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Zusammenfassung

Die Hochpräzisionsspektroskopie von Zweiphotonübergängen in Wasserstoff und wasser-
stoffartigen Systemen stellt ein außergewöhnliches Instrument für experimentelle Tests
fundamentaler Theorien dar. In der Analyse dieser Experimente spielt die theoretische
Physik eine wichtige Rolle bei der Modellierung zeitaufgelöster Spektren, der Berechnung
präziser Übergangsmatrixelemente und der Korrektur systematischer Effekte. In dieser
Arbeit wird die für diese Experimente relevante Zweiphotonen-Anregungsdynamik detail-
liert untersucht, ausgehend von der Dynamik eines einzelnen Atoms bis hin zu einem
Monte Carlo Modell, das zur Analyse von Atomstrahlexperimenten verwendet werden
kann. Die dynamischen Polarisierbarkeiten der entsprechenden S– und D–Zustände, die
die Größe des dynamischen Stark Effekts bestimmen, und die zugehörigen Übergangsma-
trixelemente werden berechnet. Dabei werden relativistische Korrekturen, Strahlungskor-
rekturen und Korrekturen zur Laserfeld-Dipolnäherung jeweils in führender Ordnung
berücksichtigt. Ein wichtiger verbreiternder Effekt auf die experimentell beobachteten
Spektren der 1S–2S Wasserstoffspektroskopie am Max–Planck–Institut für Quantenoptik
(MPQ) wird identifiziert und quantitativ beschrieben, ebenso wie systematische Effekte,
die frequenzverschiebend wirken. Es werden entsprechende mögliche Verbesserungen des
Versuchsaufbaus vorgeschlagen. Durch Verknüpfung der Ergebnisse wiederholter MPQ-
Messungen der Wasserstoff 1S–2S Absolutfrequenz mit Resultaten anderer Experimente,
werden in Zusammenarbeit mit der Forschungsgruppe des MPQ unabhängige und strin-
gente Einschränkungen der möglichen Drift des magnetischen Moments des Cäsiumkerns
und der Feinstrukturkonstante abgeleitet.

Abstract

High-precision two-photon spectroscopy of hydrogen and hydrogenlike systems constitutes
an exceptional tool for experimental tests of fundamental theories. In the analysis of these
experiments, theory also plays a vital role in the modeling of time-resolved spectra, the
calculation of precise transition matrix elements, and the correction of a number of sys-
tematic effects. This thesis gives a detailed analysis of the relevant two-photon excitation
dynamics, starting from the single-atom response and leading to a Monte Carlo model
which can be used for the analysis of atomic beam experiments. Dynamic polarizabilities
of relevant S and D states, quantifying the dynamic Stark shift, and transition matrix
elements among these states are calculated, taking into account leading-order relativis-
tic, radiative and non-dipole laser-field effects. An important broadening effect of the
experimentally observed spectra in the hydrogen 1S–2S spectroscopy experiment at the
Max–Planck–Institut für Quantenoptik (MPQ) is identified and quantitatively described,
as well as systematic frequency shifts. Corresponding possible improvements to the exper-
imental setup are proposed. By combining the results of repeated MPQ hydrogen 1S–2S
measurements and other experiments, in collaboration with the MPQ group, separate
stringent limits on the possible drift of the magnetic moment of the cesium nucleus and
the finestructure constant are deduced.
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Chapter 1

Introduction

In the vivid history of atomic physics and matter-light interaction, experiment and theory
have stimulated a number of mutual developments and greatly profited from each other’s
progress.

In the early nineteenth century, before the discovery of Brownian motion, the existence
of atoms was a controversial, if not a philosophical question, and the debate whether
light was made up of particles or was a wave phenomenon, was seemingly decided in
favor of the wave nature, as the equations of electrodynamics were established by James
Clerk Maxwell. The observation of dark lines in the solar spectrum in 1802 by William
Wollaston and independently in 1813 by Joseph von Fraunhofer should mark a starting
point in the challenges to theory to explain light-matter interactions on the microscopic
level beyond the Maxwell equations and in the quest for experiments to discover new
physical phenomena and test prevailing theories.

The phenomenological description of the wavelengths of the hydrogen absorption lines by
Johann Balmer and Johannes Rydberg was first successfully explained in 1913 by Niels
Bohr, introducing an atomic model in which the electron orbiting the nucleus can occupy
only discrete energy levels, and the quantized energy differences in transitions among
these levels would lead to the characteristic lines in the absorption spectrum. This model
was the first building block of quantum mechanics, which was quickly emerging in the
following years through the additional works of Erwin Schrödinger, Werner Heisenberg,
Max Born and Wolfgang Pauli, to name only a few. In this framework of early quantum
mechanics, the solution to the two-body problem of the hydrogen atom could explain
in a very fundamental way the atomic energy levels of the Bohr model. Spectroscopy
experiments with high resolution showed, however, that there was a fine structure in the
main lines of atomic spectra, first discovered by Albert Michelson and Edward Morley in
1887. This small splitting of the main absorption lines was first interpreted in 1916 by
Arnold Sommerfeld as being a consequence of relativistic corrections to the energy levels
of Bohr’s atomic model.

This realization that quantum mechanics based on Schrödinger theory was not sufficient
to fully describe the hydrogen spectrum, among other reasons, initiated the search for a
relativistic generalization of the Schrödinger equation. In 1928, Paul Dirac succeeded in
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Chapter 1: Introduction

introducing a relativistic wave equation for electrons, laying the foundation of relativistic
quantum mechanics. The Dirac equation also requires the existence of so-called antipar-
ticles for the electrons of ordinary matter. In fact, shortly after the prediction of these
so-called positrons, Carl Anderson could detect the new particles in cosmic rays in 1932.

By means of exciting atomic hydrogen to the 2S state by electron impact and probing the
metastable atoms with radio waves, in 1947, Willis Lamb and Robert Retherford found a
tiny frequency splitting separating the 2s1/2 and 2p1/2 states [1,2], which in Dirac theory are
assigned equal energies. The lifting of this degeneracy is caused by effects which can only
be described by the quantum field theory of electromagnetism, quantum electrodynamics
(QED), as developed by Richard Feynman, Freeman Dyson, Julian Schwinger, and Sin-
Itiro Tomonaga in the 1940s. Applied to bound states of the hydrogen atoms, QED
can explain the Lamb shift as a result of interactions of the bound electron with the
electromagnetic vacuum, the so-called self-energy shift, by the vacuum polarization of
virtual particle-antiparticle pairs close to the nucleus, and higher order effects.

Quantum electrodynamics is currently the most refined and accurate theory of the elec-
tromagnetic interaction. Up to date, this theory has been tested by a large number of
experiments and has prevailed in the most precise tests. A prominent example is the
measurement of the electron magnetic moment in units of the Bohr magneton, g, which
according to Dirac theory should have a value of exactly 2. QED predicts deviations
from g−2 on the order of 10−4, which could be experimentally confirmed to a relative
accuracy of 10−12 [3]. Similar measurements of the muon anomalous magnetic moment [4]
are equally in agreement with theoretical values of QED.

Current comparisons of QED predictions with Lamb shift measurements of the 1S ground
state [5–7] rely on high-precision two-photon spectroscopy comparing transitions like
1S–2S and 2S–4S/4D. The experimental precision of the results in the optical regime
even surpasses the precision of radio frequency measurements of the classic 2S–2P Lamb
shift. However, the comparisons of the calculated Lamb shift with experimental observa-
tions are currently limited by the experimental precision of the value of the proton charge
radius, which cannot be calculated ab initio within QED. This value is needed as input
to the QED calculations to account for the deviation from a nuclear Coulomb potential
due to the finite proton size. Reversing the situation and having faith in QED, the pro-
ton charge radius can be determined [8] more precisely than by any other method, even
though it is a very small correction to the energy levels of the hydrogen atom. Some of
the latest QED predictions for optical transition frequencies [9] are given with relative
uncertainties which are even smaller than the predictions for the electron g factor, which
previously was the most accurate prediction of QED.

High-precision spectroscopy of two-photon transitions also plays a key role in the deter-
mination of fundamental constants. In particular, the Rydberg constant

R∞ =
me e

4

8 ε20 h
3c

=
me c α

2

2 h
(1.1)

originally introduced already in the phenomenological formula for the wavelengths of the
Fraunhofer lines by Johannes Rydberg, can be determined by high-precision two-photon
spectroscopy of the two-photon 1S–2S , 2S–nS, 2S–nD with very high accuracy [5, 6,
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10, 11]. In addition to its decisive role in spectroscopy, the Rydberg constant is also an
important pivotal point in the determination of the constituent constants me, e, and h in
the regular adjustment of the CODATA self-consistent set of physical constants [12].

Frequency measurements constitute the most accurate measurements in physics, because
they amount to counting the number of cycles of the periodic process under consideration
and comparing this number to the number of cycles a reference oscillator undergoes in
the same time interval. For this reason, the most precise current atomic clocks [13] are
based on a microwave oscillator locked to the cesium ground state hyperfine structure
transition. The cycles of the microwave field, oscillating at about 9 GHz, can be counted
by an electronic circuit.

The absolute measurement of optical frequencies is much more difficult in principle,
because the oscillations are so fast that electronic counting is impossible. A very so-
phisticated method to count optical cycles relies on phase-coherent harmonic frequency
chains [14–16]. These chains allow to connect microwave frequencies and optical frequen-
cies by means of successive steps of harmonic generation stages, but present immense
technical challenges, because they require stable transfer oscillators in a range of differ-
ent frequency domains. Also, one usually can only measure frequencies that are close
to one specific target frequency. The recent advent of the optical frequency comb tech-
nique [17,18] has provided the decisive leap ahead in optical frequency metrology, bridging
the gap between the microwave regime and optical frequencies in one single step, providing
a ruler in frequency space for any optical frequency.

Since optical frequencies are larger than the cesium microwave frequency by many orders
of magnitude, clocks based on optical oscillators could become much more accurate than
today’s microwave atomic clocks. Turning the difficulties with the metrology of optical
frequencies to an advantage, future atomic clocks could rely on an extremely narrow two-
photon transition like the 1S–2S transition in hydrogen as an oscillator, and the frequency
comb as the clockwork, building up an all-optical clock.

Although QED has up to now passed all experimental tests with flying colors, it is prob-
ably not the final description of the electromagnetic interaction. A theory unifying all
fundamental interactions is a persistent challenge to theoretical physics. In such a “grand
unified theory”, the four fundamental forces, gravity, electromagnetism, weak and strong
force, and the fundamental particles, would be described in one common framework and,
ideally, this theory would have only very few free parameters. In the current standard
model of particle physics, in which all interactions except gravity are unified, there are
19 free parameters describing, e.g., the interaction strengths and masses of the particles,
and since neutrinos probably have a finite rest mass, 10 additional parameters might be
required. The fine structure constant

α =
e2

4πε0 ~ c
, (1.2)

which is the coupling constant of the electromagnetic interaction, is one example of such
a free parameter and is of fundamental importance in QED. For example, the fact that
α ≈ 1/137 at the low energies considered in atomic physics, allows for an expansion of
many quantities of interest in Zα for low nuclear charge Z, permitting calculations using
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Chapter 1: Introduction

perturbation theory. The actual value of the fine structure constant, however, cannot be
inferred within the framework of QED.

The search for unified theories therefore also aims at explaining physical constants which
are as yet free parameters. Generalized Kaluza-Klein theories [19] and modern string the-
ories [20,21] allow for, or even predict [22] tiny time variations of fundamental parameters
like, e.g., the fine structure constant α. In these theories, α is linked to the size of ex-
tra compact dimensions of a higher-dimensional space-time, and as a dynamical variable
of the theory it could vary on cosmological time scales. For tests of these predictions,
high-precision spectroscopy can provide valuable contributions. The possible drift of the
fine structure constant would be observable as a tiny drift of optical transition frequen-
cies which are measurable with high precision in laboratory experiments. Together with
complementary results of astronomical spectroscopy experiments and investigations of
nuclear processes on a geological time scale, high-precision spectroscopy therefore opens
an opportunity to put experimental constraints on, or select among, alternative unified
theories.

One important advantage of laboratory experiments is that a very tight control of sys-
tematic effects is possible and that one can repeat the experiment under improved condi-
tions. Very generally, the improvement of the accuracy and the precision of high-precision
spectroscopy experiments requires a very detailed study of systematic effects, aiming to
minimize perturbing influences on the measurement both by experimental and theoretical
means.

In this thesis, a number of theoretical contributions to the interplay between experiment
and theory of high-precision two-photon spectroscopy are presented. Investigations of
the coherent population dynamics in the density matrix formalism of quantum optics are
performed as well as calculations of important matrix elements in the framework of non-
relativistic atomic physics. Relativistic and QED corrections to these matrix elements and
corrections beyond the dipole approximation are calculated, which surpass the currently
accessible experimental precision. Numerical Monte Carlo simulations, bringing to light
collective phenomena and systematic effects, and independent validity checks of the data
analysis procedure used by the 1S–2S hydrogen spectroscopy group of T. W. Hänsch at the
Max–Planck–Institut für Quantenoptik (MPQ) are carried out. Finally, by analyzing the
results of high-precision experiments, in cooperation with the MPQ precision spectroscopy
group, separate limits to the possible drift of two fundamental constants are derived.

Specifically, in chapter 2 the excitation dynamics of a hydrogenlike system on two-photon
resonance with a driving laser is investigated. In contrast to many other processes in
quantum optics, the two-photon excitation of the hydrogen 1S–2S transition can not be
obtained via a steady-state calculation, because one-photon resonant ionization introduces
a strong loss channel, which requires the fully time-dependent treatment of the excitation
process. The canonical equations of motion are generalized to the case of excitation
in a standing wave field, and an analytic solution for a special case is found, including
ionization and spontaneous decay of the excited state.

In chapter 3, relevant non-relativistic matrix elements are presented in a unified formalism,
i.e., transition matrix elements and dynamic polarizabilities, for a wide range of two-
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photon transitions, supplementing the values in the literature. Being one of the most
important systematic effects in high-precision two-photon spectroscopy, the dynamic Stark
effect is considered closely and the conventional derivation is compared to a new, fully
quantized description, which is valid also for nonclassical laser fields. Scaling relations
for the nuclear charge and the reduced mass are derived, extending the applicability of
the matrix elements to general two-body bound Coulomb systems. Angular prefactors
for adjustment of the matrix elements to specific fine structure and hyperfine structure
transitions are given.

Chapter 4 is dedicated to the calculation of leading order relativistic, radiative and non-
dipole corrections to the non-relativistic transition matrix elements and the dynamic
polarizabilities. As opposed to the static energies of the hydrogen atomic levels, that are
known up to two-loop radiative corrections from QED calculations, radiative corrections
to the dynamic polarizability have not yet been considered. Since for typical excitation
intensities the dynamic Stark shift is a very small correction to the hydrogenic energy
levels compared to the Lamb shift, the non-relativistic treatment of the dynamic Stark
shift has been sufficient for experimental purposes up to now. Anticipating future increase
in precision, a number of corrections to the dynamic Stark effect and to the transition
matrix elements are evaluated.

In chapter 5, the general set of tools which is provided by the results of the preceding
chapters, is applied to the specific problem of the hydrogen 1S–2S excitation, which is
investigated experimentally by the MPQ group in Garching. A Monte Carlo simulation,
relying on the quantum dynamics and the matrix elements of the earlier chapters, is
implemented, and thanks to the close long-term cooperation with the MPQ group it is
possible to compare the results from the simulation to the raw data recorded in 2003 [23]
and to verify both the simulation and the matrix elements. The simulation additionally
provides insight into systematic effects which are not under direct experimental control,
and it can be used as a testing ground for evaluating the consequences of changes to the
experimental setup.

In the first part of chapter 6, a number of specific details concerning the line shape model
of the data analysis at the MPQ experiment is treated. In order to validate this numer-
ical line shape model, an independent data analysis method was developed. Additional
candidates for systematic effects previously unaccounted for are investigated and possible
improvements to the experimental setup are proposed. In the second part of chapter 6,
separate stringent limits to the drift of the finestructure constant and the cesium magnetic
moment are derived by analyzing results of two independent high-precision spectroscopy
experiments, namely the hydrogen 1S–2S absolute frequency measurement at the MPQ
and the measurement of a quadrupole transition frequency in mercury, performed at the
National Institute of Standards and Technology in Boulder, Colorado [24]. Complemen-
tary to astronomical [25] and geological [26] experiments, high-precision spectroscopy
laboratory experiments can test the present drift of the constants with comparable sensi-
tivity.

In chapter 7, conclusions and a brief outlook including proposals concerning future ex-
periments are given.
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Chapter 2

Two-Photon Excitation Dynamics

2.1 Introduction

Two-photon transitions involving the 1S and 2S states in hydrogen and hydrogenlike
systems are of special interest in high-precision spectroscopy for two main reasons. First,
direct transitions between two S states are forbidden by electric dipole selection rules and
therefore the excited state in such a transition can have a very long natural lifetime. For
the 2S state in hydrogen, the natural lifetime is about 1/8.2 s, while the lifetime of the
hydrogen 2P state is 10 ns. Consequently, the 1S–2S transition frequency can be mea-
sured with a much higher precision than the 1S–2P transition, because the corresponding
width of the absorption line is so much smaller. Second, an experiment probing any two-
photon transition can be designed in such a way that the two photons involved in the
absorption process travel in opposite directions, which results in a cancellation of the both
the Doppler shift and the absorption recoil shift to first order in v/c, for a moving atom.
Also, for a trapped atom or hydrogenlike ion, the counter-propagating photon setup has
the advantage of a very small mechanical recoil of the absorbing atom, minimizing the
disturbing influence of the spectroscopic laser field on the confinement properties of the
trap.

In many quantum optical processes in which one-photon resonant transitions are driven
and strong spontaneous decay channels exist, the total interaction time is characterized
by a short phase of fast transient dynamics, followed by a long period in which the atom
is in the steady state, which means that the atomic state population does not change any
more as a function of time. Accordingly, the quantum optical master equations, which are
first-order differential equations, reduce to a set of ordinary equations, and can be solved,
e.g., using Gaussian elimination. In these cases, several coupled levels can be taken into
account and off-diagonal elements in the coefficient matrix, originating from spontaneous
decay, do not complicate the situation dramatically.

In contrast, in all two-photon transitions in which the ground state is the 1S or the 2S
state, the excited state can be ionized by absorption of one additional photon from the
same laser field that drives the two-photon resonance, except for the case of the 2S–3S
transition. As a consequence, the excitation of these spectroscopically interesting two-
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Chapter 2: Two-Photon Excitation Dynamics

photon transitions can only take place in the transient regime, because the system is not
closed and the one-photon resonant ionization rate can be comparable with the two-photon
Rabi frequency. In particular, it is impossible to describe the system using the steady-
state of the master equations, it rather has to be treated with the fully time-dependent
differential equations.

In this chapter the time-dependent excitation of a two-level system on two-photon reso-
nance with a driving laser field is presented. In Sec. 2.2, an introduction to the well-known
density matrix formalism is given, in which both the spontaneous decay and the ionization
damping are included. The resulting excited state line shape as a function of interaction
time is presented and an analytic solution excluding spontaneous decay is derived for the
density matrix equations. This solution was also found in the literature. In Sec. 2.3, the
basic master equations are generalized to the case of excitation in a standing wave field
and time-dependent excitation intensity, which is used, e.g., in the setup at the Max–
Planck–Institut für Quantenoptik (MPQ) in Garching, Germany [27, 28]. In Sec. 2.4, an
analytic solution including both spontaneous decay and ionization damping is given. The
inclusion of the spontaneous decay channel complicates the expression considerably, and
since this solution has not been found in any publication, it is verified by means of a
comparison with a numerical integration of the master equations.

2.2 Basic quantum dynamics

In this section, the basic model is introduced, which is used to describe the two-photon
excitation and ionization of hydrogen, and, more generally, any hydrogenlike two-body
Coulomb system. The main approximations which will be made, are to consider a driv-
ing laser field with vanishing spectral line width, and to neglect the direct three-photon
ionization of the ground state.

For the systems which will be discussed in this thesis, an infinitely narrow laser is an ade-
quate approximation, because the ionization of the excited state limits the total interaction
time of the bound system with the laser field. As a consequence of the time-frequency
uncertainty principle, the transient width of the excited state cannot be smaller than the
inverse interaction time, and as long as the finite bandwidth of the laser is small compared
to this transient width, a monochromatic laser is a good approximation. Note that for
spectroscopic experiments probing a steady state, with an interaction time that is in prin-
ciple infinitely large, one would have to compare the laser line width to the natural line
width instead. As an example, one may consider the MPQ hydrogen 1S–2S experiment,
where the excitation typically takes place on a sub-millisecond timescale. The spectral
line width of the laser is on the order of 200 Hz at a wavelength of 121 nm, which is small
compared to the typical inverse interaction time of some kHz, while the natural line width
of the 2S state is only 1.31 Hz.

The standard approach [29, 30] is to solve the density matrix equations for a two-level
system. One can restrict the Hilbert space of the atom to only two relevant states, an
excited state |e〉 and a ground state |g〉, because close to the two-photon resonance, only
that transition will be driven significantly by the laser field.

8



2.2. Basic quantum dynamics

It will be assumed that the atoms are initially in |g〉 and are irradiated with the intensity
I(t), starting from time t = 0. For additional considerations concerning the intensity in a
standing wave, see Sec. 2.3 below. The straightforward treatment of this interacting two-
level system is extended by including decay channels accounting for spontaneous decay
and ionization into the density matrix equations, which will later turn out to be crucial
ingredients.

The starting point is the von Neumann equation [29] for the density operator ρ ,

i~
∂

∂t
ρ = [H̃, ρ] , (2.1)

with

ρ =ρgg|g〉〈g|+ ρee|e〉〈e| + ρge|g〉〈e| + ρeg|e〉〈g| (2.2)

H̃ =Eg |g〉〈g|+ Ee |e〉〈e| +
~Ω

2
[ exp(iωLt) + exp(−iωLt) ]2 (|e〉〈g| + |g〉〈e|) , (2.3)

Eg =hνg + h∆νAC(g) , (2.4)

Ee =hνe + h∆νAC(e) . (2.5)

The tilde on H̃ signifies that the Hamiltonian is restricted to the two atomic states under
consideration. The angular frequency of the laser is denoted by ωL. The energies of
the excited state Ee and ground state Eg are defined such that the dynamic (AC) Stark
effect is already contained, expressed by the respective frequency shift ∆νAC. As will be
presented in detail in Sec. 3.5, these frequency shifts are proportional to the intensity I(t)
of the exciting laser field, and in accordance with [31], the AC Stark coefficient βAC is
defined as

∆νAC(g) = βAC(g) I(t) , (2.6)

and likewise for the excited state. The AC Stark coefficients will be calculated in Sec. 3.5
and listed in SI units in Tabs. 3.3 and 3.4 in the next chapter. Further, the two-photon
Rabi-frequency Ω is defined as

Ω = 2 (2πβge) I(t) , (2.7)

and due to the two-photon nature of the excitation process, Ω is also proportional to
the light intensity, rather than to the electric field amplitude, as it is the case for one-
photon dipole allowed transitions. Section 3.3 treats the calculation of the two-photon
transition matrix elements βge and lists the results for a set of transitions in Tab. 3.1.
Generally, both the symbols ω and Ω are be used for angular frequencies (measured in
rad/s), appearing in the argument of exponential functions of the form exp(iωt), and ν
is used for frequencies as measured in Hz (compatible with the international unit system,
SI).

