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5 Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1,
D-14476 Potsdam, Germany
6 Niels Bohr International Academy & Discovery Center, Niels Bohr Institute, Blegdamsvej 17,
DK-2100 Copenhagen, Denmark
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Abstract
Scattering amplitudes in three-dimensional N = 6 Chern–Simons theory are
shown to be non-invariant with respect to the free representation of the osp(6|4)

symmetry generators. At tree and one-loop level these ‘anomalous’ terms occur
only for non-generic, singular configurations of the external momenta and can
be used to determine the form of the amplitudes. In particular we show that
the symmetries predict that the one-loop six-point amplitude is non-vanishing
and confirm this by means of an explicit calculation using generalized unitarity
methods. We comment on the implications of this finding for any putative
Wilson loop/amplitude duality in N = 6 Chern–Simons theory.

PACS number: 11.55.−m

1. Introduction

A conformal field theory has no notion of distance. Consequently, two massless particles
moving collinearly cannot be distinguished from each other in such a theory. The standard

Content from this work may be used under the terms of the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 licence. Any further distribution of this work must maintain

attribution to the author(s) and the title of the work, journal citation and DOI.

1751-8113/12/475402+25$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/45/47/475402
mailto:till.bargheer@physics.uu.se
mailto:nbeisert@ethz.ch
mailto:loebbert@nbi.dk
mailto:tmclough@aei.mpg.de
http://stacks.iop.org/JPhysA/45/475402
http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0


J. Phys. A: Math. Theor. 45 (2012) 475402 T Bargheer et al

Table 1. The conformal anomaly of scattering amplitudes depends on the signature and dimension.
In four dimensions the holomorphic anomaly in (3, 1) signature is replaced by a sign-anomaly in
(2, 2) signature. In three dimensions, the anomaly also takes the sign form.

Signature 3D Signature 4D

(2,1) ∂

∂x sgn x = 2δ(x) (2,2) ∂

∂x sgn x = 2δ(x)

λ real λ, λ̃ real
– – (3,1) ∂

∂ z̄
1
z = πδ2(z)

λ, λ̄ complex

formalism for scattering theory, however, distinguishes the different external particles of an
amplitude—even if the particles have no mass. In the conformal four-dimensionalN = 4 super
Yang–Mills (SYM) theory this is reflected in the fact that the standard, free representation of
conformal symmetry on scattering amplitudes produces an anomaly for collinear momentum
configurations. In fact, one finds no real quantum anomaly of the symmetry but rather an
anomaly of the representation which can be cured by deformation terms [1, 2], see also [3] 9.

In four dimensions, this superficial violation of conformal symmetry is closely related to
the holomorphic anomaly defined by the equation

∂

∂ z̄

1

z
= πδ2(z). (1.1)

In (3, 1) signature, the massless momenta of scattering amplitudes are conveniently expressed
in terms of two complex conjugate spinors λ and λ̄. These take the place of z and z̄ in the
above equation such that the naive conformal generators (e.g. S̄ = η∂/∂λ̄) annihilate tree-
level amplitudes only up to distributional terms. Switching to (2, 2) signature, the solution
of the masslessness condition p2 = 0 is given by two independent real spinors λ and λ̃ and
the anomaly cannot be phrased in terms of the above complex equation anymore. In fact,
the anomaly does not disappear in (2, 2) signature but it is harder to see [2]. Rewriting the
amplitudes in this signature shows that the anomaly can be captured in terms of the singularity
of a signum function with real argument x (corresponding to the real λ, λ̃):

∂

∂x
sgn x = 2δ(x), (1.2)

After all, the resulting additional contributions to the invariance equations following from
symmetry seem to be essential for fixing the complete scattering matrix of N = 4 SYM
theory.

Certainly one can ask whether there is an analog of this anomaly of the conformal
symmetry representation in dimension number different than 4. As the naive symmetry
representation is still expected to be incompatible with the standard definition of scattering
states, the existence of a similar phenomenon is plausible. In this paper we study
superconformal three-dimensional N = 6 Chern–Simons (SCS) theory, also called ABJM
theory [4], where massless momenta are described by a single real spinor. Consequently,
one cannot expect an anomaly to be of the form of the complex equation (1.1). We will
show, however, that the anomaly in three dimensions takes the form of (1.2), cf table 1. As
an application we predict a non-vanishing one-loop amplitude at six points and verify this
result by an explicit unitarity construction. First, however, we give a brief motivation for the
importance of the above anomalies followed by a short review of scattering amplitudes in
ABJM theory.

9 Here, and in the following, we consistently refer to the variation of the scattering amplitude with respect to the free
representation of a symmetry generator as the anomaly. We maintain this usage even when the anomaly may in fact
be absorbed into a deformation of the representation of the generator which preserves the symmetry algebra.
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The emergence of the anomalies indicated above is particularly powerful in the context
of planar scattering amplitudes, where, when combined with other recent developments, it
may optimistically lead to an all-order understanding of these observables. Once more let us
consider the case of N = 4 SYM theory: its planar S-matrix is known to possess a dual-
conformal symmetry, both at strong [5] and weak [6] coupling, which combines with the usual
superconformal symmetry into a Yangian symmetry algebra [7]. Furthermore it has been
understood as originating in the self-T-duality of the AdS/CFT-dual AdS5×S5 geometry [8].
Under this duality, scattering amplitudes are mapped into Wilson loops; specifically, it has been
shown that MHV amplitudes are dual to bosonic Wilson loops [5, 9], while for superamplitudes
the dual object is a generalized super-Wilson loop [10] (closely related objects are light-
cone supercorrelation functions [11]). However, for the reasons mentioned, the discussed
symmetries of scattering amplitudes are anomalous10. These anomalies, particularly those of
the fermionic generators, and how they relate different tree-level amplitudes has been discussed
in [1, 12, 13]. For MHV-amplitudes/bosonic-Wilson loops, understanding the conformal
anomaly provides strong constraints at all orders in the coupling and allows the complete
determination of the four- and five-point cases [14]. The anomalies of superamplitudes/super-
Wilson loops have been studied at loop level in [13, 2, 15] and recently, by making use
of these anomalies for the fermionic symmetries, all-order equations relating higher-loop
superamplitudes to lower-loop ones have been found [16].

It is natural to ask whether similar results can be obtained for scattering amplitudes in
three dimensions and particularly for planar amplitudes in N = 6 SCS theory, though here
the picture is still significantly less clear. While so far all attempts to consistently formulate
a self-T-duality for the string background dual to the ABJM theory (cf [17]) have failed,
there are strong indications pointing towards the existence of such a map. One of them is
the discovery of Yangian symmetry of ABJM scattering amplitudes [18] and particularly its
formal rewriting in terms of ‘dual’ coordinates [19]. Furthermore, at four points the two-loop
scattering amplitude was shown to match the two-loop Wilson loop [20]. In fact, there is a
remarkable congruence between the structure of the two-loop ABJM Wilson loop and the
one-loop N = 4 SYM Wilson loop, which extends to arbitrary number of edges [21] and
which parallels a similar relation in the spectrum of planar anomalous dimensions persisting
to all orders in the coupling. On the other hand, the analogy with the map in N = 4 SYM
theory is complicated due to the absence of an analogue of the four dimensional helicity
classification of amplitudes: Before comparison to the Wilson loop, the MHV part of the
scattering amplitude has to be stripped off. The lack of helicity and thus of an MHV scheme in
three dimensions is therefore crucial for understanding a possible analogy11. It is known that
all lightlike polygonal n-point Wilson loops vanish at one-loop order [22, 23]. Consequently it
is interesting to study one-loop amplitudes at higher points to further understand any possible
map. As we will see, the structure of the anomalous symmetries predicts that the one-loop
six-point amplitude is non-zero, a fact which we confirm by an explicit generalized unitarity
calculation12. This poses a puzzle as to what a possible Wilson loop/amplitude map could look
like.

