
Comparison of Overhauser DNP at 0.34 and 3.4 T
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Abstract Dynamic nuclear polarization (DNP) is investigated in the liquid state

using a model system of Frémy’s salt dissolved in water. Nuclear magnetic reso-

nance signal enhancements at 0.34 and 3.4 T of the bulk water protons are recorded

as a function of the irradiation time and the polarizer concentration. The build-up

rates are consistent with the T1n of the observed water protons at room temperature

(for 9 GHz/0.34 T) and for about 50 ± 10 �C at 94 GHz/3.4 T. At 94 GHz/3.4 T,

we observe in our setup a maximal enhancement of -50 at 25 mM polarizer

concentration. The use of Frémy’s salt allows the determination of the saturation

factors at 94 GHz by pulsed ELDOR experiments. The results are well consistent

with the Overhauser DNP mechanism and indicate that higher enhancements at this

intermediate frequency require higher sample temperatures.

1 Introduction

Dynamic nuclear polarization (DNP) of the Overhauser type (OE-DNP) [1, 2] can

provide a valuable tool to enhance the sensitivity of nuclear magnetic resonance

(NMR) experiments in the liquid state [3–5].

A polarizer molecule carrying an unpaired electron spin (mostly a stable radical

like a nitroxide) is inserted into the liquid-state NMR sample under investigation.

By continuous wave microwave irradiation on the EPR transition of the unpaired

electron a steady-state polarization (saturation) of this transition is achieved, which

in turn polarizes coupled NMR transitions via cross relaxation pathways.
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In recent years, detailed mechanistic studies have provided insight into the

specific parameters needed to achieve optimal enhancements of liquid-state NMR

signals, such as polarizer type, polarizer concentration, microwave power or the

magnetic field at which the polarization step is carried out [6–11]. Moreover, high

DNP enhancements of water proton signals up to two orders of magnitudes have

been recently reported not only at low microwave frequencies (9 GHz, [7–9]) but

also at intermediate (94 GHz, [12, 13]) and high (260 GHz, [14]) microwave

frequencies. The enhancements at 94 GHz/3.4 T in [12, 13] were much higher than

in our in initial reports [6, 7]. Irradiation times needed to reach maximum DNP

effects have mainly been optimized experimentally, and the build-up of dynamic

nuclear polarization has been interpreted with the nuclear relaxation time T1n and its

temperature dependence [12, 13]. In order to rationalize the observed frequency

dependence of liquid DNP enhancements up to medium frequency/fields and

particularly compare the maximal enhancements reported so far at 94 GHz in our

[7] and in other groups [12, 13], we have measured the DNP signals as a function of

the irradiation time and compared with independent T1n measurements [8, 15].

Furthermore, we have determined the saturation factors for 15N-labelled Frémy’s

salt at 94 GHz via pulsed electron double resonance (ELDOR) experiments [16].

The results allow us to rationalize quantitatively our enhancements at 94 GHz in

terms of the Overhauser mechanism.

2 Overhauser DNP in Liquids

In Overhauser DNP, the enhancement of the NMR signal e is derived from the

steady-state solution, i.e. d Izh i=dt ¼ 0, of the Solomon equations [17], where the

nuclear polarization is described as:

d Izh iðtÞ
dt

¼ �ðqþ w0Þ Izh iðtÞ � I0ð Þ � r Szh iðtÞ � S0ð Þ ð1Þ

Here, Izh i and Szh i are the expectation values of the nuclear and electron

magnetizations, respectively, whereas I0 and S0 are the corresponding values at

thermal equilibrium. q ¼ w0 þ 2w1 þ w2 and r ¼ w2 � w0 are parameters contain-

ing the relaxation rates of the transitions within the four-level system of two coupled

spins S ¼ I ¼ 1=2, i.e. the nuclear single-quantum relaxation rate w1, as well as the

zero- and double-quantum cross-relaxation rates, w0 and w2. w0 is the nuclear

relaxation rate in the absence of paramagnetic molecules and accounts for nuclear

relaxation not induced by the electron.