For the description of the population dynamics of the system, it is useful to factor out a
fast oscillating term of the off-diagonal elements of the density matrix in the equations
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Chapter 2: Two-Photon Excitation Dynamics

of motion (2.1). The transformed density matrix elements are denoted by a prime and
defined by

ρ′gg := ρgg , ρ′ge := ρge exp(−i 2ωLt) , (2.8a)

ρ′ee := ρee , ρ′eg := ρeg exp(i 2ωLt) . (2.8b)

This corresponds to a transformation into the interaction picture, but with a phase fac-
tor of exp(−i 2ωLt) instead of exp(−iωegt) for the coherence ρge. Note that the diago-
nal elements of the density matrix, representing the respective atomic state population,
are invariant under this transformation. The resulting equations of motion for the ma-
trix elements of the transformed density operator ρ′ then contain both slowly varying
terms, which determine the timescale of the population dynamics, and terms oscillating
with ±2ωL and ±4ωL. One can now employ the rotating wave approximation, dropping
the terms oscillating at these optical frequencies, thereby neglecting the Bloch-Siegert
shifts [32], which are on the order of 10−10 relative to the dynamic Stark shifts.

The spontaneous decay and the ionization of the excited state can be taken into account
by adding

ρ′relax = − (γi + γs) ρ
′
ee |e〉〈e| + γs ρ

′
ee |g〉〈g| −

γi + γs

2

(
ρ′ge |g〉〈e| + ρ′eg |e〉〈g|

)
(2.9)

to the right hand side of Eq. (2.1), after performing the transformation (2.8). The spon-
taneous decay rate is denoted by γs, while γi represents the rate with which the excited
state is depopulated due to one-photon resonant ionization:

γi = 2πβioni(e) I(t) . (2.10)

All transition rates in this thesis, denoted by γ with an appropriate index, are given in
angular frequency units rad/s. In cases where a decay γ is the governing broadening
mechanism this translates into a line width (Lorentzian full width at half maximum) of
γ/(2π).

The ionization coefficient βioni is closely connected to the dynamic Stark effect, which will
be discussed in Sec. 3.5. Essentially, the dynamic Stark coefficient is a complex quan-
tity, the real part yielding βAC, and the imaginary part determining βioni. The ionization
rate (2.10) is included into the equations of motion in analogy to the spontaneous decay
rate, but with one important difference. In the particular case of the 1S–2S experiment,
the atomic density is very low, in order to avoid collisional effects on the transition fre-
quency. Therefore, the recombination probability for protons and electrons to form again
a hydrogen atom in the ground state, is extremely small. Consequently, a recombination
term is not included into ρ′relax. For cases where recombination by radiative or three-body
processes cannot be neglected, the recombination rates can be included by employing the
principle of detailed balance (see e.g. pp. 102 and 151 of [33]).

In the cases where the lower level |g〉 is the 2S state, the excited state nS or nD, where
n is the principal quantum number, can decay spontaneously into several levels, which in
turn cascade (i) to the metastable 2S state, dominantly with an effective rate γ2S

s and (ii)
to the 1S ground state, with an effective rate γ1S

s . If the decay cascade ends in |1S〉, the
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2.2. Basic quantum dynamics

population is lost for the dynamics of the considered two-level system, and can formally
be treated as an additional intensity independent ionization rate: γi → 2πβioni(e) I + γ1S

s .

In this way, one arrives at the following master equations, sometimes referred to as the
optical Bloch equations, which are the equations of motion (EOM) for the density matrix
elements of the considered two-level system on two-photon resonance with the driving
laser of angular frequency ωL:

∂

∂t
ρ′gg = −Ω Im(ρ′ge) + γs ρ

′
ee , (2.11a)

∂

∂t
ρ′ge = −i ∆ω ρ′ge + i

Ω

2
(ρ′gg − ρ′ee) −

γi + γs

2
ρ′ge , (2.11b)

∂

∂t
ρ′ee = Ω Im(ρ′ge) − (γi + γs) ρ

′
ee , (2.11c)

with the definition for the excitation detuning,

∆ω = 2π∆ν = 2ωL − 2πνeg − 2π[∆νAC(e) − ∆νAC(g)] . (2.12)

Here, the absolute frequency of the unperturbed transition is denoted by νeg = νe − νg.
These equations are equivalent to, e.g., Eq. (8) of Ref. [34], in the case where γs = 0.

Whereas the first-order Doppler shift is often canceled by using two counter-propagating
beams, the second-order Doppler shift of an atom moving with velocity v, like any other
single particle frequency shift, can be included into the excitation detuning by adding

∆ωD2 = (2πνeg)
1

2

v2

c2
(2.13)

to the right hand side of Eq. (2.12). At this point, it should be noted that the EOM (2.11)
are similar to the case of a two-level system, coupled by a laser field driving a dipole allowed
one-photon transition. In fact, the main conceptual difference lies in the calculation of
the transition matrix elements entering into the Rabi frequency and the dynamic Stark
coefficients. In particular, the dynamic Stark effect is fundamentally different for the
two-photon case, where the time-dependent electric field is an off-resonant perturbation
of second order, as opposed to the resonant one-photon case, where the level shift is linear
in the electric field amplitude. Note also, that in contrast to one-photon transitions, the
spontaneous decay rate is modified slightly in the presence of the laser field due to virtual
intermediate P states, even for the 1S–2S transition, as detailed in Section 3.7.

The appropriate description of the excitation with a finite bandwidth laser field necessi-
tates a treatment involving stochastic differential equations [35, 36], to model the phase
and intensity fluctuations of the driving laser field as stochastic processes. This would re-
sult in a modification of the coherence terms in Eqs. (2.11), in the sense discussed in [37],
resulting in further damping terms entering the right-hand side of Eq. (2.11b). For the
short-time evolution of the density matrix, i.e., in the regime where the excited state pop-
ulation ρee ∝ Ω2t2, a simple averaging of ρee over the power spectrum of the laser can be
applied (see Eq. (2.74) of [38]), but this averaging is not applicable for longer excitation
times.
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Chapter 2: Two-Photon Excitation Dynamics

2.2.1 Analytic solution for constant intensity

In the above form (2.11), for constant intensity I(t) = I, the EOM are a coupled set
of first-order differential equations with constant coefficients and hence are solvable ana-
lytically for all times. The somewhat lengthy expression for the full solution is given in
Sec. 2.4 below.

The analytic solution to Eqs. (2.11) without ionization (γi = 0), taken in the limit of infi-
nite interaction time, leads to the well-known steady state of the system with a Lorentzian
line shape for the excited state population [29]. In this case, it is assumed that the popu-
lation that decays out of the excited state reappears in full at the ground state. However,
when discussing two-photon S–S and S–D transitions, this hardly ever happens. Even
the two-photon dynamics of the 2S–3S transition, for which indeed γi = 0, does not evolve
to a steady state, because the population in the 3S state also spontaneously decays to
the 1S state, mainly via 2P , and does not reappear in the 2S state.

In this section, the focus will first be on the case of vanishing spontaneous decay, γs = 0.
This is often a good approximation when atoms or ions are excited in beams or gas cells,
as opposed to trapped particles. In particular, it is a very good approximation for the
hydrogen 1S–2S transition, because for typical intensities, the ionization rate dominates
over the two-photon spontaneous decay rate. Later in this section, the general solution
will be considered, for cases where the spontaneous decay rate is no longer negligible (e.g.,
for systems with nuclear charge number Z > 1).

Recall that the EOM describe an atom at rest or moving with a constant velocity, for
which the Doppler shift can be included into the detuning ∆ω. The initial state is the
ground state, so ρgg(t = 0) = 1 and ρee(0) = ρge(0) = ρeg(0) = 0. Starting from time
t = 0, the system interacts with a monochromatic laser field of constant intensity I.
The transient line shape, which is defined as the population in the excited 2S state as a
function of detuning and time, ρ′ee(∆ω, t), and the ground state population, ρ′gg(∆ω, t),
can then be expressed as

ρ′ee(∆ω, t) =
4 Ω2

G
exp

(

−γi

2
t
) (

sin2(Ω1t) + sinh2(Ω2t)
)
, (2.14a)

ρ′gg(∆ω, t) =ρ′ee(∆ω, t) +
1

GΩ1Ω2
exp

(

−γi

2
t
)

× (2.14b)
{
Ω2(4Ω2

1 − ∆ω2)
[
4Ω1 cos(2Ω1t) + γi sin(2Ω1t)

]

+ Ω1(4Ω2
2 + ∆ω2)

[
4Ω2 cosh(2Ω2t) + γi sinh(2Ω2t)

]}
,

where

G =

√

16 ∆ω2γ2
i + (4 ∆ω2 + 4 Ω2 − γ2

i )
2
, (2.15a)

Ω1 =
1

4
√

2

√

G+ 4 ∆ω2 + 4 Ω2 − γ2
i , (2.15b)

Ω2 =
1

4
√

2

√

G− 4 ∆ω2 − 4 Ω2 + γ2
i . (2.15c)
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2.2. Basic quantum dynamics

The angular frequencies Ω1 and Ω2 are always real. Reassuringly, this solution has been
obtained in a rather different form in [36, 39], but agrees with the result presented here.
Those works focus on resonant multiphoton ionization and it is not surprising that the
same master equations are relevant for those studies.

For the case of vanishing ionization, βioni = 0, one has Ω2 = 0 and one obtains the familiar
Rabi oscillations with generalized Rabi frequency

√
∆ω2 + Ω2:

ρ′ee(∆ω, t) =
1

2

Ω2

∆ω2 + Ω2

(

1 − cos
(√

∆ω2 + Ω2 t
))

, (2.16)

as it should be. Note that the exponential decrease of the excited state population seems to
take place with only half the expected rate in Eq. (2.14). However, as the result describes
excitation starting from the ground state and subsequent ionization, the rate with which
the population decreases is not simply γi for this particular solution. In comparison, the
solution obtained with the same method, but with the excited state as the initial state
and vanishing laser excitation (Ω = 0) does in fact decrease with the rate γi, independent
of the detuning.

In Figs. 2.1-2.4, the solution (2.14) for the transient line shape of the 2S population in the
vicinity of the hydrogen 1S–2S two-photon resonance is illustrated, where an intensity of
2.3 MW/m2 is used, which is a typical magnitude in the MPQ experiment. Specifically,
in Figs. 2.1 and 2.2, one can investigate the influence of the ionization channel on the
transient line shape for a typical interaction time of the 1S–2S experiment in Garching.
The inclusion of the ionization channel mainly changes the excitation efficiency while
having only little effect on the spectral line width or on coherence features. This is
plausible, because on this timescale, which is much shorter than the Rabi oscillation time,
the 2S state is only populated very little.

In Figs. 2.3 and 2.4, one can observe the strong influence of the ionization on the line shape
for interaction times on the order of one Rabi oscillation and longer. With ionization taken
into account (Fig. 2.4), the excitation of the 2S level is much less efficient, the coherence
features (fringes) are washed out and spectral hole burning occurs, because close to zero
detuning, excitation and subsequent ionization is enhanced. Also, the fact that the system
does not evolve to a steady state is apparent.

As the EOM suggest, one obtains a symmetric line shape around ∆ω = 0. However, it
should be pointed out that this is no longer true for a collective signal from a thermal
atomic beam. In that case, different second-order Doppler shifts according to Eq. (2.13),
which all have the same sign, asymmetrically distort the line shape, depending on the
atomic beam parameters. The basic discussion here therefore only applies to a mono-
energetic beam of atoms. In this case, the line center is simply shifted by the second-order
Doppler shift and the dynamic Stark effect.

The discussion of the line width is more involved, because at each point in time, the line
shape is different (see also Fig. 2.13) and therefore the width is not defined unambiguously
in the transient regime. A possible measure for the line width is then the full width taken
at the outermost half maximum values of the line. With this definition, the influence
of ionization, excitation intensity and interaction time on the ∆ω-dependence of the line
shape can be discussed at least qualitatively.
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Chapter 2: Two-Photon Excitation Dynamics

Figure 2.1: Atomic population in the 2S state of hydrogen (Z=1) as a function of
interaction time t with the laser, and of detuning ∆ν from the 1S–2S transition
frequency, as defined in Eq. (2.12) with νeg ≈ 2466 THz. The laser intensity is
I = 2.3 MW/m2, corresponding to Ω = 2π×169 Hz. The initial state at t = 0 is
the 1S state. In the time evolution of the system, ionization from the 2S state
into the continuum and spontaneous decay of the 2S state are neglected, i.e. ρ′ee
from Eq. (2.16) is plotted.

Figure 2.2: Same situation as in Fig. 2.1, except that in this plot, the effect of ion-
ization is included, as in Eqs. (2.14,2.15). The ionization rate is γi = 2π × 276 Hz.
For the short times considered here, there is only a small difference to Fig. 2.1 in
the total excitation efficiency, which is due to the ionization loss from the excited
state.
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2.2. Basic quantum dynamics

Figure 2.3: Same plot as in Fig. 2.1, but for interaction times comparable with
the Rabi oscillation time of 5.9 ms. Ionization from the 2S state is not taken into
account. At zero detuning, the sin2-shaped Rabi oscillations with full amplitude
can be observed. All the other sections along constant detuning can also be
understood as the well-known Rabi oscillations with diminished amplitude and
generalized Rabi frequency ΩR =

√
∆ω2 + Ω2 in complete analogy with one-

photon transitions, except that the two-photon Rabi frequency Ω as defined
in Eq. (2.7) is proportional to the intensity, rather than to the electric field
amplitude.

Figure 2.4: Same situation as in Fig. 2.3, except that here the ionization from
the 2S state is properly included. The presence of the ionization channel leads
to large differences compared to Fig. 2.3, because at times comparable to the
Rabi oscillation time, the 2S state is significantly populated and consequently
the ionization probability is not negligible. The decay of the 2S population,
spectral hole burning and a loss of coherence can be observed in this image. The
maximum population of the 2S state is 0.175, see Eq. (2.17), whereas without
ionization the 2S population repeatedly reaches 100% on resonance (∆ν = 0).
Including the 2S spontaneous two-photon decay of γs = 2π × 1.31 Hz does not
change the plot discernibly.
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Consider the ∆ω-dependent factors in the expression for the line shape (2.14a). The factor
1/G is time-independent and embodies two contributions to the width. For increasing
detuning ∆ω, 1/G decreases more slowly if the intensity dependent Rabi frequency Ω is
large. This results in a time-independent power broadening contribution. Likewise, the
presence of an ionization channel, quantified by the ionization rate γi, adds to this width,
which constitutes an ionization broadening of the line.

For the time-dependent factor, sin2(Ω1t) + sinh2(Ω2t), first consider the case of vanishing
ionization, Ω2 = 0 (see also Fig. 2.3). The remaining term sin2(Ω1t) produces fringes
within the line shape that become arbitrarily narrow with increasing interaction time t in
the absence of any damping. In Figs. 2.1 and 2.2, the sin2(∆ω)/∆ω2-type of line shape,
which is characteristic for the sudden turn-on of the excitation [38], can be recognized.
However, the envelope of these fringes as well as any unfringed line shape always increase
in width if ionization is taken into account by including the sinh2 term.

When one compares the detuning ranges of Figs. 2.1 and 2.2 with Figs. 2.3 and 2.4, one
also observes that the width of the central peak decreases for increasing interaction time.
Experimentally, this is observable as a time-of-flight dependent broadening contribution.

On two-photon resonance (∆ν = 0) and for short interaction times, an expansion of the
solution for ρ′ee reveals that the 2S population initially grows proportional to t2. The

global maximum excited state population ρ
′(max)
ee , which occurs at zero detuning ∆ω = 0,

can be obtained easily from Eq. (2.14a). It reads

ρ′ (max)
ee = exp







−
βioni arccos

(
β2

ioni

8β2
ge

− 1

)

√

16β2
ge − β2

ioni







, (2.17)

and is independent of the intensity of the laser field. Note that for the strongly damped
case where βioni > 4βge, both the arccos and the square root are complex valued, but
the result remains real. If spontaneous decay is included into the dynamics, as described
below, the peak excited state population ρ

′ (peak)
ee is always less than given in Eq. (2.17),

because the decay transfers population only from the excited state to the ground state.
Expression (2.17) then gives the high-intensity limit for ρ

′ (peak)
ee , where ionization domi-

nates over the spontaneous decay.

2.2.2 Quantum dynamics including spontaneous decay

In the following, systems in which the spontaneous decay channel is no longer negligible
will be considered. As specific examples, the 1S–2S and the 1S–3S transitions will be
treated, in systems where the nuclear charge number is not restricted to Z = 1. Consider
the Z-scaling of the spontaneous decay rates, listed in Tab. 2.1 (see, e.g., [40–42] and
pp. 266-267 in [43]). One-photon spontaneous decay rates of dipole allowed transitions
are denoted by γ1γ

s , for two-photon spontaneous decay rates, the symbol γ2γ
s is used. The

ionization rate coefficient βioni scales with Z−4 [see chapter 3, Eq. (3.37)], therefore the
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Table 2.1: Spontaneous decay rates (angular frequency) relevant to the descrip-
tion of the quantum dynamics of the 1S–2S and 1S–3S transition in hydrogenlike
systems with nuclear charge number Z.

γ1γ
s (3S → 2P ) 6.32 × 106 Z4 rad/s

γ1γ
s (2P → 1S) 6.25 × 108 Z4 rad/s

γ2γ
s (3S → 1S) 2.08Z6 rad/s

γ2γ
s (3S → 2S) 6.45 × 10−2 Z6 rad/s

γ2γ
s (2S → 1S) 8.23Z6 rad/s

ratio R of the spontaneous decay rate and the ionization rate γi, as defined in (2.10),
scales as

R1γ =
γ1γ

s

γi

∝ Z8 , R2γ =
γ2γ

s

γi

∝ Z10 (2.18)

for a given laser intensity. Recall that in hydrogen 1S–2S , for typical intensities, the
spontaneous decay rate is small compared to the ionization rate, i.e. R2γ � 1. In
contrast, for the 1S–2S transition in hydrogenlike helium (Z=2) and the same intensity
of 2.3 MW/m2, both rates are of comparable magnitude, with R2γ ≈ 1.6. The simplified
form of the analytic solution (2.14) is therefore no longer valid, and even qualitative
discussions of the analytic form of the full solution for the line shape (see Sec. 2.4) are
quite involved. Nevertheless, one can plot the full solution (2.35), and Figs. 2.5 and 2.6
show the transient line shape of the excited state of a He+ ion, irradiated with a cw-laser
of intensity 2.3 MW/m2. This intensity is chosen to simplify the comparison with the
hydrogen plots, although a cw-laser source with the required wavelength of 61 nm does
not yet exist.

In Fig. 2.5 one can observe, that on a timescale comparable to the inverse spontaneous
decay rate, the line shape evolves into a “quasi” steady state of approximate Lorentzian
profile. Only on a longer timescale, ionization becomes important, and the excited state
is significantly depopulated (see Fig. 2.6). The characteristic decay time of the excited
2S population is by far longer than the inverse ionization rate 2π/γi. The reason for
this seemingly unintuitive behavior is, that the laser field continuously drives the system.
While the excited state is depopulated by the ionization, new population from the ground
state is transferred into the excited state, which acts like a reservoir for the population
for the considered low-intensity regime.

For γs 6= 0, the peak population of the excited state, ρ
′(peak)
ee , occurring in the transient

dynamics, is a function of the intensity of the driving laser, when spontaneous decay is
included in the EOM. For He+, this dependence is shown in Fig. 2.7. For large intensities,
the peak population approaches the maximum value given in Eq. (2.17).

In Fig. 2.8, the full solution of the EOM (2.11) for the 1S–2S transition in Li2+ is plotted,
again for a laser intensity of 2.3 MW/m2 as in Fig. 2.5, but with a wavelength of 27 nm.
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Figure 2.5: 2S population in a He+ ion, as a function of detuning [defined in
Eq. (2.12)] and interaction time with the laser, driving the 1S–2S transition.
Ionization and spontaneous two-photon decay of the 2S state are taken into
account. A constant intensity of 2.3 MW/m2 is assumed and the ion is in the
1S ground state at time t = 0. On the timescale considered, the system evolves
into a “quasi” steady state with approximate Lorentzian line shape.

ρ
′(peak)
ee

Figure 2.6: 2S population dynamics including two-photon spontaneous decay in
a He+ ion as in Fig. 2.5, but on a much longer timescale. Here the decrease of
the population due to ionization is visible. Note that the effective population
loss is by far smaller than the ionization rate γi = 2π × 17.3 Hz (corresponding
to a characteristic ionization time of 58 ms), because the “quasi” steady state
population of the excited state is small. The peak population in the excited
state is 10.6 × 10−3 for the considered intensity of 2.3 MW/m2. The steep rise
for t < 20 ms is shown in more detail in Fig. 2.5.
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I [MW/m2]

ρ
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ee

ρ
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ee
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Figure 2.7: Peak 2S population in He+ (see ρ
′(peak)
ee in Fig. 2.6), as a function

of intensity, including spontaneous decay (solid line) and without spontaneous

decay (dashed line), which is equal to ρ
′(max)
ee in Eq. (2.17), evaluated for the 1S–

2S transition. For increasing intensity, the ionization rate eventually becomes
large compared to the spontaneous decay rate, and the peak population increases,
approaching the maximum ρ

′(max)
ee .

As R2γ is larger by a factor of 1000 as compared to hydrogen, spontaneous emission
dominates the dynamics and the system evolves into a “quasi” steady state very fast.

By calculating the population in the continuum P state, 1 − ρ′gg(∆ω, t) − ρ′ee(∆ω, t),
one obtains the probability of ionization via the two-photon resonant excited state as a
function of detuning and time, if |g〉 is the 1S state. In Fig. 2.9, this εP population
is plotted from the full solution (2.35) of the EOM (2.11) for the 1S–2S transition in
hydrogen, and an intensity of 2.3 MW/m2, as before.

Note that because of the ionization γi 6= 0, the steady state of the system can be defined
as the completely ionized atom, while for γi = 0, a regular steady state with a certain
population distribution between the excited and ground states exists. The limit γi → 0 is
therefore non-uniform, in the sense that the steady state for γi 6= 0 does not tend to the
steady state of the case γi = 0.

As a result, for increasing interaction time, the detuning range in which the atomic pop-
ulation is completely ionized, increases in width, as can be observed in Fig. 2.9. For a
precision experiment relying on the detection of ionized particles, this means that the
interaction time has to be chosen carefully in order to obtain a signal of minimal width.
Using a detection scheme for charged particles instead of excited atoms has the advantage
of a higher detection efficiency.

For the 1S–2S transition, the two-photon spontaneous decay rate γ2γ
s is the only significant

spontaneous decay channel (see also Sec. 3.7). For the 1S–3S transition, the dominating
decay takes place via the real intermediate 2P state, as depicted in Fig. 2.10, because the
one-photon rates are orders of magnitude larger than the two-photon rates (see Tab. 2.1).
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Chapter 2: Two-Photon Excitation Dynamics

Figure 2.8: 2S population in Li2+, as a function of detuning [defined in
Eq. (2.12)] and interaction time with the laser, driving the 1S–2S transition.
A constant intensity of 2.3 MW/m2 is assumed and the ion is in the 1S ground
state at t=0. The ratio of ionization rate to spontaneous decay rate is a thousand
times smaller than for the hydrogen atom, and ionization is almost negligible.

Figure 2.9: Ionized population in the continuum P state as a function of detuning
[defined in Eq. (2.12)] and interaction time with the laser, driving the hydrogen
1S–2S transition, including spontaneous two-photon decay of the intermediate
2S state with γs = 2π×1.31 Hz. A constant intensity of 2.3 MW/m2 is assumed
and the atom is in the 1S ground state at t = 0.
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|1S〉

|3S〉

|2P 〉
γ1γ

s (3S → 2P )

γ1γ
s (2P → 1S)γ2γ

s (3S → 1S)

γeff

Figure 2.10: Level scheme of the 3S–1S spontaneous decay. The two-step one-
photon channel with the rates γ1γ

s dominates over the direct two-photon decay,
and can be expressed by a direct effective rate γeff . The two-step two-photon
channel via the 2S state is omitted.

Strictly speaking, it would be necessary to introduce a new set of EOM including the real
intermediate 2P level. However, the 2P state is not resonantly coupled to some other state
by the laser field and is populated only by incoherent decay. In addition, the decay rate out
of 2P is a hundred times larger than the decay rate into it. One can therefore approximate
the quantum dynamics of a 1S–3S transition by the EOM (2.11), if one uses an effective
decay rate from the 3S state to the 1S ground state, which equals γeff = γ1γ

s (3S → 2P ).
The direct two-photon decay and the two-step process of two-photon decays via the 2S
level are completely negligible in comparison.