10 For the dual Wilson loops the origin of the anomaly is conceptually different and arises from UV effects. The
functional form of the anomalies, however, is closely related.
11 To match the ABJM four-point Wilson loop and scattering amplitude at two loops, the tree-level part of the
amplitude was stripped off. Its form is close to the one of the MHV four-point amplitude in four dimensions while
the ABJM six-point tree-level amplitude resembles the four dimensional NMHV counterpart.
12 After publishing this work on the arXiv, we were informed that also Simon Caron-Huot and Yu-tin Huang
independently obtained a non-vanishing one-loop six-point ABJM amplitude.
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After a review of scattering amplitudes in ABJM theory in section 2, we will discuss the
origin and form of the anomaly for the superconformal symmetry, section 3. Applying the
resulting anomaly vertex to the six-point amplitude at tree and one-loop level, section 4, we
will see how this constrains the form of the amplitude and predicts a non-vanishing result at
one loop. In section 5 we perform an explicit calculation of the one-loop six-point function
using generalized unitarity methods and confirm the prediction of the symmetries. We close
with a summary and discussion of some open questions.

2. Scattering amplitudes in ABJM theory

In this section, we briefly introduce the framework that is relevant to the study of scattering
amplitudes in the N = 6 supersymmetric Chern–Simons theory, or ABJM theory [4], which
was developed in [25, 18, 19].

Fields and states

The matter content of ABJM theory comprises four complex scalar fields φA and four
complex fermion fields ψa

A, A = 1, . . . , 4, which transform in the (N, N̄) representation
of the U(N)× U(N) gauge group. The scalars φA form a fundamental multiplet of the internal
SU(4) R-symmetry group, while the fermions ψA form an antifundamental multiplet. The
Chern–Simons gauge fields Aμ, Âμ transforming in the (ad, 1), (1, ad) representations of the
gauge group have no freely propagating modes and thus cannot appear as external states in
scattering amplitudes13. As both scalar and fermion particle numbers are conserved, this in
particular implies that there are no scattering amplitudes for odd numbers of particles.

Unlike in four dimensions, there is no helicity degree of freedom for massless states
in three dimensions. Hence, one-particle states are solely labeled by a massless momentum
pμ = γ

μ

abλ
aλb, which is conveniently parametrized by a spacetime spinor λ using the real

Dirac gamma matrices γ μ. For momenta with positive energy p0 > 0 in Minkowski signature,
λ has to be real. For negative-energy momenta, λ has to be purely imaginary.

Superfields and superamplitudes

All free on-shell states φA(λ), ψA(λ) can be combined in a single superfield 
(λ, η) [18] with
the help of a u(3) Graßmann spinor ηA,


(λ, η) = φ4(λ) + ηAψA(λ) + 1
2εABCηAηBφC(λ) + 1

6εABCηAηBηCψ4(λ). (2.1)

This choice of superfield splits the internal R-symmetry into a manifest u(3) and a non-
manifest remainder, realized as multiplication and second-order differential operators in ηs.
Its virtue is that the supersymmetry and superconformal generators take the simple form

QaA = λaηA, Qa
A = λa∂A, SA

a = ηA∂a, SaA = ∂a∂A, (2.2)

where ∂a, ∂A denote derivatives with respect to λa, ηA. When splitting the matter fields into
mutually conjugate components φA, φ̄A, ψA, ψ̄A, it is convenient to use not the conjugate
superfield 
̄(λ̄, η̄) itself, but its Graßmann Fourier transform


̄(λ, η) = ψ̄4(λ) + ηAφ̄A(λ) + 1
2εABCηAηBψ̄C(λ) + 1

6εABCηAηBηCφ̄4(λ). (2.3)

13 Nevertheless, the Chern–Simons zero-mode will turn out to play a significant role, see the discussion at the end of
section 5 and in section 6.
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With the help of the superfields 
, 
̄, scattering amplitudes for all possible combinations
of n external states combine into a single superamplitude, from which individual component
amplitudes can be extracted as coefficients of the appropriate η-monomials.

In the planar limit N → ∞, scattering amplitudes can be decomposed into color-ordered
amplitudes multiplied by planar color structures. The objects we study in this work are the
color-ordered superamplitudes

An = An(�̄1,�2, �̄3, . . . , �̄n−1,�n), �k = (λk, ηk), (2.4)

where the ordering of the arguments is significant, and the bars signify that the respective
�ks parametrize conjugate fields 
̄. The color decomposition requires that 
 and 
̄ fields
alternate, and implies invariance up to a sign under cyclic double-shifts,

An(�̄3, . . . , �n, �̄1,�2) = (−1)n/2−1An(�̄1,�2, �̄3, . . . , �n). (2.5)

By convention, conjugate superfields are put in odd arguments of the superamplitude. The sign
is due to the fact that the conjugate field 
̄ is fermionic. Consequently under the transformation,
‘λ’-parity, or its supersymmetric generalization [26], � → −� the superamplitude transforms
as

An(�1, . . . ,−�i, . . . , �n) = (−1)iAn(�1, . . . , �i, . . . , �n). (2.6)

The color-ordered amplitudes have another symmetry which is due to the reflection invariance
of the fundamental vertices in the Lagrangian. This inversion symmetry is reflected in the
following transformation behavior of the 
-loop amplitude14:

A(
)
n (�̄1,�2, . . . , �̄n−1,�n) = (−)n(n−2)/8+
A(
)

n (�̄1,�n, �̄n−1, . . . , �2). (2.7)

On-shell integration

Below, we will frequently need to integrate over complete sets of on-shell states. In the
superfield language, such integrals take the simple form∫

d� f (�̄) g(i�), d� = d2|3� = 1

2
d2λ d3η, (2.8)

where i� := (iλ, iη) switches the sign of both the momentum λaλb and the supermomentum
λaηA relative to �. The integration often needs to include both real and imaginary λ, that is
the domain of integration for λ is R

2 ∪ (iR)2. The factor 1/2 accounts for the double-counting
of states due to the � → −� symmetry. By substituting � → i�, the integration over (iR)2

can be converted to an integration over R
2 and vice versa:∫

d� f (�̄)g(i�) = −i
∫

d� f (i�̄)g(�)

=
∫

R

d�( f (�̄)g(i�) − i f (i�̄)g(�))

=
∫

iR
d�( f (�̄)g(i�) − i f (i�̄)g(�)). (2.9)

This assumes that f (−�̄) = − f (�̄) and g(−�) = g(�), which is the case for f and g being
scattering amplitudes, and will always be the case below. Note that the integration measure
d� is fermionic and transforms according to d� → (i2/i3) d� = −i d� under � → i�.

14 We thank Marco Bianchi, Matias Leoni, Andrea Mauri, Silvia Penati and Alberto Santambrogio for clarification
of the loop dependence.
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3. Anomaly vertex in three dimensions

In this section we first rewrite the four-point scattering amplitude of ABJM theory in such a
way that its dependence on a specific sign function becomes explicit. The argument of this
sign function is shown to be the spinor bracket of two neighboring external particles. The sign
thus changes when two particles become collinear. We then show that this change of sign leads
to an anomaly of the conformal symmetry. We explicitly act with the generator S (2.2) on
the four-point amplitude which yields an anomaly vertex supported on collinear momentum
configurations.

Four-point amplitude

The four-point superamplitude of ABJM theory reads [18], see also [25],

A4(1̄, 2, 3̄, 4) = δ3(P) δ6(Q)

〈12〉〈23〉 . (3.1)

For positive energies p0 (incoming particles), λ is real, while for negative energies (outgoing
particles), λ is purely imaginary. Assuming that particles 1 and 2 carry the same energy sign,
and particles 3 and 4 carry the opposite energy sign, we find

1 = |〈12〉|
∫

dα3 dβ3δ
2(λ3 − iα3λ1 + iβ3λ2),

1 = |〈12〉|
∫

dα4 dβ4δ
2(λ4 − iα4λ1 + iβ4λ2).

