additionally computed for a word-pause-word interval. A full description
of the features used is beyond the scope of this paper; details and further references are
given in [3].
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In addition to the 38 local features per word position, 15 global features were
computed from jitter, shimmer and the number of voiced/unvoiced decisions for each
15-word interval. They cover the means and standard deviations for jitter and shimmer,
the number, length and maximum length each for voiced and unvoiced sections, the
ratio of the numbers and ratio of the durations of voiced and unvoiced sections, the
ratio of length of voiced sections to the length of the signal, and the same for unvoiced
sections. The last global feature is the standard deviation of F0.

6 Support Vector Regression (SVR)

In order to find the best subset of the prosodic features and cepstral measures to model
the subjective ratings, Support Vector Regression (SVR, [17]) was used. The general
idea of regression is to use the vectors of a training set to approximate a function
which tries to predict the target value of a given vector of the test set. Here, the
training set comprises the automatically computed measures, and the test set consists
of the subjective RBH scores. For this study, the sequential minimal optimization
algorithm (SMO, [17]) of the Weka toolbox [18] was applied in a 10-fold cross-
validation manner.

7 Results and Discussion

For all three perceptual RBH criteria, the entire range between 0 and 3 was covered.
The average values were 1.56 (standard deviation: 0.83) for R, 1.19 (0.81) for B, and
1.84 (0.84) for H (see also [14]).

The correlations between the perceptual evaluation and the single automatic measures
are given in Table 1. For all evaluated criteria, the best results for single objective mea-
sures were obtained for CPPS-NW. The text-based CPP-NW and CPPS-NW perform
remarkably better than all the vowel-based measures, including CPP-v and CPPS-v.

The SVR on all available measures, i.e. the Praat and CPP-based features, and
the prosodic features, revealed higher correlations than on the single measures. Two
feature sets were identified, where one was optimal for R and H and the other one
for B (Table 2). For all criteria, CPPS-NW, the normalized energy in word-pause-word
intervals (EnNormWPW), the average minimal F0 of each word (F0MinWord), and the
average F0 at voice offset (F0OffWord) were in the respective set. Additionally, the
duration of all unvoiced sections in the signal (Dur–Voiced) was part of the best set for
breathiness. None of the vowel-based measures contributed to the best feature sets. This
clearly indicates the need for text-based automatic evaluation.

The energy value EnNormWPW may contribute strongly to the best feature sets,
because it was normalized with respect to healthy speakers [3]. Loudness effects are
removed by the normalization, but if a person has a hoarse and irregular voice, then the
energy level especially in the high frequency portions is higher than for normal speakers.
The impact of the F0 values F0MinWord and F0OffWord can be explained by the noisy
speech that causes octave errors during F0 detection, i.e. instead of the real fundamental
frequency, one of its harmonics is found. With more “noisy speech”, this may influence
the F0 trajectory and hence the correlation to the subjective results. It is not clear so far,
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Table 1. Correlation r between perceptual and automatic evaluation (**: significant on the 0.01
level, *: significant on the 0.05 level); the perceptual result was the mean value of all raters. The
names of the features in the first part of the table follow the names used in Praat [4]; APQ11 was
computed for 72 patients only due to an invalid value for one patient.

data feature(s) R B H

vowel Jitter local 0.33** 0.54** 0.51**
vowel Jitt local absolute 0.33** 0.28* 0.34**
vowel RAP (Rel. Avg. Perturb. Quotient), jitter of 3 periods 0.26* 0.39** 0.38**
vowel PPQ5 (Pitch Perturb. Quotient), jitter of 5 periods 0.24* 0.32** 0.33**
vowel Shimmer local 0.38** 0.56** 0.58**
vowel Shimmer local absolute 0.39** 0.56** 0.59**
vowel APQ11 (Amplitude Perturb. Quotient of 11 periods) 0.34** 0.41** 0.47**
vowel NHR (N of [1500;4500] Hz / H of [70;4500] Hz) 0.34** 0.54** 0.53**
vowel HNR (Mean harmonicity-to-noise ratio) –0.40** –0.57** –0.59**

vowel CPP-v (Cepstral Peak Prominence, vowel-based) –0.25* –0.60** –0.53**
vowel CPPS-v (smoothed CPP, vowel-based) –0.17 –0.52** –0.44**
text CPP-NW (Cepstral Peak Prominence, text-based) –0.47** –0.69** –0.69**
text CPPS-NW (smoothed CPP, text-based) –0.52** –0.69** –0.73**

v.+t. SVR on all features: best set for B 0.72** 0.82** 0.77**
v.+t. SVR on all features: best set for R and H 0.74** 0.79** 0.79**

Table 2. SVR regression weights for the best feature subsets when predicting the perceptual RBH
scores

best set for R, H best set for B
predicted score R B H R B H

EnNormWPW –0.063 0.565 0.372 0.014 0.589 0.389
F0MinWord –0.678 0.076 –0.431 –0.562 –0.562 –0.408
F0OffWord –0.223 –0.410 –0.274 –0.261 –0.261 –0.269
Dur–Voiced ————— 0.470 0.262 0.044
CPPS-NW –0.444 –0.612 –0.615 –0.215 0.641 –0.631

Table 3. Correlation r of the feature values of the best feature sets

feature F0MinWord F0OffWord Dur–Voiced CPPS-NW

EnNormWPW 0.12 –0.03 0.09 –0.56
F0MinWord 0.11 –0.56 0.37
F0OffWord –0.04 0.26
Dur–Voiced –0.49
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however, why in the case of F0OffWord only the end of the voiced sections causes a
noticeable effect. It may reflect changes in the airstream between the beginning and the
end of words or phrases. High speaking effort leads to more irregularities especially in
these positions, but this has to be confirmed by more detailed experiments. Note that
the prosody module computes the F0 values only on sections which it has previously
identified as voiced. It may be this property of the software that makes F0-based values
so important for the analysis of distorted voices, although the purpose of adding cepstral
measures to the feature set was to become independent of them.