2.3 Generalizations of the equations of motion

The basic interaction of an atom with a laser field of constant intensity as discussed above,
is generalized to more realistic scenarios in this section. In particular, if one allows for the
motion of an atom through the driving standing wave, the master equations (2.11) need
to be modified. In addition, the light intensity in most experiments is not constant, e.g.,
the atom under consideration may move through an inhomogeneous laser profile. In this
case, the laser intensity can be described in terms of the trajectory r(t) as I(r(t)). The
atom may also be excited with counter-propagating laser pulses, in which case one needs
to consider the unequal, time-dependent intensities incident on the atom from opposite
directions.

In general, an analytic solution including the varying AC Stark shift and varying Rabi
frequency in these more general cases is either extremely difficult or impossible to find.
Nonetheless, the equations of motion can still be integrated numerically with very little
more computational requirements, if one includes a time dependent intensity I(t), specific
to the experimental setup, into the master equations, for example by using the Runge-
Kutta routines from Ref. [44].
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2.3.1 Motion in a standing wave and time-dependent intensity

When one uses the term “intensity” in the context of two-photon spectroscopy, one must
be aware that in most experiments in an enhancement resonator on resonance, the inten-
sity profile in longitudinal direction is spatially modulated as

Is(x) = 2I cos2(k x) , (2.19)

where I denotes the mean intensity averaged over an integer multiple of nodes, and where
the cavity axis is taken as the x-axis, with k being the modulus of the wave vector. If the
interacting atom is fixed in space, it is simply driven with the intensity at the respective
position which ranges from 0 to 2I. In this case the determination of the exact location
of the atom in the resonator would be a difficult experimental task and could probably
only be accomplished in a trap setup.

However, for moving atoms in a standing wave, the description of a laser electric field
with one frequency ωL, as used in the interaction Hamiltonian (2.3), is no longer appro-
priate, since in the rest frame of the atom, the electric field can only be described by
a superposition of two oppositely running waves that are Doppler shifted with opposite
signs. In the photon picture, this situation, as observed by the moving atom, is depicted
in Fig. 2.11. As will be shown in the following, this leads to new master equations, which
can only be reduced to the conventional EOM (2.11), if certain conditions are satisfied.

Since the electric field, experienced by a moving atom, cannot be described as a monochro-
matic, harmonic field, the electric field of a plane standing wave in the lab frame is re-
considered. The electric field strength E(r, t) of the standing wave, which is taken to
be polarized in the z direction, can be written as a superposition of two running waves,

ω+ω+

ω+
ω+

ω−

ω− ω−

ω−

E2
lE2

l 2ElEr
Figure 2.11: Excitation of a two-photon transition in a bichromatic field, which
consists of a “left” beam with frequency ω− and electric field amplitude El and
a “right” beam with frequency ω+ and electric field amplitude Er. The Rabi
frequency with which the transition is driven, is proportional to the product of
the electric field amplitudes, for the first-order Doppler free transition (middle).
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2.3. Generalizations of the equations of motion

propagating in the +x and −x directions, respectively:

E(r, t) = El cos[ωL(t− x/c)] + Er cos[ωL(t+ x/c)] . (2.20)

Transformed into a frame moving along with an atom of velocity v relative to the lab
frame, the field strength reads

E(r′, t′) = El cos[ω−(t′ − x′/c)] + Er cos[ω+(t′ + x′/c)] , (2.21)

where β = v/c and

ω+ = ωL
1 + β
√

1 − β2
, ω− = ωL

1 − β
√

1 − β2
. (2.22)

At the location of the atom, set to be x′ = 0, there is then a purely time-dependent field
with field strength

E(t′) = El cos(ω−t
′) + Er cos(ω+t

′) , (2.23)

expressed in the proper time t′ of the atom. In this field, the two-photon Rabi frequency
Ω, the master equations, the dynamic Stark effect ∆νAC and the ionization rate γi receive
modifications as compared to the monochromatic case. First, the effect on the quantum
dynamics of the excitation process is considered.

To this end, the bichromatic field (2.23) is inserted into the interaction part of the Hamil-
tonian in the von Neumann equation (2.1), instead of the original cos(ωLt) term. Then
the transformation into the interaction picture is performed, with respect to the unshifted
laser angular frequency ωL, as defined in Eq. (2.8). Dropping all terms which oscillate
with a frequency on the order of ωL, one arrives at the set of equations:

∂

∂t
ρ′gg = − Ω Im(ρ′ge) + γs ρ

′
ee

+
i

2
exp(−2iωDt)

(
Ωr ρ

′
ge − Ωl ρ

′
eg

)
+

i

2
exp(2iωDt)

(
Ωl ρ

′
ge − Ωr ρ

′
eg

)
, (2.24a)

∂

∂t
ρ′ge = − i ∆ω ρ′ge + i

Ω

2
(ρ′gg − ρ′ee) −

γi + γs

2
ρ′ge

+
i

2
exp(−2iωDt) Ωl

(
ρ′gg − ρ′ee

)
+

i

2
exp(2iωDt) Ωr

(
ρ′gg − ρ′ee

)
, (2.24b)

∂

∂t
ρ′ee =Ω Im(ρ′ge) − (γi + γs) ρ

′
ee

+
i

2
exp(−2iωDt)

(
Ωl ρ

′
eg − Ωr ρ

′
ge

)
+

i

2
exp(2iωDt)

(
Ωr ρ

′
eg − Ωl ρ

′
ge

)
, (2.24c)

where the first line of each subequation equals the expression obtained in the basic master
equations (2.11), while the second line of each subequation represents the additional
contribution which is due to the motion in the electric field of the standing wave. Here,
the definitions

Ω = 2(2πβge) × 2
√

Il(t)Ir(t) , Ωl = 2(2πβge)Il(t) , Ωr = 2(2πβge)Ir(t) (2.25)
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were introduced, and the relation

Il(t) =
1

2
ε0c El(t)2 Ir(t) =

1

2
ε0c Er(t)2 (2.26)

between the intensity and the electric field amplitude of a running plane wave was used.
The time variation of the electric field amplitudes need to be slow as compared to the
optical frequency, for the definition of the intensity to make sense. This condition is
well fulfilled in all cases except for few-cycle pulses. Obviously, the Doppler shift of the
two frequency components, which is denoted by ωD = ω+ − ωL = ωL − ω−, determines the
oscillation frequency of the additional terms in the differential equations (2.24). For the
case that this frequency is much larger than all other frequencies occurring in these new
master equations, the fast oscillations average out, in analogy with the high-frequency
terms which are dropped in the rotating wave approximation.

Any other very-high frequency variation can be averaged in the sense as discussed above,
but as soon as the characteristic time τI of the intensity variation does not fulfill the
condition 1/τI � max{Ω, γi, γs}, I(t) fully enters the equations of motion for the atomic
density matrix. For example, in chapter 5 a numerical integration of the EOM is per-
formed, where the laser field driving the hydrogen 1S–2S transition is a standing wave
with a Gaussian beam profile. The radial intensity variations of this laser field, observed
by the atoms along their trajectories passing the Gaussian beam, are included in the EOM
and turn out to be the origin of an important broadening contribution to the experimental
line width, namely the inhomogeneous AC Stark broadening.

In summary, an atom that moves with the velocity v through a superposition of counter-
propagating lasers with equal frequency ωL in the laboratory frame and with time-
dependent intensities Il(t) and Ir(t) at the location of the atom, can be described by
the usual master equation (2.11), given that the condition

ωL

(
1 + β
√

1 − β2
− 1

)

� max{Ω, γi, γs} (2.27)

is satisfied. In the case of unequal, time dependent intensities of the counter-propagating
lasers, the following replacement for the two-photon Rabi frequency

Ω = 2(2πβge)I(t) → Ω = 2(2πβge) × 2
√

Il(t)Ir(t) (2.28)

needs to be made in the master equation, if the first-order Doppler free transition is
considered.

For the case of the hydrogen 1S–2S experiment, this is not a strong restriction as the
required minimum velocity to satisfy condition (2.27) is very low for a typical thermal
beam. For a driving laser intensity of some MW/m2, this minimum velocity corresponds
to a temperature of the atomic beam on the order of 10−14 K. From a laboratory frame
point of view, condition (2.27) simply means that an atom passes through the intensity
profile (2.19) quickly enough, such that it effectively averages over the nodes and antinodes
of the field. Then the quantum dynamics of the atom can be treated as if it was driven
by a constant intensity I.
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ω+

ω+ω+ ω+ ω−ω−ω−

ω−

E2
lE2

r ErEl ElEr
Figure 2.12: Illustration of contributions to the dynamic Stark effect in a bichro-
matic field (2.23). For sufficient frequency difference, only the processes involving
photons of equal frequency can contribute.

Now the modification of the dynamic Stark effect in a bichromatic field is discussed.
As will be shown in detail in chapter 3, the dynamic Stark shift of an atomic energy
level is caused by an off-resonant interaction with the laser field. This interaction can
loosely be interpreted as an absorption of a laser photon, bringing the atom to a virtual
intermediate state, followed by the stimulated emission of the photon back to the laser
mode. The opposite sequence of events can also take place. Here, only the fact that there
are two laser fields of different frequency are present, will be briefly commented on. As is
illustrated in Fig. 2.12, the situations in which two equal-frequency photons are involved,
correspond to contributions to the dynamic Stark shift that are caused independently by
the “left” and “right” laser beam. The processes in which one photon from each laser
mode is involved, would lead to a nontrivial combined shift of the atomic energy, as well
as to a net recoil and consequently to a large recoil shift. However, if condition (2.27)
is satisfied, the frequency difference between the photons from each beam is much larger
than the excited state width, therefore these processes, corresponding to the two sketches
in the middle of Fig. 2.12, cannot take place.

This can also be explained, in a short anticipation of chapter 3, by considering the bichro-
matic interaction Hamiltonian

V (t) = −ez [El cos(ω−t) + Er cos(ω+t)] . (2.29)

When one calculates the second-order perturbation to the energy in time-dependent per-
turbation theory (see Sec. 3.4.1), one encounters the time evolution operator

U
(2)
I (0, t) = − 1

~2

t∫

0

dt′
t′∫

0

dt′′V (t′)V (t′′) , (2.30)

which splits into four summands upon insertion of (2.29). The integrals containing
the unequal-frequency product cos(ω−t

′) cos(ω+t
′′) average to zero, precisely because the

cosines oscillate with different frequencies, and the two conventional monochromatic con-
tributions to the dynamic Stark shift remain.

Accordingly, if condition (2.27) is satisfied, in the master equations the replacements

∆νAC = βAC I(t) → ∆νAC = βAC[Il(t) + Ir(t)] , (2.31)
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describe the dynamic Stark shift ∆νAC appropriately in the frame of the moving atom
and for generally unequal beam intensities. Since the ionization rate γi is proportional to
the imaginary part of the Stark effect, the analogous replacement reads

γi = (2πβioni) I(t) → γi = (2πβioni)[Il(t) + Ir(t)] . (2.32)

The limits in the case of equal intensities Il(t) = Ir(t) =: Iper dir.(t) are intuitive, because
then all replacements (2.28),(2.31), and (2.32) are equivalent to simply setting

I(t) → 2Iper dir.(t) . (2.33)

Taking the limit, e.g., Ir → 0, leads to

Ω → 0 , ∆νAC → βACIl(t) , γi = (2πβioni)Il(t) (2.34)

for the Doppler free transition. The Rabi frequency vanishes because the Doppler free
transition cannot be driven in a pure running wave, while the dynamic Stark effect, which
is an off-resonant process, still remains to the extent that is expected from the interaction
with the “left” laser.

2.3.2 Further generalizations

Any additional spontaneous decay channels can also be fully included in a numerical
integration algorithm. In addition to the intensity dependent frequency shifts ∆νAC,
any other frequency shifting effect can be easily included into the numerical approach by
adapting Eq. (2.12), as described already for the velocity dependent second-order Doppler
shift in Eq. (2.13).

In most cases, instead of a single atom one considers an ensemble of atoms, all of which
may experience different intensities, Doppler shifts and interaction times along different
trajectories. The contribution of each single atom to the line shape can be calculated like
described above, and the line shape observed for the atomic ensemble is then the sum of
all single-atom contributions, given that the single atoms interact independently with the
laser. In a dilute beam experiment this condition is very well fulfilled.

Together with the atomic constants presented in the following chapter, the set of equa-
tions (2.11) are thus a tool for a wide range of problems in spectroscopy. For the case
of the MPQ 1S–2S experiment in hydrogen, a specific implementation is described in
chapter 5.

Note that the transition matrix elements and Stark coefficients that enter into Eq. (2.11)
vary slightly with the laser frequency. However, the detuning ∆ν is typically a few kHz,
whereas the optical resonance frequencies are on the order of 1015 Hz. For the 1S–
2S transition, the resulting relative variation of βAC is on the order of 10−12, which is
negligibly small.
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2.4. Analytic solution including ionization and spontaneous decay

2.4 Analytic solution including ionization and spon-

taneous decay

In this section, the time-dependent solution of the full master equation (2.11) including
both ionization and spontaneous decay damping is given for the time-dependent line
shapes describing the probability of an atom to be in the excited state, ρ′ee(∆ω, t), and
to be in the ground state, ρ′gg(∆ω, t). The initial condition for which these solutions
were evaluated, corresponds to the situation where the atom is in the ground state, i.e.,
ρ′gg(0) = 1 and ρ′ee(0) = ρ′ge(0) = ρ′eg(0) = 0.

The lineshape of ionization products, i.e., the ionization probability as a function of detun-
ing and time, are obtained from these solutions by evaluating 1 − ρ′ee(∆ω, t) − ρ′gg(∆ω, t).
This is useful for the modeling of the line shape in an experiment relying on the detection
of the ionized particles, instead of atoms in the excited state. In the case of hydrogen,
especially the protons emerging from the ionization are an attractive candidate for a detec-
tion scheme, since they are influenced less by small stray electric fields than the electrons,
and therefore might be guided more reliably to a detector.

The fully time-dependent solution of (2.11) for the atomic state populations reads

ρ′ee(∆ω, t) =C Ω2
{

e−Ωct Ωb

[
Ωa(Ω

2
a − Ω2

b) cosh(Ωat) + Ωc(3Ω2
a + Ω2

b − 4Ω2
c) sinh(Ωat)

]

+ eΩct Ωa

[
Ωb(Ω

2
b − Ω2

a) cosh(Ωbt) − Ωc(Ω
2
a + 3Ω2

b − 4Ω2
c) sinh(Ωbt)

] }

,

(2.35)

ρ′gg(∆ω, t) =ρ′ee(∆ω, t) + C ×
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with

C =
e−

1
2
(γi+γs)t

2ΩaΩb [(Ωa − Ωb)2 − 4Ω2
c ] [(Ωa + Ωb)2 − 4Ω2

c ]
, (2.37)
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Ωa =

√
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6
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.

In this form, the auxiliary variables Ωa, Ωb, Ωc, K and D are in general complex-valued,
depending on the relative magnitude of the spontaneous decay rate γs, the ionization rate
γi and the two-photon Rabi frequency Ω. Nevertheless, the resulting populations ρee and
ρgg are always real quantities.

In earlier works dealing with multiphoton ionization (see e.g. [45,46]), the above solution
is obtained only in the limiting case γs = 0, in which the expression reduces to a much
simpler form [see Eqs. (2.14)]. Since in those papers the emphasis is on efficient ionization
in strong fields, the spontaneous decay of the intermediate state is either neglected in
comparison with the ionization rate or, if present in the master equations, it is treated
numerically.

However, in experiments that detect the excited state line shape, and are therefore carried
out in a relatively weak field, the spontaneous decay rate and the ionization rate can be of
comparable magnitude, e.g., as discussed above for the case of He+-spectroscopy (see also
Figs. 2.5 and 2.6). Therefore only the above solution (2.35) describes the constant intensity
case appropriately, as detailed in Sec. 2.2.2. Of course, a more compact expression would
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be highly desirable, however a simpler expression could not yet be found. Quite generally,
spontaneous decay channels complicate the exact solution of the dynamics, because they
reduce the symmetry of the EOM, as has also been observed for a different set of master
equations, considering autoionizing states in a laser field [47, 48].

In order to check the rather involved result (2.35), a numerical solution of the master
equations for the hydrogen 1S–2S transition has been compared with the analytic result,
see Fig. 2.13. In these plots, for different interaction times the 2S line shape is shown,
where the green solid line represents the analytic solution and the blue dots mark the
numerical results. With an intensity of I = 2.3 MW/m2, the two-photon Rabi frequency
Ω = 2 (2πβge) I = 1066 rad/s, the ionization rate γi = 2πβioni(2S) I = 1740 rad/s and the
two-photon spontaneous decay rate γs = 8.231 rad/s are employed. The two solutions
agree very well, as they must, and the maximum relative difference between the two
solutions is 6 × 10−6 at very small values for the 2S population.

The Mathematica code of this numerical integration of the quantum dynamics also forms
the basis of the Monte Carlo simulations presented in chapter 5. This comparison therefore
also confirms the consistency of the simulation with the analytical solution for the case of
constant intensity. In particular, one can infer that the numerical deviation is negligible
even for large interaction times.
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Figure 2.13: Line shape of the excited state population ρ′ee(∆ν, t) of the 1S–2S
quantum dynamics. Comparison of a numerical integration (dots) and the ana-
lytical solution (green line) of the master equations (2.11), for interaction times
t as indicated on the respective plot. The parameters entering both approaches
are: Ω = 1066 rad/s, γi = 1740 rad/s and γs = 8.231 rad/s. The vertical lines in
each plot are at detunings ∆ν = ±1

2
γi/(2π). One can observe that the full width

at half maximum of the line shape is never smaller than the ionization width, as
expected.
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Chapter 3

Transition Matrix Elements and

Dynamic Polarizability

3.1 Introduction

The dynamic Stark shift is one of the major systematic effects that shifts atomic energy
levels in a high-precision two-photon spectroscopy experiment. As opposed to other shift-
ing effects, e.g., the Zeeman effect or the static Stark effect, which can in principle be
suppressed by an appropriate shielding of the interaction region, the dynamic Stark shift
is caused by the probing laser field itself and therefore cannot be avoided. As such, it has
received considerable attention in the literature [31,49–53]. However, the results of some
of these publications, also with respect to the two-photon transition matrix elements, have
shown inconsistencies, which will be cleared up. A comparison was further complicated
by the use of different definitions and unit systems.

In this chapter, the “atomic constants” βge, βAC and βioni are calculated in a unified
framework. These constants determine the matrix elements entering the Rabi frequency
and the dynamic Stark shift, as they occur in the equations of motion for the population
dynamics in the previous chapter and in chapter 5. A set of values including and extend-
ing the results available in the literature is derived and given in the SI unit system for
convenient use in the experimental line shape model. The Z-scaling, the fine structure
and hyperfine structure angular prefactors, and the dependence on the reduced mass of
the system will be included, such that the results are applicable to any bound two-body
Coulomb system, such as hydrogen, He+, and muonium.

For the two-photon transitions which are of interest in the present thesis, the dynamic
Stark shift is a one-photon off-resonant effect, and can be treated in the framework of
perturbation theory. Although the high-precision experiments, for which these atomic
constants are needed, aim for experimental tests of QED, it is presently sufficient to use
the non-relativistic values as given in the tables below, because the dynamic Stark shift
is only a small correction to the atomic eigenenergy. For example, for the hydrogen 2S
state, the typical dynamic Stark shift in the MPQ 1S–2S experiment is on the order
of kHz, calculated non-relativistically, while the 2S self-energy shift is on the order of
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Chapter 3: Transition Matrix Elements and Dynamic Polarizability

GHz. However, in chapter 4 the leading order relativistic and radiative corrections will
be calculated quantitatively, which may well be needed in future experiments.

In the two-level approximation, in which the spectrum of the Hamiltonian is restricted to
the ground state and the excited state of a transition of interest, the population dynamics
of these two states as a function of time can be studied very well, as shown in the previ-
ous chapter. However, for the derivation of the transition matrix elements in hydrogen or
hydrogenlike ions, quantifying the coupling strength between the levels interacting with
a laser field, the full Hamiltonian of a two-body system needs to be considered. Espe-
cially for a two-photon transition matrix element, this is intuitively clear, as there is an
intermediate virtual state involved. Also for the description of the dynamic Stark effect,
which is a one-photon off-resonant effect, a virtual intermediate state is needed.

Two approaches to the derivation of the dynamic Stark effect will be presented, using a
classical and a fully quantized description of the electric field of the laser. In the classical
limit of high photon density, these approaches coincide, as is to be expected. In the course
of this comparison, it will become apparent that the dynamic Stark shift can be used to
illustrate a basic aspect of quantum electrodynamics, namely as being equivalent to the
electron self-energy in a macroscopically populated monochromatic field, i.e., the dynamic
Stark shift can be interpreted as a stimulated radiative correction [54].

In Sec. 3.2, an overview of the various perturbations of an atomic reference state by the
laser field and the electromagnetic vacuum is given. Section 3.3 treats the calculation of
two-photon transition matrix elements, listing the obtained results for a set of S–S and
S–D transitions. The derivation of the dynamic Stark effect in two different frameworks
is presented in Sec. 3.4, and results for the same set of transitions are given in Sec. 3.5. In
Sec. 3.6, the well-known one-photon ionization cross-section is reconsidered and connected
to the imaginary part of the dynamic Stark coefficients. Finally, Sec. 3.7 gives an account
of a combined stimulated-spontaneous process representing an additional decay channel of
excited states. In appendix A, reasons for the encountered inconsistencies in the literature
are investigated and solutions are proposed.

3.2 Overview of the interactions of atom, laser mode

and vacuum

In the following, the general framework of the interaction of a hydrogen atom or a hy-
drogenlike ion with a laser mode of angular frequency ωL and the vacuum modes of the
quantized electromagnetic field is described (see, e.g., textbooks [29, 55]). The Hamilto-
nian H (s)

0 of the unperturbed system “atom+laser+vacuum” consists of the corresponding
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three unperturbed parts

H (s)
0 = H0 +HL +HV , (3.1a)

H0 =
p2

2me
− Ze2

4πε0 r
=
∑

φ

Eφ|φ〉〈φ| , (3.1b)

HL = ~ωL a
†
LaL , (3.1c)

HV =
∑

{k,λ}6=L

~ωk

(

a†λ(k)aλ(k) +
1

2

)

. (3.1d)

Here, the non-relativistic atomic Hamiltonian H0 is given both in the coordinate and
momentum operator representation and in the spectral representation of its eigenfunctions
φ, including both the discrete and continuum part of the spectrum. The photon creation
and annihilation operators a†L and aL act only on the laser mode of the electromagnetic
field with angular frequency ωL and the polarization given by the laser. The Hamiltonian
for the laser field HL is therefore expressed in terms of the number operator acting on
a Fock state of the electromagnetic field. The operators a†λ(k) and aλ(k) create and
annihilate a photon with wavevector k, angular frequency ωk, and polarization λ in a
quantization volume V, with the exception of the laser mode, such that HV describes all
modes of the electromagnetic field other than the laser mode. Note that the laser field
Hamiltonian does not contain the term 1/2 ~ωL, by definition. A finite constant energy
shift does not affect the physics described by the Hamiltonian. The nuclear charge number
is denoted by Z, the electron mass by me, and ε0 denotes the vacuum permittivity.