Although a similar equation as Eq. (1) can be set up for the electron spins, such a

description would not be meaningful as they are subject to much faster relaxation

pathways [2]. In the simple case of a single homogeneous EPR line, the expectation

value Szh i can be extracted from the Bloch equations [18]. For a more complicated

system, e.g. a nitroxide radical exhibiting two or three EPR lines, an explicit

treatment of the equation of motion of the spin density matrix is necessary [8, 19].

Notwithstanding, in the most general case, the electronic magnetization can be

considered in the form of an overall saturation factor s ¼ S0 � Szh ið Þ=S0, which
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describes the extent to which the electronic magnetization is driven away from

thermal equilibrium by microwave irradiation.

The steady-state solution of Eq. (1) then directly yields the Overhauser equation:

e ¼ Izh i
I0

¼ 1� nfs
cSj j
cI

ð2Þ

with coupling factor n ¼ r=q, leakage factor f ¼ q=ðqþ w0Þ and the ratio of the

respective gyromagnetic ratios of the electron and the nucleus, cS and cI.

In order to describe the kinetics of the DNP build-up, we consider the time-

dependent solution of Eq. (1). It is important to note that two different time-scales

describe the formation of electron polarization (saturation) and dynamic nuclear

polarization. While the former is reached within several hundred ns to ls for

conventional liquid state DNP polarizers (e.g. nitroxide radicals) in water given by

the electron longitudinal relaxation time T1e, the latter is observed to be in a range of

several seconds. Hence, assuming that Szh i � S0 is constant on the time-scale of

DNP build-up and given by -sS0, we can neglect the time dependence of the

electron magnetization, and rewrite Eq. (1) as a single inhomogeneous differential

equation:

d Izh iðtÞ
dt

þ ðqþ w0Þ Izh iðtÞ � I0ð Þ ¼ rsS0 ð3Þ

With the initial condition, nuclear polarization starts from the thermal

equilibrium value, i.e. Izh ið0Þ ¼ I0, the solution of Eq. (3) results to:

Izh iðtÞ ¼ I0 �
rsS0

qþ w0
e�ðqþw0Þt � 1
� �

: ð4Þ

Rearrangement in a similar way as Eq. (2) yields a ‘time-dependent Overhauser

equation’ that describes the build-up of nuclear polarization with duration of

microwave irradiation for t [[ T1e:

eðtÞ ¼ Izh iðtÞ
I0

¼ 1� nfs
cSj j
cI

1� e�t=T1n

� �
: ð5Þ

Accordingly, the time constant of DNP build-up is given by the observable

nuclear relaxation rate, i.e. 1=T1n ¼ qþ w0 ¼ w0 þ 2w1 þ w2 þ w0:

3 Experimental

15N-labelled Frémy’s salt was synthesized in house and dissolved in 50 mM K2CO3

buffer (pH & 11) to produce 0.5, 5, 10, 25 mM solutions of the disulfonate anion

ON(SO3
-)2. Concentrations were checked by optical absorption [20]. Samples were

degassed for 10 min by N2 flow. For experiments at 9.6 GHz/0.34 T, they were

loaded into 0.45 mm inner diameter (ID) tubes to a height of 3 mm and sealed; at

94 GHz/3.4 T, they were filled into 0.1 mm ID capillaries to a height of 5 mm and

sealed. The effective sample volumes were kept as small as possible to minimize the

heating effects and amounted to 0.5 lL at 9 GHz/0.34 T and 40 nL at 94 GHz/3.4 T.
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For the inversion recovery experiment at 94 GHz/3.4 T, we have used a larger

sample tube of 0.5 mm ID filled to 10 mm height (volume: 2 lL) to achieve higher

NMR signal intensities.

The DNP experiments were performed using the X-band and W-band DNP

spectrometers (0.34 T/3.4 T, 9.6 GHz/94 GHz EPR, 15 MHz/140 MHz 1H NMR)

specified earlier [7] with a new custom-built NMR console (Bruker GmbH) for

140 MHz NMR experiments. At 9.6 GHz a Bruker dielectric ENDOR resonator and

at 94 GHz a Bruker cylindrical ENDOR resonator operating in TE011 mode were

employed.

For all DNP measurements, maximum microwave power corresponding to

B1 & 4–5 G (9.6 GHz) or 2–3 G (94 GHz) was applied [7]. The DNP enhance-

ments were quantified by comparison of the NMR signal after microwave

irradiation to the one at thermal equilibrium. 1,024–4,096 scans were averaged at

thermal equilibrium, while only 8–32 scans were needed to achieve sufficient data

quality for the DNP-enhanced NMR signals.

