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Abstract

This article reviews the methods utilized in processing and analysis of gene expression
data generated using DNA microarrays. This type of experiment allows to determine relative
levels of mMRNA abundance in a set of tissues or cell populations for thousands of genes
simultaneously. Naturally, such an experiment requires computational and statistical analysis
techniques. At the outset of the processing pipeline, the computational procedures are largely
determined by the technology and experimental setup that are used. Subsequently, as more
reliable intensity values for genes emerge, pattern discovery methods come into play. The
most striking peculiarity of this kind of data is that one usually obtains measurements for
thousands of genes for only a much smaller number of conditions. This is at the root of
several of the statistical questions discussed here.

1 Introduction

In the context of the human genome project, new technologies emerged that facilitate the par-
allel execution of experiments on a large number of genes simultaneously. The so-called DNA
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microarrays, or DNA chips, constitute a prominent example. This technology aims at the mea-
surement of MRNA levels in particular cells or tissues for many genes at once. To this end, single
strands of complementary DNA for the genes of interest - which can be many thousands - are im-
mobilized on spots arranged in a grid ("array”) on a support which will typically be a glass slide,

a quartz wafer, or a nylon membrane. From a sample of interest, e.g. a tumor biopsy, the mRNA
is extracted, labeled and hybridized to the array. Measuring the quantity of label on each spot
then yields an intensity value that should be correlated to the abundance of the corresponding
RNA transcript in the sample.

Two schemes of labeling are in common use today. One variant labels a single sample, either ra-
dioactively or fluorescently. Radioactive labeling is used, e.g., in conjunction with hybridization
on nylon membranes [1]. The company Affymetrix synthesizes sets of short oligomers on a glass
wafer and uses a single fluorescent label ([2], see also www.affymetrix.com). Alternatively, two
samples are labeled with a green and a red fluorescent dye, respectively. The mixture of the two
MRNA preparations is then hybridized simultaneously to a common array on a glass slide. This
technology is usually refered to as the Stanford technology [3]. Quantification utilizes a laser
scanner that determines the intensities of each of the two labels over the entire array. Recently,
companies like Agilent have immobilized long oligomers of 60 to 70 basepairs length and used
two-color labeling.

The parallelism in this kind of experiment lies in the hybridization of mMRNA extracted from a
single sample to many genes simultaneously. The measured abundances, though, are not obtained
on an absolute scale. This is because they depend on many hard to control factors such as the
efficiencies of the various chemical reactions involved in the sample preparation, as well as on
the amount of immobilized DNA available for hybridization.

The class of transcripts that is probed by a spot may differ in different applications. Most com-
monly, each spot is meant to probe a particular gene. The representative sequence of DNA on
the spot may be either a carefully selected fragment of cDNA, a more arbitrary PCR product am-
plified from a clone matching the gene, or one of a set of oligonucleotides specific for the gene.
Another level of sophistication is reached when a spot represents, e.g., a particular transcript of
a gene. In this case, or for the distinction of mMRNA abundances of genes from closely related
gene families, careful design and/or selection of the immobilized DNA is required. Likewise,
the selection of samples to study and to compare to each other using DNA microarrays requires
careful planning as will become clear upon consideration of the statistical questions arising from
this technology [4, 5, 6].

There are many different ways for the outline of a microarray experiment. In many cases, a
development in time is studied leading to a series of hybridizations following each other. Alter-
natively, different conditions like healthy/diseased or different disease types may be studied. We
generally refer to a time point or a state as a condition and typically for each condition several
replicate hybridizations are performed. The replicates should provide the information necessary
to judge the significance of the conclusions one wishes to draw from the comparison of the dif-
ferent conditions. When going deeper into the subject it soon becomes clear that this simple
outline constitutes a rather challenging program.

This article is organized along the various steps of analysis of a microarray experiment. Statistical
problems arise firstly as a consequence of the many technical peculiarities and their solution is a
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prerequisite to any meaningful subsequent interpretation of the experiment. Section 2 describes
some of the issues related to quality control. Visualization methods are introduced because they
may greatly help both in detecting and removing obviously failed measurements, as well as in
finding more subtle systematic biases associated with variations in experimental conditions.
Microarray measurements are subject to multiple sources of experimental variation, the math-
ematical treatment of which are discussed in Section 3. Some of the variatiosygstematic

and may be explicitly corrected for, others aamdom and may be accounted for through an
error model. The correction for systematic effects is refered to as calibration or normalization.
We will discuss two error models: One involving a constant coefficient of variation, i. e. a purely
multiplicative noise term, and one allowing for a more general variance-to-mean dependence,
with a noise term that has both multiplicative and additive components. From these models we
derivemeasures of relative abundancEmRNA.

The goal of many microarray experiments is to identify genes that are differentially transcribed
with respect to different biological conditions of cell cultures or tissue samples. Section 4 fo-
cuses on these issues, paying particular attention to the notoriously low numbers of repeated
hybridizations per condition in relation to the high numbers of genes about which one wants to
make conclusions. Section 5 proceeds to highlight some of the issues in pattern discovery in
microarray data. Here, again, classical methods of data analysis need to be carefully evaluated
with respect to their applicability to the particular type of data at hand. A short summary will be
given of the methods that have so far been successfully applied. Emphasis is given to exploratory
approaches that allow the subsequent formulation of hypothesis that can be tested either through
further analysis or further experiments.

2 Data visualization and quality control

A microarray experiment consists of the following components: a setalfes anarray on

which these probes are immobilised at specified locatiosanglecontaining a complex mix-

ture of labeled biomolecules that can bind to the probes, atetectorthat is able to measure

the spatially resolved distribution of label after it has bound to the array [7]. The probes are
chosen such that they bind to specific sample molecules; for DNA arrays, this is ensured by the
high sequence-specificity of the hybridization reaction between complementary DNA strands.
The array is typically a glass slide or a nylon membrane. The sample molecules may be labeled
through the incorporation of radioactive markers, sucti@sor of fluorescent dyes, such as phy-
coerythrin, Cy3, or Cy5. After exposure of the array to the sample, the abundance of individual
species of sample molecules can be quantified through the signal intensity at the matching probe
sites. To facilitate direct comparison, the spotted array technology developed in Stanford [3]
involves the simultaneous hybridization of two samples labeled with different fluorescent dyes,
and detection at the two corresponding wavelengths. Fig. 1 shows an example.



Figure 1: The detected intensity distributions from a cDNA microarray for a region comprising
around 80 probes. The total number of probes on an array may range from a few dozens to tens
of thousands. Left panel: grey-scale representation of the detected label fluorescence at 635 nm
(red), corresponding to mMRNA sample A. Right panel: label fluorescence at 532 nm (green),
corresponding to mMRNA sample B. Spots that light up in only one of the two images correspond
to genes that are only transcribed in one of the two samples. Middle panel: false-color overlay
image from the two intensity distributions. The spots are red, green, or yellow, depending on
whether the gene is transcribed only in sample A, sample B, or both.

2.1 Image quantification.

The intensity images are scanned by the detector at a high spatial resolution, such that each probe
spot is represented by many pixels. In order to obtain a single overall intensity value for each
probe, the corresponding pixels need to be identified (segmentation), and the intensities need
to be summarized (quantification). In addition to the overall probe intensity, further auxiliary
guantities may be calculated, such as an estimate of apparent unspecific “local background”
intensity, or a spot quality measure. A variety of segmentation and quantification methods is
implemented in available software packages. They differ in their robustness against irregularities
and in the amount of human interaction that they require. Different types of irregularities may
occur in different types of microarray technology, and a segmentation or quantification algorithm
that is good for one platform is not necessarily suitable for another. For instance, the variation of
spot shapes and positions that the segmentation has to deal with depends on the properties of the
support (e. g. glass or nylon), on the probe delivery mechanism (e. g. quill-pen type, pin and ring
systems, ink jetting), and on the detection method (optical or radioactive). Furthermore, larger
variations in the spot positioning from array to array can be expected in home-made arrays than
in mass produced ones. An evaluation of image analysis methods for spotted cDNA arrays was
reported by Yang et al. [8].