The unperturbed state vector and its eigenvalue are written as

|φ0〉 = |φ, nL, 0〉 (3.2)

E0 = H (s)
0 |φ0〉 = Eφ + nL~ωL + 0 , (3.3)

where nL is the number of photons in the laser mode, and the vacuum energy is defined to
be zero, if all other electromagnetic modes are unoccupied. The eigenenergy of a bound
atomic state φ with principal quantum number n in the framework of Schödinger theory
is defined by

Eφ = −(Zα)2me c
2

2n2
, (3.4)

where α denotes the fine-structure constant. The interaction of the atom with the quan-
tized electromagnetic field is described in the length gauge and dipole approximation (see
Sec. 4.6.1 for quantitative corrections to the atomic constants beyond the dipole approx-
imation). The interaction Hamiltonian reads

HI = HLI +HVI , (3.5a)

HLI = −e z
√

~ωL

2ε0V
(
a†L + aL

)
, (3.5b)

HVI = −e
∑

{k,λ}6=L

r · ελ(k)

√

~ωk
2ε0V

(
a†λ(k) + aλ(k)

)
, (3.5c)
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where HLI describes the interaction of the atom with the laser field andHVI the interaction
with the vacuum modes. Here, without loss of generality, the laser field is taken to
be linearly polarized along the z-direction, and the discrete form of the creation and
annihilation operators is used, defined in a quantization volume V, which will later be
extended to infinity in order to translate the results to the classical field. Note that
all operators are given in the Schrödinger picture and carry no time-dependence. In
Sec. 3.4, it will be demonstrated with the example of the dynamic Stark effect, that in a
second-quantized formalism, also dynamic processes can be treated in time-independent
perturbation theory.

3.2.1 Second-order perturbation

Now the second-order perturbations to an atomic energy eigenstate, caused by the inter-
action with the laser mode and the vacuum modes will be briefly summarized. Since in the
following sections two-photon transitions involving 1S and 2S states are treated, the laser
mode is not on resonance with any one-photon transition of the atom, so the perturbation
theory approach is valid in all these cases. In contrast, a laser field driving the 3S–5S
two-photon transition, is also on one-photon resonance with the 5S–15P transition, as
given by the Schrödinger energy (3.4). In the one-photon resonant case, the atomic level
shifts resulting from the laser-atom interaction would have to be evaluated in the laser
dressed state picture, which is briefly discussed in the context of radiative corrections in
Sec. 4.7.

Since both HLI and HVI are operators with odd parity, acting on the atomic state wave-
function, the first-order correction to the atomic state energy vanishes:

∆E
(1)
LV (φ0) = 〈φ0|HI|φ0〉 = 0 , (3.6)

and the second order reads

∆E
(2)
LV (φ0) =

〈

φ0

∣
∣
∣
∣
∣
∣

HI

(
1

E0 −H (s)
0

)′

HI

∣
∣
∣
∣
∣
∣

φ0

〉

. (3.7)

The reduced Green’s function, denoted by a prime, excludes the reference state |φ0〉 from
the intermediate states, but can be replaced by the full Green’s function (denoted without
the prime), because application of HI to |φ0〉 leads to a superposition of states excluding
|φ0〉 anyway, as can be seen from Eq. (3.6).

It should be mentioned that the above notation of the second order energy perturbation,
is equivalent to another common notation involving the sum over H (s)

0 -eigenstates ψ0:

〈

φ0

∣
∣
∣
∣
HI

1

E0 −H (s)
0

HI

∣
∣
∣
∣
φ0

〉

︸ ︷︷ ︸

∝ |δφ0〉

=

〈

φ0

∣
∣
∣
∣
HI

1

E0 −H (s)
0

�
HI

∣
∣
∣
∣
φ0

〉

=
∑

ψ0

〈φ0|HI |ψ0〉〈ψ0|HI |φ0〉
E0 − Eψ0

,

(3.8)
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with a complete set of H (s)
0 -eigenstates denoted by

�
=
∑

ψ0

|ψ0〉〈ψ0| . (3.9)

The explicit sum over intermediate states on the right hand side of Eq. (3.8) is widely used
throughout the experimental laser spectroscopy literature, while the left hand side nota-
tion is used mainly in publications with a more field-theoretic formalism (e.g., Refs. [56, 57]).
In this thesis, the notation on the left hand side of (3.8) is used.

The second-order expression (3.7) consists of four terms, since HI = HLI +HVI. The first
contribution, including only the laser field, reads

∆E
(2)
AC(φ0) =

〈

φ0

∣
∣
∣
∣
HLI

1

E0 −H (s)
0

HLI

∣
∣
∣
∣
φ0

〉

. (3.10)

This perturbation will be discussed in detail in Secs. 3.4 and 3.5. The real part of
∆E

(2)
AC(φ0) is the dynamic Stark shift of the atomic state |φ〉, while the imaginary part

yields the ionization rate of |φ〉 to the continuum.

The contribution which is purely due to the vacuum mode reads

∆E
(2)
SE (φ0) =

〈

φ0

∣
∣
∣
∣
HVI

1

E0 −H (s)
0

HVI

∣
∣
∣
∣
φ0

〉

. (3.11)

The real part of ∆E
(2)
SE (φ0) is the one-loop self-energy part of the Lamb shift of the atomic

state |φ〉, and from the imaginary part one obtains the one-photon decay rate of |φ〉 [58].
From the analogy to expression (3.10), the Lamb shift can be interpreted as the dynamic
Stark shift caused by all empty vacuum modes, or vice versa, the dynamic Stark shift can
be viewed as the self-energy of a bound electron in an electromagnetic field with a single
macroscopically populated mode, the laser mode [54].

The remaining two terms of ∆E
(2)
LV(φ0), containing one laser interaction and one vacuum

interaction each, vanish, as can be seen by explicitly writing out the intermediate states:

〈

φ, nL, 0

∣
∣
∣
∣
HLI

1

E0 −H (s)
0

HVI

∣
∣
∣
∣
φ, nL, 0

〉

∝

∑

ψ,±

〈φ, nL, 0|z|ψ, nL ± 1, 0〉〈ψ, nL ± 1, 0|HVI|φ, nL, 0〉
Eφ − (Eψ ± ~ωL)

= 0 , (3.12)

because HVI acts on all modes except the laser mode, and therefore all matrix elements

〈ψ, nL ± 1, 0|HVI|φ, nL, 0〉 ∝ 〈nL ± 1|nL〉 = 0 , (3.13)

as a consequence of the orthogonality of the Fock states. The same argument applies
to the term with HLI ↔ HVI. The leading-order correction to the energy of the atomic
reference state containing both vacuum and laser perturbation is therefore of fourth order.
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3.2.2 Fourth order perturbation

As a consequence of the odd parity of the perturbation operators (3.5), the third order
perturbation to the atomic state energy vanishes, and the fourth order reads

∆E
(4)
LV (φ0) = 〈φ0|HI

1

E0 −H (s)
0

HI
1

E0 −H (s)
0

HI
1

E0 −H (s)
0

HI|φ0〉 . (3.14)

As HI consists of two parts, one obtains sixteen terms in total. One term is entirely due
to the influence of the laser field

∆E
(4)
AC(φ0) = 〈φ0|HLI

1

E0 −H (s)
0

HLI
1

E0 −H (s)
0

HLI
1

E0 −H (s)
0

HLI|φ0〉 (3.15)

and describes the fourth-order dynamic Stark shift, whereas the real part of the fourth-
order term in the vacuum perturbation operator

∆E
(4)
SE (φ0) = 〈φ0|HVI

1

E0 −H (s)
0

HVI
1

E0 −H (s)
0

HVI
1

E0 −H (s)
0

HVI|φ0〉 (3.16)

yields the two-loop self-energy contribution to the Lamb shift [59,60], and the imaginary
part relates to the two-photon decay rate of the atomic state |φ〉 [40]. Then there are
eight terms which contain an odd number of operators HLI and consequently also an odd
number of HVI. These terms vanish for the same reason as given in Eq. (3.12): An odd
number of creation and annihilation processes never lead back to the original Fock state.

The remaining six terms read

∆E
(4)
6 (φ0) = 〈φ0|(LLV V + LV LV + LV V L+ V LLV + V LV L+ V V LL)|φ0〉 , (3.17)

where the interaction Hamiltonians are represented by their subscript only and the prop-
agators are omitted for brevity. These terms give rise to an energy shift caused by the
interaction of the atom with both the laser field and the vacuum modes. This effect is
treated in chapter 4, in a somewhat different formalism, as radiative corrections to the
second-order energy shift induced by the laser field.

The imaginary part of the shift (3.17) again describes a decay process and can be examined
further, if a specific final state of the decay is fixed. In particular, if one considers the
excited state of a two-photon transition, one is interested in the decay to the ground
state via emission or absorption of one laser photon and spontaneous emission of a second
photon. This combined induced-spontaneous two-photon decay rate is described by the
imaginary part of the resonances of ∆E

(4)
6 (|e, nL, 0〉), caused by the two possible final

states |g, nL+1, 1z(k−)〉 and |g, nL−1, 1z(k+)〉. Section 3.7 is dedicated to a quantitative
analysis of this process.

3.2.3 Transition matrix elements

For two-photon transitions, the transition matrix elements can be treated in an analogous
formalism as the matrix elements above describing the perturbation of an atomic state
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3.3. Calculation of two-photon transition matrix elements

energy. Therefore, only a short definition, excluding the interaction with the vacuum, will
be given here.

Since the laser field, interacting with the two-photon transitions of interest, is one-photon
off-resonant, the two-photon transition matrix element between the atomic states φ (ex-
cited state) and ψ (ground state) can be written as

MωL
=

〈

φ, nL − 2

∣
∣
∣
∣
HLI

1

E0 −H (s)
0

HLI

∣
∣
∣
∣
ψ, nL

〉

(3.18)

∝
√

nL(nL − 1)

〈

φ

∣
∣
∣
∣
z

1

Eφ + ~ωL −H0

z

∣
∣
∣
∣
ψ

〉

〈nL|nL〉
︸ ︷︷ ︸

=1

(3.19)

and reduced to an integral involving only the atomic Hamiltonian H0. The twofold action
of the laser photon creation or annihilation operators only results in a prefactor propor-
tional to the laser photon number, and for large photon numbers nL per quantization
volume V, the photon number can be related to the macroscopic intensity via

I = c
nL~ωL

V . (3.20)

In the following section, the atomic integration needed to obtain the transition matrix
element will be described, using a classical description of the electric field of the laser,
which corresponds to the limit nL/V � 1, and a set of results will be listed for S–S and
S-D transitions.

In Sec. 3.4, the differences of a classical and a quantized treatment of the dynamic Stark
shift will be discussed in detail, and the main conclusion concerning the large photon
number limit also applies to the case of the transition matrix element.

The corrections received by the transition matrix elements from taking into account the
interaction of the atom with the vacuum will be discussed in detail in chapter 4.

3.3 Calculation of two-photon transition matrix ele-

ments

3.3.1 Calculational method

In this section, the calculation of the two-photon transition matrix elements will be pre-
sented, which are used in the quantum dynamics of the two-level system of chapter 2.
In that chapter, the interacting system of atom and laser field has been described by
an effective two-level Hamiltonian, focusing on the time-dependent atomic population of
these levels. In order to describe transition matrix elements and dynamic Stark coeffi-
cients, involving virtual intermediate states, one has to consider the full, time-dependent
Hamiltonian

H(t) = H0 + V (t) , (3.21)
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where H0 is defined in Eq. (3.1b) and

V (t) = V
1

2
[exp(iωL t) + exp(−iωL t)] , (3.22a)

V = −e z EL , (3.22b)

describing a one-electron system with nuclear charge number Z in a harmonic laser field
of angular frequency ωL and classical electric field amplitude EL, linearly polarized in the
z-direction. The interaction potential V (t) is chosen to be in the length gauge, which has
some advantages in the description of time-dependent problems (for a detailed discussion
see for e.g. [61]), and the dipole approximation is made. The time-dependent two-photon
transition matrix element connecting the ground state |g〉 and excited state |e〉, then reads

〈

e

∣
∣
∣
∣
V (t)

1

(Eg + ~ωL) −H0
V (t)

∣
∣
∣
∣
g

〉

, (3.23)

where Eφ is the Schrödinger energy of any eigenstate |φ〉 of H0, depending only on its
principal quantum number n and is defined in Eq. (3.4). Now one can establish the
connection with the off-diagonal element of the two-level Hamiltonian H̃ from Sec. 2.2,
Eq. (2.3), by equating

−
〈

e

∣
∣
∣
∣
V (t)

1

H0 − (Eg + ~ωL)
V (t)

∣
∣
∣
∣
g

〉

=
~Ω

2
[ exp(iωLt) + exp(−iωLt) ]2 . (3.24)

Observe that a minus sign is explicitly pulled out with respect to Eq. (3.23) in order to
write the Green’s function in the familiar form 1/[H0−E], with intermediate state energy
E. With the definition of the two-photon Rabi-frequency from Eq. (2.7)

Ω = 2 (2πβge) I , (3.25)

and the intensity of an electromagnetic plane wave

I =
1

2
ε0 c E2

L , (3.26)

one obtains for the time-independent two-photon transition matrix element

βge = − e2

2 h c ε0

〈

e

∣
∣
∣
∣
z

1

H0 − (Eg + ~ωL)
z

∣
∣
∣
∣
g

〉

. (3.27)

There are a number of different approaches to the evaluation of matrix elements involving
the non-relativistic hydrogen Green’s function as in Eq. (3.27) [62, 63]. In this thesis, a
fully analytic evaluation is used, which is based on the Sturmian representation of the
radial Green’s function for the hydrogen atom. The basic formalism of such an evaluation
has been laid out in [64–66], and the non-relativistic hydrogen Green’s function reads, in
coordinate representation,

G(r1, r2; η) =

〈

r1

∣
∣
∣
∣

1

H0 − E(η)

∣
∣
∣
∣
r2

〉

=
∑

l,m

gl(r1, r2; η) Ylm(θ1, ϕ1) Y
∗
lm(θ2, ϕ2) , (3.28)
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with a radial part

gl(r1, r2; η) =
2me

~2

(
2

a0η

)2l+1

(r1r2)
l e−(r1+r2)/a0η

∞∑

k=0

L2l+1
k

(
2r1
a0η

)
L2l+1
k

(
2r2
a0η

)

(k + 1)2l+1 (l + 1 + k − η)
, (3.29)

where the usual spherical coordinates ri = {ri, θi, φi} are used, and (x)n ≡ Γ(x+n)/Γ(x)
is the Pochhammer symbol. The Bohr radius is denoted by a0, the symbols L2l+1

k designate
the associated Laguerre polynomials, and the invertible energy parameterization

η ≡ η(E) =
Z ~

a0

√

− 1

2meE
(3.30)

is used for conciseness of notation, converting any energy E into the dimensionless pa-
rameter η, chosen such that for eigenstates |φ〉 of H0 with principal quantum number n,
one obtains η(Eφ) = n. For the calculation of the transition matrix elements, one has to
consider a virtual intermediate P state in the propagator, with energy Eg + ~ωL, where
ωL is fixed by the two-photon resonance condition. Since the intermediate state lies in
between two bound states, its energy is always negative, and therefore η and the transition
matrix elements are real. In the process of calculating the dynamic Stark coefficients in
Sec. 3.5, also intermediate states in the continuum will occur, and consequently the Stark
coefficients will acquire an imaginary part.

Up to now, the states |g〉 and |e〉 have been characterized by the principal quantum
number n and orbital angular momentum quantum number l only. Evaluated for any
S–S transition, the two-photon transition operator, with which the transition matrix
element can also be written as 〈e|T |g〉, reads

T ij = ri
1

H0 − (Eg + ~ωL)
rj (3.31)

and has isotropic symmetry: 〈e|T xx|g〉 = 〈e|T yy|g〉 = 〈e|T zz|g〉, 〈e|T ij|g〉 = 0 for i 6= j
and therefore transforms like a scalar under rotation. As a consequence, the two-photon
transition matrix element for each individual allowed transition between fine structure
(FS) and hyperfine structure (HFS) substates can be obtained from βge of the gross
structure transition without any angular prefactors. In the following, the transitions
among states with different principal quantum number will be referred to as the “gross
structure” of the atom. For S–D transitions, the rotational symmetry is broken by the
D state, and

∑

i〈e|T ii|g〉 = 0. Therefore, the reduced matrix elements of the rank two

component, β
(2)
ge must be calculated for orbital angular momentum eigenstates

β(2)
ge = − e2

2 h c ε0
〈n′D ||T (2)||nS〉 , (3.32)

from which the transition matrix elements for specific magnetic sublevels can be obtained
via the Wigner-Eckhart theorem. For the gross structure S–D transition, the only tran-
sition which can be driven by linearly polarized light is the ml = 0 → m′

l = 0 transition.
For transitions between FS sublevels of angular momentum J = L + S and J ′ = L′ + S,
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where S is the spin of the orbiting particle, the angular momenta have to be recoupled
via the 6j-symbols [67]

〈n′ (L′S)J ′||T (2)||n (LS)J〉 =
√

(2J + 1)(2J ′ + 1)×

(−1)L
′+S+J+2

{
L′ J ′ S
J L 2

}

〈n′ L′||T (2)||nL〉 , (3.33)

because the two-photon transition operator only acts on the orbital angular momentum
part of the wavefunction. If HFS sublevels are resolved, also the nuclear spin I has to be
taken into account in the same way. Denoting the total angular momenta by F = J + I
and F ′ = J ′ + I, one obtains:

〈n′ (J ′I)F ′||T (2)||n (JI)F 〉 =
√

(2F + 1)(2F ′ + 1)×

(−1)J
′+I+F+2

{
J ′ F ′ I
F J 2

}

〈n′ (L′S)J ′||T (2)||n (LS)J〉 . (3.34)

Finally, via the Wigner-Eckhart theorem, the transition matrix element between hyper-
fine magnetic sublevels |g〉 = |nS, (JI)FmF 〉 and |e〉 = |n′D, (J ′I)F ′m′

F 〉 in a linearly
z-polarized laser reads

βge = (−1)F
′−m′

F

(
F ′ 2 F

−m′
F 0 mF

){

− e2

2 h c ε0
〈n′ (J ′I)F ′||T (2)||n (JI)F 〉

}

, (3.35)

where the 3j-symbol is defined as in Ref. [67]. In summary, to arrive at βge for a specific

S–D HFS transition, one starts with the value for β
(2)
ge of the gross structure transition

from Tab. 3.2, solves Eq. (3.32) for the reduced matrix element and sequentially inserts
the results into Eqs. (3.33)-(3.35). For FS transitions, the step implied by Eq. (3.34) is
skipped and in Eq. (3.35), one substitutes F → J , mF → mJ and F ′ → J ′, m′

F → m′
J .

3.3.2 Results for two-photon transitions

Results for the two-photon transition matrix elements βge for the transitions 1S ⇔ nS
(2 ≤ n ≤ 20) and 2S ⇔ nS (3 ≤ n ≤ 20) are given in Tab. 3.1. For the transitions
1S ⇔ nD and 2S ⇔ nD (3 ≤ n ≤ 20), the reduced matrix elements for orbital angular
momentum eigenstates are given in Tab. 3.2. Appendix A is devoted to the comparison
with other literature sources, where some of these results are also obtained, clarifying
the prefactors and discussing some occasional inconsistencies, which were encountered in
the literature search related to the problem. These non-relativistic results are relevant
for the given transitions in any bound two-body Coulomb system with nuclear charge
number Z, where 1 ≤ Z . 10. Generally, one of the particles involved will be referred
to as “the nucleus”, although it does not need to be made up of baryons. Because the
values, as listed in the tables, have been obtained for Z = 1 and infinite nuclear mass,
the scaling with Z and the dependence on the reduced mass of the system remain to be
clarified. One needs to use the scaling relations for the position operator as a function
of Z [43], and for the propagator denominators in (3.27). Note that the relevant laser
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3.3. Calculation of two-photon transition matrix elements

Table 3.1: Two-photon transition matrix elements βge in units Hz (W/m2)−1 for
1S ⇔ nS and 2S ⇔ nS transitions, as defined in Eq. (3.27), evaluated for atomic
hydrogen (Z = 1), in the non-relativistic dipole approximation. The electron
mass is employed in the calculation; reduced-mass effects and the dependence of
the results on the nuclear charge number Z is given in Eq. (3.37). For transitions
between F = F ′ = 0 and F = F ′ = 1 HFS sublevels, these values are valid with
an angular prefactor of unity and directly give the coefficient βge defined in
Eq. (3.35).

n
1S ⇔ nS
βge [Hz(W/m2)−1]

2S ⇔ nS
βge [Hz(W/m2)−1]

2 3.68111×10−5 −
3 1.00333×10−5 1.23306×10−3

4 5.13409×10−6 7.79393×10−5

5 3.28555×10−6 −4.39666×10−5

6 2.35088×10−6 −6.89568×10−5

7 1.79744×10−6 −7.26216×10−5

8 1.43591×10−6 −6.99362×10−5

9 1.18344×10−6 −6.52683×10−5

10 9.98415×10−7 −6.01620×10−5

11 8.57763×10−7 −5.52069×10−5

12 7.47736×10−7 −5.06214×10−5

13 6.59655×10−7 −4.64686×10−5

14 5.87791×10−7 −4.27450×10−5

15 5.28215×10−7 −3.94201×10−5

16 4.78153×10−7 −3.64542×10−5

17 4.35589×10−7 −3.38061×10−5

18 3.99031×10−7 −3.14375×10−5

19 3.67348×10−7 −2.93136×10−5

20 3.39672×10−7 −2.74039×10−5

frequency ωL(Z) = Z2 ωL(Z = 1) has to be scaled by a factor of Z2 as compared to the
corresponding frequency in hydrogen. Thus, one finds that

βge(Z) =
1

Z4
βge(Z = 1) . (3.36)

If one considers a bound two-body system, consisting of particles with respective masses
mN for the nucleus andmS for the other particle, this system is equivalent to a system with
infinite nuclear mass and an orbiting particle with reduced mass µ. It is therefore sufficient
to replace the electron mass with the reduced mass in the previous calculations, bearing
in mind, that also the Bohr radius a0 = 4π ε0~

2/mee
2 has to be replaced. Therefore,

to obtain the transition matrix elements βge for a two-body Coulomb system of nuclear
charge number Z and reduced mass µ (even for hydrogen itself), the values from Tabs. 3.1
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Chapter 3: Transition Matrix Elements and Dynamic Polarizability

Table 3.2: Two-photon reduced transition matrix elements β
(2)
ge in units [Hz

(W/m2)−1] for 1S ⇔ nS and 2S ⇔ nS transitions, as defined in Eq. (3.32),
evaluated for atomic hydrogen (Z = 1), in the non-relativistic dipole approxi-
mation. The electron mass is employed in the calculation; reduced-mass effects
and the dependence of the results on the nuclear charge number Z is given in
Eq. (3.37). For specific transitions in FS and HFS sublevels, the angular prefac-
tors in Eqs. (3.33)-(3.35) must be taken into account, as applicable.

n
1S ⇔ nD
β

(2)
ge [Hz(W/m2)−1]

2S ⇔ nD
β

(2)
ge [Hz(W/m2)−1]

3 −6.16579×10−5 4.23147×10−4

4 −3.89301×10−5 −2.23806×10−3

5 −2.72644×10−5 −1.75124×10−3

6 −2.04728×10−5 −1.39563×10−3

7 −1.61138×10−5 −1.15144×10−3

8 −1.31174×10−5 −9.74048×10−4

9 −1.09516×10−5 −8.39046×10−4

10 −9.32523×10−6 −7.32816×10−4

11 −8.06659×10−6 −6.47159×10−4

12 −7.06862×10−6 −5.76793×10−4

13 −6.26133×10−6 −5.18119×10−4

14 −5.59721×10−6 −4.68586×10−4

15 −5.04300×10−6 −4.26327×10−4

16 −4.57477×10−6 −3.89943×10−4

17 −4.17491×10−6 −3.58362×10−4

18 −3.83018×10−6 −3.30751×10−4

19 −3.53048×10−6 −3.06453×10−4

20 −3.26799×10−6 −2.84944×10−4

and 3.2 must be multiplied by a factor

1

Z4

(
me

µ

)3

=
1

Z4

(
me(mN +mS)

mNmS

)3

. (3.37)

This scaling law equally applies for the Stark coefficients βAC and βioni discussed be-
low. Note that for atomic nuclei, one also obtains isotope shifts to the transition matrix
elements via the dependence on the nuclear mass mN.
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3.4. Dynamic Stark effect

3.4 Dynamic Stark effect

In this section, the classical derivation of the dynamic Stark effect, in the usual framework
of time-dependent perturbation theory, is contrasted with a second-quantized approach.
In this approach, in which the laser field is quantized, a time-independent treatment is
possible, because the light field is characterized by a Fock state representation, in which
the photons are stationary excitations of the field.

