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Perturbative terms of Kac-Moody-Eisenstein series

Philipp Fleig and Axel Kleinschmidt

Based on a talk given by the second author at “3Quantum:
Algebra-Geometry-Information” (Tallinn, July 2012) on the work contained in [3].

ABSTRACT. Supersymmetric theories of gravity can exhibit surprising hidden
symmetries when considered on manifolds that include a torus. When the torus
is of large dimension these symmetries can become infinite-dimensional and of
Kac-Moody type. When taking quantum effects into account the symmetries
become discrete and invariant functions under these symmetries should play
an important role in quantum gravity. The new results here concern surprising
simplifications in the constant terms of very particular Eisenstein series on the
these Kac-Moody groups. These are exactly the cases that are expected to
arise in string theory.

1. Introduction

In string theory, discrete dualities have played a central role in the research of
the last 15 years. These dualities can relate string theories on different backgrounds
and with different matter content and are commonly referred to as U-dualities [15],
[20]. Their existence has led to the claim that there is a single M-theory underlying
all string theories [25].

A particular manifestation of this idea is given by type II superstring theory
compactified on a (d — 1)-dimensional torus, down to D = 11 —d space-time dimen-
sions. At low energies, the complete effective theory is maximal supergravity in D
dimensions and possesses a continuous Eyqy(R) hidden symmetry group [2, [16].
These are maximally split Lie groups that for 6 < d < 8 are exceptional and
for the other values of d are defined for our purposes in Table [l We will write
E4(R) instead of Eg(q)(R) for ease of notation. For d > 8, the groups are infinite-
dimensional and of Kac-Moody type. In general, the groups can be thought of
as arising as the closure of the area preserving diffeomorphisms SL(d,R) of the
M-theory torus and the classical SO(d — 1,d — 1,R) symmetry realising contin-
uous T-duality [20]. The possible compactifications are labelled by the classical
moduli space M([(;l) = E4(R)/K(E4(R)), where K(E4(R)) is the maximal compact
subgroup of E4(R).

In string theory, these continuous symmetries are expected to be broken to the
discrete E4(Z) U-duality group, via a Dirac-Schwinger-Zwanziger type quantisation
condition related to the existence of charged states (branes) [15, 4]. Table [Ishows
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| D | Eqi1(R) K(Ea+1) Eq41(Z) |
108 SL(2,R) S02) SL2,2)
9 RT x SL(2,R) S0(2) SL(2,Z)
8 || SLZR) x SL(3,K) S0(3) x 502) SL2.Z) x SL(3.2)
7 SL(5,R) S0(5) SL(5,7)
6 S0(5,5,R) SO() x SO(3) S0(5,5,7)
5 Eg(R) USp(8) Eg(Z)
4 Er(R) SU(8)/Zs E7(Z)
2 Ey(R) K(Ey(R)) Ey(Z)
1 E1(R) K(E1w(R)) Eno(Z)
0 E1i (R) K(Eu(R)) En(Z)

TABLE 1. List of the split real forms of the hidden symmetry
groups Egq)(R). We also list the corresponding maximal compact
subgroups K and the last column contains the discrete U-duality
versions that appear in string theory. The label 10B indicates that
we are considering type IIB in ten dimensions rather than type IIA.

a complete list of the U-duality groups. The effect of these discrete dualities is to
identify classically inequivalent compactifications: The quantum moduli space of
string compactifications to D dimensions is given by (D = 11 — d)

(1) Mp = Eq(Z)\Ea(R)/K(Ea(R)).

A much studied example where U-duality is explicitly manifest is the type IIB
superstring scattering amplitude of the four-graviton scattering process, see e.g. [8],
17, 10]. More precisely, the amplitude of this process in D dimensions displays an
invariance under the respective U-duality group discussed above. Instead of looking
directly at the amplitude, one may also consider the corresponding low-energy
effective action, where it is found that there is an infinite number of higher-order
curvature corrections beyond the Einstein-Hilbert term, of the form

(2) (@)=Y / APz (o )F 3l | (@)0* RY.
k

These corrections constitute an expansion in orders of the Regge slope o/ (of di-
mension (length)?) and R* is given by a specific contraction of four Riemann ten-
sors [14]. The first few terms in this expansion beyond the Einstein-Hilbert term
occur for k = 2p+ 3q = 0,2,3,4,.... The couplings E(Dp)q) (®) of these terms are
functions of the moduli ® € Mp of the classical moduli space ().