For a microarray project, the image quantification marks the transition in the work flow from
“wet lab” procedures to computational ones. Hence, this is a good point to spend some effort
looking at the quality and plausibility of the data. This has several aspects: confirm that positive
and negative controls behave as expected; verify that replicates yield measurements close to each
other; and check for the occurrence of artifacts, biases, or errors. In the following we present a
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Figure 2: Histogram of probe intensities at the green wavelength for a cDNA microarray similar
to the one depicted in Fig. 1. The intensities were determined, in arbitrary units, by an image
guantification method, and “local background” intensities were subtracted. Due to measurement
noise, this lead to non-positive probe intensities for part of the genes with low or zero abundance.
Thez-axis has been cut off at the 99% quantile of the distribution. The maximum value is about
4000.

number of data exploration and visualization methods that may be useful for these tasks.

2.2 Dynamic range and spatial effects

A simple and fundamental property of the data is the dynamic range and the distribution of
intensities. Since many experimental problems occur at the level of a whole array or the sample
preparation, it is instructive to look at the histogram of intensities from each sample. An example
is shown in Fig. 2. Typically, for arrays that contain quasi-random gene selections, one observes
a unimodal distribution with most of its mass at small intensities, corresponding to genes that
are not or only weakly transcribed in the sample, and a long tail to the right, corresponding to
genes that are transcribed at various levels. In most cases, the occurence of multiple peaks in
the histogram indicates an experimental artifact. To get an overview over multiple arrays, it is
instructive to look at the box plots of the intensities from each sample. Problematic arrays should
be excluded from further analysis.

Crude artifacts, such as scratches or spatial inhomogeneities, will usually be noticed already
from the scanner image at the stage of the image quantification. Nevertheless, to get a quick
and potentially more sensitive view of spatial effects, a false color representation of the probe
intensities as a function of their spatial coordinates can be useful. There are different options
for the intensity scaling, among them the linear, logarithmic, and rank scales. Each one will
highlight different features of the spatial distribution. Examples are shown in Fig. 3.

2.3 Scatterplot

Usually, the samples hybridized to a series of arrays are biologically related, such that the tran-
scription levels of a large fraction of genes are approximately the same across the samples. This
can be expected e. g. for cell cultures exposed to different conditions or for cells from biopsies of
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Figure 3: False color representations of the spatial intensity distributions from three different
64 x 136 spot cDNA microarrays from one experiment series. a) probe intensities in the red
color channel, b) local background intensities, c) background-subtracted probe intensities. In a)
and b), there is an artifactual intensity gradient, which is mostly removed in c¢). For visualization,
the color scale was chosen in each image to be proportional to the ranks of the intensities. d)
For a second array, probe intensities in the green color channel. There is a rectangular region
of low intensity in the top left corner, corresponding to one print-tip. Apparently, there was a
sporadic failure of the tip for this particular array. Panels e) and f) show the probe intensities
in the green color channel from a third array. The color scale was chosen proportional to the
logarithms of intensities in e) and proportional to the ranks in f). Here, the latter provides better
contrast. Interestingly, the bright blob in the lower right corner appears only in the green color
channel, while the half moon shaped region appears both in green and red (not shown).
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Figure 4: Scatterplot of probe intensities in the red and the green color channel from a cDNA
array containing 8000 probes.
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Figure 5: a) the same data as in Fig. 4, after logarithmic transformation and clockwise rotation by
45°. The dashed line shows a local regression estimate of the systematic\éffett, see text.

b) similar to a), however a constant value- 42 has been added to the red intensities before log
transformation. After this, the estimated curve for the systematic effigttl) is approximately
constant.

the same tissue type, possibly subject to different disease conditions. We call tinigjtnesy of

genes unchanggatoperty. Visually, it can be verified from the scatterplot of the probe intensities
for a pair of samples. An example is shown in Fig. 4.

The scatterplot allows to assess both measurement noise and systematic biases. Ideally, the data
from the majority of the genes that are unchanged should lie on the bisector of the scatterplot. In
reality, there are both systematic and random deviations from this [9]. For instance, if the label
incorporation rate and photoefficiency of the red dye were systematically lower than that of the
green dye by a factor of 0.75, the data would be expected not to lie on the bisector, but rather on
the liney = 0.75x.

Most of the data in Fig. 4 is squeezed into a tiny corner in the bottom left of the plot. More
informative displays may be obtained from other axis scalings. A frequently used choice is the
double-logarithmic scale. An example is shown in Fig. 5. It is customary to transform to new



variablesA = log R+log G, M = log R—log G [10]. Up to a scale factor of/2, this corresponds

to a clockwise coordinate system rotation4dy. The horizontal coordinatd is a measure of
average transcription level, while theg-ratio M is a measure for differential transcription.

If the majority of genes are not differentially transcribed, the scatter of the data points in the
vertical direction may be considered a measure of the random variation. Fig. 5a also shows a
systematic deviation of the observed valuedbfrom the lineM = 0, estimated through a local
regression line There is an apparent dependenidég A) of this deviation on the mean intensity

A. However, this is most likely an artifact of applying the logarithmic transformation: as shown

in Fig. 5b, the deviation may be explained sufficiently well through a constantl) = M, if

an appropriate offset is added to tRevalues before taking the logarithm. Note that a horizontal
line at M/ = M, in Fig. 5b corresponds to a straight line of slagé and with intercept: in

Fig. 4.

Fig. 5 shows théheteroskedasticitpf log-ratios: while the variance ai/ is relatively small

and approximately constant for large average intensilieg becomes larger ad decreases.
Conversely, examination of the differenc&s— G, for example through plots like in Fig. 4,
shows that their variance is smallest for small values of the average intéhsityand increases

with R + G. Sometimes, one wishes to visualize the data in a manner such that the variance is
constant along the whole dynamic range. A data transformation that achieves this goal is called
a variance-stabilizing transformation. In fabbmoskedasticepresentations of the data are not
only useful for visualization, but also for further statistical analyses. This will be discussed in
more detail in Section 3.

Two extensions of the scatterplot are shown in Figs. 6 and 7. Rather than plotting a symbol for
every data point, they use a density representation, which may be useful for larger arrays. For ex-
ample, Fig. 6 shows the scatterplot from the comparison of two tissue samples based on 152,000
probes. The point density in the central region of the plot is estimated by a kernel density esti-
mator. Three-way comparisons may be performed through a projection such as in Fig. 7. This
uses the fact that th@, 1, 1)-component of a three-way microarray measurement corresponds to
average intensity, and hence is not directly informative with respect to differential transcription.
Note that if the plotted data was pre-processed through a variance-stabilizing transformation, its
variance does not depend on tHiel, 1)-component.

2.4 Batch effects

Present day microarray technology measures abundances only in terms of relative probe inten-
sities, and generally provides no calibration to absolute physical units. Hence, the comparison
of measurements between different studies is difficult. Moreover, even within a single study,
the measurements are highly susceptibleatch effectsBy this term, we refer to experimental
factors that (i) add systematic biases to the measurements, and (i) may vary between different
subsets or stages of an experiment. Some examples are [9]:

We usedoess [11] with default parameters span=0.75, degree=2.
2The arrays used were RZPD Unigene-Il arrays (www.rzpd.de).
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Figure 6: Scatterplot of a pairwise comparison of non-cancerous colon tissue and a colorectal
tumor. Individual transcripts are represented by "X’ symbols. THmordinate is the average

of the appropriately calibrated and transformed intensities (cf. Section 3)y-Eberdinate is

their difference, and is a measure of differential transcription. The array used in this experiment
contained 152,000 probes representing around 70,000 different clones. Since plotting all of these
would lead to an uninformative solid black blob in the centre of the plot, the point density is
visualized by a color scale, and only 1500 data points in sparser regions are individually plotted.