In addition, by comparing the two approaches, it will be shown that the quantized and
the classical descriptions agree for the case that the laser field tends towards a classical
field, i.e., when the laser photon number per quantization volume is large, as is to be
expected.

3.4.1 Classical field approach

The usual derivation of the dynamic Stark shift, as it is found in several textbooks, using
a classical electric field, is presented in the following. The argument goes along the lines
of chapter 5 of Ref. [68], but in the general notation of this chapter. Consider the time-
dependent Hamiltonian

H = H0 + V (ε, t) , (3.38a)

V (ε, t) = V exp(−ε|t|) cos(ωLt) , (3.38b)

V = −e z EL , (3.38c)

where H0 is the unperturbed atomic Hamiltonian, as defined in (3.1b), describing a one-
electron system of nuclear charge number Z in a plane-wave monochromatic laser field,
polarized along the z-direction. The classical electric field amplitude is denoted by EL. The
dipole, length gauge interaction Hamiltonian V (t, ε) describes a harmonic perturbation
with magnitude V which is adiabatically damped in the distant past (t → −∞) and
the distant future (t → ∞) by means of the damping parameter ε > 0. This damping
parameter is introduced to avoid a sudden turn-on of the perturbation, and in the limit
ε→ 0, which will be carried out towards the end of the derivation, one obtains the constant
intensity result. The introduction of an adiabatic damping parameter is also a key element
of time-dependent perturbation theory in QED [69]. In QED, the interaction Hamiltonian
is usually expressed in the interaction picture and a time-dependence is incurred for the
field operators (see appendix A of Ref. [70]).

Now the effect of the off-resonant perturbation by the time-dependent electric field on a
reference state |φ〉 of the unperturbed atom will be considered. In the interaction picture
(denoted by the subscript I), V (ε, t) is represented by

VI(ε, t) = exp

(
i

~
H0t

)

V (ε, t) exp

(

− i

~
H0t

)

. (3.39)

From the Dyson series, one can calculate the time evolution operator UI(ε, t) up to second
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order in VI:

UI(ε, t) = 1 − i

~

t∫

−∞

dt′VI(ε, t
′) +

(

− i

~

)2
t∫

−∞

dt′
t′∫

−∞

dt′′VI(ε, t
′)VI(ε, t

′′) . (3.40)

Now consider the time-dependent atomic state, |ψI(t)〉 in the interaction picture, subject
to the initial condition |ψI(t=−∞)〉 = |φ〉, where the reference state |φ〉 is an eigenstate
of the unperturbed Hamiltonian H0. One can expand |ψI(t)〉 in a complete set {|m〉} of
eigenstates of H0 as

|ψI(t)〉 = UI(ε, t)|ψI(−∞)〉 =
∑

m

cm(t)|m〉 , (3.41)

where cm(t) = 〈m|ψI(t)〉. The initial condition is thus cφ(−∞) = 1 for the reference state
|φ〉 with all other cm(−∞) equal to zero. The amplitude of interest is obtained by the
projection

cφ(t) = 〈φ|ψI(t)〉 = 〈φ|UI(ε, t)|φ〉 . (3.42)

Substituting UI(ε, t) from Eq. (3.40), and because 〈φ|z|φ〉 vanishes for parity eigenstates
|φ〉, the leading order is V 2 and the problem reduces to calculating the matrix element

M =

t∫

−∞

dt′
t′∫

−∞

dt′′〈φ|VI(ε, t
′)VI(ε, t

′′)|φ〉 (3.43a)

=
∑

m

t∫

−∞

dt′
t′∫

−∞

dt′′〈φ|VI(ε, t
′)|m〉〈m|VI(ε, t

′′)|φ〉 , (3.43b)

where the multi-index m counts all bound and continuum states of the unperturbed hydro-
gen atom. Because the perturbation is harmonic, the time integrals can be done without
much difficulty, convergence being ensured by the adiabatic damping. One obtains

M = −~

i

1

4

∑

m,±

〈φ|V |m〉〈m|V |φ〉 exp(2εt)

2ε(Eφ − Em ± ~ωL + i~ε)
, (3.44)

with V as defined in Eq. (3.38c), and Eφ representing the energy of the unperturbed
atomic state |φ〉. The ± summation index indicates that the two terms differing only in
the sign of ~ωL in the denominator have to be added. This sum and the factor of 1/4
originate from the definition of the cosine in terms of exponential functions. Combining
Eqs. (3.40), (3.42), and (3.44), one obtains in second-order time-dependent perturbation
theory

cφ(t) = 1 − i

4~

∑

m,±

〈φ|V |m〉〈m|V |φ〉 exp(2εt)

2ε(Eφ − Em ± ~ωL + i~ε)
+ . . . , (3.45)

where higher-order terms have been neglected. Now consider

∂

∂t
ln(cφ(t)) = − i

4~

∑

m,±

〈φ|V |m〉〈m|V |φ〉
Eφ − Em ± ~ωL + i~ε

. (3.46)
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Here the logarithm has been expanded up to second order in V and, in the limit ε→ 0,
exp(2εt) has been replaced by unity. The solution of Eq. (3.46) implies that

cφ(t) = exp

(

− i

~
∆EAC(φ)t

)

, (3.47)

where the dynamic Stark shift ∆EAC(φ) of the reference state |φ〉 has been defined as

∆EAC(φ) =
1

4

∑

m,±

〈φ|V |m〉〈m|V |φ〉
Eφ − Em ± ~ωL

. (3.48)

In view of Eq. (3.41), one then has

|ψI(t)〉 = UI(ε, t)|ψI(−∞)〉 = cφ(t)|φ〉 + . . . , (3.49)

where the ellipsis denotes the projections onto the non-reference atomic states. Because
the Schrödinger picture wave function is related to its interaction-picture counterpart via
|ψ(t)〉 = exp(−iH0t)|ψI(t)〉, one obtains

〈φ|ψ(t)〉 = exp

(

− i

~
(Eφ + ∆EAC(φ))t

)

. (3.50)

The non-reference states from Eq. (3.49) give no contribution because they are orthogonal
to |φ〉. The projection (3.50) yields the influence of the perturbation on the reference state
|φ〉 by projecting the time-evolved perturbed state onto the reference state such that the
perturbation to the eigenenergy Eφ can be directly seen.

Note that ∆EAC(φ) can in general be complex, rather than purely real. The imaginary
part is accommodated in the definition

γφ = −2

~
Im[∆EAC(φ)] , (3.51)

∆Eφ = Re[∆EAC(φ)] . (3.52)

The real part of the AC Stark effect describes the energy shift of the unperturbed energy
Eφ, and the imaginary part, if present, can be interpreted as the ionization rate γφ. The
dynamic Stark shift of |φ〉 can now be expressed as

∆EAC(φ) =
1

4

∑

±

〈

φ

∣
∣
∣
∣
V

1

Eφ −H0 ± ~ωL
V

∣
∣
∣
∣
φ

〉

, (3.53)

where the closure relation for the spectrum is employed. This expression can be written
as a product of a prefactor and a sum of two matrix elements, where Eφ ∓ ~ωL is the
energy of the respective intermediate state:

PωL
(φ) =

∑

±

〈

φ

∣
∣
∣
∣
z

1

H0 − Eφ ± ~ωL
z

∣
∣
∣
∣
φ

〉

, (3.54a)

∆EAC(φ) = −e
2E2

L

4
PωL

(φ) = − e2

2cε0
IPωL

(φ) , (3.54b)

where PωL
(φ) is the dynamic polarizability of the atom in the reference state for angular

frequency ωL of the driving laser field and relation (3.26) was used.
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3.4.2 Second-quantized approach

In second quantization the Hamiltonian for the coupled system, “atom+radiation field”
(see also Sec. 3.2), reads

H =
∑

n

En|n〉〈n| + ~ωLa
†
LaL +HLI. (3.55)

Electron-positron pair creation is not considered, since in two-photon precision spec-
troscopy experiments one operates in the low-energy regime, and therefore the fermion
field does not need to be quantized. The laser field is described as a quantized photon
field with creation and annihilation operators a†L and aL, respectively. Recall the length
gauge dipole interaction Hamiltonian HLI (3.5b) in a z-polarized laser field:

HLI = −ezÊL = −ez
√

~ωL

2ε0V
(
a†L + aL

)
, (3.56)

defined in the normalization volume V, which is chosen so that the energy density of a
one-photon Fock state, when integrated over V, yields ~ωL. It might be argued that a
coherent state of the photon field is a much better description than a Fock state with nL

photons in the laser mode, which is assumed here. However, in the limit of a large photon
number, the relative fluctuation of the photon number δnL/nL goes to zero for a coherent
state, and one may therefore resort to the Fock-state approximation [29].

Although the dynamic Stark effect should intuitively be treated by time-dependent per-
turbation theory, as described in the previous section, it is not so well known that it is
possible to formulate time-independent operators for the quantized radiation field and to
carry out meaningful calculations with these Schrödinger picture operators. This concept
is introduced in a few textbooks such as Ref. [55] and has also been used for quantum
electrodynamic calculations (see for example, Eq. (5) of Ref. [71]).

Explicitly writing out the states of the total system, this approach leads from the second-
order perturbation (3.10) to the result of time-independent perturbation theory for the
energy shift of the unperturbed eigenstate |φ, nL〉,

∆EAC(φ) =
∑

m

[〈φ, nL|HLI|m,nL − 1〉〈m,nL − 1|HLI|φ, nL〉
Eφ + nL~ωL − (Em + (nL − 1)~ωL)

+
〈φ, nL|HLI|m,nL + 1〉〈m,nL + 1|HLI|φ, nL〉

Eφ + nL~ωL − (Em + (nL + 1)~ωL)

]

=
e2~ωL

2ε0V
∑

m

[ 〈φ|z|m〉〈m|z|φ〉
Eφ −Em + ~ωL

nL +
〈φ|z|m〉〈m|z|φ〉
Eφ − Em − ~ωL

(nL + 1)

]

. (3.57)

The sum over virtual intermediate atomic states |m〉, including bound and continuum
states, has been split into two parts depending on the number of photons in the field.
Considering this expression, the AC Stark shift receives an interpretation as being me-
diated by transitions to virtual intermediate states of the combined system “atom+laser
field”, due to virtual creation and annihilation of laser photons. When this perturbation is
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evaluated using an empty Fock space as the unperturbed state, and when a sum is formed
over all possible virtual excitations, i.e., evaluating expression (3.11), the self-energy is
obtained [70, 72].

In the classical limit, nL → ∞, V → ∞, nL/V = constant, and Eq. (3.57) can be simplified
to

∆EAC(φ) = −e
2
~nLωL

2ε0V
PωL

(φ), (3.58)

with PωL
(φ) as already defined in Eq. (3.54a). This result can now be matched to the

classical result in Eq. (3.54). In the quantized formalism the term

w =
nL~ωL

V (3.59)

gives the energy density in which the atom is immersed, which is related to the intensity
via

I = wc . (3.60)

Using Eqs. (3.58)–(3.60) one obtains

∆EAC(φ) = − e2

2ε0c
IPωL

(φ), (3.61)

in agreement with Eq. (3.54). Thus the classical-field and the quantized-field approach
give consistent results in the classical limit, and Eq (3.57) quantifies, how the classical
predictions should be modified in an environment where the photon number is not large.
Using (3.61), in the next section a number of dynamic polarizabilities relevant for two-
photon transitions will be evaluated.

3.5 Calculation of the AC Stark shift

This section treats the dynamic Stark shift of atomic energy levels in the spectroscopically
relevant case where an atom or hydrogenlike ion interacts with a laser field which is on
two-photon resonance with an S–S or S–D transition. Both the lower state (1S or 2S)
and the excited state of the respective transition are shifted as a consequence of the
interaction with the very laser field that is used to probe the atomic transition. This shift
cannot be suppressed experimentally and constitutes a major systematic effect in many
precision spectroscopy experiments.

Both the classical time-dependent theory, and the time-independent fully quantized treat-
ment, in the limit of macroscopic photon number, yield the same physical result for the
dynamic Stark shift, as presented above in Sec. 3.4.
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3.5.1 Matrix elements

As has been demonstrated in Sec. 3.4, the calculation of the dynamic Stark shift of any
reference state |φ〉 in a z-polarized laser field

∆EAC(φ) =
e2E2

L

4

∑

±

〈

φ

∣
∣
∣
∣
z

1

Eφ −H0 ± ~ωL
z

∣
∣
∣
∣
φ

〉

(3.62)

reduces to calculating the matrix element of the dynamic polarizability (3.54a), where
the same analytic technique as for the two-photon transition matrix elements is used [see
Eqs. (3.28)-(3.30)].

Note that the contributions of two intermediate states, with energies Eφ + ~ωL and
Eφ − ~ωL, have to be summed. These energies are determined by the choice of angular
frequency of the laser field ωL = (Ee − Eg)/2~ in the two-photon resonant spectroscopy
of the transition g ⇔ e. For laser detunings which drive the transition appreciably, the
matrix elements are constant to a good approximation (see also end of Sec. 2.3).

If the upper intermediate state is a continuum state, the energy parameter η(Eφ+~ωL > 0)
[see Eq. (3.30)] is complex, and the dynamic polarizability acquires an imaginary part,
describing the population loss rate due to ionization. As given in Eq. (3.52), the real part
of the AC Stark shift determines the frequency shift of the atomic level |φ〉 in Hz via the
relation

∆νAC(φ) =
1

h
Re[∆EAC(φ)] = βAC(φ) I , (3.63)

defining the dynamic Stark coefficient βAC [see also Eq. (2.6)]. The imaginary part of
the AC Stark shift, if present, yields the decay constant of the probability amplitude of
the atom to be in the reference state |φ〉 as indicated in Eq. (3.51). The atomic state
population, as described by the diagonal elements of the density matrix in (2.11), is equal
to the modulus squared of this probability amplitude, therefore the ionization rate of the
population in |φ〉 reads

γi = −2

~
Im[∆EAC(φ)] = 2πβioni(φ) I , (3.64)

proportional to the double of the imaginary part of the AC Stark shift. This defines
the ionization coefficient βioni(φ), which is intensity-independent like βAC(φ). For this
reason, in this thesis, these are called “atomic constants”, along with the transition matrix
elements βge. Note that the ionization rate is given in units of angular frequency.

As the laser is assumed to be linearly polarized in z-direction, the sum over the magnetic
quantum number m of the intermediate states in the propagator (3.28) can be restricted
to the m = 0 term. This choice of polarization does not restrict the generality of the
discussion, because the initial S states of the investigated transitions are spherically sym-
metric.

Some explicit polarizability matrix elements are given in appendix B. They involve the
hypergeometric function 2F1, which originates from the infinite sum over Laguerre polyno-
mials, involved in the non-relativistic hydrogen Green’s function (3.29). In general, after
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the radial integrations, one obtains a sum involving several hypergeometric functions,
which can be reduced to a single one, using the contiguous relations for the hypergeo-
metric functions (see e.g. [73]). In Sec. 3.6, the connection of βioni to the usual ionization
cross section will be used for an independent verification of the present calculations.

To calculate the Stark shift coefficient βAC and ionization coefficient βioni for FS and HFS
states, the same considerations as for the transition operator (3.31) as given in Sec. 3.3
apply. For S states, the coefficients for the Schrödinger states are also applicable to each
individual FS and HFS sublevel without modification. For an nD state, consider the light
shift operator

Qij =
∑

±

ri
1

H0 − En ± ~ωL

rj . (3.65)

It consists of both a nonzero scalar component Q(0) and a rank two traceless component
Q(2). To obtain the dynamic Stark shift coefficient βAC(nD) in a linearly z-polarized

laser field, the reduced matrix elements β
(0)
AC and β

(2)
AC have to be added after applying the

appropriate angular prefactors.

In particular, the reduced matrix element β
(0)
AC needs no modification for FS and HFS

sublevels, while β
(2)
AC must be multiplied by

(−1)L+S+J(2J + 1)

{
L J S
J L 2

}

(3.66)

for a FS level with angular momentum J = L+ S, where L = 2, and additionally by

(−1)J+I+F (2F + 1)

{
J F I
F J 2

}

(3.67)

if the state under consideration is a HFS level with angular momentum F = J + I. The
Wigner-Eckhart theorem yields the dependence on the magnetic quantum number, such
that, e.g., for a HFS state |φ〉 = |nD, (JI)FmF 〉 in a linearly z-polarized laser field, one
obtains

βAC(φ) =
1√

2L+ 1
β

(0)
AC(nD) + (−1)L+S+2J+I+2F−mF (2J + 1)(2F + 1)× (3.68)

(
F 2 F

−mF 0 mF

){
L J S
J L 2

}{
J F I
F J 2

}

β
(2)
AC(nD) ,

where L = 2 for D states. The ionization coefficient βioni of an nD state is calculated in
exactly the same way.

3.5.2 Results for two-photon transitions

The non-relativistic results for the dynamic Stark coefficients βAC and the ionization
coefficient βioni, as defined in Eqs. (3.63) and (3.64), are given in the following Tabs. 3.3-
3.6, for laser frequencies on two-photon resonance with S–S and S–D transitions. The
analytic results, evaluated in the tables, are obtained in the dipole approximation and
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Table 3.3: Dynamic Stark shift coefficients βAC and ionization coefficients βioni

for 1S ⇔ nS transitions (on two-photon resonance), as defined in Eqs. (2.6),
(2.10), (3.63) and (3.64), in the non-relativistic dipole approximation, evaluated
for nuclear charge number Z = 1 and infinite nuclear mass. Reduced mass
effects and the dependence of the results on Z can be included by multiplication
with the scaling factor (3.37). For all S states, the values are also applicable
to all FS and HFS sublevels. The non-relativistic treatment implies that about
3 decimals of the results in this table are relevant for a comparison of theory
and experiment. Relativistic corrections to the βAC and βioni listed here, can be
obtained from (4.54) and (4.55) in chapter 4, for radiative corrections see (4.57)
and (4.58). Leading order non-dipole effects are summarized in (4.73) and (4.74).

1S ⇔ nS
βAC(1S)
[Hz (W/m2)−1]

βAC(nS)
[Hz (W/m2)−1]

βioni(nS)
[Hz (W/m2)−1]

1S–2S −2.67827×10−5 1.39927×10−4 1.20208×10−4

1S–3S −3.02104×10−5 9.80847×10−5 2.02241×10−5

1S–4S −3.18301×10−5 8.66487×10−5 7.10785×10−6

1S–5S −3.26801×10−5 8.20398×10−5 3.35245×10−6

1S–6S −3.31724×10−5 7.97219×10−5 1.85663×10−6

1S–7S −3.34805×10−5 7.83897×10−5 1.13885×10−6

1S–8S −3.36851×10−5 7.75526×10−5 7.50088×10−7

1S–9S −3.38277×10−5 7.69918×10−5 5.20731×10−7

1S–10S −3.39307×10−5 7.65976×10−5 3.76481×10−7

1S–11S −3.40076×10−5 7.63098×10−5 2.81130×10−7

1S–12S −3.40664×10−5 7.60932×10−5 2.15538×10−7

1S–13S −3.41124×10−5 7.59261×10−5 1.68914×10−7

1S–14S −3.41490×10−5 7.57945×10−5 1.34855×10−7

1S–15S −3.41786×10−5 7.56889×10−5 1.09389×10−7

1S–16S −3.42029×10−5 7.56030×10−5 8.99638×10−8

1S–17S −3.42231×10−5 7.55321×10−5 7.48861×10−8

1S–18S −3.42400×10−5 7.54729×10−5 6.30029×10−8

1S–19S −3.42544×10−5 7.54229×10−5 5.35100×10−8

1S–20S −3.42667×10−5 7.53804×10−5 4.58347×10−8

with the approximation of retaining only the second-order in perturbation theory [see
Eq. (3.62)]. In this case, both the frequency shift ∆νAC and the angular ionization rate
γi are proportional to the light intensity. Corrections beyond the non-relativistic dipole
approach are discussed in the following chapter.

Some of the results listed in the tables have appeared in the literature before (e.g.
Ref. [31]). An overview of the previous results is provided in appendix A. The results
presented here are in full agreement with those given in Refs. [31, 74–76] and more tran-
sitions are added to the analysis. In the comparison with results given in atomic units,
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3.5. Calculation of the AC Stark shift

as in [31], the conversion

βAC(φ) [at.u.] = βAC(φ) [SI]
~

2

me a
4
0 α

(3.69)

has to be used, and analogously for βioni (see also Eq. (A.2) in appendix A).

It is perhaps interesting to observe that the transition 2S–3S is special in that the dynamic
Stark shift of the 3S state has no imaginary part (see Tab. 3.4). The reason is, that the
energy of one photon with half the 2S–3S transition energy is too small for one-photon
ionization. Note also that the |1S〉 state as the ground state of the unperturbed atom-field
Hamiltonian is always shifted downwards in energy, as it must be for any second-order
perturbation theory effect.

Concerning the dependence of the results on the nuclear charge number Z and the reduced
mass µ of the system, the same considerations apply as for the transition matrix elements
in Sec. 3.3. In particular, the values from Tabs. 3.3-3.6 must be multiplied with the scaling
factor (3.37), for a specific two-body Coulomb system.

The 1/Z4 dependence of the dynamic Stark coefficients, and especially the 16-fold reduc-
tion of the ionization coefficient, might be important in the context of planned measure-
ments on trapped hydrogenlike helium. For spectroscopic experiments on systems with
Z > 1, the required light sources with ultra-stable frequencies and sufficient intensity
have recently been demonstrated to be within reach in the near future [77].

The analytic calculations of the matrix elements for the highly excited states have been
performed with the computer algebra system Mathematica [78], without which the results
would not have been obtained in a reasonable time. The reason that the calculations are
carried out up to these high quantum numbers is that they facilitate the evaluation of
the asymptotics of the light shifts for n→ ∞. If theoretical predictions for higher n than
those included in the tables are required, these can be obtained by fitting inverse powers
of the principal quantum number to the real and to the imaginary parts of the data in
Tabs. 3.3 and 3.4, see also Tab. Ic in [31]. One then obtains the following estimates of
the asymptotic limits, valid for n→ ∞, for 1S ⇔ nS transitions:

βAC(1S) ≈
[

−3.44(1) × 10−5 + O
(

1

n

)]
Hz

W/m2
, (3.70a)

βAC(nS) ≈
[

7.49(2) × 10−5 + O
(

1

n

)]
Hz

W/m2
, (3.70b)

βioni(nS) ≈
[
3.63(1) × 10−4

n3
+ O

(
1

n4

)]
Hz

W/m2
, (3.70c)
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Table 3.4: Dynamic Stark shift coefficients and ionization coefficients (on two-
photon resonance) as in Tab. 3.3, but for 2S ⇔ nS transitions.

