Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The light emission observed from small palladium particles during passage of electronic current

MPG-Autoren
/persons/resource/persons21912

Nepijko,  Sergej A.
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21655

Ievlev,  Dmitry N.
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22087

Schulze,  Wilfried
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21498

Ertl,  Gerhard
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nepijko, S. A., Ievlev, D. N., Viduta, L. V., Schulze, W., & Ertl, G. (2002). The light emission observed from small palladium particles during passage of electronic current. ChemPhysChem, 3(8), 680-685. doi:10.1002/1439-7641(20020816)3:8<680:AID-CPHC680>3.0.CO;2-3.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-140B-1
Zusammenfassung
Light emission spectra were measured from separate Pd particles excited by the passage of electrical current through them. As the particle size decreases or input power increases the intensities of peaks increase more strongly in the high-energy part of the spectra than in the low-energy part. Moreover, new peaks can appear in the high-energy region. The color of an emission center changes from red to blue upon an increase in electric power fed into the Pd particle. This process is reversible and can be observed visually. On a further increase in feeding power, the Pd particle can be brought to a premolten state and can even melt. The integral intensity of light emission then increases dramatically, and the light emission spectrum changes and corresponds to thermal radiation. This latter process is irreversible.