1. spotting: to manufacture spotted microarrays, the probe DNA is deposited on the surface
through spotting pins. Usually, the robot works with multiple pins in parallel, and the ef-
ficiency of their probe delivery may be quite different (e. g. Fig. 3d or [10]). Furthermore,
the efficiency of a pin may change over time through mechanical wear, and the quality of
the spotting process as a whole may be different at different times, due to varying temper-
ature and humidity conditions.

2. PCR amplification:for cDNA arrays, the probes are synthesized through PCR, whose
yield varies from instance to instance. Typically, the reactions are carried out in parallel
in 384-well plates, and probes that have been synthesized in the same plate tend to have
highly correlated variations in concentration and quality. An example is shown in Fig. 8.

3. sample preparation protocolShe reverse transcription and the labeling are complex bio-
chemical reactions, whose efficiencies are variable and may depend sensitively on a num-
ber of hard-to-control circumstances. Furthermore, RNA can quickly degrade, hence the
outcome of the experiment can depend sensitively on when and how conditions that pre-
vent RNA degradation are applied to the tissue samples.

4. array coating:both the efficiency of the probe fixation on the array, as well as the amount
of unspecific background fluorescence strongly depend on the array coating.

5. scanner and image analysis
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Figure 7: Scatterplot of a triple comparison between non-cancerous colon tissue, a lymph-node
negative colorectal tumor (NO), and a lymph-node positive tumor (N1). The measurements from
each probe correspond to a point in three-dimensional space, and are projected orthogonally on a
plane perpendicular to the (1,1,1)-axis. The three coordinate axes of the data space correspond to
the vectors from the origin of the plot to the three labels “normal”, “tumor NO”, and “tumor N1”.

The (1,1,1)-axis corresponds to average intensity, while differences between the three tissues are
represented by the position of the measurements in the two-dimensional plot plane. For instance,
both c-myc and nme1 are higher transcribed in the NO and in the N1 tumor, compared to the non-
cancerous tissue. However, while the increase is approximately balanced for c-myc in the two
tumors, nmel (nucleoside diphosphate kinase A) is more upregulated in the N1 tumor than in the
NO tumor, a behavior that is consistent with a gene involved in tumor progression. On the other
side, the apoptosis inducing receptor trail-r2 is down-regulated specifically in the N1 tumors,
while it has about the same intermediate-high transcription level in the non-cancerous tissue and
the NO tumor. Similar behavior of these genes was observed over repeated experiments.
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Figure 8:

Top panel: scatterplot of intensities from a pair of cDNA arrays, comparing renal cell carcinoma to
matched non-cancerous kidney tissue. Similar to Fig. 6gztheordinate represents average, andithe
coordinate differential signal. In the bottom of the plot, there is a cloud of probes that appear to represent
a cluster of strongly down-regulated genes. However, closer scrutiny reveals that this is an experimental
artifact: the bottom panels show the boxplots of the intensities for the two arrays, separately for each of
the 41 PCR plates (see text). Probes from plates no. 21, 22, 27, and 28 have extraordinarily high intensities
on one of the arrays, but not on the other. Since the clone selection was quasi-random, this points to a
defect in the probe synthesis that affected one array, but not the other. The discovery of such artifacts
may be helped by coloring the dots in the scatterplot by attributes such as PCR plate of origin or spotting
pin (for technical reasons, the print version of this figure is shown in grey-scale). While the example pre-
sented here is an extreme one, caution towards batch artifacts is warranted whenever arrays from different
manufacturing lots are used in a single study.
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These considerations have important consequences for the experimental design: first, any vari-
ation that can at any means be avoided within an experiment should be avoided. Second, any
variation that cannot be avoided should be organized in such a manner that it does not confound
the biological question of interest. Clearly, when looking for differences between two tumor
types, it would not be wise to have samples of one tumor type processed by one laboratory, and
samples of the other type by another laboratory.

Points 1 and 2 are specific for spotted cDNA arrays. To be less sensitive against these variations,
the two-color labeling protocol is used, which employs the simultaneous hybridization of two
samples to the same array [3]. Ideally, if only ratios of intensities between the two color channels
are considered, variations in probe abundance should cancel out. Empirically, they do not quite,
which may, for example, be attributed to the fact that observed intensities are the sum of probe-
specific signal and unspecific background [12]. Furthermore, in the extreme case of total failure
of the PCR amplification or the DNA deposition for probes on some, but not all arrays in an
experimental series, artifactual results are hardly avoidable.

If any of the factors 3-5 is changed within an experiment, there is a good chance that this will
later show up in the data as one of the most pronounced sources of variation. A simple and
instructive visual tool to explore such variations is the correlation plot: Given a seawhys,

each represented through a high-dimensional véétof suitably transformed and filtered probe
intensities, calculate théx d correlation matrix corfy;, 17]-), sort its rows and columns according

to different experimental factors, and visualize the resulting false color images.

3 Error models, calibration and measures of differential ex-
pression

The relation between a measured intengjtyof probek and the true abundanaeg; of molecule
type k in sample; may be described as

Yki = Qi + bri T (1)

The gain factob,; represents the net result of the various experimental effects that come between
the count of molecules per cell in the sample and the final readout of the probe intensity, such
as: number of cells in the sample, the mean number of label molecules attaching to a sample
molecule, hybridization efficiency, label efficiency, and detector gain. The additivedgrm
accounts for that part of the measured intensity that does not resultfggrout from effects

such as unspecific hybridization, background fluorescence, stray signal from neighboring probes,
and detector offset.

The parameters;; andb,; are different for each probk and for each hybridization It is

not practical to determine them exactly, but neither is it necessary. Rather, one is content with
obtainingstatisticalstatements abou¢lative abundances. To this end, one may build stochastic
models for the effects;; andb,;. Different variations on this theme have been proposed, as will

be presented below.

First, however, we would like to discuss the functional form of Eqn. (1), whose major statement
is that when the true abundaneg increases, the measured sigpglincreases proportionally.
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Could it be necessary to consider more complex non-linear relationships? Clearly, this cannot
be ruled out for all possible experiments, or for future technologies. However, a linear operating
range over several orders of magnitude has been reported by a number of authors for current
microarray technologies (e. g. [13, 14, 15]). At the lower end, this range is limited only by the
requirement that,; be non-negative. At the upper end, the linear range is limited by satura-
tion effects such as quenching, limited probe abundance, and detector saturation. However, for
realistic concentrations of sample molecules, the upper limit is not reached in well-conducted
experiments.