2S ⇔ nS
βAC(2S)
[Hz (W/m2)−1]

βAC(nS)
[Hz (W/m2)−1]

βioni(nS)
[Hz (W/m2)−1]

2S–3S −7.18795×10−4 −6.99895×10−3 0
2S–4S −9.47799×10−4 2.11716×10−3 1.25626×10−3

2S–5S −1.16885×10−3 1.70310×10−3 4.65485×10−4

2S–6S −1.36379×10−3 1.52064×10−3 2.28478×10−4

2S–7S −1.52869×10−3 1.42368×10−3 1.30721×10−4

2S–8S −1.66537×10−3 1.36562×10−3 8.23925×10−5

2S–9S −1.77773×10−3 1.32791×10−3 5.55288×10−5

2S–10S −1.86994×10−3 1.30194×10−3 3.93145×10−5

2S–11S −1.94583×10−3 1.28325×10−3 2.89099×10−5

2S–12S −2.00858×10−3 1.26932×10−3 2.19090×10−5

2S–13S −2.06078×10−3 1.25865×10−3 1.70162×10−5

2S–14S −2.10451×10−3 1.25029×10−3 1.34890×10−5

2S–15S −2.14138×10−3 1.24361×10−3 1.08794×10−5

2S–16S −2.17269×10−3 1.23819×10−3 8.90578×10−6

2S–17S −2.19945×10−3 1.23372×10−3 7.38465×10−6

2S–18S −2.22247×10−3 1.23000×10−3 6.19281×10−6

2S–19S −2.24238×10−3 1.22687×10−3 5.24540×10−6

2S–20S −2.25971×10−3 1.22420×10−3 4.48258×10−6

and for 2S ⇔ nS transitions:

βAC(2S) ≈
[

−2.37(7) × 10−3 + O
(

1

n

)]
Hz

W/m2
, (3.71a)

βAC(nS) ≈
[

1.19(2) × 10−3 + O
(

1

n

)]
Hz

W/m2
, (3.71b)

βioni(nS) ≈
[
3.47(5) × 10−2

n3
+ O

(
1

n4

)]
Hz

W/m2
. (3.71c)

The limit n → ∞ is interesting because highly excited Rydberg S states have a long
lifetime, allowing for a high spectral resolution [79]. The asymptotic behavior in the limit
of high quantum numbers is analogous to the one which has recently been observed for
Bethe logarithms of highly excited Rydberg states [80].
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3.6. Calculation of the photoionization cross section

Table 3.5: Dynamic Stark coefficients as in Tab. 3.3, but for 1S ⇔ nD transi-
tions. The respective coefficients for the 1S state, βAC(1S), are identical with
those from Tab. 3.3, and are therefore not listed again. For FS and HFS sublevels
of an nD state, the appropriate angular prefactors from Eqs. (3.66)-(3.68) must
be taken into account.

1S ⇔ nD β
(0)
AC(nD)

[Hz (W/m2)−1]
β

(2)
AC(nD)

[Hz (W/m2)−1]
β

(0)
ioni(nD)

[Hz (W/m2)−1]
β

(2)
ioni(nD)

[Hz (W/m2)−1]

1S–3D 2.11378×10−4 1.30662×10−5 3.67432×10−6 −2.11508×10−6

1S–4D 1.90315×10−4 4.70825×10−6 1.39210×10−6 −8.11183×10−7

1S–5D 1.81694×10−4 2.24738×10−6 6.70000×10−7 −3.92504×10−7

1S–6D 1.77255×10−4 1.25298×10−6 3.74221×10−7 −2.19848×10−7

1S–7D 1.74652×10−4 7.71734×10−7 2.30562×10−7 −1.35678×10−7

1S–8D 1.72990×10−4 5.09668×10−7 1.52256×10−7 −8.96938×10−8

1S–9D 1.71863×10−4 3.54487×10−7 1.05879×10−7 −6.24189×10−8

1S–10D 1.71062×10−4 2.56634×10−7 7.66377×10−8 −4.52039×10−8

1S–11D 1.70472×10−4 1.91828×10−7 5.72754×10−8 −3.37962×10−8

1S–12D 1.70025×10−4 1.47183×10−7 4.39391×10−8 −2.59345×10−8

1S–13D 1.69678×10−4 1.15414×10−7 3.44509×10−8 −2.03388×10−8

1S–14D 1.69403×10−4 9.21865×10−8 2.75145×10−8 −1.62467×10−8

1S–15D 1.69182×10−4 7.48066×10−8 2.23252×10−8 −1.31844×10−8

1S–16D 1.69001×10−4 6.15416×10−8 1.83651×10−8 −1.08470×10−8

1S–17D 1.68851×10−4 5.12407×10−8 1.52901×10−8 −9.03172×10−9

1S–18D 1.68726×10−4 4.31191×10−8 1.28659×10−8 −7.60040×10−9

1S–19D 1.68620×10−4 3.66289×10−8 1.09289×10−8 −6.45656×10−9

1S–20D 1.68529×10−4 3.13799×10−8 9.36238×10−9 −5.53143×10−9

3.6 Calculation of the photoionization cross section

In this section, the cross-section for the one-photon resonant ionization of the 2S state in a
low-intensity field of arbitrary frequency, but minimum photon energy of (Z2×13.6 eV)/4,
is presented. The theory for this process is very well understood since the 1930s [81],
including the Z-scaling, but a comparison of the results constitutes an independent veri-
fication of the ionization rate coefficients βioni obtained in Sec. 3.5.

In analogy to bound states (3.4), one can assign to a continuum state a generalized
principal quantum number n′, which is real and positive. The energy of an electron in
the continuum can then be written as

En′ = −(Zα)2me c
2

2(in′)2
> 0 . (3.72)

Here, the continuum threshold is taken to be the zero point of the energy scale, such that
bound states extend into the negative energy region. This is different from the conventions
used in an early article [81] on this subject.
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Table 3.6: Dynamic Stark coefficients as in Tab. 3.5, but for 2S ⇔ nD transi-
tions. The respective coefficients for the 2S state, βAC(2S), are identical with
those from Tab. 3.4.

2S ⇔ nD β
(0)
AC(nD)

[Hz (W/m2)−1]
β

(2)
AC(nD)

[Hz (W/m2)−1]
β

(0)
ioni(nD)

[Hz (W/m2)−1]
β

(2)
ioni(nD)

[Hz (W/m2)−1]

2S–3D −1.17698×10−2 4.99866×10−3 0 0
2S–4D 5.47527×10−3 −1.64045×10−4 1.91609×10−3 −1.10511×10−3

2S–5D 3.91342×10−3 1.89977×10−4 5.84726×10−4 −3.43343×10−4

2S–6D 3.40856×10−3 1.64090×10−4 2.62740×10−4 −1.55670×10−4

2S–7D 3.17241×10−3 1.21898×10−4 1.43176×10−4 −8.52682×10−5

2S–8D 3.03968×10−3 8.99553×10−5 8.75750×10−5 −5.23245×10−5

2S–9D 2.95642×10−3 6.74381×10−5 5.78591×10−5 −3.46451×10−5

2S–10D 2.90022×10−3 5.15428×10−5 4.03987×10−5 −2.42271×10−5

2S–11D 2.86026×10−3 4.01348×10−5 2.94079×10−5 −1.76557×10−5

2S–12D 2.83068×10−3 3.17867×10−5 2.21175×10−5 −1.32900×10−5

2S–13D 2.80812×10−3 2.55609×10−5 1.70777×10−5 −1.02684×10−5

2S–14D 2.79046×10−3 2.08355×10−5 1.34753×10−5 −8.10656×10−6

2S–15D 2.77637×10−3 1.71910×10−5 1.08282×10−5 −6.51678×10−6

2S–16D 2.76493×10−3 1.43390×10−5 8.83715×10−6 −5.32030×10−6

2S–17D 2.75549×10−3 1.20777×10−5 7.30950×10−6 −4.40183×10−6

2S–18D 2.74762×10−3 1.02634×10−5 6.11704×10−6 −3.68459×10−6

2S–19D 2.74098×10−3 8.79168×10−6 5.17212×10−6 −3.11603×10−6

2S–20D 2.73533×10−3 7.58614×10−6 4.41334×10−6 −2.65934×10−6

If one considers a dipole transition from the bound 2S state to the continuum εP state,
with the wavefunction

εP (r, θ, φ) = Rn′P (r) Y10(θ, φ) , (3.73)

Rn′P (r) =

√
me

~

(
Z

a0

)3/2 √
1 + n′2

√
1 − e−2πn′

2 r

3n′
exp

(

− iZr

n′a0

)

1F1

[

in′ + 2, 4, 2
iZ r

n′a0

]

, (3.74)

the one-photon ionization cross section of a single atom for linearly polarized light is
proportional to the square of the transition matrix element and reads

σ2S =
π e2 ωL

ε0 c
|〈2S|z|εP 〉|2 , (3.75)

where ωL is the angular frequency of the incident laser radiation, and e is the electron
charge. The radial integrals encountered have be calculated in two different ways: (i) di-
rect integration of terms generated by the series representation of the 1F1 hypergeometric
function and (ii) contour integration using an integral representation of the hypergeomet-
ric function (see e.g. [43]) and evaluation of the residues. Both (i) and (ii) lead to the
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3.6. Calculation of the photoionization cross section

Table 3.7: Ionization cross sections for hydrogen atoms (Z=1) in the excited state
nS, at an incident laser frequency on two-photon resonance with the respective
1S ⇔ nS or 2S ⇔ nS transition, as obtained via Eq. (3.78) from the dynamic
Stark coefficient βioni. This table is provided for convenient comparison with
other cross section calculations. Therefore, the values are here given in the usual
units cm2 instead of SI units.

n
1S ⇔ nS
σioni(nS) [cm2]

2S ⇔ nS
σioni(nS) [cm2]

2 6.174× 10−18 −
3 1.231× 10−18 0
4 4.563× 10−19 1.613× 10−17

5 2.204× 10−19 6.694× 10−18

6 1.236× 10−19 3.477× 10−18

7 7.640× 10−20 2.055× 10−18

8 5.057× 10−20 1.322× 10−18

9 3.522× 10−20 9.037× 10−19

10 2.552× 10−20 6.462× 10−19

11 1.909× 10−20 4.786× 10−19

12 1.466× 10−20 3.647× 10−19

13 1.150× 10−20 2.844× 10−19

14 9.188× 10−21 2.262× 10−19

15 7.458× 10−21 1.830× 10−19

16 6.137× 10−21 1.501× 10−19

17 5.111× 10−21 1.247× 10−19

18 4.301× 10−21 1.047× 10−19

19 3.654× 10−21 8.881× 10−20

20 3.131× 10−21 7.598× 10−20

same result

|〈2S|z|εP 〉|2 =
217 a4

0me

3Z4 ~2

exp[−4n′ arccot(n′/2)]

1 − exp(−2π n′)

n′10 (1 + n′2)

(4 + n′2)6
. (3.76)

Observe that this expression is proportional to 1/Z4 because the matrix element contains
one continuum state. For two bound states, the transition matrix element squared would
scale as 1/Z2. In [82], one can find a result differing by a factor of 3/2 from Eq. (3.76).
The analysis of that work has shown that there has been an error in the conversion of
expressions taken from [81], where a rather peculiar choice of the zero point of the energy
scale is used.

For the case of an incident laser angular frequency of one half of the 1S–2S transition
frequency, the generalized quantum number of the continuum state is n′ = 2

√
2, and one

obtains the result

σ2S =
1

Z2
6.174 × 10−18 cm2 . (3.77)
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One can compare the ionization rate coefficient βioni from Sec. 3.5 directly with the 2S
cross section calculated above using the relation

σioni = 2 π βioni ~ωL =
1

Z2
6.174 × 10−18 cm2 , (3.78)

which agrees with (3.77), i.e., σ2S = σioni. Here, the Z-scaling of the ionization cross
section is the result of a factor Z−4 for the ionization coefficient βioni and the Z2-scaling
of the photon energy ~ωL, required for maintaining two-photon resonance with a given
transition. In Tab. 3.7 the ionization cross sections in cm2 for a set of excited nS lev-
els is given, as obtained from the imaginary part of the dynamic Stark coefficient βioni.
All considerations concerning the relativistic and radiative corrections to βioni given in
chapter 4 also apply to the ionization cross section through relation (3.78). Their mag-
nitude is small and below the current precision of measurement, decreasing even more
for larger nuclear charge. This behavior is different than in most radiative corrections of
non-dynamic processes [70].

3.7 Combined induced-spontaneous two-photon de-

cay

In the context of laser driven two-photon S–S transitions and two-photon spontaneous
emission, one also has to consider the two-step process of combined induced-spontaneous
two-photon decay of the excited level. In this process, the interaction of the excited atom
with the laser field and the vacuum modes leads to a final state of the system, where the
atom is in the ground state, the laser mode photon number is increased or decreased by
one, and one photon is spontaneously emitted into an empty mode of the electromagnetic
field. One contribution is depicted Fig. 3.1, where the interaction with the laser field takes
place before the spontaneous emission.

|e〉

|g〉

ωL

ωL

ω+

ω−

Figure 3.1: Combined induced-spontaneous decay process leading to a depopu-
lation of the excited state |e〉. Absorption or stimulated emission of one laser
photon with energy ~ωL and subsequent spontaneous decay of the virtual inter-
mediate states (dashed) to the ground state can take place, via emission of a
photon of energy ~ω+ or ~ω−, respectively.
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3.7. Combined induced-spontaneous two-photon decay

Table 3.8: Combined induced-spontaneous two-photon decay coefficients βis be-
tween two S states interacting with a laser field on two-photon resonance, as
defined in Eq. (3.81). The coefficients βis scale with the nuclear charge number
as Z−2.

n
1S ⇔ nS
βis [Hz/(W/m2)]

2S ⇔ nS
βis [Hz/(W/m2)]

2 8.05160× 10−11 −
3 1.11235× 10−11 1.00370 × 10−8

4 3.70994× 10−12 1.60542× 10−10

5 1.71123× 10−12 5.39512× 10−11

6 9.36717× 10−13 2.56181× 10−11

7 5.70630× 10−13 1.45368× 10−11

8 3.74182× 10−13 9.18434× 10−12

9 2.58988× 10−13 6.23200× 10−12

10 1.86845× 10−13 4.44898× 10−12

11 1.39303× 10−13 3.29922× 10−12

12 1.06674× 10−13 2.52023× 10−12

13 8.35218× 10−14 1.97163× 10−12

14 6.66319× 10−14 1.57309× 10−12

15 5.40172× 10−14 1.27606× 10−12

16 4.44032× 10−14 1.04988× 10−12

17 3.69465× 10−14 8.74445× 10−13

18 3.10733× 10−14 7.36203× 10−13

19 2.63839× 10−14 6.25741× 10−13

20 2.25940× 10−14 5.36386× 10−13

In the following, the interaction of the atom with the laser mode is described with the
second-quantized electric dipole interaction Hamiltonian HLI, as defined in Eq. (3.5b).
The interaction with the vacuum modes is described by the interaction Hamiltonian HVI,
as given in Eq. (3.5c).

The initial state is denoted by |φ0〉 = |e, nL, 0〉, with nL photons in the laser mode and
no photons in any other mode. To evaluate the transition rate of the combined induced-
spontaneous decay, one needs to evaluate the imaginary part of the principal term of the
fourth-order energy perturbation

∆E
(4)
LV (φ0) = 〈φ0|HLV

1

E0 −H (s)
0

HLV
1

E0 −H (s)
0

HLV
1

E0 −H (s)
0

HLV|φ0〉 , (3.79)

where HLV = HLI + HVI, taking into account only those terms, which contain both the
laser interaction and the vacuum interaction in second order. Here, the unperturbed
Hamiltonian H (s)

0 includes the atomic spectrum as well as the field modes as defined in
Eq. (3.1).
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From the resonances caused by the possible final states of the system, |g, nL+1, 1z(k−)〉
and |g, nL−1, 1z(k+)〉, the induced-spontaneous decay rate γis is obtained:

γis = (2πβis) I , (3.80)

βis =
4e4

6πc4ε20h

{

ω3
−

∣
∣
∣
∣

〈

e

∣
∣
∣
∣
z

1

H0 − (Ee − ~ωL)
z

∣
∣
∣
∣
g

〉∣
∣
∣
∣

2

+

ω3
+

∣
∣
∣
∣

〈

e

∣
∣
∣
∣
z

1

H0 − (Ee + ~ωL)
z

∣
∣
∣
∣
g

〉∣
∣
∣
∣

2
}

, (3.81)

where the same limit nL/V � 1 as in Sec. 3.4.2 leads to the classic intensity I. In this
limit, the Fock states factor out, and again only H0, the atomic part of the unperturbed
Hamiltonian as defined in (3.1b), enters in the matrix elements. The angular frequencies
of the spontaneously emitted photons (see Fig. 3.1), read

ω± = c|k±| = ωeg ± ωL . (3.82)

For a set of two-photon transitions, the decay coefficients βis are listed in Tab. 3.8. It
is obvious that for typical intensities of several MW/m2, as considered in chapter 2, the
contribution of this process to the width of the excited state is small, when compared to
ionization and spontaneous decay.

3.8 Conclusion

In this chapter, the non-relativistic interaction of a hydrogen atom or hydrogenlike ion
with a one-photon off-resonant monochromatic driving laser field was examined. In a
unified framework of perturbation theory, the transition matrix elements and the dynamic
polarizabilities have been obtained. In particular, a large set of values for transitions
relevant for high-precision spectroscopy were calculated, involving the stable 1S and the
metastable 2S state as the ground state. The results are given in SI units such that
they are directly usable in the equations for the quantum dynamics (2.11) of chapter 2.
A comparison with some values which have appeared in the literature before, and the
resolution of several inconsistencies encountered, is given in appendix A.

All angular prefactors relevant for the application to transitions between fine structure
and hyperfine structure states were presented. The Z-scaling and the reduced mass scaling
have been derived to extend the validity of the results to any bound two-body Coulomb
system, e.g., positronium, muonium or anti-hydrogen.

Two ways of deriving analytic expressions for the dynamic Stark shift of a hydrogenic
energy level have been contrasted. One is based on an adiabatically damped length-gauge
interaction, using a classical description of the laser field. The second, using a quantized
description of the electromagnetic field, leads to a more general expression, which was
found to agree with the classical result in the limit of a large occupation number of the
laser mode.
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3.8. Conclusion

By calculating the one-photon ionization cross-section of the 2S state in two independent
ways, the result obtained for the ionization coefficient as the imaginary part of the dynamic
Stark matrix element has been verified.

The decay channel of combined induced-spontaneous decay, which is due to the interaction
of the atomic system with both the laser field and the vacuum, has been examined and
the corresponding decay coefficients for the S–S transitions have been obtained.
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Chapter 4

Relativistic and Radiative

Corrections to Dynamic Processes

This chapter is dedicated to corrections to the atomic constants which have been treated
in the previous chapter, namely the dynamic polarizability, determining βAC and βioni, and
the two-photon transition matrix element βge. These constants have been calculated using
a number of approximations, each of which is well justified for the current experimental
use, but will probably break down at some point for future measurements with increased
precision. The approximations used and the corresponding leading order corrections which
are calculated in this chapter, are the following:

First of all, to go beyond the framework of nonrelativistic Schrödinger theory, correc-
tions due to relativistic effects are considered. Second, the interaction of the system
“atom+laser field” with the QED vacuum, has not yet been fully considered and is taken
into account by leading logarithmic order (LLO) radiative corrections. Finally, there is the
dipole approximation for the harmonic electric field of the laser, which is supplemented
by leading order geometric corrections, which in fact depend on the electric field configu-
ration in a specific experimental setup. Therefore, the most common excitation scheme,
consisting of a standing wave, is considered. If these corrections become important for
the hydrogen 1S–2S measurement, they will become even more important for planned
experiments with systems where Z>1, as is obvious from the Z scaling of the results.

Connected with the precise knowledge of the atomic constants is the experimental problem
of accurately determining the excitation intensity, by which the constants are multiplied
in order to obtain the observable shift and transition frequencies. As will be discussed
in the next chapter, the intensity measurement in the MPQ setup amounts to a power
measurement, the precision of which is quite hard to improve. An alternative non-invasive
measurement procedure is proposed in chapter 6.

One could argue, that at least the relativistic effects could be included non-perturbatively
using Dirac theory [63]. However, by using the effective Hamiltonian approach of Non-
relativistic Quantum Electrodynamics (NRQED) [83], relativistic effects can be treated
in a unified formalism with the radiative corrections, simply as perturbation effects to the
nonrelativistic expression, which is appropriate for the low-Z systems which are used in
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high-precision spectroscopy.

The results obtained in the following constitute corrections to dynamic processes induced
by the laser field, as opposed to the static Lamb shift of energy levels. Therefore, the cor-
rections depend on the frequency of the laser, as do the atomic constants themselves. For
a set of two-photon transitions, the corrections are therefore evaluated for the appropriate
frequencies used to drive the respective transitions. As the atomic constants are expres-
sions of second-order perturbation theory, one could view the following considerations as
calculating “corrections to corrections”.

4.1 Perturbation to the dynamic polarizability

The general treatment of a perturbation δV to the dynamic polarizability and the corre-
sponding definitions are the subject of this section, to set the scene for the remainder of the
chapter, in which specific expressions for δV are considered, accommodating relativistic
and radiative effects.