The duration of the voiceless sections in the signal (Dur–Voiced) is comparable
among all speakers since they read the same text. Hence, a higher duration indicates
a higher percentage of voiceless sections and thus an irregular voice.

The correlations between the feature values of the best subsets are given in Table 3.
A low EnNormWPW correlates significantly with a high CPPS-NW, because both
indicate a high-quality voice. Likewise, CPPS-NW and Dur–Voiced are negatively
correlated. A large duration of unvoiced sections correlates negatively with the average
F0 minimum. The reason may be the predefined F0 threshold of the prosody module.
The lowest F0 that will be returned is 50 Hz, lower values are classified as voiceless.
Hence, a very low voice will result in a low minimal F0 of about 50 Hz and in a higher
amount of unvoiced sections caused by F0 values below the threshold.

The average inter-rater correlation between one rater and the average of the other
ones was r = 0.76 for R, r = 0.70 for B, and r = 0.82 for H. For breathiness, the text-
based CPP values (r = 0.69) alone almost reached the human reference, the SVR results
even outperformed it. For roughness and hoarseness, the SVR almost reached the
human inter-rater correlation.

The results on human-machine correlation with cepstral parameters confirmed some
findings of other studies. Hillenbrand and Houde [9] found a significant correlation
between these parameters and the perceived degree of breathiness for sustained vowels
and speech recordings. This was confirmed in our study, but only for speech recordings.
Heman-Ackah et al. [7] reported a correlation of the total degree of dysphonia and
CPPS of r = –0.80 on stable vowel sections and r = –0.86 on sentence recordings. Their
correlation between vowel- and sentence-based CPPS and the breathiness rating was
r = –0.70 and r = –0.71, respectively. Our best result for a single feature for breathiness
was r = –0.69 for both CPP-NW and CPPS-NW. The vowel-based measures, however,
reached just r = –0.60. Nevertheless, breathiness was better modeled by the vowel-based
CPP-v than roughness or hoarseness. The most probable reason for the differences in
vowel analysis among the studies is that it requires stable phonation. Often a frame
of one second of the vowels /a/ (predominantly), /e/, or /i/ is chosen. Other vowel
segment durations from 0.1 seconds up to 3 seconds have been reported [13]. For our
study, the minimum duration of stable phonation was set to 0.5 seconds, because some
patients were not able to phonate longer without too much irregularity. Our subjects
uttered /e/, sometimes shifted towards /ε/ which is the adjacent phoneme in the German
vowel space. Therefore, the results may not be completely comparable to other studies.
On the other hand, these variations in duration and vowel quality show that there will
always be inconsistencies in the data obtained from a representative group of patients.
If their influence deteriorates the evaluation results that much, then the method cannot
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be used for clinical purposes. This is another important argument against vowel-based
perturbation analysis for voice evaluation.

CPP and CPPS cannot differentiate between different voice qualities [2]. Even
with support by prosodic features, this is not possible with the available feature set,
because the best sets for modeling R, B, and H are too similar. When these sets were
applied to predict all of the rating criteria (Table 2), still a few clear differences in the
weighting factors for the prediction formulae were revealed. The normalized energy
EnNormWPW, for instance, could also be left out of the set for R. The results change
only marginally then. This feature is obviously more important for the evaluation of
breathiness and overall hoarseness.

The similarity of the best feature sets for all rating criteria is consistent with the in-
teraction between different dimensions of human perception: the presence of roughness
in a voice does not influence the perception of breathiness. However, the perceived de-
gree of roughness is strongly influenced by the presence of breathiness [12]. Addition-
ally, dysphonic voices with lower fundamental frequencies are perceived as being more
rough than those with higher F0 [19]. Our results, however, confirm the assumption that
roughness and breathiness are perceived as separate dimensions and that hoarseness is
the superclass of both [1]. R and H showed a better correlation with each other in the
human results (r = 0.81) than B and H (r = 0.76). The correlation of R and B was only
r = 0.36. It is remarkable that breathiness and hoarseness were better mapped by the au-
tomatically obtained measures than roughness, even more so since the optimal feature
sets for R and H were the same. It will be one of the most important aspects in future
work to teach the automatic analysis to tell apart roughness, breathiness, and hoarseness
as well as human listeners do.

Some aspects for enhancing the human-machine correlations have not been tested in
this study. Human perception is often non-linear, such as indicated by the Bark scale
for pitch, for instance. Physical scales are often linear, such as the frequency measured
in Hertz. Better human-machine correlations may be found with non-linear mappings
between the two modalities.

8 Conclusion

The results obtained in this study allow for the following conclusions: There is
a significant correlation between the subjective rating of roughness, breathiness,
hoarseness, on the one hand, and the automatic evaluation, on the other. However, the
three criteria cannot be rated separately with the available set of features. The human-
machine correlation is about as good as the average inter-rater correlation among speech
experts. Cepstral-based measures improve the human-machine correlation, but only
when they are computed from a speech recording and not from a sustained vowel only.
The method can serve as the basis for an automatic, objective system that can support
voice rehabilitation.
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