3.1 Multiplicative calibration and noise

In a seminal paper in 1997, Chen et al. [16] introduced a decomposition of the multiplicative
effect (cf. Egn. (1)),
bri = biBe(1 + ers). (2

Here, 3, is a probe-specific coefficient, the same for all samples. For each santp&enor-
malization factom;, is applied across all probes. The remaining variatiohjrthat cannot be
accounted for by, andb; is absorbed by,;. Furthermore, since the measured intensijgare
already “background-corrected” by the image analysis software’s local background estimation,
Chen et al. assumed the additive effegisto be negligibly small. They further simplified the
problem in two steps:
First, they noted that one is mainly interested in relative comparisons between the levels of the
same gene under different conditions, i. e. , in the ratigsz,,;. Hence the probe-specific effects
0 can be absorbed,,; = G.xk;, Simply rescaling the units in which molecule abundances are
measured, and need not be determined.
Second, they turned to a stochastic description, and modgled a normally distributed noise
term with mean zero and standard deviatipmndependent of andk. Thus, in the model of
Chen et al. the measured intensify is a random variable and depends on the true Igyeas
follows:

Yii = b; i (1 + é?kz'), Eki ™~ N(O, 02). (3)
Note thatY}; has constant coefficient of variation
Chen et al. specifically considered two-color cONA microarrays, whetel, 2 represents the
red and the green color channel, respectively. For a given trueugtia.», Chen et al. derived
the distribution of the observed, normalized ratih = Yio/Yi1 X by/by. It only depends on
the values of andb, /b,, and Chen et al. gave an algorithm for the estimation of these param-
eters from the data. Based on this, they were able to formulate a statistical test for differential
expression, i. e. a test against the hypothgsgis= 1. Hence, the ratiod/, were regarded as
a sufficient summary of the results from a single microarray slide, and they, or their logarithms,
would then be used as the input for further higher level analyses of data from multiple slides.
To allow for a more systematic analysis of multiple slide experiments, Kerr et al. proposed an
approach based on the ANOVA technique [17]. They modeled the measured inlgnsitpf
probek on slidej, in the color channel of dyg from a sample that received treatmentas

log Yijim = g + 85 + di + v + [95]kj + [9V]km + Ekjim- 4)
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Here, gy, s, d;, v, are main effects for probe, array, dye, and treatment, respectively. The probe-
array interactiorjgs|; accounts for variations of probe quality in the array manufacture, and
the probe-treatment interactidgu|,.,, for differential levels of transcription of gengbetween
different treatment groups:. The noise termsy;;,, account for all other variations and are
assumed to be independent and identically distributed. The ANOVA model (4) is related to
Eqn. (1) by setting

logb; +logxr = (s;+di+ [95]ks) + (96 + Vm + [9V]km) + Ekjim (6)

wherej = j(i), [ = (i) andm = m(i) are slide, dye, and treatment associated with sample
respectively. The terms in the first pair of parentheses on the right hand side of Eqn. (6) may be
attributed to the measurement géajn, and the terms in the second pair to the actual abundance
xki, but generally such a decomposition is not unique.

Both the models of Chen et al. and of Kerr et al. were formulated with reference to the two-color
cDNA array technology. However, Eqn. (4) can be adapted (in fact, simplified) in a straightfor-
ward manner to data from one-color array technologies, such as Affymetrix genechips or cDNA
membranes with radioactive labeling. Furthermore, to represent more complex experimental
designs than simple two-way comparisons, more detailed terms than the singlevfactan

be introduced into (4), and the efficiencies of different designs can be compared using standard
techniques for linear models [4].

3.2 Limitations

The concepts of Section 3.1 have been widely used for microarray data analysis. However, it has
also become clear that, for many data sets that are encountered in practice, they are not sufficient.
The following points are worth noting:

1. Robustness.In order to make model (3) identifiable, Chen et al. assumed that the tran-
scription levels of all genes were unchanged, anduget= - for all k. Thus, their
model is misspecified for the part of the data arising from truely differentially transcribed
genes, which act as outliers. However, their parameter estimation is based on least-squares-
criteria, and may be sensitive to the presence of such outliers. Besides that, outliers may
be caused by technical artifacts.

2. Heteroskedasticity. The significance of log-ratios depends on the absolute values of the
intensities in the numerator and denominator [18, 19, 20, 21, 22]. Typically, the variance
of log-transformed intensities increases as their mean decreases.

3. Apparent non-linearities. According to the above models, the data from a pair of samples
should lie along a straight line in the scatterplot of the log-transformed intensities. How-
ever, in real data, several authors have observed data that follows a curved line, e. g. Fig. 5,
[18, 20, 10].

14



4. Negative values.While the image quantification’s estimates for probe “foreground” and
“background” intensities are generally positive, this is usually not true for their difference.
If a gene is weakly or not expressed, it can happen by chance that the background estimate
is larger than the foreground estimate (cf. Fig. 2). However, non-positive values make
sense neither for ratios nor for the log-transformation.

To address these problems, various fixes have been proposed. We give a brief and incomplete
review.

1. Robustness.Robust estimation techniques in the context of microarray data have been de-
scribed by many authors (e. g. [18, 20, 10, 23, 24]). A general overview is given in [25].

2. Heteroskedasticity. It is often observed that the variance of the log-ratio is a monotonously
decreasing function of the mean intensity. One common practice has been to discard the log-
ratios calculated from intensities below a certain threshold and to treat the rest as if they were
homoskedastic.

Newton et al. [19] proposedshrinkage estimator

Y TV

7
Yo TV ()

to replace the naive ratig,, /y,,. Here,y,, = yx:/b; are the normalized intensities. Similar to
Chen et al., they neglected the additive terpsand used a model of the measurement error with

a constant coefficient of variation. To arrive at (7), they enclosed this in a hierarchical Bayesian
model, using a prior distribution for the mRNA abundances, and, in particular, their positivity.
The form of this distribution is reflected by the shrinkage parameterhich is estimated from

the data. To infer differential transcription, they derived “posterior odds of change”, which,
however, are no simple function of the log-ratio or of (7).

Several authors have addressed the problem of heteroskedasticity by estimating the variance of
the log-ratios or of log-transformed intensities separately for each gene (e. g. [10, 23]). However,
in many applications the number of samples available is too small for reliable estimates of gene-
specific variance, hence it has been proposed to estimate the variance as a non-parametric smooth
function of the mean intensity, through a local regression. The log-ratios may tistundemtized

by dividing them by their locally estimated standard deviation [20]. Baggerly et al. [22] provided
some theoretical foundation for this from models of the measurement error for different levels of
replication. According to these, the variance of the log-ratio is largest for small intensities and
exponentially decreases towards an asymptotic positive value as the intensity increases.

3. Apparent non-linearities. To correct for the curved appearence of the scatterplot of log-
transformed data, Dudoit et al. [10] proposed to replace the normalization fatiein Eqn. (3)

by a smooth functiod/,(A) (cf. Fig. 5). Itis estimated through robust local regression [11] and,

by construction, this correction makes the scatterplot look straight.

A similar correction was proposed by Kepler et al. [20], in the framework of a model similar
to Eqn. (4). In their approach, the terms+ d; (slide and dye effects) are replaced by smooth
functions of g, (mean logarithmic abundance of gehg which are again estimated through
robust local regression.
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4. Negative values.In order to be able to calculate ratios and logarithms from real microarray
data, different fixes have been proposed to deal with hon-positive values: mark them as invalid
or missing; replace them by a fixed, small positive value; use an imputation algorithm to re-
place them by a more acceptable value; add pseudocounts, such that the whole set of intensities
becomes positive; ignore the local background estimate (cCDNA arrays) or the mismatch probes
(Affymetrix genechips) and use only the strictly positive foreground or perfect match intensities.
All of these approaches seem to reflect the common wisdom that molecule abundances are not
negative. However, probe intensities are anlgasurementsf abundance, and in the presence of

an additive component of the measurement noise negative measurements may well be consistent
with zero or positive abundance. In any experiment, a certain proportion of genes will have zero
or low abundance in some samples but not in others, hence the treatment of the non-positive
intensity measurements may affect a large and potentially informative fraction of the data.

3.3 Multiplicative and additive calibration and noise

Interestingly, points 2.-4. of the previous section can be related to a rather basic assumption of
the models (3) and (4), and it appears that in many cases the associated problems can be resolved
by using a more general model. Chen et al. as well as Kerr et al. assumed that the additive terms
ay; in Egn. (1) were negligible, or at least sufficiently accounted for by the image quantification’s
local background estimation algorithm. One way to arrive at a more realistic model is to set

ki = a; + binki, (8)
b = bifk(l+ epi), 9)

where the decomposition of the multiplicative effect (9) is the same as in Eqn; (2 sample-
specific additive parameter, angl are independent and normally distributed random variables
with zero mean and common variance. Hence, model (3) is replaced by

Yii —a;
b;

Model (10) was proposed by Rocke and Durbin [26] and, using different distributional assump-
tions, by ldeker et al. [13]. The latter authors used a more detailed parameterization of the noise
terms, allowing for different values of the standard deviatioasds for the red and green color
channelg = 1,2 and for correlation between; ande,,, as well as betweenm,; andn,. In both

cases, the authors did not try to estimate the calibration paranagtéssout rather assumed that

a calibration had already been performed through some other means.