Pulsed ELDOR experiments were performed as reported earlier [16] using a

home-built dual mode 94 GHz resonator [21]. A saturation pulse of 1 ls length was

applied at various frequencies prior to EPR FID detection with a 40 ns pulse on

resonance with one of the two 15N hyperfine lines. The modes of the dual mode

resonator were adjusted, so that a similar B1 of up to 2 G is reached at the position

of the two EPR lines.

4 Results and Discussion

4.1 DNP Build-up at 9.6 GHz/0.34 T

In Fig. 1, DNP enhancements of the bulk water 1H are plotted as a function of

irradiation time for four different concentrations of polarizer. Clearly, the build-up

proceeds faster if the radical concentration is higher. Maximum enhancements are

reached at around 1, 2, 4 and 10 s for 25, 10, 5 and 0.5 mM samples, respectively,

and amount to -170, -130, -100 and -30 (within an error of 10 % or less) in

agreement with our former observations [8] (Fig. 1).

Fitting with Eq. (5) shows that all curves are described very well by a

monoexponential function with time constants 2,590 ± 40 ms, 800 ± 20 ms,

470 ± 20 ms, and 200 ± 10 ms at 0.5, 5, 10, and 25 mM polarizer concentrations,

respectively.

Table 1 compares these values to the 1H nuclear relaxation times T1n extracted

from nuclear magnetic relaxation dispersion measurements (NMRD), which have

been reported earlier [8]. Underlying the T1n times is the relaxivity R determined

with the 5 mM sample. The T1n at radical concentration c is obtained as

1

T1n

¼ R � cþ Rdia ð6Þ

with Rdia being the diamagnetic relaxation rate in the absence of the polarizer.
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A measurement of T1n using the DNP setup at 9.6 GHz is less accurate due to the

weakness of the NMR signal in the absence of DNP. Furthermore, an alternative

measurement of T1n via decay of the DNP signal would not allow a priori for a

definite temperature in the sample.

The T1n data in Table 1 show best agreement with the observed build-up time

constant, i.e. T1n = 200 ms at 25 mM, T1n = 460 at 10 mM and T1n = 800 at

5 mM. At the lowest concentration discussed here, i.e. at 0.5 mM, the observed

nuclear relaxation times are slightly smaller than the time constant describing DNP

build-up with irradiation time. However, we note that the error might be large at this

Fig. 1 Enhancement e of 1H NMR signals of bulk water as a function of microwave irradiation time tmw

for different Frémy’s salt concentrations at 0.34 T fitted according to Eq. (5). The inset shows the pulse
sequence applied in all DNP experiments

Table 1 Comparison of the

characteristic DNP build-up

times Tbuildup at 0.34 T in liquid

solution to the nuclear relaxation

times T1n extracted from NMRD

[8] at room temperature

Polarizer

concentration

c/mM

Tbuildup/ms T1n (NMRD,

298 K)/ms

0.5 2,590 ± 40 2,420

5 800 ± 20 800

10 470 ± 20 460

25 200 ± 10 200
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concentration as the experimental window of irradiation times does not yield a full

characterization of the exponential build-up curve with very long time constant (see

Fig. 1). We conclude that the build-up of the DNP signal is best described by the T1n

of the polarized nuclei at room temperature and confirm that our reported maximal

enhancements at 9.6 GHz are not affected by temperature effects [7].

4.2 Experiments at 94 GHz/3.4 T

4.2.1 DNP Build-up

To compare the performance at 3.4 T, we have measured the enhancements as a

function of irradiation time for 5, 10 and 25 mM 15N-labelled Frémy’s salt. The

maximum measured enhancements at these concentrations amount to -22, -40 and

-52 using 7, 5 and 5 s of microwave irradiation, respectively (Fig. 2). The error is

estimated to be around 20 % due to the very low intensity of the thermal

equilibrium signal. However, this error should not affect the build-up time constants