The preservation of U-duality by the corrections in (2]) puts strong constraints
on the functions 8(Dp_ 0 Since the graviton is invariant under U-duality (in Ein-

stein frame), each function 5(2 ;) has to be a function on Fy(R)/K(Eq(R)) that is

invariant under E4(Z). Furthermore, consistency with string perturbation theory
requires that E(Dp ) must have a well-defined ‘weak coupling’ expansion near the

weak coupling cusp on M p. Finally, supersymmetry imposes differential equations
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FIGURE 1. Dynkin diagram for E,.

on E(Dp o [13], 11]; for the lowest order corrections k = 0,2 these differential equa-
tions are homogeneous Laplace eigenvalue equations. Altogether, this means that

5(27(1) should be an E4(Z) automorphic function on Mp.

D
(p,a)
uniquely [8, 22], 11] as a non-holomorphic Eisenstein series and there is good

evidence that for £ = 0,2 (corresponding to the so-called 1/2-BPS and 1/4-BPS
couplings R* and 9*R*) the solution in any dimension D > 3 is given by such an
Eisenstein series [11], 23], (10} [9]. For even higher derivative terms with k > 2,
the Laplace equation becomes inhomogeneous and the automorphic function that
is required is unlikely to be an Eisenstein series in general.

The purpose of the paper [3] —on which this talk is based— was to extend the
analysis of [10] to D < 3 for the cases k = 0, 2. This involves generalising the notion
of Eisenstein series to Kac-Moody groups since for D < 3 the hidden symmetries
E11_p are of Kac-Moody type, see Table[Il Pioneering work for Eisenstein series
over loop groups was carried out by Garland [6]. We find surprising simplifications
for these and more general Eisenstein series as will be shown below. The Dynkin
diagram of E4 with our labelling conventions is shown in Figure [

These notes are structured as follows. In section 2l we will first discuss a general
definition of an Eisenstein series, which applies both to the finite- and infinite-
dimensional groups. In order to make this abstract definition more transparent,
we will derive from it the explicit form of the series over SL(2,R). In section [ we
discuss Fourier expansions of Eisenstein series and provide Langlands’ formula for
the zero-mode terms of such an expansion, which again is valid for the finite and
more general Kac-Moody groups. In the same section we will show that particular
Eisenstein series exhibit drastic simplifications in the structure of the constant
terms. We will argue that these are the cases that are relevant in string theory and
review some consistency checks on our claims. Finally we provide a short outlook.
More details on many of the points discussed here can be found in [3].

In some cases, these constraints are actually strong enough to identify &

2. Eisenstein Series on Kac-Moody groups

Eisenstein series are functions defined on a non-compact, semisimple real Lie
group G and display invariance under a discrete subgroup G(Z) of G, see for exam-
ple [18]. The invariance property is achieved by defining the series as a sum over
orbits of G(Z), typically quotienting by the stabiliser of a cusp to avoid overcount-
ing.

To make this more transparent, consider the (non-holomorphic) SL(2,R) Eisen-
stein series invariant under the discrete group SL(2,Z). This series is normally
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defined as a sum over integers ¢ and d which are co-prime

®) e = 3

) |CT + d|2s .

Here s is a complex parameter and the sum is restricted, such that (¢, d) # (0,0).
The argument of the series is 7 = 7, +im5 = x+ie~?, which lives in the upper-half of
the complex plane. The variables ¢ and x parameterise the classical moduli Mg%l)
of uncompactified type IIB string theory and are identified as the dilaton and the
axion field. The function (B]) is clearly non-holomorphic due the appearance of the
modulus in the denominator. The group SL(2,Z) acts in the standard fractional

linear fashion on 7

(4) T

at+b a b
fi L(2,7).
g or < d>€$’(, )

In order to make the definition of the Eisenstein series over SL(2) given by ()
more easily generalizable, we now write it as a sum over SL(2,Z) orbits. This is
possible by realising that the summand in @] can be written as

(5) = [Im(y-7)]° for = (Z Z) € SL(2,Z).