= [ €77+ Ny, eri ~ N(0,¢?), ni ~ N(0, s%). (10)

Consequences. First, the intensitied’,; are no longer supposed to have a constant coefficient
of variation. Rather, they obey a variance-to-mean dependence

v(u) = A (u—a;)? + bs? (11)

where, in a slight abuse of notatian= Var (Y;;) andu = E(Y};), and the equation holds for all
probesk for sample;. Recall that a constant coefficient of variation corresponds to a dependence
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Figure 9: Solid line: graph of the functiensinh(x). Dashed line: graph dég(2x). The vertical
line marks the singularity of the logarithm functionaat= 0. Thearsinh function is symmetric,
arsinh(x) = — arsinh(—z), however, most relevant for Eqn. (12) is its behaviour incarange
as depicted here.

v(u) = c*u?, which is a special case of (11) far = s = 0. In this case, the logarithm is a
variance-stabilizing transformation, i. e. the log-transformed data have approximately constant
variance. For the more general variance-to-mean dependence (11), such a transformation can
also be found, as will be explained below.

Second, the ratio of intensitieg, /yx2 iS no longer the best estimator for the true fold change
tr1/ k2. This was addressed by Dror et al. [27], who estimabedx; /12) by the posterior

mean of a hierarchical model that consists of Eqn. (10) together with an empirical prior for the
distribution of,;. Their estimator coincides with the log-ratio if baghy andy,, are large, and
remains well-behaved for small or non-positive valueg@fandy;.

The appropriate variance stabilizing transformation was described by Huber et al. [24] and by
Rocke and Durbin [28]. It has the form

hi(y) = arsinh (5 . u) . (12)
S bz

The parameters; andb; may be interpreted as array-specific calibration parameters, while the

coefficient of variatiorn: and the background noise leveparametrize the overall error model.

The graph of thersinh function is depicted in Fig. 9. The following two relations hold between

thearsinh and thelog function:

arsinh(z) = log(x + va?+1) (13)
lim {arsinh(x) —log(2z)} = 0. (14)

T— 00

In the framework of Section 3.1, log-ratios, the differences between the logarithms of normalized
intensities, were the appropriate measure of differential transcription to be used in downstream
analyses. In analogy, we define [24]

Ahyij = hi(Yri) — hj(Yrj)- (15)
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For intensities that are much larger than the additive noise level, (15) becomes equivalent to the
log-ratio, as is seen from Eqn. (14). But, in contrast to the log-ratia,;; is well-defined and

has constant varianeé across the whole range of intensities. In fatf;.;;/c may be thought

of as a “studentized log-ratio”.

To estimate the model and transformation parameters, one could directly fit model (10) to the
data, using thenajority of genes unchangedgsumption:; = u for most geneg. A computa-
tionally simpler approach is to fit the model

hi(Yii) = fue + Exis Eri ~ N(0,c?). (16)

Up to first and second moments, models (10) and (16) are equivalent. Parameter estimates can
be obtained from a robust variant of the maximum likelihood estimator. A robust estimator
with high breakdown point is needed not only because there may be technical outliers, but also
because the assumptipp; = i, does not hold for a minority of genes that have biologically
different transcription levels in different samples [24].

The identification of differentially transcribed genes through statistical testsiqrvalues was

shown to have higher sensitivity and specificity than that through tests on log-ratios [24]. This
may be explained by the fact that for non-differentially transcribed genea thevalues have
unimodal distributions with mean zero and variances independent of the genes’ mean transcrip-
tion levels. Hence, within the limits of the error model, all available information with respect to
differential transcription of geng is contained in the values dfh,.;;. On the other side, the
distributions of log-ratios may have, even for some of the non-differentially transcribed genes,
mean values different from zero due to sensitive dependence on calibration errors, they may have
variances that strongly depend on the mean transcription levels, and they involve missing values,
if there are non-positive net probe intensities. These points are illustrated in Fig. 10.

Probe set summaries. A gene transcript may be represented by multiple probes on an array.
To obtain an overall measure of abundance per gene, a straightforward approach is to take the
average of the corresponding calibrated and transformed probe intensities (12). If additional
information on the reliability of the probe measurements is available, a weighted average may be
used. This has been investigated most extensively in the context of Affymetrix genechip data [2].
On these chips, each transcript is represented by 16 to 20 pairs of oligonucleotide probes referred
to as probe sets. Each probe pair consists of an oligonucleotide of 25 bases that exactly matches
the target sequence, and of one that has a mismatch in the middle. The mismatch probes are
thought to provide estimates of unspecific contributions to the signal measured from the perfect
match probes. A good overview, with many further references, was given by Irizarry et al. [15].

4 ldentification of differentially expressed genes

One of the basic goals in the analysis of microarray gene expression data is the identification of
differentially expressed genes in the comparison of different types of cell or tissue samples. In
order to control the biological and experimental variability of the measurements, statistical infer-
ence has to be based on an adequate number of replicate experiments. Here one may distinguish
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Figure 10: Scatterplot of differential versus total intensities from a two-color-cDNA array, using
two different transformations: logarithmic, upper panel, and Eqn. (12), lower panel. The hori-
zontal lines correspond to thescoreAh/¢ = 0,41, £2,+3. The z-score of a pair of red and
green probe intensities is their difference divided by its expected standard deviation according
to the variance-versus-mean functiefr). The z-score is a statistical measure for how strongly

an observed pair of intensities is indicative of true differential abundance. While the contours
of the z-score are functions of both log-ratio and total intensity (upper panel), they are indepen-
dent of total intensity in the coordinate system of the lower panel. Due to a local background
subtraction, this data set contained small and negative net intensities. The top panel shows mea-
surements withR, G > 0 andlog(RG) > 2.5. All data is shown in the lower panel, with the
subset of the upper panel to the right of the dashed line.
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between cases in which one wishes to make statements on a particular cell population and cases
in which one wants to make statements that hold in the presence of biological variability, such as
with biopsy studies of diseased tissues. In the first case, independent replications can be obtained
on the level of multiple mRNA isolations, in the second, they may be provided by samples from
different patients.

For the following, we assume that the data are given either as absolute intensities or as relative
values with respect to a common reference sample, and have been calibrated (see Section 3).

To identify differentially expressed genes with respect to a certain biological question, a suitable
statistical test may be performed for each gene [29]. The choice of the test statistic depends on
the biological question and on the nature of the available experimental data. In the simplest case,
one asks for genes that show different transcript abundance between two conditions. In more
complex situations, one may look for genes whose abundance is associated with multiple factor
levels of one or more sample characteristics. Furthermore, one may consider continuous-valued
sample characteristics and test for genes which show non-zero coefficients in a regression model,
such as a linear model or a Cox proportional hazards model on patient survival data.

Different statistical tests may make more or less strong assumptions on the distributions of repli-
cate measurements. Important questions are whether the distributions are symmetric, how similar
or dissimilar they are to normal distributions, what their behavior at the tails is like, and whether
or how their variance (or another appropriate measure of scale) varies between different genes or
between different conditions. Such differences in the variance may occur for several reasons: In
Section 3, we have discussed the dependence of the variance on the mean, an example for which
is given in Eqgn. (11). There may be other technological effects that can influence the variance of
the measurement distributions in a gene- or condition-dependent manner, such as GC-content, or
probe length. Finally, there may be genuine biological differences, such as different tightness of
the regulatory control for different genes or for the same gene under different physiological or
disease conditions.