Fig. 2 a, c, d Enhancement e of 1H NMR signals of bulk water containing 15N-labelled Frémy’s salt at
3.4 T as a function of microwave irradiation time tmw fitted according to Eq. (5). Inset: pulse sequence
applied in the DNP experiments. In d we observe a decomposition of the sample at irradiation times
longer than 7 s (Frémy’s salt is known to decompose in solution [22]. The rate of decomposition depends
on the pH value and the temperature. We observe decomposition only at long irradiation times (up to
10 s), which were only applied for the 5 mM sample). b 1H NMR inversion recovery experiment on a
25 mM sample at 3.4 T
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since each time point is divided by the thermal equilibrium signal in the same

fashion. As expected from the experiments at 0.34 T, where 25 mM 15N-Frémy’s

salt and TEMPONE-D,15N have yielded similar maximum enhancements [8], the

enhancement of e = -52 observed here is close to the one recorded with 25 mM

TEMPONE-D,15N in an earlier experiment, i.e. e = -43 [7].

However, these enhancements are considerably lower than the recently reported

values of up to -170 using TEMPOL at 3.4 T [12, 13]. In both reports from the

literature, these high enhancements were attributed to elevated sample temperatures

during microwave irradiation exceeding 100 �C.

For a better comparison of our data with the literature, we have fitted the DNP

build-up curves up to 5 s at 25, 10 mM and up to 7 s at 5 mM polarizer

concentration using Eq. (5) and obtained time constants of 670, 1,030 and 2,060 ms,

respectively (Table 2). These values are 1.3–1.9 times longer than the respective T1n

(298 K) resulting from NMRD with a relaxivity of 0.0998 s-1 mM-1 [8] and Eq.

(6). For a control, the room temperature relaxation time at 25 mM was directly

measured in an inversion recovery experiment (Fig. 2b) providing T1n

(298 K) = 310 ms in satisfactory agreement with the NMRD data [T1n (298 K,

25 mM) = 360 ms].

The observed build-up times suggest that some heating is occurring in our 3.4 T

DNP setup as opposed to the DNP experiment at 0.34 T. To estimate the

temperature underlying the T1n and the Tbuildup values, we have simulated the

temperature dependence of the relaxivity of water containing Frémy’s salt

considering only outer-sphere relaxation as reported previously [8, 15]. The

distance of closest approach was d = 2.9 Å and the room temperature diffusion

coefficient for the Frémy’s salt–water system D (298 K) = 2.86 9 10-5 cm2 s-1

[8]. The Stokes–Einstein equation was used to determine D as a function of

temperature T [15], so that DðTÞ ¼ Dð298 KÞ � T � gð298 KÞ=ðgðTÞ � 298 KÞ, with

viscosity g from Ref. [23]. In addition, the temperature dependence of the

diamagnetic relaxation rate in pure water Rdia was calculated according to

RdiaðTÞ� sDðTÞ� 1=DwaterðTÞ [24] with Dwater(T) from the Stokes–Einstein equa-

tion and Dwater (298 K) = 2.4 9 10-5 cm2 s-1 [15]. Then, the dependence of the

nuclear relaxation time T1n on temperature could be estimated from the paramag-

netic and diamagnetic relaxation rates:

1=T1nðTÞ ¼ R1nðTÞ ¼ RparaðTÞ þ RdiaðTÞ ¼ RðTÞ � cþ RdiaðTÞ:

Table 2 Comparison of Overhauser DNP parameters at 3.4 T and average temperature of 323 K

Conc. c/

mM

emax Tbuildup/

ms

f seff

(ELDOR)

n [calc. from

Eq. (2)]

na (NMRD,

Ref. [15])

5 -22 2,060 ± 150 0.63 0.51 0.11 0.11/0.14

10 -40 1,030 ± 80 0.78 0.66 0.12 0.11/0.14

25 -52 670 ± 40 0.90 0.80 0.11 0.11/0.14

a Derived for TEMPONE-D,15N in water without inclusion of contact contribution for temperatures

318/328 K
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Noting that the heating effect in our experiments should not be concentration-

dependent, we find that the observed build-up times at the different concentrations

are consistent with T1n values in a temperature range of DT of 25 ± 10 �C. This

value is compatible with our former estimate of DT & 15 K deduced from the

cavity quality factor [7]. We note that the DNP build-up described by a

monoexponential function is an approximation, if temperature changes during the

DNP experiment, yielding an additional time dependence, i.e. T1n(t). Such

description is equivalent to the assumption that an average temperature is quickly

reached, which is supported by the observations of Kryukov et al. [12]. This model

seems to be valid in the present case, because the overall temperature effect as well

as the sample volume are very small.