The matrix v in this equation is not uniquely defined by ¢ and d. But by invoking
the modularity condition ad — bc = 1 all possible solutions for ¢ and b can be
obtained from a particular solution (ag, bg) through

o (Y6 -

with m € Z. The shift matrices form the Borel subgroup B(Z) of SL(2,Z):

(7) B(Z)_{<(1) T):mEZ}

and these matrices leave Im(7) = 72 invariant. Therefore the Eisenstein series (3]
can be written equivalently as a sum over a coset

(8) EFCE(r) = Y [m(y-n).

YEB(Z)\SL(2,Z)

s
lor + d|

Finally, we notice that Im(7) corresponds to the projection onto the abelian torus
of a group element g € SL(2,R) written in Iwasawa decomposition

. (1 7 7'21/2 0
(9) g—nak_<0 1)( 0 o2 k

with k € SO(2,R). Defining the projection to the Cartan subalgebra

1
(10) H(g) = log(a) = 3 log(ma) - hy, where h; = ((1) _01>
is the standard SL(2,R) Cartan generator, we see that as another equivalent form

of (@) one obtains

(11) ESLRL) (1) = ESLRD) () ¢) = 3 eAFRIH ()
YEB(Z)\SL(2,Z)
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where A = 2sA; — p if A; denotes the unique fundamental weight of sl(2,R) and
p the Weyl vector (equal to A; here). The angled brackets represent the action of
a weight on the Cartan subalgebra element, using (A1]|h1) = 1. The addition and
subtraction of the Weyl vector might seem a bit awkward here but it turns out that
this is convenient for the general theory.

Expression () is the form of the non-holomorphic Eisenstein series that lends
itself to a straightforward generalisation to other groups. This generalised definition
for groups of arbitrary rank is

(12) ES(\g) = Z eAFrlH(vg)) |
VEB(Z\G(Z)

and was given for finite-dimensional G by Langlands in [18]. We will only be
interested in cases when the weight A appearing in the definition is given by A =
2sA;, — p with A;, the fundamental weight of node i, of the Dynkin diagram of G.
In that case we denote the Eisenstein series by

(13) ES (9)=E%(\,g) for \=2sA; —p.

T
Often we will leave out the argument g € G as well. The function Eg s will be
referred to as a maximal parabolic Eisenstein series.

We note that the Eisenstein series of (I2)), satisfies the Laplace eigenvalue
equation

1
(14) AGKEG (N, g) = 5 (A = (plp)) E%(\9),
where A®/K is a Laplacian defined on the fields which parameterise the coset G /K.

The definition of the Eisenstein series as given in ([I2)) also applies in the case
when G is a general Kac-Moody group and works in particular for affine Eq [6],
the hyperbolic Kac-Moody group E1¢ and the group E1; [3]. In D = 2 space-time
dimensions the situation is a bit special, since the corresponding U-duality group
Ey is an affine Kac-Moody group. The algebra of such a (non-twisted) affine group
is constructed from the algebra of the underlying finite-dimensional algebra g as

(15) a=glt,t '] ®R®dR,

where the first summand represents the loop algebra of g, the second summand is
associated with the central element and the last summand is the derivation which
is counting the affine level. The corresponding Cartan subalgebra a has dimension
dim(a) + 2. The definition of an Eisenstein series over affine groups has been
worked out rigorously by Garland in [6] and convergence of the series was proven
for sufficiently large real parts of the weight defining the Eisenstein series. The
definition of the affine Eisenstein series differs subtly from the one of ([I2)), in that
one has to include a parameter v in the exponential, which parameterises the group
associated with the derivation d. For the purpose of the presentation here, we
will largely ignore this special case and refer the reader to [3] where its details are
treated.

Let us also mention that Eisenstein over infinite-dimensional groups similarly
satisfy the eigenvalue equation (Id]). Subtleties arise again for the case of Eg, which
are linked to the appearance of scale invariance of gravity in D = 2 space-time
dimensions [3].
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We are now in the position to state the proposed automorphic functions E(D 9
that appear in the four-graviton scattering process as discussed in the introduction.
For the terms R* and 9*R* and D > 3 these functions are given by [10} 21, 23]

(16) 5{0{0) :2<(3)E§3/2, and 5{{0) :g(5)E55/2.