(3.2)

Inserting these identities into the amplitude, the momentum delta function becomes

δ3(P) = δ3
(
λ1λ1

(
1 − α2

3 − α2
4

) + λ2λ2
(
1 − β2

3 − β2
4

) + (λ1λ2 + λ2λ1)(α3β3 + α4β4)
)

= 1

|〈12〉|3 δ
(
1 − α2

3 − α2
4

)
δ
(
1 − β2

3 − β2
4

)
δ(α3β3 + α4β4), (3.3)

where the last equality holds as long as λ1 and λ2 are linearly independent. The four-point
amplitude thus can be written as15

A1,2↔3,4
4 (1̄, 2, 3̄, 4) = − δ6(Q)

|〈12〉|〈12〉2

∫
dα3 dα4 dβ3 dβ4

1

iα3

· δ(1 − α2
3 − α2

4

)
δ
(
1 − β2

3 − β2
4

)
δ(α3β3 + α4β4)

· δ2(λ3 − iα3λ1 − iβ3λ2)δ
2(λ4 − iα4λ1 − iβ4λ2). (3.4)

Introducing polar coordinates

α3 = rα sin α, α4 = rα cos α, β3 = rβ sin β, β4 = rβ cos β, (3.5)

the radial integrations can be evaluated, leaving behind a Jacobi factor of 1/4:

A1,2↔3,4
4 (1̄, 2, 3̄, 4) = − δ6(Q)

|〈12〉|〈12〉2

∫
dα dβ

1

4i sin α
δ(sin α sin β + cos α cos β)

· δ2(λ3 − i sin αλ1 − i sin βλ2)δ
2(λ4 − i cos αλ1 − i cos βλ2). (3.6)

The first delta function localizes at β = α + s1(2 − s2)π/2, with s1, s2 = ±1, where

sin β = s1s2 cos α, cos β = −s1s2 sin α. (3.7)

15 The superscript 1, 2 ↔ 3, 4 signifies how the four particles are split into incoming (positive energy) and outgoing
(negative energy) particles. Expressions for different energy distributions are given below.
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Here we can collect the two signs into one which yields an overall factor of 2:

A1,2↔3,4
4 (1̄, 2, 3̄, 4) = − δ6(Q)

|〈12〉|〈12〉2

∑
s=±1

∫ 2π

0
dα

1

2i sin α

· δ2(λ3 − i sin αλ1 − is cos αλ2)δ
2(λ4 − i cos αλ1 + is sin αλ2). (3.8)

Moving δ6(Q) under the integral sign, contracting Q once with λ3 and once with λ4, and
expanding λ3,4 in terms of λ1,2 shows that

δ6(Q) = 〈34〉−3δ3(〈31〉η1 + 〈32〉η2 + 〈34〉η4)δ
3(〈41〉η1 + 〈42〉η2 + 〈43〉η3)

= −s〈12〉3δ3(η3 − i sin αη1 − is cos αη2)δ
3(η4 − i cos αη1 + is sin αη2). (3.9)

The four-point amplitude hence reads

A1,2↔3,4
4 (1̄, 2, 3̄, 4) = sgn(〈12〉)

∑
s=±1

∫ 2π

0
dα

s

2i sin α

· δ2|3(�3 − i sin α�1 − is cos α�2)δ
2|3(�4 − i cos α�1 + is sin α�2), (3.10)

where �k = (λk, ηk). Reverting the direction of integration in one of the two terms under the
sum shows that s accounts for a possible reflection in the rotation of �1,2 into �3,4:

A1,2↔3,4
4 (1̄, 2, 3̄, 4) = sgn(〈12〉)

∑
s=±1

∫ 2π

0
dα

1

2i sin α

· δ2|3(�3 − is(sin α�1 + cos α�2))δ
2|3(�4 − i(cos α�1 − sin α�2)). (3.11)

In the above derivation, it was assumed that particles 1 and 2 carry the same energy sign,
and particles 3 and 4 carry the opposite energy sign. A similar analysis (carried out in
the appendix) shows what the amplitude becomes when incoming/outgoing particles are
distributed differently16:

A1,3↔2,4
4 (1̄, 2, 3̄, 4) = −i sgnc(〈12〉)

∑
sα,sβ=±1

∫ ∞

−∞
dα

1

4 sinh α

· δ2|3(�3 − sβ (sα sinh α�1 + i cosh α�2))

× δ2|3(�4 − isα cosh α�1 + sinh α�2), (3.12)

A1,4↔2,3
4 (1̄, 2, 3̄, 4) = i sgnc(〈12〉)

∑
sα,sβ=±1

∫ ∞

−∞
dα

sβ

4i cosh α

· δ2|3(�3 − isα cosh α�1 + sinh α�2)

× δ2|3(�4 − sβ (sα sinh α�1 + i cosh α�2)), (3.13)

Here and for the following it is helpful to introduce generalizations of the sign and absolute
value functions to the real and imaginary axes:

sgnc(x) :=
{+1 for x ∈ R

+, iR+,

−1 for x ∈ R
−, iR−.

|x|c :=
{|Re x| for x ∈ R,

i|Im x| for x ∈ iR.
(3.14)

In conclusion, we can write the four-point amplitude as

Ak1,k2↔k3,k4
4 (1̄, 2, 3̄, 4) = sgnc(〈12〉)Fk1,k2↔k3,k4 (1̄, 2, 3̄, 4), (3.15)

where F denotes a function whose explicit parametrization depends on the distribution of
energies.

16 In both cases, 〈12〉 is purely imaginary.
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Anomaly

Looking at the explicit form of (3.11), (3.12) and (3.13), it is immediate that the action of
SA

a = ∑
k ηA

k ∂/∂λa
k on the super delta functions produces terms of the form x δ(x), thus the

function F in (3.15) is annihilated. The signum factor, however, produces a non-vanishing
contribution whenever the momenta 1 and 2 are collinear:

SA
a sgnc(〈12〉) = 2εab

(
ηA

1 λb
2 − ηA

2 λb
1

)
δc(〈12〉). (3.16)

Here we consistently define

δc(x) :=
{
δ(Re x) for x ∈ R,

−iδ(Im x) for x ∈ iR,
(3.17)

The anomaly vertex thus takes the form

SA
a Ak1,k2↔k3,k4

4 (1̄, 2, 3̄, 4) = 2εab
(
ηA

1 λb
2 − ηA

2 λb
1

)
δc(〈12〉) Fk1,k2↔k3,k4 (1̄, 2, 3̄, 4), (3.18)

where F is anomaly free and on the support of δc(〈12〉), all four momenta are collinear. We
believe this expression furnishes the building block for all anomaly contributions of higher-
point and higher-loop amplitudes.

Let us evaluate the vertex for the configuration (1, 2 ↔ 3, 4) in order to obtain a more
symmetric expression. It is convenient to parametrize the collinear particles in terms of the
massless momentum λ12λ12 = λ1λ1 + λ2λ2. To this end, we use the identity

δ(〈12〉) =
∫

d�12 d�′ dβδ2(λ′)δ2|3
1 δ

2|3
2 , (3.19)

with
δ

2|3
1 = δ2|3(�1 − (sin β�12 + cos β�′)),

δ
2|3
2 = δ2|3(�2 − (cos β�12 − sin β�′)),

(3.20)

which, after shifting α → α − β, turns the delta functions in (3.11) into

δ
2|3
3 = δ2|3(�3 − is(sin α�12 + cos α�′)),

δ
2|3
4 = δ2|3(�4 − i(cos α�12 − sin α�′)).

(3.21)

Using ηA
1 λb

2 − ηA
2 λb

1 = λb
12η

′A under δ2(λ′), the anomaly vertex then reads

SA
a A1,2↔3,4

4 (1̄, 2, 3̄, 4) =
∑
s=±1

∫
d�12d�′dα dβ δ2(λ′)

× 1

i sin(α − β)
εabλ

b
12η

′Aδ
2|3
1 δ

2|3
2 δ

2|3
3 δ

2|3
4 . (3.22)

4. Conformal symmetry of the six-point amplitude

Let us now apply the conformal anomaly vertex to six-point amplitudes at tree level and one
loop. The tree-level six-point amplitudes were first calculated by using the superconformal
symmetries and explicit Feynman diagram calculations in [18]. Subsequently they were
rederived from the orthogonal Graßmannian of [27], and given a perhaps more congenial
form in [26] by means of the three-dimensional analogue of the BCFW recursion relations.

In order to generalize the above anomaly 4-vertex S4 = SA4 to higher-point and to
loop amplitudes, we employ the following strategy. We first obtain the imaginary part of the
respective amplitude using unitarity (the optical theorem), then determine the anomaly of the
imaginary part, and finally find the anomaly of the amplitude by requiring that acting with the
anomalous generator S and taking the imaginary part commute, S Im A = Im SA.
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Figure 1. Imaginary part of the tree-level six-point amplitude.
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Figure 2. Anomaly of the imaginary part of the tree-level six-point amplitude.