Consider the dynamic polarizability PωL
of a reference state, φ, which is an atomic energy

eigenstate of the Schrödinger theory,

PωL
(φ) =

∑

±

〈

φ

∣
∣
∣
∣
z

1

H0 − Eφ ± ωL
z

∣
∣
∣
∣
φ

〉

, (4.1)

where the harmonic electric field of angular frequency ωL is taken to be polarized in
z-direction. In this chapter, only S states are considered, the results are therefore invari-
ant under this choice of polarization. Here, H0 is the unperturbed Hamiltonian of the
hydrogen atom,

H0 =
p2

2me

− Zα~c

r
, (4.2)

where me is the electron mass and α the fine structure constant. Any perturbation δV ,
which is added to H0, also generates a shift of the eigenenergy and a perturbation to the
corresponding wavefunction:

H0 → H0 + λ δV , Eφ → Eφ + λ 〈φ|δV |φ〉 , |φ〉 → |φ〉 + λ |δφ〉 , (4.3)

where

|δφ〉 =

(
1

Eφ −H0

)′

δV |φ〉 . (4.4)

Inserted into the dynamic polarizability (4.1), and retaining only the leading order in
λ, these replacements generate three separate corrections to the dynamic polarizability,
giving the contribution from the change of the Hamiltonian (H), its eigenenergies (E)
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4.1. Perturbation to the dynamic polarizability

and the wavefunction (W ), respectively:

δPH
ωL

(φ) = −
∑

±

〈

φ

∣
∣
∣
∣
z

1

H0 − Eφ ± ωL
δV

1

H0 − Eφ ± ωL
z

∣
∣
∣
∣
φ

〉

, (4.5)

δPE
ωL

(φ) =
∑

±

〈

φ

∣
∣
∣
∣
∣
z

(
1

H0 −Eφ ± ωL

)2

z

∣
∣
∣
∣
∣
φ

〉

〈φ|δV |φ〉 , (4.6)

δPW
ωL

(φ) =
∑

±

(〈

δφ

∣
∣
∣
∣
z

1

H0 − Eφ ± ωL
z

∣
∣
∣
∣
φ

〉

+

〈

φ

∣
∣
∣
∣
z

1

H0 − Eφ ± ωL
z

∣
∣
∣
∣
δφ

〉)

. (4.7)

The derivation of the Hamiltonian contribution δPH
ωL

(φ) does not require the expansion
of the denominator or the exchange of the operators H0 and δV , which in general do not
commute. For any number x, trivially

1

H0 + δV − x
=

1

H0 − x
︸ ︷︷ ︸

=0th order

+
1

H0 + δV − x
− 1

H0 − x
︸ ︷︷ ︸

higher orders

(4.8)

=: P0 + P1,∞ , (4.9)

and elementary transformations lead to:

P1,∞ = − 1

H0 + δV − x
δV

1

H0 − x
. (4.10)

Inserting the zeroth order propagator for the first fraction, the first order propagator is
therefore:

P1 = − 1

H0 − x
δV

1

H0 − x
. (4.11)

The results for the real and imaginary part of the contributions (4.5)-(4.7) which will
be obtained below, are given separately, and related to the unperturbed polarizability
PωL

(φ), by

ξ RH(φ) =
Re[δPH

ωL
(φ)]

Re[PωL
(φ)]

, ξ IH(φ) =
Im[δPH

ωL
(φ)]

Im[PωL
(φ)]

, (4.12)

and likewise for RE , IE, RW and IW . Here, ξ stands for a scale parameter which is
characteristic for the perturbation and is defined in the respective cases below. It also
contains the Z scaling such that the values for R and I are purely numeric. The total
correction to the dynamic polarizability, caused by the action of the perturbation, is then
the sum of the three contributions:

Re[δPωL
(φ)] = Re[PωL

(φ)] × ξ [RH(φ) +RE(φ) +RW (φ)] , (4.13)

Im[δPωL
(φ)] = Im[PωL

(φ)] × ξ [IH(φ) + IE(φ) + IW (φ)] . (4.14)
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4.2 Perturbation to the transition matrix element

For the two-photon transition matrix element M between two S states with principal
quantum numbers n and n′,

MωL
=

〈

n′S

∣
∣
∣
∣
z

1

H0 −Eint

z

∣
∣
∣
∣
nS

〉

, (4.15)

the reasoning in determining the corrections δM is similar to the previous section. How-
ever, there is an additional aspect to be aware of, because both the energies of the ground
state and the excited state are shifted, generally by a different amount. The energy of
the intermediate state, in the unperturbed case, satisfies Eint = En + ωL = En′ − ωL, and
one can define the leading order contribution from the change of the Hamiltonian and the
wavefunctions in analogy to the corrections to the dynamic polarizability:

δMH
ωL

= −
〈

n′S

∣
∣
∣
∣
z

1

H0 − Eint
δV

1

H0 − Eint
z

∣
∣
∣
∣
nS

〉

, (4.16)

δMW
ωL

=

〈

δn′S

∣
∣
∣
∣
z

1

H0 −Eint
z

∣
∣
∣
∣
nS

〉

+

〈

n′S

∣
∣
∣
∣
z

1

H0 − Eint
z

∣
∣
∣
∣
δnS

〉

. (4.17)

Note that there is a contribution from both the upper state wave function correction |δn′S〉
and the lower state wave function correction |δnS〉, for δMW

ωL
. For δME

ωL
, the energy of

the intermediate state needs to be written in a symmetrical way,

Eint =
En + En′

2
, (4.18)

because in general, 〈n′|δV |n′〉 6= 〈n|δV |n〉. The correction to the transition matrix element
due to the shift of the energies then reads

δME
ωL

=

〈

n′S

∣
∣
∣
∣
z

1

H0 − [ (En + 〈n|δV |n〉 + En′ + 〈n′|δV |n′〉)/2 ]
z

∣
∣
∣
∣
nS

〉

=

〈

n′S

∣
∣
∣
∣
∣
z

(
1

H0 − [ (En + En′)/2)]

)2

z

∣
∣
∣
∣
∣
nS

〉(〈n′|δV |n′〉
2

+
〈n|δV |n〉

2

)

. (4.19)

In analogy with Eq. (4.12), the normalized contribution due to the Hamiltonian contri-
bution reads

ξ RH =
δMH

ωL

MωL

, (4.20)

and analogously for RE and RW . The corrections to the transition matrix elements are
purely real, just as the matrix elements themselves, because the intermediate bound state
energy is always negative. The total correction to the transition matrix element is finally
given by

δMH
ωL

= MωL
× ξ [RH +RE +RW ] . (4.21)
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4.3 Potential for relativistic corrections

In order to find the effective perturbation potential δV , describing the leading order rel-
ativistic energy corrections, one needs to consider the nonrelativistic limit of the Dirac
equation passing over into the Pauli-Schrödinger theory of spin-1/2 particles. As opposed
to nonrelativistic theory, in the direct nonrelativistic limit of the Dirac theory, the compo-
nents of the velocity operator do not commute, while the components of the momentum
operator do. These difficulties have first been solved by Foldy and Wouthuysen [84], and
based on a transformation of the Dirac Hamiltonian, an effective Hamiltonian

δVFW = − p4

8m3
ec

2

︸ ︷︷ ︸

kinetic

+
π(Zα)~3

2m2
ec

δ(3)(r)

︸ ︷︷ ︸

zitterbewegung

+
Zα

4m2
er

3
(L · S)

︸ ︷︷ ︸

spin−orbit

, (4.22)

describing the desired leading order effects was obtained. Here, contributions due to the
interaction of the magnetic field with the electron are neglected. The first term (“kinetic
term”), can be motivated by considering the expansion in β = v/c of the relativistic
energy-momentum relation

E =
√

m2
ec

4 + p2c2 = mec
2 +

p2

2me
− p4

8m3
ec

2
+ O(β6) , (4.23)

while the second term in (4.22) is the potential generating the Darwin term [85], which
appears in the low-energy approximation of the Dirac equation. In Dirac theory, negative-
energy plane wave components necessarily arise for the description of localized wavepack-
ets, and the interference between the negative-energy and positive-energy components
induces a very fast oscillatory behavior of the expectation values of the position and ve-
locity operators. This behavior, called “zitterbewegung” of the electron, was proposed by
Schrödinger, and is still a subject of current interest [86]. In the Schrödinger theory, the
zitterbewegung appears as an effective potential, and for bound states, this is nonzero
only for S states due to the δ(3)(r) dependence.

The third term in the perturbation (4.22) is the spin-orbit coupling energy, which generally
gives rise to the fine structure. For S states, with which we are concerned in this chapter,
the orbital angular momentum is zero, so there is no fine structure splitting. Therefore,
the total angular momentum is identical with the electron spin and the atomic state wave
function is a simple tensor product of a Schrödinger wave function and a spin-1/2 state

|φ〉 =
∣
∣
∣n, l=0, ml=0 ; s=

1

2
, ms=±1

2

〉

. (4.24)

In the expressions for δPE
ωL

and δPW
ωL

[see (4.6-4.7)], the contribution due to the spin-orbit
coupling vanishes, as L · S acts only on l = 0 eigenstates. The L-S energy is also zero
for the remaining Hamiltonian correction, where the operator acts on the intermediate P
state, because for the ket

(LxSx + LySy + LzSz)
∣
∣
∣n, 1, 0 ;

1

2
,±1

2

〉

, (4.25)
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which appears in the expression for PH
ωL

(φ), one has

Lz |n, 1, 0〉 = Sx

∣
∣
∣
1

2
,±1

2

〉

= Sy

∣
∣
∣
1

2
,±1

2

〉

= 0 . (4.26)

In short, the spin-orbit coupling has no effect on the leading order relativistic correction
of S states, which leaves the kinetic term and the zitterbewegung term to be evaluated.

4.4 Potential for radiative corrections

The interaction of a bound electron with the vacuum modes of the electromagnetic field
is treated in bound state QED [70], and the resulting energy shift of an atomic energy
eigenstate φ is called the self-energy of the electron in that state. This shift of the atomic
levels is the largest contribution to the Lamb shift, was observed for the first time as
lifting the degeneracy of the 2S1/2 and 2P1/2 states, as predicted by Dirac theory. Other
contributions to the Lamb shift include the vacuum polarization and the finite charge
radius of the proton, as well as higher-order loop corrections [59, 60].

The second-order expression of time-independent perturbation theory for the electron
self-energy reads

∆ESE =

〈

φ, 0

∣
∣
∣
∣
HI

(
1

Eφ,0 −H0

)′

HI

∣
∣
∣
∣
φ, 0

〉

, (4.27)

H0 =

∫
∑

n

En|n〉〈n| +
∑

k,λ

~ωk a
†
λ(k)aλ(k) , HI = −e r · E , (4.28)

where |φ, 0〉 denotes an eigenstate of the unperturbed Hamiltonian H0, in which the
atom is in the state φ and the electromagnetic field is empty. Here, the unperturbed
Hamiltonian H0 in spectral representation contains all bound and continuum states |n〉
and all modes of the quantized electromagnetic field with wave vector k and polarization λ,
which satisfy periodic boundary conditions in some quantization volume V. The operators
a†λ(k) and aλ(k) are the creation and annihilation operators for a photon with the specified
wave vector and polarization and the angular frequency ωk = c|k|. The electric dipole
interaction Hamiltonian HI is given in the length gauge, using the electric field operator

E =
∑

k,λ

i

√

~ωk
2ε0V

ελ(k)
[

aλ(k) − a†λ(k)
]

, (4.29)

where the polarization direction is denoted by ελ(k). At first glance, the evaluation of
the integral (4.27) seems not difficult, and the continuum limit

1

V
∑

k

→
K∫

0

d3k

(2π)3
(4.30)

must be taken. However, the result diverges as K → ∞ as a consequence of the unlimited
energy contributions of high frequency modes. The first step to remove this divergence is
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to renormalize the self-energy by subtracting the mass counterterm, which constitutes the
self-energy of a free electron. As a result, the parts which diverge at least linearly with
K vanish. Still, the remainder consists of a logarithmically divergent term and the Bethe
logarithm, which is of utmost importance for the calculation of high-precision values of
the Lamb shift of hydrogenic states in higher orders [87,88]. The logarithmic divergence,
ultimately, cancels with the infrared divergence in the electron form factor correction to
the electron-nucleus interaction [58]. To leading logarithmic order, the self-energy shift of
a bound state in a hydrogenic system with nuclear charge number Z can then be described
by the effective Lamb shift potential

δVSE =
4

3
α(Zα) ln[(Zα)−2]

~
3

m2
ec
δ(3)(r) , (4.31)

with vanishing expectation value for states of angular momentum l 6=0. For the evaluation
of high-precision Lamb shifts, this is just the leading order term, but it is perfectly suitable
for the evaluation of the leading order corrections to the dynamic polarizability which
already describes a small correction of the energy of an atomic level. It should be noted
that in spherical coordinates, the three-dimensional Dirac δ-distribution, normalized to
unity, reads

δ(3)(r) =
1

2πr2
δ(1)(r) , (4.32)

rather than with a denominator of 4πr2. This is the consequence of the radial coordinate
r running from zero to infinity, yielding 1/2 for the radial integral over the one-dimensional
Dirac distribution.

4.5 Calculation of relativistic and radiative correc-

tions

For an efficient approach to the calculation of the relativistic and radiative corrections, it
should first be noted, that both potentials δVFW and δVSE contain a δ(3)-term, so that for
evaluation purposes, the distinction “δ-correction” and “p4-correction” was made, rather
than the actual physical discrimination. The evaluation of these corrections has been
performed in a mixture of analytical and numerical techniques.

4.5.1 Wavefunction contributions

First, the perturbations to the hydrogen wave functions will be described, which give
analytical results. Consider the defining equation (4.4) for the correction |δφ〉 to the
wavefunction. Acting on this equation with (Eφ−H0) from the left and writing the result
in position space, the problem is separable into a radial and an angular part in spherical
coordinates, because both the δ-potential and the p4-potential are isotropic. The angular
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differential equation is therefore the same as for the unperturbed case and as solutions
one obtains the spherical harmonics. The radial differential equation, for S states, reads
[

2r
∂

∂r
+ r2 ∂

2

∂r2
+

2mecZα

~
r +

2me

~2
r2Eφ

]

δφ(r) =
2me

~2
r2
[
δV − 〈φ|δV |φ〉

]
φ(r) , (4.33)

where φ(r) are the radial hydrogen wavefunctions, En are the Schrödinger energies [see
Eq. (3.4)], and the perturbation potential matrix elements for a hydrogenic S state with
principal quantum number n read

〈φ|δV |φ〉 =
κZ3

πn3a3
0

for δV = κδ(3)(r) , (4.34)

〈φ|δV |φ〉 =
(3 − 8n)(Zα)4mec

2

8n4
for δV = − p4

8m3
ec

2
, (4.35)

where a0 is the Bohr radius and κ is an arbitrary constant. The solutions of (4.33) for fixed
n were obtained analytically, where the boundary condition limr→∞ δφ(r) = 0 excludes
those parts of the solution which increase exponentially with r. Another integration
constant is fixed by the requirement

〈φ|δφ〉 !
= 0 , (4.36)

which is clear from the definition (4.4), where the reduced Green’s function explicitly
excludes the φ component from the propagator. The first two corrections, for the pertur-
bation δV = κδ(3)(r), read

δ1S(r) = κ
Z3/2me

πa
7/2
0 ~2

e
−Zr

a0

r

[

2Z2r2 + (2γ − 5)Zra0 − a2
0 + 2Zra0 ln

(
2Zr

a0

)]

, (4.37)

δ2S(r) = −κ Z3/2me

8
√

2πa
9/2
0 ~2

e
− Zr

2a0

r

[

Z3r3 + (4γ − 13)Z2r2a0 + 2(3 − 4γ)Zra2
0

+ 4a3
0 + 4Zra0(Zr − 2a0) ln

(
Zr

a0

)]

, (4.38)

where γ is Euler’s constant

γ = lim
N→∞

N∑

k=1

1

k
− ln(N) ≈ 0.5772 . (4.39)

For the potential δV = −p4/(8m3
ec

2), the corrections to the 1S and 2S wavefunctions
read

δ1S(r) = − Z5/2
~

2

2a
9/2
0 m2

ec
2

e
−Zr

a0

r

[

2Z2r2 + (4γ − 7)Zra0 − 2a2
0 + 4Zra0 ln

(
2Zr

a0

)]

, (4.40)

δ2S(r) =
Z5/2

~
2

32
√

2a
11/2
0 m2

ec
2

e
− Zr

2a0

r

[

3r3Z3 + (16γ − 47)Z2r2a0 + 2(15 − 16γ)Zra2
0

+ 16a3
0 + 16Zra0(Zr − 2a0) ln

(
rZ

a0

)]

. (4.41)
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Figure 4.1: Corrections δφ(r) to the radial hydrogen wavefunctions φ(r), as de-
fined in Eq. (4.33), for principal quantum numbers n = 1 . . . 20, as indicated
close to the respective graph, and for Z=1. The wave function corrections are
caused by a perturbation potential δV with δ(3)(r)-characteristic (left), and by a
p4-potential (right). The Bohr radius is denoted by a0. Both types of wavefunc-
tion corrections enter into the calculation of the relativistic corrections, whereas
for the radiative corrections, only the δ(3)(r) wavefunctions are of relevance.

A plot of all calculated corrections for n up to 20 is given in Fig. 4.1. With the wave
function corrections δφ(r) = δφ(r)Y00(θ, φ) at hand, the calculation of the δPW

ωL
proceeds

by considering the integral

∫∫

d3r1d
3r2 φ(r1) r1 cos(θ1) G(r1, r2; η) r2 cos(θ2) δφ(r2) , (4.42)

where for the propagator, the Schrödinger-Coulomb Green’s function (3.28) is used, in
which only the l = 1 intermediate states with energies Eφ ± ~ωL contribute. The laser
frequency ωL is determined by the two-photon resonance condition of the considered tran-
sition. The angular integral is trivial, yielding 1/3, while for the radial integral, involving
generalized Laguerre polynomials, the integral rule [89]

∞∫

0

dr e−λrrξ Lµk(r) =
λ−1−ξ Γ(ξ + 1)

k! Γ(µ+ 1)
Γ(µ+ k + 1)2F1(−k, ξ + 1;µ+ 1; 1/λ) (4.43)

is employed, and an analytical result is obtained for a given intermediate state index k
[see Eq. (3.29)]. The generalized hypergeometric functions are defined by

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑

n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
(4.44)

with the Pochhammer symbols (a)n = Γ(a + n)/Γ(a). The final k-summation of the
Green’s function in Eq. (4.42), which could not be done analytically, was performed
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numerically up to k = 200, with very good convergence properties. For the case of the
correction to the excited state polarizability and where the intermediate state is in the
continuum, i.e. E(η) = Eφ + ~ωL, the series of partial sums diverges, but with both
negative and positive signs, such that the expression is accessible to a Padé resummation,
which showed very good convergence behavior for this particular problem.

4.5.2 Eigenenergy contributions

For the calculation of the eigenenergy perturbations to the dynamic polarizability, δPE
ωL

(φ),
it is useful to observe that they are proportional to the expectation values of the respective
potential [see Eq. (4.6)], which are known in closed form (4.34), (4.35). The remaining
two-propagator matrix element

〈

φ

∣
∣
∣
∣
∣
z

(
1

H0 − E(η)

)2

z

∣
∣
∣
∣
∣
φ

〉

=

∫∫∫

d3r1 d
3r2 d

3r3 φ(r1) z1G(r1, r2; η)G(r2, r3; η) z3 φ(r3)

(4.45)
can also be calculated in closed form, as described in the following, such that the δPE

ωL
(φ)

can be given analytically. The r1 and r3 integrations are again carried out using rela-
tion (4.43), leaving the r2 integral over l = 1 intermediate states to be done. In the radial
part, the integrand contains an r2-dependent factor of the form

e−r2 r4
2 L

3
k1

(r2)L
3
k2

(r2) (4.46)

where the independent summation indices k1 and k2 originate from the two Green’s func-
tions and µ = 2l + 1 = 3 for the intermediate state Laguerre polynomials. Using the
identity

Lµm(r2) = Lµ+1
m (r2) − Lµ+1

m−1(r2) , (4.47)

expression (4.46) is brought into a form where µ = 4 matches the r2 exponent, such that
the orthogonality relation for the generalized Laguerre polynomials [89]

∞∫

0

dr e−rrµLµm(r)Lµn(r) =
(µ+ n)!

n!
δm,n (4.48)

can be used to perform the desired r2 integration. Using this procedure, the final result
for the matrix elements (4.45) are analytic expressions. For the 1S reference state, the
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result reads: 1

〈

1S

∣
∣
∣
∣
∣
z

(
1

H0 − E(η)

)2

z

∣
∣
∣
∣
∣
1S

〉

=
4m2

ea
6
0

3Z6~4
× (4.49)

{

η4

(η − 1)6(η + 1)7

(

64η11 + 288η10 − 75η9 − 523η8 − 470η7 − 118η6

+ 48η5 + 48η4 − 18η3 − 18η2 + 3η + 3
)

+
128 η11 (5 − 2η2) 2F1

(

1,−η; 1 − η; (η−1)2

(η+1)2

)

(η2 − 1)6

+
64 η13

3F2

(

1, 2 − η, 2 − η; 3 − η, 3 − η; (η−1)2

(η+1)2

)

(η − 2)2(η − 1)(η + 1)9

}

.

The appropriate energy parameters for the intermediate state energies η(E1S ± ~ωL) are
again fixed by the two-photon resonance condition for the angular frequency ωL of the
laser, driving any two-photon transition involving the 1S state.

4.5.3 Hamiltonian contributions

Finally, the corrections δPH
ωL

(φ) [see Eq. (4.5)] are considered. Here, the fact that the
perturbation potential operator δV acts onto the l = 1 intermediate state, immediately
yields

δPH
ωL

(nS) = 0 for δV = κδ(3)(r) , (4.50)

because the intermediate P state wavefunction vanishes at the origin.

For the p4-correction, using the coordinate representation p = −i~∇, the matrix element
in (4.5) can be written as a double sum of summands of the form

σ(k1, k2) = − ~
4

8m3
e c

2

∫

d3r [∆φ̃k1(r; η)]†[∆φ̃k2(r; η)] , (4.51)

because the Laplacian ∆ is a Hermitian operator. Here, φ̃k(r; η) represents the interme-
diate state with index k = n− l−1 and energy parameter η, given by carrying out the
integration over the “outer” Green’s function coordinate r1:

∑

k

φ̃k(r; η) =

∫

d3r1G(r, r1; η) z1 φ(r1) . (4.52)

For given k and η, φ̃k(r) can again be obtained by invoking Eq. (4.43). The follow-
ing application of the Laplacian and the remaining r-integration result in an analytical

1Any reader who finds this thesis rather unentertaining, but has made it up to here, should be
recompensated by having a look at [90]. No, seriously!
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Figure 4.2: Composition of the partial sums in the numerical evaluation of the
Hamiltonian contribution. The partial sum of order i+ 1 is obtained by adding
a “shell” of one row and one column to the partial sum of order i.

expression for the summand σ(k1, k2). The remaining double sum

lim
K→∞

K∑

k1,k2=0

σ(k1, k2) (4.53)

could not be expressed in closed form, so the summation was performed numerically as
depicted in Fig. 4.2, the partial sums of order K involving a square section of the infinite
matrix of summands. Making use of the symmetry of this matrix, the series of partial
sums was evaluated with an adaptive summation algorithm, checking for convergence of
the series, in order to save computation time, when the desired precision of about 20
digits had been reached. Again, for the case of a positive intermediate state energy, a
Padé resummation was applied to the series of partial sums, obtaining a finite result.

The calculation of the corrections to the transition matrix elements, δMH
ωL

, δME
ωL

and
δMW

ωL
proceeds analogously to the evaluation of the corrections to the polarizability,

therefore the details are omitted. Because the intermediate state energy occurring in
the propagator of the matrix elements (4.16,4.17,4.19) is always negative, there is even no
need to invoke a Padé resummation, and all k-sums can be carried out straightforwardly.

4.5.4 Results for S–S transitions

The results of the relativistic and radiative corrections to the dynamic polarizability are
compiled in Tabs. 4.1-4.6, and the corrections to the transition matrix elements are given
in Tabs. 4.7 and 4.8. All these corrections, as well as the uncorrected matrix elements,
are evaluated for the relevant frequency, where the laser field is on two-photon resonance
with the respective S–S transition.