This proposal has passed a variety of checks in the references just given. In [3] we
propose that these expressions are also correct for D < 3 when the symmetry group
G becomes infinite-dimensional. In D = 2, the proposal has to be modified slightly
to accommodate properly the derivation d [3].

3. Fourier expansions of Eisenstein series

The physical information of the automorphic functions E(Dp @) is encoded in their
Fourier expansion. In the present work we are only interested in the zero-mode
Fourier terms of the expansion. Mathematically, these correspond to the constant
terms of the automorphic functions; physically, they represent the perturbative
contributions to the scattering process. Although referred to as the constant term
the expressions do depend on the Cartan subalgebra degrees of freedom contained
in A of the Iwasawa decomposition of G = NAK. The constant term is obtained
by integrating out the degrees of freedom contained in the unipotent radical N.
There exists a formula for the constant term due to Langlands [18] given by

(17) [ 0= 3 Ml el
N(Z)\N(R) wew

where the sum over the Weyl group W of G is due to the Bruhat decomposition of
G. The factor M (w, \) is defined as

(18) - I a5 = T et

aEA 4 aEA 4
waEA, waEA _
The function £ is the completed Riemann zeta function and its relation with the
Riemann ¢ function is (k) = a~k/2T (%) ((k). The sets Ay represent the posi-
tive/negative roots of the Lie algebra of G. We will analyse the structure of the
factor M (w, A) in some more detail in a moment. In particular we will see that
its properties are responsible for drastic simplifications in the constant term of the
Eisenstein series of ([I6). We refer to the type of expansion given in (IT) as a
minimal parabolic expansion of the constant term.
As an example, let us consider the SL(2,Z) Eisenstein series ([II). The Weyl
group has two elements and the application of the constant term formula ([I7) gives

1
19 / ESLEZ) dn:/ dry BSMD) (r) = 75 4 S _1os
(19) - (9) | an M =m+gern™

The two terms have a very precise interpretation from string scattering calculations.
The first term corresponds to the string tree level contribution and the second one
to the string one-loop result [12]. There are no further perturbative corrections be-
yond one-loop due to supersymmetry and the numerical coefficients of string theory
agree perfectly with those of the Eisenstein series [8].
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There is also a second type of expansion which is possible that is commonly
referred to as a maximal parabolic expansion, where one integrates out the degrees
of freedom of the unipotent factor IV,, in a particular maximal parabolic subgroup
P;, = N;,Mj,. Here, j, labels a choice of a simple root, with respect to which the
maximal parabolic subgroup is defined [10} [3]. The factor M;, is called the Levi
factor in the decomposition of P; . The Levi factor itself can be written as

(20) Mjo = GL(l) X Gdfl,

where G4_1 is the group with the Dynkin diagram that is left after deleting the j,th
node from the diagram of E4. The GL(1) factor in this product is parameterised
by a single scalar r € R*. Langlands’ formula for the constant term in a maximal
parabolic expansion then becomes [19]

(21)
EG(/\v g)dn = Z M(’LU, )‘)e<(w>\+p)“jo ‘H(g»EGd ((w)\)J_jo ag) .

Np;, (Z)\Np; (R) WEWjo \W

Here the notation (X)) ;, denotes a projection operator on the component of A which
is proportional to the fundamental weight A, and (X)1;, is orthogonal to A;,_ .

As for the definition of the Eisenstein series, Langlands’ formulse above also
apply in the case of the infinite-dimensional groups Fj9 and E1;. For the affine
case slight modifications have to be made again, in order to account for the deriva-
tion d [6]. Let us also mention that in this case, the Levi factor M;, = GL(1) x
GL(1) x G4—1. There are now two GL(1) factors instead of only one as in (20).
One factor corresponds to the central element ¢ and the other to the derivation d.
Hence we now have an additional parameter v € R* appearing in the expression
for the constant term besides 7.

