English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Zero-loss energy filtering under low-dose conditions using a post-column energy filter

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Grimm, R., Koster, A. J., Ziese, U., Typke, D., & Baumeister, W. (1996). Zero-loss energy filtering under low-dose conditions using a post-column energy filter. Journal of Microscopy, 183(Part 1), 60-68.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-72E0-2
Abstract
Electron cryomicroscopy combined with energy filtering can be performed under low-dose conditions using a post-column energy filter. The microscope combined with the filter is set up such that it can be used with similar ease as a conventional microscope, the main difference being that all filter and microscope control is performed through a central computer and images are recorded with a cooled slow-scan CCD camera. The microscope can also still be used for regular imaging on film as without the filter. Owing to the 18 times post-magnification of the filter, the microscope normally has to be operated at a small magnifications, e.g. 3000x, and the beam has to be contracted to a small spot, e.g. 5 mm, in the plane of the microscope viewing screen. Computer control allows one to perform a variety of tasks automatically, such as autofocusing, thickness measurements, most-probable-loss imaging. CCD spot-scanning and tonography. The gain in contrast due to zero-loss energy filtering is analysed using visual inspection, power spectra and Fourier ring correlation. The thickness range for ice-embedded specimens in which a filter at 120 kV is most useful appears to be between 100 and 300 nm. [References: 12]