Data transformations, such as the logarithmic transformation or a variance stabilizing transfor-
mation like Eqn. (12) may be used to make the distributions more symmetric and possibly close
to normal, and to remove the systematic dependence of the variance on the mean (see Section 3).
In the comparison of two conditions, one might use Studentsst or the Wilcoxon rank sum

test. Both tests assume that the distributions of the replicate measurements under the two con-
ditions have the same shape and test for differences in the location, withtés¢ additionally
assuming normal distributions. To account for possibly unequal variances in the two groups,
Welch’s version of theé—test may be preferred [30, 31]. In order to avoid distributional assump-
tions, Dudoit et al. proposed to estimate the null distribution ofttstatistic (or, equivalently,

of the difference of means) for each gene using permutations of the sample labels. Compara-
tive analyses of different univariate statistical tests in the analysis of gene expression data were
presented in [32, 23, 33], however without a conclusive result.

In addition to standard aspects of hypothesis testing, two specific properties of microarray data
have motivated the development of novel strategies:

1. Variance estimation: in one extreme, one may estimate the variances of the distributions sepa-
rately for each gene, and possibly for each condition. This requires a large number of repetitions,
which are not always available. In the other extreme, one may use a pooled estimate of the vari-
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ance over all conditions and genes. After the application of a variance-stabilizing transformation
such as Eqn. (12), the assumption of constant variance may result in tolerable bias and, due to
the large number of genes represented on an array, in very low variance of the estimator. This
is the case especially if few repetitions are available. In-between the two extremes, a number of
methods have been proposed that pool the variance estimation over some genes, but also retain
some gene-dependence.

2. Multiple testing: Due to the large number of genes on an array and thus the large number of
tests performed, a considerable number of genes may show differential signal intensities simply
by chance. Several concepts of assessing the statistical significance of test results obtained from
microarray data have been developed.

4.1 Regularizedt-statistics

To overcome the instability of the gene-specific variance estimate in the case of few replicate
experiments per condition, several authors have proposed methods where a value estimated from
a larger set of genes is used to augment the gene-specific standard deviation estimate, thus pro-
viding a regularized version of thestatistic.

Baldi and Long [34] suggested to replace the within-group empirical varignefgenek in the
two-samplet-statistic obtained fromi observations by an expression of the form

52 voos + (d — 1)s3
N V0+d—2

This variance estimate results as the posterior mean from a Bayesian hierarchical model for the
measurements of each gene under an experimental condition. The measured values are assumed
to be normally distributed, ang, ando, are hyperparameters of the prior for the parameters of
the normal distribution. For practical purposes, the authors recommended to ehcasehe
empirical standard deviation obtained from averaging over all genes within a certain intensity
range. If a variance stabilizing transformation has been applied to thesgatey be obtained

from the pooled variance over all genes on the array. The vaJus chosen as an integer
determining the weight o, compared to the gene-specific standard deviation. Thus the large
number of genes interrogated is exploited to obtain potentially biased, but more stable variance
estimates for each single gene. The resulting regularizgdtistic, used with a-distribution

with vy+d—2 degrees of freedom as null distribution, is shown to perform better than the standard
t-test on real and simulated data when there are less than about 5 replications per condition. A
similar approach was pursued bghnstedt and Speed [35]. Tusher et al. [36, 37] also proposed

to use a regularized version of thetatistic, where the empirical standard deviatigrof gene

k is replaced by, = s;. + sg, With sq determined from the data in a heuristic fashion.

4.2 Multiple testing

Assume that for each gene a statistical test for differential expression has been conducted. If one
fixes a gene-wise significance level of eng= 0.05, on average one in every 20 genes that are
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actually not differentially expressed will showavalue below just by chance. Due to the large
number of genes represented on a microarray, this may lead to a large number of false positive
calls. For this reason, Dudoit et al. [10] suggested to choose a procedure that contiansiltre

wise error rate(FWER). The FWER is defined as the probability that the selected set of genes
contains at least one false positive. A multiple testing procedure is said to pstkodg control

of the FWER if it controls the FWER for any combination of true and false null hypotheses. If
p-values for the test statistids, . . ., 7,, of n genes are available, a simple adjustment that gives
strong control of the FWER is the Bonferroni correction, which amounts to multiplying the
unadjusteg-values byn. Dudoit et al. [10] described the use of a step-wiselue adjustment

that is due to Westfall and Young [38]. This procedure is less conservative than the Bonferroni
correction, and in contrast to the latter, it takes possible dependences between the test statistics
into account. The adjustedvalues are estimated by a permutation algorithm.

For many applications however, control of the FWER is too conservative, with the danger of
many interesting genes being missed. As microarrays are often used to screen for candidate
genes that may then be validated through further experiments, the researcher may be willing to
accept a certain fraction of false positives. This demand is addressed by the conceratsehe
Discovery Rat¢FDR, [39]). For a family of hypothesis tests, IRdenote the number of rejected

null hypotheses, antd the number of falsely rejected null hypotheses. The FDR is defined as

v
FDR = E[E R > 0]-Pr(R >0).

Benjamini and Hochberg described a procedure to control the FDR under the assumption that the
test statistics arising from the true null hypotheses are independent. More precisely, given the set
of p-values from all individual hypothesis tests and a desired upper bgtmdthe FDR, they

give a boundy* such that rejecting all null hypotheses wijttvalue smaller thap* guarantees

an FDR of at mos{ for any possible combination of true and false null hypotheses.

Another approach based on the FDR was presented by Storey and Tibshirani [40], see also [36].
For a given rejection region of the statistical tests, the authors estimated the FDR posditive

False Discovery Rat@FDR), which is defined ds

v
pFDR=E[%|R > 0].

Rather than computing a rejection region that guarantees an upper bound for the FDR, Storey
and Tibshirani assumed that a rejection region was fixed and estimated the FDR on the basis of
the distribution of the test statistics. The estimation procedure has been designed for any kind
of dependence between the test statistics and does not reepatees for the single hypothesis
tests. The algorithm of Storey and Tibshirani works as follows. They assumed that all null
hypotheses were identical and that the same rejection rdgiwas used for all test statistics
Ti,...,T,, leading to a numbeR(I") of rejections. Furthermore, they assumed that the joint

3In contrast to the method of Benjamini and Hochberg, where arbitrary, but fixed combinations of true and false
null hypotheses are allowed, here the null hypotheses are considered as i.i.d. Bernoulli random variables that are
true with probabilityr.
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Figure 11: Estimation of the false discovery rate: Using 24 arrays with 32,000 cDNA probes
each, 12 pairs of matched breast cancer tissues dissected before and after neoadjuvant chemother-
apy were compared. Differentially transcribed genes were selected according to the absolute
value of the one-samplestatistic. The rejection regiohi was fixed such that 50 genes were
selected (solid line). The histogram shows the distributioiR&T"), estimated from all 924
balanced sign flips. The dashed and dotted lines show median and mean, respectively. The
mean may be used as an estimateHgr"(T")] in Egns. (17) and (18). Note the skewness of the
distribution of R(T").
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null distribution of the test statistics could be simulated by permutations of the sample labels.
From this, the authors obtained estimates for the expected number of rejections given that all
null hypotheses are true, R

E[R"(T)],

as well as for the probability of at least one rejection,
Pr[R(T") > 0].
The pFDR is then estimated by

— 7o - E[RO(I)]
PFDRI) = Pr[RY(T) > 0] - max(R(T'), 1))’ {17)

and similarly for the FDR:

7o - E[RY(T)]
max(R(T), 1)
The expected proportiofy, of true null hypotheses is estimated as follows. Lelbe a rejection

region whose complement is likely to be achieved mostly for true null hypotheses. The estimate
for m, is obtained as

FDR(I') = (18)

n— R(I")
E[n — RO(I)]
In order to determine how many falsely significant genes may appear with a certain probability,
or how likely it is thatall genes with test statistics in the rejection region are false positives, it is
interesting to estimate not only the pFDR, but also quantiles of the distributibii ®f This is
illustrated in Fig. 11.
Under certain conditions on the dependence structure between the test statistics, it was shown
in [40] that for all 7y, the estimates are greater or equal than the true values of the FDR and
pFDR in expectation. In [41] (see also [42]), it is shown that in the case of independent test
statistics (and asymptotically also for some forms of dependence) the pFDR can be interpreted
in a Bayesian framework as the posterior probability that a gene is not differentially expressed,
given its test statistic lies in the rejection region:

PFDR(T) = Pr(H = 0|T € T).