4.2.2 Saturation Factors and Evaluation of the OE-DNP at 3.4 T

To rationalize our enhancements in terms of the Overhauser Eq. (2), we have first

measured the saturation factors at W-band via a pulsed ELDOR experiment

displayed in Fig. 3. So far this type of experiment has not been possible at 94 GHz

as the typical EPR FID of TEMPO-derived nitroxides such as TEMPONE-D,15N in

our previous 94 GHz study [7] decays too quickly to be observed, especially at high

polarizer concentrations of 25 mM. However, the use of Frémy’s salt, which

exhibits much narrower EPR lines, has enabled us to record the EPR FID intensity

Fig. 3 Normalized and baseline corrected EPR FID intensity of the hyperfine line at 94.08 GHz as a
function of the ELDOR frequency, i.e. the frequency of the saturating pulse, and of different
concentrations of 15N-labelled Frémy’s salt in aqueous solution at room temperature. The saturation
levels of the individual EPR lines are indicated (the small deviations in s1 for different samples are
attributed to slightly altered coupling conditions in the microwave cavity leading to different quality
factors and microwave B1 field strengths at the sample position). Inset: with Frémy’s salt, the EPR FID is
observable at 25 mM radical concentration
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(Fig. 3, inset) and thus determine its dependence on the saturation pulse at all three

polarizer concentrations. The effective saturation factor seff could be extracted

directly from the reduction of each EPR line as seff ¼ ðs1 þ s2Þ=2 (Fig. 3) and

ranges from 0.5 at 5 mM polarizer concentration to 0.8 at 25 mM (Table 2).

Figure 3 shows that the pumped EPR line (at 94.08 GHz) reaches almost complete

saturation, i.e. s1 = 0.82–0.87. Therefore, theoretical maximum enhancements at

higher microwave B1 (but while maintaining the same sample temperature) of 15N-

Frémy’s salt in water should exceed our experimental values by no more than

15–20 %.

In addition, we calculate the leakage factor f ¼ q=ðqþ w0Þ ¼ 1� Rdia=R1n for

the three samples at an average temperature of T = 323 K (Table 2). From these

values we derive a DNP coupling factor n of 0.11–0.12 at 3.4 T and 323 K

independent of concentration using the Overhauser Eq. (2). Previous studies

employing different methods have predicted coupling factors of 0.11–0.14 at

318–328 K (NMRD) [15] or 0.10–0.12 in the same temperature range (extrapolated

from DNP) [12] as well as 0.08 at 318 K (MD) [11]. Therefore, we conclude that the

enhancements observed with our W-band DNP setup are well described by the

Overhauser mechanism and are subject only to moderate microwave heating, while

substantially higher enhancements can only be obtained at higher temperatures.
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experiments. We thank Bruker GmbH (Peter Höfer) for providing the NMR setup at 140 MHz and

especially Thorsten Marquardsen for technical support with the setup. Funding was provided by the Max

Planck Society.

Open Access This article is distributed under the terms of the Creative Commons Attribution License

which permits any use, distribution, and reproduction in any medium, provided the original author(s) and

the source are credited.

References

1. A.W. Overhauser, Phys. Rev. 92, 411–415 (1953)

2. D. Hausser, D. Stehlik, Adv. Magn. Reson. 3, 79–139 (1968)

3. M. Bennati, I. Tkach, M.-T. Türke, in SPR Electron Paramagnetic Resonance, vol. 22, ed. by

B.C. Gilbert, D.M. Murphy, V. Chechik (RSC Publishing, Cambridge, 2011), pp. 155–182

4. M.D. Lingwood, S. Han, in Annual Reports on NMR Spectroscopy, vol. 73, ed. by G.A. Webb

(Elsevier, Oxford, 2011), pp. 83–126

5. C. Griesinger, M. Bennati, H.-M. Vieth, C. Luchinat, G. Parigi, P. Höfer, F. Engelke, S.J. Glaser,
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