Tree level

By the optical theorem, the imaginary part of the tree-level six-point amplitude in ABJM
reads, see figure 1,

2 Im A(0)

6 (1̄, 2, 3̄, 4, 5̄, 6) =
∫

R

d�aĀ4(1̄, 2, 3̄, ia)A4(ā, 4, 5̄, 6)

− i
∫

R

d�aĀ4(iā, 2, 3̄, 4)A4(5̄, 6, 1̄, a) + 4 cyclic,

=
∫

d�aA4(1̄, 2, 3̄, ia)A4(ā, 4, 5̄, 6) + 2 cyclic, (4.1)

where the first two integrations run only over real λa, that is the internal momenta have a
definite energy sign; see (2.8) for the definition of the measure d�17. A bar over an amplitude
denotes complex conjugation, but note that in fact the four-point amplitude is real, Ā4 = A4.
Furthermore note that the second term is real despite its imaginary prefactor. The amplitude
Ā4 is an odd function of the (imaginary) first argument by construction. Both four-point
amplitudes on the rhs are anomalous, and they will contribute to the anomaly of the six-point
tree-level amplitude. That is their anomalies in the integral will give the imaginary part of the
six-point anomaly, see figure 2. In fact, we do not expect further contributions: An off-shell
propagator joining two four-point vertices yields a rational function. In four dimensions, the
holomorphic anomaly at poles was responsible for anomalous transformations. Conversely, in
three dimensions, the anomaly arises from derivatives of step functions.

A simple ansatz to reproduce the anomaly of the above imaginary part reads

SA(0)

6 (1̄, 2, 3̄, 4, 5̄, 6) = − i

2

∫
d�aS4(1̄, 2, 3̄, ia)A4(ā, 4, 5̄, 6) + 5 cyclic, (4.2)

which is graphically represented in figure 3, and where now the integration includes both
real and imaginary λa. The minus sign on the right-hand side results from passing the

17 Unfortunately, the prefactors of the various contributions are hard to come by. For example, reality requires a
factor of ±i in the second term in the above unitarity relation. Only for this (relative) prefactor two contributions
will combine using (2.9) into an integral with undirected energy flow as desirable for tree level unitarity. The correct
overall signs follow, ultimately, from evaluating statistics and color of the S-matrix operator carefully. In the figures
here and below, we conveniently absorb such factors of ±1, ±i originating from the on-shell integration measure d�

into a more intuitive definition of the diagram.
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Figure 3. Anomaly of the tree-level six-point amplitude.

fermionic generator S through the fermionic measure. The correctness of this expression
can be confirmed by computing its imaginary part (by complex conjugation) and comparing
to the anomaly of (4.1). Note that the four-point anomaly is real, S̄4 = S4 (for a real choice
of generator S). The anomaly is supported on configurations where three adjacent momenta
are collinear.

One loop

At one loop, the imaginary part of the six-point amplitude expands to18

2 Im A(1)

6 (1̄, 2, 3̄, 4, 5̄, 6) = −i
∫

R

d�ad�bA4(1̄, 2, iā, ib)A(0)

6 (b̄, a, 3̄, 4, 5̄, 6)

+ 5 cyclic + c.c. (4.3)

These are the only contributions because all amplitudes have an even number of external
particles19. Furthermore, a single-particle cut would split off a four-point one-loop amplitude
which is known to vanish20.

We can now act with a superconformal generator on (4.3) to find the anomaly of the
imaginary part. The result is a sum of terms where the generator S either acts on A4, yielding
SA4 = S4, or on A(0)

6 , yielding (4.2). The latter generates triangle-shaped diagrams as
well as contributions where two 4-vertices are joined into a two-sided bubble with a third
4-vertex attached to one of the external legs. The triangle diagrams combine with their complex
conjugates where the energy signs of internal lines are flipped. Collecting all the contributions,
we find (see figure 4)

S2 Im A(1)

6 = −i
∫

R

d�ad�bS4(1̄, 2, iā, ib)A(0)

6 (b̄, a, 3̄, 4, 5̄, 6)

− 1

2

∫
R

d�ad�b

∫
d�cS4(1̄, 2, iā, ib)A4(5̄, 6, b̄, ic)A4(c̄, a, 3̄, 4)

− 1

2

∫
R

d�ad�b

∫
d�cS4(1̄, 2, iā, ib)A4(b̄, a, 3̄, ic)A4(c̄, 4, 5̄, 6)

− 1

2

∫
R

d�ad�b

∫
d�cS4(1̄, 2, iā, ib)A4(3̄, 4, 5̄, ic)A4(c̄, 6, b̄, a)

+ 5 cyclic each + c.c. (4.4)

18 The prefactor of −i is related to the integral over one conjugate leg (see footnote 17). We are not certain whether
the overall sign is correct, but it will be consistent with the derivations below.
19 An important exception to this rule occurs if we consider the zero-mode of the Chern–Simons field. We will discuss
this at the end of section 5 and in section 6. Corresponding singularities are supported on kinematical subspaces of
greater codimensionality and are negligible for the considerations here.
20 Indeed, the one-loop four-point amplitude, reduced to scalar integrals, can only get contributions from one- and
two-mass triangles, bubbles and tadpoles. The one- and two-mass triangle integrals vanish in three-dimensions, and
there are no bubble or tadpole diagrams in the three-dimensional, finite, superconformal theory.
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Figure 4. Anomaly of the imaginary part of the one-loop six-point amplitude.
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Figure 5. Anomaly of the one-loop six-point amplitude.

Here the latter three terms arise from the action of S on A(0)

6 . They were obtained by combining
with the complex conjugate contributions and using the vanishing of the one-loop four-point
amplitude. Note that the third and the fourth term are of higher codimension. They require not
only two, but three collinear momenta.

Now we can make an ansatz for the six-point one-loop anomaly SA(1)

6 consisting of on-
shell bubble and triangle integrals with six-vertices A(0)

6 , 4-vertices A(0)

4 , and anomaly vertices
S4. We compute the imaginary part of the one-loop anomaly ansatz making use of the complex
conjugate of the six-point tree-level amplitude

Ā(0)

6 (b̄, a, 3̄, 4, 5̄, 6) = A(0)

6 (b̄, a, 3̄, 4, 5̄, 6) − 2i Im A(0)

6 (b̄, a, 3̄, 4, 5̄, 6), (4.5)

where Im A(0)

6 is given in (4.1). We compare it to the anomaly (4.4) of the one-loop imaginary
part, and we find that the following, relatively simple expression suffices:

SA(1)

6 (1̄, 2, 3̄, 4, 5̄, 6) = 1

2

∫
R

d�ad�bS4(1̄, 2, iā, ib)A(0)

6 (b̄, a, 3̄, 4, 5̄, 6)

+1

2

∫
R

d�ad�bS4(1̄, 2, ā, b)A(0)

6 (ib̄, ia, 3̄, 4, 5̄, 6) + 5 cyclic each. (4.6)

The anomaly, see figure 5, is supported on configurations where two adjacent particles are
collinear. In other words, for a generic configuration of particle momenta there is no anomaly
at one loop.

Let us investigate the above integral for the one-loop six-point anomaly more explicitly.
Making use of the anomaly vertex as induced by the four-point amplitude in the form of (3.11),

11
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the integrals can be straightforwardly evaluated against the delta functions. The first term in
(4.6) then becomes21

SA(1)

6 (1̄, 2, 3̄, 4, 5̄, 6) = 1

8
εab

(
ηA

1 λb
2 − ηA

2 λb
1

)
δc(〈12〉)

∑
s=±1

∫ 2π

0
dα

1

i sin(α)

· A(0)

6 (cos α�1 − sin α�2, s(sin α�1 + cos α�2), 3̄, 4, 5̄, 6) + 5 cyclic. (4.7)

Substituting y = cos(α), and using the �-parity (2.6) of A(0)

6 , this yields

SA(1)

6 (1̄, 2, 3̄, 4, 5̄, 6) = − i

2
εab

(
ηA

1 λb
2 − ηA

2 λb
1

)
δc(〈12〉)

∫ 1

−1
dy

1

1 − y2

· A(0)

6 (y�1 −
√

1 − y2�2,
√

1 − y2�1 + y�2,�3,�4,�5,�6) + 5 cyclic.