A special property of the approach of Storey and Tibshirani and Tusher et al. is how it makes use
of the assumption that the null distributions of the test statistics are identical for all genes: The
fact that the estimation procedure is based on the test statistdisgenes under permutation of

the sample labels gives accurate estimates already for relatively few replicate experiments, while
at the same time it preserves the dependence structure between genes. On the other hand, this
type of procedure is not able to take possibly unequal variances in the two classes into account.
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5 Pattern discovery

Unsupervised as well as supervised learning methods play a central role in the analysis of mi-
croarray gene expression data. Supervised methods aim at inferring information from the data
with respect to a pre-defined response variable. For instance, in the context of tumor diag-
nostics one tries to classify mMRNA samples obtained from tumor cells with respect to given
tumor types. The application of classification methods to microarray data was discussed e. g. in
[43, 44, 45, 46]. In the following, we focus on unsupervised methods, which aim at detecting
structures in the data without making use of gene or sample annotations. A primary purpose of
such methods is to provide a visualization of the data in which conspicuous structures can easily
be recognized. These may be relations among genes, among samples, or between genes and
samples. The perception of such structures can lead the researcher to develop new hypotheses:
e.g. the result of a clustering of genes may indicate the putative involvement of uncharacterized
genes in a biological process of interest, whereas a separation of the expression profiles of a set
of patient tissue samples into clusters may point to a possible refinement of disease taxonomy.
On the other hand, unsupervised methods are often used to confirm known differences between
genes or samples on the level of gene expression: If a clustering algorithm groups samples from
e.g. two different tumor types into distinct clusters without using prior knowledge, this provides
evidence that the tumor types do indeed show clearly detectable differences in their global gene
expression profiles.

For all of the following methods, we assume that we have a gene expression data matrix of
suitably calibrated and transformed expression levels with, say, the rows corresponding to genes
and the columns corresponding to cell or tissue samples.

5.1 Projection methods

An important class of unsupervised methods works through dimension reduction. The row or
column vectors of a gene expression data matrix are projected onto a low-dimensional space
such that some measure of similarity between the vectors is optimally preserved. The projected
data may be visualised through one or more scatterplots, in the hope that these convey important
information contained in the data.

In principal component analysisnutually orthogonal linear combinations of the row or col-
umn vectors (the principal components) are computed, such thaththpgincipal component

has maximal variance among all vectors orthogonal to theifirst principal components. In
applications, one may hope that the first few principal components carry most of the information
contained in the data, which can then be displayed in scatterplots. Alter et al. [47] demonstrated
the use of principal component analysis for a gene expression study of the cell cycle in yeast. The
first principal component was found to reflect experimental artifacts and was consequently fil-
tered out. After that, the authors found that the first two principal components (“eigengenes”) are
well described by a sine and cosine function of time, respectively. The interpretation is that these
“eigengenes” reflect oscillating gene expression patterns, while the corresponding “eigenarrays”
define a two—dimensional coordinate system for the cell cycle phases.
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Figure 12: Correspondence analysis applied to an experiment that searched for genes expressed
as a consequence of induction of the yeast cell cycle gene CDC14 [48]. A yeast transgene was
constructed with the CDC14 gene under a galactose dependent promotor that allows induction of
the CDC14 gene through the addition of galactose. As a consequence, one observes upregulation
of genes both due to CDC14 induction and due to the natural reaction to galactose. Four condi-
tions were studied: wildtype yeast with and without galactose, and the yeast transgene with and
without galactose. For each condition several replicates were made. The correspondence analy-
sis biplot shows an embedding of rows and columns of the entire data matrix with genes depicted
as black dots and hybridizations depicted as small squares. Replicates for each condition cluster
together, and each of the 4 clusters defines a direction in which the genes that are typical for
the condition can be found. The bisection between the two galactose conditions points to two
GAL genes, known to be involved in the galactose pathway. Genes in the transgene+galactose
condition that are turned on in response to the addition of galactose are attracted also by the wild-
type+galactose condition. Thus, the lower left direction highlights genes that are exclusively due
to the CDC14 induction. Genes are encircled which show up in a related experiment [49], too,
where they are also seen to be linked to CDC14.
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In correspondence analysithe rows and the columns of a non-negative data matrix are simul-
taneously projected onto a low-dimensional space [50]. The method decomposes the deviations
from homogeneity between rows and columns, as we will explain now. For the data i¥atrix

let .. andy,,; be the sum of théth row and theth column, respectively, . the grand total,

andry, = yry /ys+ ande; = y4;/y. . the mass of théth row and theth column. The matrixS

with elements
Ski = (Uki/ Y+ — ThCi) [/ TkCi

is submitted to singular value decompositigh= UAVT. Note that the sum of the squared
elements ofS is just they?—statistic ofY". Suitably normalized columns @& andV provide
the principal coordinates for the rows and the column¥ ofespectively:

frj = A /Nre, g = Ajuig [V

Usually, only the first two or three principal coordinates are used for a simultaneous display of
the rows and columns of the data matrix. The corresponding entridsreflect which pro-
portion of they?-statistic ofY is represented in the low-dimensional projection. The distances
between rows and between columns approximate fffettistances, and moreover, the associa-
tion between rows and columns is reflected in a biplot: A row and a column that are positively
(negatively) associated will approximately lie on the same (opposite) half-ray through the origin,
with the distance from the origin reflecting the strength of the association. An example is shown
in Fig. 12.

5.2 Cluster algorithms

Cluster algorithms generally aim at grouping objects according to some notion of similarity. An
overview of questions and methods in cluster analysis is given in [51]. For microarray data,
clustering may be applied to the genes whose expression levels are measured, with the expecta-
tion that functionally related or co—regulated genes will show similar expression patterns. On the
other hand, one may use clustering to analyse the expression profiles of a set of cell or tissue sam-
ples with the hope that samples with similar biological characteristics will be grouped together.
Cluster algorithms are explicitly or implicitly based on a quantitative measure of dissimilarity
between the objects of interest. In the case of row and column vectors of a gene expression data
matrix, typical examples are the Euclidean distance or 1 minus the correlation coefficient. For
the clustering of genes based on their expression patterns, the latter is often used because it is
invariant under affine—linear transformations of the input vectors and focuses on the pattern of
relative changes.

In hierarchicalclustering algorithms, a tree structure (dendrogram) is computed that contains the
objects as leavegglomerativanethods build the tree starting with the leaves ([52]), whereas

in divisive methods ([53]), the set of objects is iteratively partitioned into subsets. To obtain

a partition of the set of objects into clusters, the resulting dendrogram may be cut at a certain
height. In the analysis of microarray data however, hierarchical clustering is often simply used
to obtain a linear ordering of both the rows and the columns of a gene expression data matrix
such that similar rows or columns are located close to each other. The reordered data matrix is
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then displayed using a color map, which may be a powerful visualization tool. However, many
implementations of hierarchical clustering do not try to find an optimal linear order of the
leaves of the obtained dendrogram out of #ie! possible orders that are compatible with the

tree structure. Bar—Joseph et al. [54] described an efficient algorithm to compute an optimal
linear order of the set of leaves of a cluster tree compatible with the tree structure in the sense
that the sum of distances of pairs of neighbour leaves is minimized.