It is easy to see from (7)) that the number of terms that make up the constant
term is bounded from above by the order of the Weyl group W. In particular, in
the case of finite-dimensional groups, where the order of the Weyl group is also
finite, this number is always finite and generically equal to the order of the Weyl
group. For the particular choices s = 3/2 and s = 5/2 in ([6), however, the number
reduces drastically [10}, 23] in such a way that only very few non-zero terms are
left. This is due to the structure of the coefficient M (w, A) of (I8) and physically
related to the BPS-ness of the R* and 9* R* terms as was studied in detail for D > 3
in [10] and related to minimal and next-to-minimal automorphic representations
in [7, 23] @].

When considering the infinite-dimensional symmetry groups E4(R) for d > 8
(D < 3) the situation is much less clear. An application of the formula (7)) would
lead generically to an infinite number of constant terms since the order of the Weyl
group for indefinite Kac-Moody algebras is infinite. The remarkable result of our
work [3] was that for the special values s = 3/2 and s = 5/2 this generic number
reduces to a finite number as required by physical arguments.

Let us now explain the mechanism for this simplification along with a practi-
cal implementation [3], see also [10]. The function M (w,\) of [I8) is of central
importance. It satisfies the multiplicative property

(22) M (wid, \) = M (w, @(\)) M (@, \).
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The function c(k) that appears in the factors that contribute to M (w, ) have
special values only at arguments k = +1, namely

(23) ce(-1)=0, c(+1) =

and ¢(—1)e(1) = 1. This means that if, for a particular Weyl word w € W, the
product giving M (w, A) contains more ¢(—1) than ¢(1) factors, then M (w, A) will
be zero. In addition, one can show by the multiplicative property (22 that if
M (w, A) = 0 for some @, then any longer Weyl word of the form ww will also lead
to M (ww, ) = 0. Moreover, it is easy to see that any w that stabilises A + p will
lead to M (w, A) = 0. Restricting to the particular case A = 2sA;, — p, the sum over
Weyl words reduces therefore at least to the subset

(24) S, = {w e W|wa; >0 for all i # i} = W/W,,,

where W;, is the stabiliser of A;,. The set S;, is in bijection with the Weyl orbit
of A;, and this also gives a convenient way of enumerating the set in a partially
ordered manner. This was shown in [3]. Let us emphasise again that the number
of Weyl words in S;, is only a ‘small fraction’ of the order of the whole Weyl group
W. Of course, this number is still infinite in the Kac-Moody case.

Representing S;, as a partially ordered set corresponding to the Weyl orbit of
A;, also allows us to exploit the full power of ([22]). We can picture the partially
ordered set of Weyl words as a tree rooted at the identity Weyl word. By parsing
through the partially ordered set of Weyl words and computing M (w, \) along all
branches of the tree, we know by (22)) that we can terminate the investigation of a
given branch if we reach a vertex @ of the tree where M (w, A) vanishes. In order
to determine whether this happens we analyse the factors that contribute to the
product ([I8). For this purpose, we define two different sets of roots Ag(£1); one
set for all positive roots producing ¢(—1) factors and the other for roots producing
¢(+1) factors in the product

(25)  As(£1) := {« contributing to M (w, ) : (M) = (2sA;, — pla) = £1}.

These sets are well-defined as there are only finitely many a contributing to M (w, \)
for a given w € W. By working out how many roots from each of the two sets will
contribute in the product defining M (w, \), one can see that for specific choices of
s and i, only a finite number of Weyl words in S;, will yield a non-zero M (w, \)
factor. It turns out that such a specific choice is given by s = 3/2 and 5/2 and
ix = 1. Therefore to summarise again, we can say that for special choices of
maximal parabolic Eisenstein series the constant term, which was naively thought
to contain an infinite number of terms, collapses to a finite sum of only a few terms.