(4.8)

Now we make use of the explicit expression for the six-point amplitude introduced in [18]:

A(0)

6 = δ3(P)δ6(Q)
(

f +δ3(α+) + f −δ3(α−)
)
, (4.9)

where

α±,A =
6∑

k=1

x±
k ηA

k , δ3(α±) =
∏

A=1,2,3

α±,A, (4.10)

and the coordinates x±
k can be chosen in accordance with the conditions in [18] to be

x±
i = iεi jk〈 jk〉

2
√

2
√

p2
6,1,2

, i, j, k = 6, 1, 2, x±
i = ±εi jk〈 jk〉

2
√

2
√

p2
3,4,5

, i, j, k = 3, 4, 5. (4.11)

With the above choice of coordinates, the expressions for δ3(P), δ6(Q) and α± do not change
under the rotation

�1 → �a = y�1 −
√

1 − y2�2, �2 → �b =
√

1 − y2�1 + y�2. (4.12)

A simple form for the functions f ± can be found using the component amplitudes of [24]:

A6ψ = A6(ψ̄
4, ψ1, ψ̄

2, ψ4, ψ̄
1, ψ2) = 0, A6φ = A6(φ̄3, φ

2, φ̄1, φ
3, φ̄2, φ

1) = 1. (4.13)

These yield

f ± =
i
√

2
√

p2
3,4,5

(〈2|p34|5〉 ∓ i〈61〉〈34〉)(〈3|p45|6〉 ∓ i〈12〉〈45〉) . (4.14)

The anomaly term (4.8) then becomes

SA(1)

6 (1̄, 2, 3̄, 4, 5̄, 6) = − i

2
εab

(
ηA

1 λb
2 − ηA

2 λb
1

)
δc(〈12〉)δ3(P)δ6(Q)

(
i
√

2
√

p2
3,4,5

)
× (

I+
12δ

3(α+) + I−
12δ

3(α−)
) + 5 cyclic. (4.15)

with the integrals given by

I±
12 =

∫ 1

−1
dy

1

1 − y2

1

(〈b|p34|5〉 ∓ i〈6a〉〈34〉)(〈3|p45|6〉 ∓ i〈ab〉〈45〉) . (4.16)

Setting 〈ab〉 = 0 due to the presence of δc(〈12〉), the integrals simplify to

I±
12 = 1

〈3|p45|6〉
∫ 1

−1
dy

1

1 − y2

1

(〈b|p34|5〉 ∓ i〈6a〉〈34〉) . (4.17)

21 Note that
∫

d�′δ(�′ − �) f (�′) = 1/2 f (�) due to the definition of the measure (2.8).
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The integral diverges at both integration boundaries, but taking a symmetric limit yields

I±
12 = 1

〈3|p45|6〉
is±π

〈2|p34|5〉 ∓ i〈61〉〈34〉 , (4.18)

where s± are sign factors that may depend on the external momenta, and whose explicit form
we did not determine. Comparing this to (4.14) and keeping in mind that 〈12〉 = 0 under
δc(〈12〉), the final result for (4.8) is

SA(1)

6 (1̄, 2, 3̄, 4, 5̄, 6) = π

2
εab

(
ηA

1 λb
2 − ηA

2 λb
1

)
δc(〈12〉)δ3(P)δ6(Q)

× (
s+ f +δ3(α+) + s− f −δ3(α−)

) + 5 cyclic. (4.19)

Notably, the evaluation of the above integrals leaves overall sign factors s± in this expression.
Depending on the values of these sign factors, we notice that the anomaly of the one-loop
amplitude either is proportional to the tree-level amplitude (4.9) itself, or to the tree-level
amplitude with a flipped sign in front of f −. As will become more transparent below, flipping
the relative sign between f + and f − in the tree-level amplitude amounts to a cyclic shift of
the external particles. Hence we find

SA
a A(1)

6 (1̄, 2, 3̄, 4, 5̄, 6) = s
π

4

(
SA

a sgnc〈12〉) {
A(0)

6 (1̄, 2, 3̄, 4, 5̄, 6) ifs± = s
iA(0)

6 (6̄, 1, 2̄, 3, 4̄, 5) ifs± = ±s
+ 5 cyclic. (4.20)

Discussion

The fact that the one-loop anomaly is singular can be used in connection with Yangian
symmetry to gain some easy insights into the one-loop six-point amplitude. At six points there
exist two independent Yangian (almost) invariant functions which we call Y1,2

22. They can be
constructed by an explicit Feynman diagram calculation and their Yangian invariance checked
[18], or by means of a contour integral over an orthogonal Graßmannian which is manifestly
Yangian invariant [26]. Both approaches involve the two solutions of a quadratic equation
with coefficients depending on the external momenta. In the Graßmannian approach, after
choosing a particular patch, the Yangian invariants depend on the variables csr̄, r̄ = 1, 3, 5,
and s = 2, 4, 6, such that

λr̄ +
∑

s

λscsr̄ = 0, and
∑

r̄

csr̄ctr̄ = δst, (4.21)

so that we label the two solutions (c∗
±)sr̄. The two Yangian (almost) invariants, in this approach,

correspond to the Graßmannian integrand evaluated on these two solutions, schematically
Y1,2 ≡ Y ({c∗

±}sr̄), and explicit expressions can be found in [26]. Significantly, in terms of
the λis, these invariants are simply rational functions as all square roots can explicitly be
performed.

We know that Yangian symmetry is unbroken at tree level except for a codimension-two
anomaly23. Therefore the tree-level six-point amplitude must be some linear combination of
the two invariants. We can fix which linear combination forms the tree amplitude by demanding
the correct behavior of the amplitude under �-parity (2.6) with the odd-numbered legs being
fermionic and the even-numbered legs being bosonic,

A(0)

6 (1̄, 2, 3̄, 4, 5̄, 6) = c6(Y1 + Y2)(1̄, 2, 3̄, 4, 5̄, 6) (4.22)

22 They are almost invariants in the sense that they are only invariant up to distributional terms.
23 As Yangian level-one generator we can use P̂ which is anomaly-free for finite contributions.
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for some constant c6 depending on the gauge coupling24. Here, the bars over the labels on the
right-hand side merely signify that the function (Y1 +Y2)(�k) transforms odd under sign flips
of the respective �s. The other linear combination

(Y1 − Y2)(1, 2̄, 3, 4̄, 5, 6̄) (4.23)

has exactly the opposite transformation property, as indicated by the distribution of bars on the
labels, and thus cannot appear in the tree-level amplitude25. Notably, this linear combination
again equals the tree-level amplitude when shifting all labels cyclically by one,

A(0)

6 (6̄, 1, 2̄, 3, 4̄, 5) = ic6(Y1 − Y2)(1, 2̄, 3, 4̄, 5, 6̄). (4.24)

At one-loop order, the loop momentum is still completely constrained by the four-point
anomaly vertex (4.6), and hence the anomaly does not get smeared across all configurations
of external momenta, but rather stays distributional, see figure 5. Consequently, also the
one-loop six-point amplitude has to equal a linear combination of the tree-level Yangian
(almost) invariants, with a prefactor that is constant at least locally. However, the support of
the anomalies at one loop is different than at tree level. Most notably, the one-loop amplitude
has codimension-one anomalies, which are absent at tree level and in the Yangian (almost)
invariants. In conclusion, the one-loop amplitude has to be a linear combination

A(1)

6 (1̄, 2, 3̄, 4, 5̄, 6) = c+
6 (1, 2, 3, 4, 5, 6)(Y1 + Y2)(1̄, 2, 3̄, 4, 5̄, 6)

+ c−
6 (1̄, 2̄, 3̄, 4̄, 5̄, 6̄)(Y1 − Y2)(1, 2̄, 3, 4̄, 5, 6̄) (4.25)

with coefficients c±
6 that are locally constant, but discontinuous on the support of the

codimension-one anomalies—that is they have to be piecewise constants that jump whenever
two adjacent external particles become collinear. In order to maintain the correct statistics of
the amplitude, c+

6 has to transform bosonic in all labels, and c−
6 has to transform fermionic in all

labels, as indicated by the bars over their labels. Thus the symmetries predict a non-vanishing
result for the one-loop six-point amplitude.

Proposal summary

Let us summarize what we have found for the anomalies of the scattering amplitudes and
outline a proposal for the anomalies at higher points and more loops. The variation of the
four-point tree-level amplitude simply gives the distributional, inhomogeneous term found on
the right-hand side of equation (3.22). That is, it is directly given by the anomaly vertex and
has support only on the codimension-two surface26. For higher point amplitudes we attach
the anomaly vertex to subamplitudes along a single internal leg. We saw this explicitly in the
case of the six-point tree-level amplitude, see figure 3. At eight points and beyond there are
additional possible configurations, where two anomaly vertex legs are attached to different
subamplitudes, see figure 6. At ten points, there are in principle configurations where three
vertex legs can be attached along internal lines to three different subamplitudes and at twelve
points, all vertex legs can be attached to internal lines.