Non-hierarchicalclustering algorithms directly yield a partition of the set of objects into clus-
ters, the number of which has to be fixed in advance in most methods. Examplesvaans
clustering, partitioning around medoids [55] and self-organizing maps [56]. A graph—theoretical
clustering method that was developed especially for gene expression data is described in [57].
An important, but difficult question in cluster analysis is that of the validity of the results. Cluster
analysis assumes that the data are organized in distinguishable clusters. However, a cluster algo-
rithm will usually also produce a set of clusters if this assumption is not fulfilled. Furthermore,
the results may be affected by random fluctuations of the data. Thus, it is of interest to estimate
the number of clusters present in a data set (if any), as well as to assess the variability of various
features of the result.

Dudoit and Fridlyand [55] proposed an approach for estimating the number of clusters in a data
set. In the first step, they applied a clustering algorithm to a subset of all observations. Then they
analysed how much an assignment of the remaining observations to the clusters by a class predic-
tion method coincided with the partition obtained from clustering these observations. Through
comparing the resulting measure of predictability to that obtained under a null model without
cluster structure, they arrived at a quality index that can be computed for different numbers of
clusters. If none of the predictability values is significant, there is no evidence for clusters in
the data, whereas otherwise the number of clusters yielding the highest quality index is chosen.
The performance of this approach was demonstrated using simulated data and real gene expres-
sion data, where clustering is applied to the samples. However, one might imagine that real data
sometimes lie in—between the extreme cases of a common distribution for all objects on one side
and distinct clusters on the other side. Furthermore, if the objects are organized in hierarchically
nested clusters, such that there are patrtitions at different levels of granularity, the question of how
many clusters are present is not meaningful without further specifications.

Kerr and Churchill [58] used the bootstrap in order to assess the reliability of the results of a
cluster analysis. Resampling was performed on the residuals of an analysis of variance model,
yielding stability values for the assignment of genes to pre-specified clusters. In a more general
context, Pollard and van der Laan [59] analysed the performance of the bootstrap in assessing
the variability of the results of a wide class of clustering methods. Assuming that the expres-
sion profiles of the biological samples are generated from a mixtureariate probability
distributions, where, denotes the number of genes, they gave a general definition of clustering
methods (for clustering genes or samples, or the simultaneous clustering of genes and samples)
as algorithms to estimate certain parameters of the data-generating distribution. Although an un-
derlying probabilistic model is assumed, the cluster algorithms under consideration do not have
to be model-based. This framework allows to apply concepts of statistical inference to clustering
algorithms. In a simulation study, they analysed both the non-parametric (resampling of sample
expression profiles) and the parametric bootstrap (based on normal distributions). The results
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indicated that both bootstrapping methods are able to assess the variability of various quantities
describing the output of a clustering algorithm. In addition, the authors proposed to test the sta-
tistical significance of a clustering of samples via the comparison with data generated from an
appropriate null model. A similar approach for the evaluation of temporal gene expression pat-
terns was presented in [60]. Assuming the expression pattern of each gene to be generated from
one of several multivariate normal distributions, the authors analysed the error rate of various
clustering algorithms in determining the correct cluster membership of genes.

Probabilistic clustering methods assume that each observation belongs to aicluglkeprob-

ability 7, and the observations within each clusteare generated according to a probability
distribution £,.. After the number of clusters and the family of admissible probability distribu-
tions have been specified, the model parameters and the most likely cluster assignment of each
observation can be estimated by maximum likelihood. This is usually done via the Expectation—
Maximization algorithm [61], starting with some initial clustering. In such a probabilistic frame-
work, it is possible to assess the adequacy of different models — concerning the number of
clusters, as well as the allowed parameter space for the component distributions — through the
Bayesian Information Criterion [62]. The application of model-based clustering to microarray
data is described in [63, 64, 65]. Concerning the clustering of genes, the application of nor-
mal mixture models, possibly with constraints on the covariance matrices in order to reduce the
number of free parameters, is more or less straightforward. On the other hand, the application of
model-based methods to the clustering of samples poses problems, because in typical microarray
data sets, the number of genes, and thus the number of parameters to be estimated, exceeds by
far the number of samples. Ghosh and Chinnaiyan suggested to cluster the samples via a model—
based approach using the first few components obtained from a principal component analysis.
McLachlan et al. proposed to cluster the samples into a mixture of factor analysis models.

5.3 Local pattern discovery methods

One limitation of clustering methods as described in Section 5.2 lies in the fact that they are based
on a global measure of similarity between the rows or the columns of the data matrix. However,
there may be biologically relevant situations where tissue samples share similar expression levels
of one particular set of genes, e. g. those belonging to a molecular pathway that is active in this
group, whereas they differ with respect to the expression of other genes. Also the similarity of the
expression levels of a group of genes may be present only under certain biological conditions. We
give a brief overview on methods that were developed with the aim of detecting such structures
in an unsupervised fashion.

Getz et al. [66] described an algorithm where hierarchical clustering is alternately applied to
the rows and columns of submatrices of the data matrix, the rows and columns of which were
obtained as stable clusters in previous iterations.

A number of authors have suggested methods to identify interesting submatrices of a gene ex-
pression data matrix [67, 68, 69, 70]. The underlying idea is that a set of genes, perhaps belonging
to a common molecular pathway, are co—-regulated only under certain experimental conditions.
This notion is quantified in terms of a score function on submatrices of a gene expression ma-
trix. As the number of submatrices is exponential in the number of genes and the number of
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samples, efficient heuristics are applied in order to find high—scoring submatrices. The identified
submatrices can be evaluated in terms of their statistical significance.

For the identification of conspicuous class distinctions among a set of tissue samples based on
microarray data, special approaches have been proposed [71, 72]. They are based on a score
function that quantifies the strength of differential gene expression for any possible bipartition of
the set of samples. An optimization algorithm is used in order to find high-scoring bipartitions.
As the scoring is not based on global properties of the gene expression profiles, but rather on the
presence of subsets of genes that are differentially expressed, several independent bipartitions
can be obtained, each being based on a specific subset of differentially expressed genes. In [72],
it was shown that this approach is able to detect biologically meaningful class distinctions that
are not identified with cluster algorithms based on a global dissimilarity measure.

6 Conclusion

We have described different aspects of microarray gene expression data analysis, from the qual-
ity control of the raw probe intensity data, via calibration, error modeling, and the identification

of differentially transcribed genes to explorative methods such as clustering or pattern discovery.
Yet, statistical analysis is only one part of a microarray experiment. Frequently, data analysis is
expected to correct for technological problems or shortcomings in the design of an experiment.
Awareness has grown, though, in recent years and interaction between experimentalists and data
analysts is improving and, very importantly, starting already early in the planning of an exper-
iment. This raises the hope that statistical analysis will in the future be ever less diverted by
trouble shooting, and can increase its focus on generating and validating biological hypotheses
from the data.

Unlike with, e.g., sequence data, it is still extremely difficult to relate different experiments to
each other and to quantitatively compare their results. Much stricter standardization of the mea-
surement process, which will have to include significant improvements of present technologies
or development of new ones, will be necessary to obtain measurements that would be compa-
rable across laboratories. As a result, currently each experiment has to be large enough to be
analyzable by itself because it is still not feasible to view one’s own experiment as an incremen-
tal addition to an existing knowledge base on gene expression. While this is both a technical
problem and a data integration problem, suggestions regarding the data standardization aspect
are given in [73].

Microarray based experiments are frequently seen as the stronghold of hypothesis-free genome
research. While debatable in itself, this assertion simply shifts the responsibility to the compu-
tational scientist analyzing the data. In the absence of a clear hypothesis much of the analysis
will be of an exploratory nature. Once this leads to a hypothesis further independent verification
is needed. This embeds microarray experiments and statistical analysis into a feedback cycle
producing new experiments.
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