The next step is to investigate the space of possible values of s across dimensions
and in particular for D < 3. For this we have computed the number of terms in the
constant term of a minimal parabolic expansion. Table2lshows the result for D < 5
for a range of integer and half-integer values for s. For D < 3 there seem to be only
a few values of s, amongst them of course s = 3/2 and 5/2, for which one obtains
the collapse of the infinite sum explained above. There is however a large number
of values for which this collapse does not seem to happen. In particular for values
of s > 7/2 the calculation of the constant term on a computer did not terminate
within a reasonably short period of time (unlike it did for values of s < 7/2). This
can be taken as a tentative indication that in these cases the number of Weyl words
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lsJodi 1 8 23 3 I 4 5 5 4 ¢ I
Bo |1 2 27 7 12 271 -

B [1 2 1268 14 35 56 12 91 120

Es |1 2 2160 9 16 44 72 408 531 1060 1460 1795 2160
Ey [1 2 oo 10 18 51 90 oo

Fio |1 2 o 11 20 6 110

En|l 2 o 12 22 77 132

TABLE 2. The table shows the number of Weyl words with non-
vanishing coefficients M (w, \) in an expansion of Efj in dimen-
sions 0 < D < 5 and for a range of values for the parameter s.
An ellipsis signifies that the row is continued with the last number
explicitly written out.

contributing to the sum in Langlands’ formula is actually infinite and for this reason
we put oo for the corresponding entries in Table2l (Physically, this may be related
to counterterms being unprotected by supersymmetry.)

Looking at Table [2]it is tempting to interpret it as a strong sign for the special
properties associated with the small values of s in the set

(26) s€{0,1/2,3/2,2,5/2,3} .

More precisely, by requiring the constant term to only encode a finite number of
perturbative effects as required by supersymmetry, the range of possible values that
s can take, gets reduced from a previously infinite set to a finite number of possible
values. It would certainly be desirable to make these statements more precise and to
prove them rigorously. In our paper [3] we not only compute the number of constant
terms but also their precise form. Some of them develop logarithmic dependence
on the Cartan subalgebra coordinates.

4. Remarks and outlook

The maximal parabolic Fourier expansion (2I]) can be used to check the consis-
tency of the automorphic couplings E(D;m 9 in the low-energy expansion. Namely, the
functions (8] are subject to a number of strong consistency requirements [11, 23]
that arise from the interplay of string theory in various dimensions. The consis-
tency conditions are typically phrased in terms of three (maximal parabolic) limits,
corresponding to different combinations of the torus radii (in appropriate units)
and the string coupling becoming large. The three standard limits correspond to

(i) decompactification from D to D + 1 dimensions, where one torus circle
becomes large,
(ii) string perturbation theory, where the D-dimensional string coupling is
small, and
(iii) the M-theory limit, where the whole torus volume becomes large.

In terms of the F; diagram this means singling out the nodes d, 1 or 2, respectively.
Mathematically, these limits are tantamount to computing the constant terms of the
Eisenstein series in different maximal parabolic expansions ([21]). We have performed
these consistency checks for our Eisenstein series (6] in the Kac-Moody case. The
functions (I6]) satisfy them for all D < 3. In the affine case, particular care must



10 P. FLEIG AND A. KLEINSCHMIDT

be taken due to the scale invariance of the two-dimensional gravity system. Naive
evaluations of the Laplace equations and decompactification limits will lead to non-
sensical answers. A careful discussion of how to remedy this by the proper inclusion
of the derivation and the central charge of the affine algebra can be found in [3].

Among the interesting future directions, we mention the question of the non-
zero-mode Fourier coefficients. The abelian ones are expected to be related to
instantons as in higher space-time dimensions |23}, [9], however, the study of in-
stantons in low space-time dimensions bears its own subtleties since finite energy
solutions are harder to construct than in higher space-time dimensions. This is due
to the asymptotic behaviour of the Green functions of the Laplace operator. We
anticipate that the study of the Fourier coeflicients might shed some light on this
question. Not unrelated is the issue of automorphic representations. The collapse
of the constant term can be interpreted as resulting from 5(27 a) being associated
with a small automorphic representation [7, 23], [9]. Automorphic representations
of Kac-Moody groups have not been studied to the best of our knowledge.

Yet another possible application of automorphic functions and of F1¢(Z) in par-
ticular is in the context of arithmetic quantum gravity as defined in [5], [24], I, [17].
There it was argued that the wavefunction of the universe should be an automor-
phic function of F1(Z) with zero eigenvalue under the Laplacian. Whether such
a function exists and also satisfies the additional boundary conditions is presently
not known.
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