At one-loop level we also attach two anomaly vertex legs, but now both with the same
energy and to the same subamplitude. We saw this for the six-point one-loop amplitude,
see figure 5, where two legs were attached to a tree-level six-point amplitude. This gives

24 The linear combination can also be fixed by demanding that the amplitude factorizes correctly into four-point
amplitudes with fermionic odd-numbered legs. In the Graßmannian approach it follows naturally from the cyclic
gauge choice.
25 Phrased differently, Y1 → (−1)k+1Y2 and Y2 → (−1)k+1Y1 under �k → −�k.
26 Naively, this anomaly cannot be considered as a deformation of the generator acting on a lower point amplitude as
there is no lower point amplitude. However, see the discussion in section 6.
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Figure 7. Proposed anomaly of two-loop six-point amplitude.

rise to an anomaly that is also purely distributional as it only occurs when two external legs
are collinear. At higher loops more than two legs of the anomaly vertex can be attached to the
same lower-loop subamplitude, see figure 7, with all legs having the same energy sign so it is
necessary to extend the anomaly vertex into a different kinematic regime. Moreover, for these
loop amplitudes this results in an anomaly for generic configurations of the external momenta.
For example at two-loops, three anomaly vertex legs can be attached to the same tree-level
amplitude and, because of the integrations, the resulting anomaly will have support for any
value of the external momenta. This is analogous to what happens in N = 4 SYM at one
loop where the anomaly becomes ‘smeared’ by the loop integrations and so the amplitudes are
anomalous with respect to the superconformal symmetries for generic states of the external
particles.

5. One-loop six-point amplitude from unitarity

In this section we will apply the methods of generalized unitarity which have proved so useful
inN = 4 SYM [28] toN = 6 SCS. In particular, we want to reconstruct the one-loop six-point
superamplitude from tree-level amplitudes by evaluating the maximal cuts, i.e. triple cuts for
the case of three dimensions. We assume27 that an arbitrary n-point one-loop amplitude, A(1)

n ,
can be written as a linear combination of scalar triangle diagrams, I3,i,

A(1)
n =

∑
i

diI3,i (5.1)

and thus we can use the maximal cuts to determine the coefficients di.
All on-shell amplitudes in N = 6 SCS have an even number of legs, which implies that

there are at least two external legs at each corner of the triangle. Expressions for the massive

27 Using the standard arguments analogous to those in four dimensions, e.g. [29], it is possible to show that any
three-dimensional CS matter one-loop amplitude can be written as a linear combination of triangle, bubbles and
tadpoles. For a finite, superconformal, and indeed at least at weak coupling ‘dual’ superconformal, theory such as
ABJM there will be no bubble or tadpole scalar integrals and we can use the scalar triangles as a basis.
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Figure 8. Maximal cuts for the one-loop six-point amplitude in terms of massive triangles.

triangles in an arbitrary number of dimensions can be found in [30]. For external momenta
K1, K2, K3 in D = 3 − 2ε the triangle integral evaluates to28

I3 = cN

∫
d3


(−
2 + iε)(−(
 + K1)2 + iε)(−(
 + K1 + K2)2 + iε)

= − iπ

2

1√
K2

1 − iε
√

K2
2 − iε

√
K2

3 − iε
. (5.2)

Obviously, the minimal number of external legs is six implying that the four-point amplitude
is uncorrected at one loop. For six points there are two relevant massive triangle diagrams, see
figure 8,

A(1)

6 (1̄, 2, 3̄, 4, 5̄, 6) = d1I3,1 + d2I3,2. (5.3)

The integral I3,1 has external momenta

K1 = p1 + p2, K2 = p3 + p4, K3 = p5 + p6 (5.4)

and I3,2 correspondingly

K1 = p6 + p1, K2 = p2 + p3, K3 = p4 + p5. (5.5)

The triple cuts correspond to putting all internal propagators on-shell and one must sum over
all such momentum configurations. For six points the sum is thus over products of tree-level
four-point amplitudes, where the sum over internal states can be done by performing Graßmann
integrations over the internal legs as in (2.8).

The coefficient of the first integral, I3,1, is given by the left-hand cut in figure 8,

d1 = 1

2

∑
sol

∫ ∏
i=a,b,c

d0|3ηi A4(1̄, 2, ib̄, a)A4(3̄, 4, ic̄, b)A4(5̄, 6, iā, c). (5.6)

28 For the scalar integral we choose the three-dimensional normalization to be cN = 4π

(2π)3 corresponding to the usual
momentum measure factor and an additional factor of 4π (cf normalization of four-dimensional scalar box integrals
in [31]). This normalization is consistent with earlier sections.
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The on-shell loop momenta, 
i, are completely fixed by the delta-functions from the cut
propagators so there is no remaining integration but rather a sum over the two solutions to the
equations29


2
a = 
2 = 0, 
2

b = (
 + K1)
2 = 0, 
2

c = (
 + K1 + K2)
2 = 0. (5.7)

We now turn our attention to the Graßmann integration over the delta-functions appearing in
the tree-level four point amplitudes∫ ∏

i=a,b,c

d0|3ηiδ
0|6(�13 − λbηb + λaηa)δ

0|6(�35 − λcηc + λbηb)δ
0|6(�51 − λaηa + λcηc)

= δ0|6(Q)

〈cb〉3
δ0|3(〈a|x13x35|�51〉 + 〈�13|x35x51|a〉). (5.8)

In this equation we have pulled out an overall factor, δ(6)(Q), of the total supermomentum
Q and we have repeatedly used Schouten’s identity which accounts for the fact that λa and
λb,c appear with different weights. Finally we have used the notation, x jk = ∑k−1

i= j pi and
〈� jk| = ∑k−1

i= j ηi〈i|. Thus, including the denominator factors from the four point amplitudes,
we find the coefficient for the cut

d1 = i

2

∑
s=±

δ3(P)δ0|6(Q)

〈bc〉3

δ0|3(〈a|x13x35|�51〉 + 〈�13|x35x51|a〉)
〈12〉〈34〉〈56〉〈b2〉〈c4〉〈a6〉 . (5.9)

The complete contribution to the one-loop six-point amplitude from this scalar amplitude is
thus

d1I3,1 = − iπ

2

d1√
−〈12〉2 − iε

√
−〈34〉2 − iε

√
−〈56〉2 − iε

. (5.10)

We can evaluate the square roots carefully to find√−x − iε = −i|x|c = −ix sgnc(x) (5.11)

where the generalizations of the absolute value and sign functions were defined in (3.14). We
end up with

d1I3,1 = −π

2

d1

〈12〉〈34〉〈56〉 sgnc〈12〉 sgnc〈34〉 sgnc〈56〉, (5.12)

which is proportional to the shifted tree-level scattering amplitude (4.24) up to some sign
factors30,

d1I3,1 = i

4
πA(0)

6 (6̄, 1, 2̄, 3, 4̄, 5) sgnc〈12〉 sgnc〈34〉 sgnc〈56〉. (5.13)

In fact, and as discussed in section 4, the tree-level six-point amplitude of [18] is the sum of
two terms Y1, Y2 related by �k → −�k parity transformations. These two terms are exactly
the s = ±1 terms appearing in the cut. Here it is important to note that the shifted tree-level
amplitude A(0)

6 (6̄, 1, 2̄, 3, 4̄, 5) has the opposite assignment of conjugate particles compared to
the one-loop amplitude A(1)

6 (1̄, 2, 3̄, 4, 5̄, 6). Superficially this leads to the wrong sign under

29 One way to determine 
 is to choose 
μ = αKμ

1 +βKμ

2 +γ Kμ
× where Kμ

× = εμνρK1νK2ρ and use (5.7) to determine
α, β and γ . One finds two solutions

α = (K1 · K2)K2
2 − K2

1 K2
2 + 2(K1 · K2)2

2K2×
, β = K2

1 (K1 · K2 + K2
2 )

2K2×
, γ = s

√
K2

1 K2
2 K2

3

2K2×
.

where s = ± enumerates the two solutions. Alternatively, one can directly solve the equations for the corresponding
λs.
30 This comparison is done by taking specific values for the external momenta and evaluating various component
amplitudes numerically.
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any of the transformations �k → −�k, which is compensated by the sign functions involving
all of the external λk.

The scalar triangle integral I3,2 is captured by the right-hand cut in figure 8,

d2 = 1

2

∑
sol

∫ ∏
i=a,b,c

d0|3ηiA4(1̄, b, iā, 6)A4(3̄, c, ib̄, 2)A4(5̄, a, ic̄, 4). (5.14)

The calculation is identical to the previous case and the result is

d2 = i

2

∑
s=±

δ3(P)δ0|6(Q)

〈cb〉3

δ0|3(〈a|x62x24|�46〉 + 〈�62|x24x46|a〉
)

〈61〉〈32〉〈54〉〈6a〉〈2b〉〈4c〉 , (5.15)

where the on-shell loop momenta, 
2
i = 0, are related by 
b = 
a − K1 and 
c = 
b − K2.

Expanding the square roots in the triangle integral we find

d2I3,2 = i

4
πA(0)

6 (6̄, 1, 2̄, 3, 4̄, 5) sgnc〈61〉 sgnc〈23〉 sgnc〈45〉, (5.16)

Altogether our result for the one-loop six-point amplitudes reads

A(1)

6 (1̄, 2, 3̄, 4, 5̄, 6) = iπ

4
c6(1̄, 2̄, 3̄, 4̄, 5̄, 6̄)A(0)

6 (6̄, 1, 2̄, 3, 4̄, 5) (5.17)

with the piecewise constant combination of sign functions

c6(1̄, 2̄, 3̄, 4̄, 5̄, 6̄) = sgnc〈12〉 sgnc〈34〉 sgnc〈56〉 + sgnc〈61〉 sgnc〈23〉 sgnc〈45〉. (5.18)

Here the bars over the labels indicate that c6 transforms odd under sign flips of any λk. The
relative plus sign between the two products of sgnc functions follows from the calculation,
however we can also understand it from the symmetries of the amplitudes. As previously
described (2.7), the color ordered six-point superamplitudes are odd/even functions under an
inversion of the color ordering, A(1̄, 2, 3̄, 4, 5̄, 6) = ∓A(1̄, 6, 5̄, 4, 3̄, 2). While the tree-level
amplitude and its cyclically shifted version are odd, the one-loop amplitude is even under this
transformation. Thus the piecewise constant, c6, must be an odd function under the inversion
map, and this requires the relative plus sign between the two terms.

To conclude, let us analyze the cuts of the above expression. In this regard the near equality
of tree and loop level amplitudes begs for an explanation. How can the one-loop result have the
same set of discontinuities as the corresponding one at tree level when the cuts are obviously
different? In particular, the pole in the three-particle channel at tree level originates from
the splitting into two four-particle trees (4.1). The one-loop result has the same pole but no
apparent splitting into subamplitudes. Taking a closer look at the origin of the discontinuity
one finds that it requires the momentum transfer in one of the corners of the triangle to be zero.
At this point, the four-point amplitude has a pole which is responsible for the three-particle
pole. This pole corresponds to the zero-mode of the Chern–Simons gauge field. So indeed
there is a physical cut for the one-loop six-point amplitude in the three-particle channel, see
figure 931. Somewhat surprisingly, this pole agrees precisely with the pole of the cyclically
shifted tree-level amplitude up to some sign factors. The other relevant cuts are in two-particle
channels. These are the natural cuts at the one-loop level but are not present at tree level and
thus they must be associated to the additional sign factors which we recall originate in square
roots of ‘masses’,

√−m2 =
√

(pi + pi+1)2, occurring in the scalar triangles, whose branch
cuts are just next to the real axis when the two inflowing energies are aligned (positive m2).

31 It is worth pointing out that unitarity in the original meaning of the word is different from the cutting rules of
generalized unitarity: one would not expect the non-propagating Chern–Simons field to appear in unitarity cuts. This
means that the above mentioned poles are to be evaluated in a principal value prescription. In this case the zero-mode
does not appear in the imaginary part of amplitudes: Im F(x) = 0 for F(x) = 1/x. Conversely, in generalized
unitarity the zero-mode is detectable by the cutting rule F(x + iε) − F(x − iε) = −2π iδ(x), and needs to be taken
into consideration.
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Figure 9. Cut of the one-loop six-point amplitude in the 123 channel.

It is also quite clear that the sign factors in c6 give rise to the correct codimension-
one superconformal anomalies discussed in section 4. The superconformal variations act as
derivatives which turn the sign factors into delta functions supported on collinear configurations
of any two adjacent particles as described previously.

6. Conclusions and outlook

In this paper we have shown that scattering amplitudes in three-dimensionalN = 6 SCS theory
give rise to an anomaly of the (super)conformal symmetry in a fashion similar to N = 4 SYM
theory. As for the four-dimensional theory in (2, 2) signature [2], here the anomaly arises from
sign functions of spinor brackets. These sign factors emerge when rewriting the four-point
amplitude by making use of the different scaling behavior of bosonic and fermionic delta
functions, schematically (cf section 3):

1

x2
δ2(x bos)δ3(x ferm) = x

|x|δ
2(bos)δ3(ferm) = sgn x δ2(bos)δ3(ferm), (6.1)

where x represents the spinor brackets. While in four dimensions the anomaly can be captured
in terms of a vertex with three legs, we find a corresponding 4-vertex S4 = SA4 with support
on collinear momentum configurations. We have employed the anomaly to predict the non-
vanishing of the one-loop six-point amplitude: Firstly, there are two Yangian invariants (up
to anomalous contributions) whose linear combinations furnish the tree-level and one-loop
six-point amplitude. Considering the different anomalies of the tree and one-loop term as well
as discrete symmetries of physical amplitudes, shows that the proportionality factor translating
between them is a non-trivial function of the external momenta. Consequently, the one-loop
six-point amplitude is non-trivial32 and proportional to the tree-level contribution cyclically
shifted: A(1)

6 = c6A(0)

6 ({i → i − 1}). We have confirmed this result by a unitarity construction
of the one-loop amplitude using a triple cut. It is important to note the different structure of
the anomaly of the six-point amplitude at loop level when compared to N = 4 SYM theory.
While in four dimensions the anomaly is only distributional at tree-level and gets smeared in
the loop integration at one loop, the three-dimensional anomaly is still distributional at one
loop and only gets smeared at two loops. As a consequence, the one-loop six-point amplitude
obeys the same symmetry constraints as the tree-level expression up to distributional terms.

The non-vanishing of the one-loop six-point amplitude is particularly interesting in the
light of a possible duality between scattering amplitudes and Wilson loops in ABJM theory.

32 Note that a non-vanishing result for the one-loop six-point amplitude was also obtained by an independent Feynman
calculation in [24].
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As the lightlike hexagon Wilson loop is known to vanish at one-loop order [22, 23], the non-
trivial one-loop six-point amplitude poses the puzzle of what a possible map could look like. A
simple solution would be that there is no self-T-duality in ABJM theory and thus no reason for
Wilson loops and scattering amplitudes to match. In order to look for further hints for either
outcome one could start by stripping off the tree-level contribution and try to compare only
scalar loop corrections. The most interesting question seems to be: can one define a hexagon
Wilson loop that matches our one-loop result of the six-point amplitude? Relatedly, it may
be useful to find the correct analog of the super-Wilson loop [10, 15, 32] in three dimensions
to match with superamplitudes. A similar question occurs when we wish to consider Wilson
loops with an odd number of edges, which a priori exist and are non-trivial, though they will
be generically complex [22], while there are only amplitudes for even numbers of external
legs if we allow only on-shell scalars and fermions as external particles.

An important point we have not discussed here is whether the breaking of conformal
symmetry can be cured by deformation of the free representation of osp(6|4) on amplitudes.
This seems very plausible, in particular with regard to analogous considerations inN = 4 SYM
theory where the conformal generators of the psu(2, 2|4) representation were deformed to
compensate for the anomaly. This is particularly desirable since it renders the scattering matrix
an exact symmetry invariant and thereby recursively relates amplitudes with different numbers
of legs to each other, e.g. S̄A4d−MHV

n + S̄+
3 A4d−MHV

n−1 = 0. Here S̄+
3 denotes the deformation

of the generator S̄ corresponding to the three-point anomaly vertex in four dimensions. The
starting point of the four-dimensional recursion is S̄A4d

4 = 0 being consistent with a three-point
amplitude that vanishes for physical kinematics. Straightforwardly translating this recursion
to ABJM theory with only even-point amplitudes yields

SAn + S+
4 An−2

?= 0. (6.2)

Here, however, SA4 is non-vanishing as discussed above and the inductive symmetry would
require a non-trivial two-point invariant with SA2 = 0 as a starting point. Notably, we can
construct a two-point osp(6|4) invariant that renders (6.2) correct for n = 4. It takes the form
A2 = δ2|3(�1 ± i�2). Provided the algebra of deformed generators still holds, this gives hope
for a construction similar to four dimensions. But is the two-point invariant really part of the
ABJM scattering matrix?

Taking a closer look at the interaction Hamiltonian that induces the scattering matrix, the
vertex with the lowest number of points has three legs and includes the Chern–Simons field.
The Chern–Simons field, however, is not dynamical and should thus not appear as an external
particle in scattering amplitudes. Could the three-vertex still give rise to a non-vanishing two-
point invariant in the scattering matrix such that A2 = A3|pCS=0? At first sight it seems not clear
how to technically investigate this point. The Chern–Simons field has no on-shell degrees of
freedom and is thus not captured by the ordinary on-shell superspace formulation of scattering
amplitudes. Considering the scattering matrix in terms of oscillators corresponding to field
excitations, the same problem arises. While creation and annihilation operators live on the
forward and backward mass shell, respectively, a priori neither choice seems appropriate to
describe the Chern–Simons field. Can one still introduce a corresponding oscillator? What
commutation relations would this imply? Notably, the zero-mode of the Chern–Simons field
already played a special role in explaining the discontinuity of the one-loop six-point amplitude
in section 5 (cf figure 9). Its generic role for the generalized unitarity construction of scattering
amplitudes seems yet unclear. A deeper understanding of these issues appears to have the
potential for new insights into the structure of Chern–Simons theories in general.

Obviously, it is very tempting to extend our results for the one-loop six-point amplitude to
higher numbers of loops and legs. In particular this should shed light on the general structure
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of one-loop amplitudes in ABJM theory which is of great importance for a possible duality
to Wilson loops. A starting point could be the investigation of constraints on generic one-
loop amplitudes imposed by symmetry and the form of the anomaly. It would also be very
interesting to see whether a similar anomaly arises in dimensions greater than 4.
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Appendix. Mixed energy signs

Distributing positive/negative energies (incoming/outgoing particles) in different ways, the
analysis of section 3 gets slightly modified.

Same sign on 1 and 3

If particles 1 and 3 carry the same energy sign, and particles 2 and 4 carry the opposite energy
sign, the identities (3.2) have to be modified by appropriate factors of i:

1 = i|〈12〉|
∫

dα3 dβ3δ
2(λ3 − α3λ1 − iβ3λ2),

1 = i|〈12〉|
∫

dα4 dβ4δ
2(λ4 − iα4λ1 − β4λ2).

(A.1)

The momentum conservation delta function becomes

δ3(P) = δ3
(
λ1λ1

(
1 + α2

3 − α2
4

) + λ2λ2
(
1 − β2

3 + β2
4

) + i(λ1λ2 + λ2λ1)(α3β3 + α4β4)
)

= 1

|〈12〉|3 δ
(
1 + α2

3 − α2
4

)
δ
(
1 − β2

3 + β2
4

)
δ(α3β3 + α4β4), (A.2)

such that the amplitude reads

A1,3↔2,4
4 (1̄, 2, 3̄, 4) = δ6(Q)

|〈12〉|〈12〉2

∫
dα3 dα4 dβ3 dβ4

1

α3

· δ(1 + α2
3 − α2

4

)
δ
(
1 − β2

3 + β2
4

)
δ(α3β3 + α4β4)

· δ2(λ3 − α3λ1 − iβ3λ2)δ
2(λ4 − iα4λ1 − β4λ2). (A.3)

The first two delta functions are each supported on a pair of hyperbolas in (α3, α4) and (β3, β4)

space. Using the parametrization

α3 = rα sinh α, α4 = rα cosh α, β3 = rβ cosh β, β4 = rβ sinh β, (A.4)
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where the radial variables rα , rβ take all real values, the radial integrals localize at rα = ±1,
rβ = ±1:

A1,3↔2,4
4 (1̄, 2, 3̄, 4) = δ6(Q)

|〈12〉|〈12〉2

∑
sα,sβ=±1

∫
dα dβ

sα

4 sinh α
δ(sinh(α + β))

· δ2(λ3 − sα sinh αλ1 − isβ cosh βλ2)

× δ2(λ4 − isα cosh αλ1 − sβ sinh βλ2). (A.5)

The first delta function localizes the beta integral at β = −α, thus

A1,3↔2,4
4 (1̄, 2, 3̄, 4) = δ6(Q)

|〈12〉|〈12〉2

∑
sα,sβ=±1

∫ ∞

−∞
dα

sα

4 sinh α

· δ2(λ3 − sα sinh αλ1 − isβ cosh αλ2)

× δ2(λ4 − isα cosh αλ1 + sβ sinh αλ2). (A.6)

Moving δ6(Q) under the integral sign, contracting Q once with λ3 and once with λ4, and
expanding λ3,4 in terms of λ1,2 shows that

δ6(Q) = 〈34〉−3δ3(〈31〉η1 + 〈32〉η2 + 〈34〉η4)δ
3(〈41〉η1 + 〈42〉η2 + 〈43〉η3)

= −sαsβ〈12〉3δ3(η3 − sα sinh αη1 − isβ cosh αη2)

· δ3(η4 − isα cosh αη1 + sβ sinh αη2). (A.7)

The four-point amplitude hence reads

A1,3↔2,4
4 (1̄, 2, 3̄, 4) = −i sgnc〈12〉

∑
sα,sβ=±1

∫ ∞

−∞
dα

sβ

4 sinh α

· δ2|3(�3 − sα sinh α�1 − isβ cosh α�2)

× δ2|3(�4 − isα cosh α�1 + sβ sinh α�2), (A.8)

where again � = (λ, η). Reverting the direction of integration in the terms with sβ = −1
gives (3.12):

A1,3↔2,4
4 (1̄, 2, 3̄, 4) = −i sgnc〈12〉

∑
sα,sβ=±1

∫ ∞

−∞
dα

1

4 sinh α

· δ2|3(�3 − sβ (sα sinh α�1 + i cosh α�2))

× δ2|3(�4 − isα cosh α�1 + sinh α�2). (A.9)

Alternatively, reverting the direction of integration in the terms with sα = −1 results in

A1,3↔2,4
4 (1̄, 2, 3̄, 4) = −i sgnc〈12〉

∑
sα,sβ=±1

∫ ∞

−∞
dα

sαsβ

4 sinh α

· δ2|3(�3 − sinh α�1 − isβ cosh α�2)

× δ2|3(�4 − sα(i cosh α�1 − sβ sinh α�2)). (A.10)

Same sign on 1 and 4

If the momenta of particles 1 and 4 carry the same energy sign (opposed to 1 and 3), then the
previous derivation up to (A.8) works exactly the same, up to the following substitutions:

α3 → iα3, α4 → −iα4, β3 → −iβ3, β4 → iβ4, (A.11)
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and accordingly

sinh α → i cosh α, cosh α → −i sinh α, sinh β → i cosh β, cosh β → −i sinh β.

(A.12)

Hence the amplitude in this case reads

A1,4↔2,3
4 (1̄, 2, 3̄, 4) = −i sgnc〈12〉

∑
sα,sβ=±1

∫ ∞

−∞
dα

sβ

4i cosh α

· δ2|3(�3 − isα cosh α�1 − sβ sinh α�2)

× δ2|3(�4 − sα sinh α�1 + isβ cosh α�2). (A.13)

Substituting sβ → −sβ and subsequently reverting the direction of integration when sβ = −1
yields (3.13)

A1,4↔2,3
4 (1̄, 2, 3̄, 4) = i sgnc〈12〉

∑
sα,sβ=±1

∫ ∞

−∞
dα

sβ

4i cosh α

· δ2|3(�3 − isα cosh α�1 + sinh α�2)

× δ2|3(�4 − sβ (sα sinh α�1 + i cosh α�2)). (A.14)

Alternatively, substituting sβ → −sβ and subsequently reverting the direction of integration
when sα = −1 gives

A1,4↔2,3
4 (1̄, 2, 3̄, 4) = i sgnc〈12〉

∑
sα,sβ=±1

∫ ∞

−∞
dα

sβ

4i cosh α

· δ2|3(�3 − sα(i cosh α�1 − sβ sinh α�2))

× δ2|3(�4 − sinh α�1 − isβ cosh α�2). (A.15)
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