The corrections to the matrix elements βAC, βioni, and βge, as considered in the previous
chapter, can now be obtained using the following scheme.
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The leading order relativistic corrections, with ξrel = (Zα)2, are given by

δβAC(φ)

βAC(φ)
= Rrel(φ) ξrel Tabs. 4.1, 4.2 , (4.54)

δβioni(φ)

βioni(φ)
= Irel(φ) ξrel Tab. 4.3 , (4.55)

δβge
βge

= Rrel ξrel Tab. 4.7 . (4.56)

The radiative corrections of leading logarithmic order to the SI matrix elements, with
ξrad = α(Zα)2 ln[(Zα)−2], follow from

δβAC(φ)

βAC(φ)
= Rrad(φ) ξrad Tabs. 4.4, 4.5 , (4.57)

δβioni(φ)

βioni(φ)
= Irad(φ) ξrad Tab. 4.6 , (4.58)

δβge
βge

= Rrad ξrad Tab. 4.8 . (4.59)

Table 4.1: Relativistic corrections to the dynamic polarizability of the ground
state |g〉 [see Eqs. (4.12) and (4.54)], for a laser frequency ωL on two-photon
resonance with the transition |g〉 ⇔ |e〉.

rel. δPωL
(g)

|g〉 ⇔ |e〉
RH(g) RE(g) RW(g) Σ = Rrel(g)

1S–2S 2.93618×10−1 −4.79719×10−1 −9.99134×10−1 −1.18523 × 100

1S–3S 3.26556×10−1 −5.94216×10−1 −1.01221 × 100 −1.27987 × 100

1S–4S 3.41534×10−1 −6.49617×10−1 −1.01776 × 100 −1.32584 × 100

1S–5S 3.49266×10−1 −6.79009×10−1 −1.02052 × 100 −1.35027 × 100

1S–6S 3.53707×10−1 −6.96129×10−1 −1.02208 × 100 −1.36451 × 100

1S–7S 3.56473×10−1 −7.06877×10−1 −1.02305 × 100 −1.37345 × 100

1S–8S 3.58304×10−1 −7.14033×10−1 −1.02368 × 100 −1.37941 × 100

1S–9S 3.59577×10−1 −7.19023×10−1 −1.02412 × 100 −1.38356 × 100

1S–10S 3.60497×10−1 −7.22635×10−1 −1.02443 × 100 −1.38657 × 100

1S–11S 3.61181×10−1 −7.25331×10−1 −1.02467 × 100 −1.38881 × 100

1S–12S 3.61705×10−1 −7.27395×10−1 −1.02484 × 100 −1.39053 × 100

2S–3S 2.80456 × 100 −4.63104 × 100 −2.00465 × 100 −3.83114 × 100

2S–4S 1.89809 × 100 −2.91011 × 100 −2.05234 × 100 −3.06437 × 100

2S–5S 1.75859 × 100 −2.85737 × 100 −2.08474 × 100 −3.18352 × 100

2S–6S 1.75225 × 100 −3.07862 × 100 −2.10636 × 100 −3.43273 × 100

2S–7S 1.78092 × 100 −3.34811 × 100 −2.12113 × 100 −3.68833 × 100

2S–8S 1.81769 × 100 −3.60447 × 100 −2.13154 × 100 −3.91832 × 100

2S–9S 1.85375 × 100 −3.83054 × 100 −2.13908 × 100 −4.11587 × 100

2S–10S 1.88626 × 100 −4.02397 × 100 −2.14470 × 100 −4.28242 × 100

2S–11S 1.91458 × 100 −4.18751 × 100 −2.14899 × 100 −4.42192 × 100

2S–12S 1.93889 × 100 −4.32528 × 100 −2.15232 × 100 −4.53870 × 100
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Table 4.2: Relativistic corrections to the real part of the dynamic polarizability
of the excited state |e〉 [see Eqs. (4.12) and (4.54)], for a laser frequency ωL on
two-photon resonance with the transition |g〉 ⇔ |e〉.

rel. δPωL
(e)

|g〉 ⇔ |e〉
RH(e) RE(e) RW(e) Σ = Rrel(e)

1S–2S 3.26248×10−1 1.23196 × 100 −1.74852 × 100 −1.90310×10−1

1S–3S 2.70412×10−2 1.89466 × 100 −1.99580 × 100 −7.41008×10−2

1S–4S −2.58957×10−2 2.71122 × 100 −2.73013 × 100 −4.48016×10−2

1S–5S −3.92665×10−2 3.54485 × 100 −3.53559 × 100 −3.00097×10−2

1S–6S −4.32467×10−2 4.37988 × 100 −4.35805 × 100 −2.14186×10−2

1S–7S −4.44260×10−2 5.21446 × 100 −5.18605 × 100 −1.60133×10−2

1S–8S −4.46568×10−2 6.04854 × 100 −6.01628 × 100 −1.24057×10−2

1S–9S −4.45512×10−2 6.88225 × 100 −6.84758 × 100 −9.88441×10−3

1S–10S −4.43332×10−2 7.71573 × 100 −7.67946 × 100 −8.05592×10−3

1S–11S −4.40895×10−2 8.54907 × 100 −8.51167 × 100 −6.68911×10−3

1S–12S −4.38537×10−2 9.38232 × 100 −9.34411 × 100 −5.64139×10−3

2S–3S 4.65348 × 100 −2.46975 × 101 −1.29337 × 100 −2.13374 × 101

2S–4S 2.04258×10−1 2.91749 × 100 −3.28041 × 100 −1.58665×10−1

2S–5S 8.26178×10−2 3.62378 × 100 −3.79857 × 100 −9.21700×10−2

2S–6S 2.74300×10−2 4.41907 × 100 −4.50703 × 100 −6.05343×10−2

2S–7S −1.49147×10−4 5.23839 × 100 −5.28082 × 100 −4.25868×10−2

2S–8S −1.52026×10−2 6.06537 × 100 −6.08154 × 100 −3.13707×10−2

2S–9S −2.40131×10−2 6.89520 × 100 −6.89509 × 100 −2.39078×10−2

2S–10S −2.94621×10−2 7.72625 × 100 −7.71550 × 100 −1.87136×10−2

2S–11S −3.29851×10−2 8.55790 × 100 −8.53988 × 100 −1.49712×10−2

2S–12S −3.53471×10−2 9.38990 × 100 −9.36675 × 100 −1.21986×10−2

Table 4.3: Relativistic corrections to the imaginary part of the dynamic polariz-
ability of the excited state |e〉 [see Eqs. (4.12) and (4.55)], for a laser frequency
ωL on two-photon resonance with the transition |g〉 ⇔ |e〉.

rel. δPωL
(e)

|g〉 ⇔ |e〉
IH(e) IE(e) IW(e) Σ = Irel(e)

1S–2S −3.85775×10−1 6.71173×10−1 −8.06825×10−2 2.04715×10−1

1S–3S −1.11018 × 100 2.08108×10−1 1.02199 × 100 1.19922×10−1

1S–4S −1.38322 × 100 9.09461×10−2 1.33496 × 100 4.26893×10−2

1S–5S −1.51224 × 100 4.77390×10−2 1.45316 × 100 −1.13407×10−2

1S–6S −1.58295 × 100 2.81326×10−2 1.50463 × 100 −5.01900×10−2

1S–7S −1.62580 × 100 1.79607×10−2 1.52859 × 100 −7.92495×10−2

1S–8S −1.65369 × 100 1.21617×10−2 1.53979 × 100 −1.01740×10−1

1S–9S −1.67284 × 100 8.61496×10−3 1.54459 × 100 −1.19637×10−1

1S–10S −1.68656 × 100 6.32444×10−3 1.54603 × 100 −1.34208×10−1

1S–11S −1.69673 × 100 4.77943×10−3 1.54565 × 100 −1.46295×10−1

1S–12S −1.70446 × 100 3.69958×10−3 1.54428 × 100 −1.56481×10−1

2S–3S − − − −

2S–4S 1.08417×10−1 4.19162×10−1 −5.04330×10−1 2.32492×10−2

2S–5S −1.00610×10−1 2.04015×10−1 −6.83207×10−2 3.50840×10−2

2S–6S −2.11683×10−1 1.15772×10−1 1.20557×10−1 2.46455×10−2

2S–7S −2.77983×10−1 7.23210×10−2 2.16360×10−1 1.06974×10−2

2S–8S −3.20773×10−1 4.83017×10−2 2.69753×10−1 −2.71788×10−3

2S–9S −3.50007×10−1 3.39002×10−2 3.01396×10−1 −1.47106×10−2

2S–10S −3.70868×10−1 2.47246×10−2 3.20932×10−1 −2.52121×10−2

2S–11S −3.86278×10−1 1.85952×10−2 3.33312×10−1 −3.43712×10−2

2S–12S −3.97984×10−1 1.43417×10−2 3.41265×10−1 −4.23775×10−2
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Table 4.4: Radiative corrections to the dynamic polarizability of the ground state
|g〉 [see Eqs. (4.12) and (4.57)], for a laser frequency ωL on two-photon resonance
with the transition |g〉 ⇔ |e〉.

rad. δPωL
(g)

|g〉 ⇔ |e〉
RH(g) RE(g) RW(g) Σ = Rrad(g)

1S–2S 0 1.62879 × 100 1.98835 × 100 3.61714 × 100

1S–3S 0 2.01754 × 100 2.02703 × 100 4.04457 × 100

1S–4S 0 2.20565 × 100 2.04354 × 100 4.24919 × 100

1S–5S 0 2.30544 × 100 2.05180 × 100 4.35724 × 100

1S–6S 0 2.36357 × 100 2.05647 × 100 4.42004 × 100

1S–7S 0 2.40006 × 100 2.05935 × 100 4.45941 × 100

1S–8S 0 2.42436 × 100 2.06124 × 100 4.48560 × 100

1S–9S 0 2.44130 × 100 2.06255 × 100 4.50385 × 100

1S–10S 0 2.45357 × 100 2.06349 × 100 4.51706 × 100

1S–11S 0 2.46272 × 100 2.06419 × 100 4.52691 × 100

1S–12S 0 2.46973 × 100 2.06473 × 100 4.53446 × 100

2S–3S 0 6.28952 × 100 2.57188 × 100 8.86140 × 100

2S–4S 0 3.95228 × 100 2.63463 × 100 6.58692 × 100

2S–5S 0 3.88066 × 100 2.67736 × 100 6.55802 × 100

2S–6S 0 4.18114 × 100 2.70592 × 100 6.88706 × 100

2S–7S 0 4.54714 × 100 2.72545 × 100 7.27260 × 100

2S–8S 0 4.89532 × 100 2.73922 × 100 7.63453 × 100

2S–9S 0 5.20234 × 100 2.74921 × 100 7.95155 × 100

2S–10S 0 5.46505 × 100 2.75665 × 100 8.22169 × 100

2S–11S 0 5.68715 × 100 2.76232 × 100 8.44946 × 100

2S–12S 0 5.87426 × 100 2.76673 × 100 8.64099 × 100

Table 4.5: Radiative corrections to the real part of the dynamic polarizability
of the excited state |e〉 [see Eqs. (4.12) and (4.57)], for a laser frequency ωL on
two-photon resonance with the transition |g〉 ⇔ |e〉.

rad. δPωL
(e)

|g〉 ⇔ |e〉
RH(e) RE(e) RW(e) Σ = Rrad(e)

1S–2S 0 −1.67316 × 100 2.20122 × 100 5.28060×10−1

1S–3S 0 −2.14432 × 100 2.24850 × 100 1.04181×10−1

1S–4S 0 −2.83244 × 100 2.87246 × 100 4.00186×10−2

1S–5S 0 −3.53995 × 100 3.55981 × 100 1.98509×10−2

1S–6S 0 −4.24887 × 100 4.26021 × 100 1.13476×10−2

1S–7S 0 −4.95731 × 100 4.96443 × 100 7.11165×10−3

1S–8S 0 −5.66528 × 100 5.67003 × 100 4.75675×10−3

1S–9S 0 −6.37291 × 100 6.37625 × 100 3.34060×10−3

1S–10S 0 −7.08034 × 100 7.08278 × 100 2.43690×10−3

1S–11S 0 −7.78765 × 100 7.78949 × 100 1.83270×10−3

1S–12S 0 −8.49489 × 100 8.49631 × 100 1.41327×10−3

2S–3S 0 2.79519 × 101 1.41593 × 100 2.93678 × 101

2S–4S 0 −3.04793 × 100 3.41132 × 100 3.63393×10−1

2S–5S 0 −3.61878 × 100 3.80876 × 100 1.89980×10−1

2S–6S 0 −4.28688 × 100 4.39959 × 100 1.12710×10−1

2S–7S 0 −4.98006 × 100 5.05273 × 100 7.26680×10−2

2S–8S 0 −5.68104 × 100 5.73073 × 100 4.96832×10−2

2S–9S 0 −6.38490 × 100 6.42039 × 100 3.54923×10−2

2S–10S 0 −7.08999 × 100 7.11623 × 100 2.62388×10−2

2S–11S 0 −7.79569 × 100 7.81564 × 100 1.99416×10−2

2S–12S 0 −8.50175 × 100 8.51726 × 100 1.55063×10−2
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Table 4.6: Radiative corrections to the imaginary part of the dynamic polariz-
ability of the excited state |e〉 [see Eqs. (4.12) and (4.58)], for a laser frequency
ωL on two-photon resonance with the transition |g〉 ⇔ |e〉.

rad. δPωL
(e)

|g〉 ⇔ |e〉
IH(e) IE(e) IW(e) Σ = Irad(e)

1S–2S 0 −9.11535×10−1 1.03853×10−1 −8.07681×10−1

1S–3S 0 −2.35530×10−1 −8.67492×10−1 −1.10302 × 100

1S–4S 0 −9.50122×10−2 −1.04636 × 100 −1.14138 × 100

1S–5S 0 −4.76730×10−2 −1.09290 × 100 −1.14058 × 100

1S–6S 0 −2.72911×10−2 −1.10408 × 100 −1.13137 × 100

1S–7S 0 −1.70750×10−2 −1.10373 × 100 −1.12081 × 100

1S–8S 0 −1.13910×10−2 −1.09939 × 100 −1.11078 × 100

1S–9S 0 −7.97739×10−3 −1.09379 × 100 −1.10177 × 100

1S–10S 0 −5.80362×10−3 −1.08800 × 100 −1.09380 × 100

1S–11S 0 −4.35376×10−3 −1.08243 × 100 −1.08678 × 100

1S–12S 0 −3.34965×10−3 −1.07725 × 100 −1.08060 × 100

2S–3S − − − −

2S–4S 0 −4.37903×10−1 5.94061×10−1 1.56158×10−1

2S–5S 0 −2.03733×10−1 2.02743×10−1 −9.89750×10−4

2S–6S 0 −1.12309×10−1 5.16890×10−2 −6.06197×10−2

2S–7S 0 −6.87545×10−2 −1.82596×10−2 −8.70141×10−2

2S–8S 0 −4.52411×10−2 −5.41148×10−2 −9.93559×10−2

2S–9S 0 −3.13913×10−2 −7.35961×10−2 −1.04987×10−1

2S–10S 0 −2.26886×10−2 −8.44776×10−2 −1.07166×10−1

2S–11S 0 −1.69390×10−2 −9.05475×10−2 −1.07487×10−1

2S–12S 0 −1.29852×10−2 −9.37998×10−2 −1.06785×10−1

Table 4.7: Relativistic corrections to the two-photon transition matrix element
of the transition |g〉 ⇔ |e〉 [see Eqs. (4.20) and (4.56)], for a laser frequency ωL

on two-photon resonance.

rel. δMωL

|g〉 ⇔ |e〉
RH RE RW Σ = Rrel

1S–2S 7.45176×10−2 −5.17652×10−1 −4.15130×10−1 −8.58265×10−1

1S–3S 1.85772×10−1 −2.70751×10−1 −1.31733 × 100 −1.40231 × 100

1S–4S 2.62542×10−1 −1.87263×10−1 −1.72343 × 100 −1.64815 × 100

1S–5S 3.06941×10−1 −1.46968×10−1 −1.93955 × 100 −1.77958 × 100

1S–6S 3.33842×10−1 −1.24224×10−1 −2.06773 × 100 −1.85811 × 100

1S–7S 3.51106×10−1 −1.10117×10−1 −2.15000 × 100 −1.90901 × 100

1S–8S 3.62758×10−1 −1.00776×10−1 −2.20607 × 100 −1.94409 × 100

1S–9S 3.70959×10−1 −9.42768×10−2 −2.24613 × 100 −1.96945 × 100

1S–10S 3.76933×10−1 −8.95782×10−2 −2.27584 × 100 −1.98849 × 100

1S–11S 3.81412×10−1 −8.60736×10−2 −2.29856 × 100 −2.00322 × 100

1S–12S 3.84854×10−1 −8.33916×10−2 −2.31638 × 100 −2.01491 × 100

2S–3S 9.94167×10−1 −1.12406 × 100 −1.61217 × 100 −1.74206 × 100

2S–4S 4.53014 × 100 1.58377 × 100 −1.10554 × 101 −4.94146 × 100

2S–5S −3.97965 × 100 −4.98650 × 100 1.14531 × 101 2.48699 × 100

2S–6S −1.45324 × 100 −3.36532 × 100 5.03772 × 100 2.19162×10−1

2S–7S −8.31092×10−1 −3.14160 × 100 3.60318 × 100 −3.69518×10−1

2S–8S −5.25480×10−1 −3.12073 × 100 2.97143 × 100 −6.74781×10−1

2S–9S −3.36904×10−1 −3.15420 × 100 2.61897 × 100 −8.72130×10−1

2S–10S −2.07134×10−1 −3.20247 × 100 2.39640 × 100 −1.01320 × 100

2S–11S −1.12101×10−1 −3.25222 × 100 2.24457 × 100 −1.11975 × 100

2S–12S −3.96592×10−2 −3.29872 × 100 2.13533 × 100 −1.20305 × 100
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Table 4.8: Radiative corrections to the two-photon transition matrix element of
the transition |g〉 ⇔ |e〉 [see Eqs. (4.20) and (4.59)], for a laser frequency ωL on
two-photon resonance.

rad. δMωL

|g〉 ⇔ |e〉
RH RE RW Σ = Rrad

1S–2S 0 1.50650 × 100 1.19976 × 100 2.70626 × 100

1S–3S 0 8.57997×10−1 1.84243 × 100 2.70042 × 100

1S–4S 0 6.14542×10−1 2.08532 × 100 2.69987 × 100

1S–5S 0 4.89674×10−1 2.21053 × 100 2.70020 × 100

1S–6S 0 4.16974×10−1 2.28446 × 100 2.70143 × 100

1S–7S 0 3.71108×10−1 2.33209 × 100 2.70320 × 100

1S–8S 0 3.40422×10−1 2.36479 × 100 2.70522 × 100

1S–9S 0 3.18933×10−1 2.38835 × 100 2.70728 × 100

1S–10S 0 3.03327×10−1 2.40598 × 100 2.70931 × 100

1S–11S 0 2.91649×10−1 2.41959 × 100 2.71124 × 100

1S–12S 0 2.82690×10−1 2.43036 × 100 2.71305 × 100

2S–3S 0 1.45987 × 100 2.06135 × 100 3.52123 × 100

2S–4S 0 −2.08157 × 100 1.15924 × 101 9.51079 × 100

2S–5S 0 6.62873 × 100 −1.10445 × 101 −4.41580 × 100

2S–6S 0 4.50614 × 100 −4.62009 × 100 −1.13951×10−1

2S–7S 0 4.22541 × 100 −3.19418 × 100 1.03123 × 100

2S–8S 0 4.20919 × 100 −2.57055 × 100 1.63864 × 100

2S–9S 0 4.26220 × 100 −2.22460 × 100 2.03760 × 100

2S–10S 0 4.33284 × 100 −2.00712 × 100 2.32571 × 100

2S–11S 0 4.40399 × 100 −1.85931 × 100 2.54468 × 100

2S–12S 0 4.46977 × 100 −1.75330 × 100 2.71647 × 100
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4.6 Beyond the dipole approximation

4.6.1 Field-configuration dependent corrections

In this section, the leading field-configuration correction to the dynamic polarizability is
considered, which is due to the fact that the laser field, interacting with an atom of finite
extension, is not strictly a dipole field, but also varies in space at a fixed time t. The case
of a plane standing wave will be discussed, which approximates the situation in the MPQ
hydrogen 1S–2S experiment well enough for the evaluation of this correction. For other
field configurations like e.g. tight foci, the results of this section are not applicable, but
must be re-evaluated to suit the respective geometry.

As is illustrated in Fig. 4.3, the electric field of a plane standing wave deviates appreciably
from the field in dipole approximation, when one compares the two in a region around
the nucleus which corresponds to the characteristic size of e.g. the 20S wavefunction.

This deviation becomes smaller as the principal quantum number decreases, and this
trend is additionally supported by the fact that also the wavelength of the standing
wave increases, when two-photon resonance condition is maintained. However, for the
polarizability of highly excited states this non-dipole effect is important.

In the treatment of chapter 3, all results were obtained in the electric dipole approxima-

Edip

E Efc

σr

x [at.u.]

E
(0
,x

)/
E L

-2000 -1000 0 1000 2000

-1.0

-0.5

0.5

0.0

1.0

Figure 4.3: Comparison of the electric field of a plane standing wave E(t = 0, x)
on two-photon resonance with the 1S–20S transition in hydrogen (solid line),
the electric field in dipole approximation Edip (dashed line), and the electric field
taken into account by the field configuration corrections considered in this section
(Efc, dotted line). The spatial extent of some wavefunctions, drawn to scale and
characterized by σr =

√

〈ψ|r2|ψ〉, is indicated at the antinode of the standing
wave for ψ = 5S (red), ψ = 10S (yellow), ψ = 20S (blue). This illustration
shows that the dipole approximation is no longer a good approximation for highly
excited states, but that the calculated leading order corrections take into account
very well the extended character of the wavefunction.
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tion, where the interaction part of the Hamiltonian was expressed as

Vdip(t) = −e r · E(t) . (4.60)

Expanding the electric field, varying both in space and time, around r = 0, the atom-field
interaction Hamiltonian can be written as (see also [57] and Eq. (3.59) of [91])

VLW(t, r) = −e r · E(t, 0) −e
2
ri rj

∂Ei(t, r)

∂rj

∣
∣
∣
∣
r=0

− e

6
ri rj rk

∂2Ei(t, r)

∂rj∂rk

∣
∣
∣
∣
r=0

, (4.61)

up to second order, for the case that the wavelength of the laser field is large compared
to the characteristic extent of the atomic wavefunction (long-wavelength limit). For a
plane standing wave of linearly z-polarized light with wave vector k, aligned along the
x-direction, the electric field is

E(t, x) = êz EL cos(ωt) cos(kx) . (4.62)

For the last term in (4.61) one simply obtains

V
(2)
LW =

e

6
z k2 x2 EL cos(ωt) . (4.63)

The leading order correction to the dynamic polarizability of a state |φ〉 of an atom at
the antinode of a standing wave therefore reads

δPωL
(φ) = −k

2

3

∑

±

〈

φ

∣
∣
∣
∣
z

1

H0 − Eφ ± ~ωL
x2z

∣
∣
∣
∣
φ

〉

, (4.64)

from the two contributions containing one V
(2)
LW and one Vdip each. The lower order con-

tributions in k

−k
2

〈

φ

∣
∣
∣
∣
z

1

H0 − E
xz

∣
∣
∣
∣
φ

〉

= 0 , (4.65)

k2

4

〈

φ

∣
∣
∣
∣
zx

1

H0 − E
xz

∣
∣
∣
∣
φ

〉

= 0 , (4.66)

vanish for symmetry reasons. The modulus of the wave vector k of the standing wave is
determined by the two-photon resonance condition, where one obtains e.g.

k =
3

16
(Zα)2 cme

~
=
ωL

c
(4.67)

for the 1S–2S transition. This condition also determines the frequency ωL at which the
polarizability itself is evaluated. With these parameters fixed, the leading order field
configuration correction, relative to the polarizability in dipole approximation, reads

ξfcRfc(φ) =
Re(δPωL

(φ))

Re(PωL
(φ))

, (4.68)

ξfc Ifc(φ) =
Im(δPωL

(φ))

Im(PωL
(φ))

, (4.69)
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where again the correction to the real part Rfc and to the imaginary part Ifc are considered
separately, and the characteristic scale factor

ξfc = (Zα)2 (4.70)

is identified. The correction δPωL
(φ) is proportional to k2, consequently four powers of

(Zα) are obtained from Eq. (4.67), while the matrix element in Eq. (4.64) contributes
two negative powers of (Zα) from the energy denominator, and four negative powers from
the four components x and z of the position operator, resulting in a (Zα)−2 scaling of
δPωL

(φ). Because the polarizability PωL
(φ) is of the order (Zα)−4, the relative scaling

is of the given order ξfc. Therefore one observes that the field configuration dependent
corrections are of the same order in (Zα) as the relativistic corrections.

For the two-photon transition matrix element of the transition |g〉 ↔ |e〉, the leading
order field configuration correction reads

δMωL
= −k

2

6

(〈

e

∣
∣
∣
∣
z

1

H0 − (Eg + ~ωL)
x2z

∣
∣
∣
∣
g

〉

+

〈

e

∣
∣
∣
∣
x2z

1

H0 − (Eg + ~ωL)
z

∣
∣
∣
∣
g

〉)

,

(4.71)
and the definition of the relative magnitude of the correction, Rfc, reads

ξfcRfc =
δMωL

(φ)

MωL
(φ)

. (4.72)

4.6.2 Results for two-photon transitions

In the following tables, the results of the field configuration corrections to the dynamic
polarizability (Tab. 4.9 and 4.10) and to the transition matrix elements (Tab. 4.11) are
listed. The results are valid for a scenario, where an atom is situated at an antinode, e.g.
x = 0, of a plane standing wave of the form (4.62), and is driven on two-photon resonance
on the respective S–S transition. For different locations along the axis of the standing
wave, the corrections vary like cos2(kx), vanishing (to second order) at the nodes of the
field.

The corrections to the constants βAC, βioni, and βge, as derived in the previous chapter,
are obtained using the following relations. With ξfc = (Zα)2,

δβAC(φ)

βAC(φ)
= Rfc(φ) ξfc Tabs. 4.9, 4.10 , (4.73)

δβioni(φ)

βioni(φ)
= Ifc(φ) ξfc Tabs. 4.9, 4.10 , (4.74)

δβge
βge

= Rfc ξfc Tab. 4.11 . (4.75)

As was already suggested in Fig. 4.3, the corrections for the polarizability of the ex-
cited state become very large as the principal quantum number n increases (see Rfc(e) in
Tabs. 4.9 and 4.10). This is clear, because the polarizability of an atom whose electronic
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wavefunction is extended far into an inhomogeneous field is sensitive to the variation of
this field.

It may be surprising that the corrections to the transition matrix elements do not show
this behavior (see Tab. 4.11), rather they vary only little, converging for large principal
quantum numbers. However, this can be explained by the observation that the transi-
tion matrix element is essentially determined in the region where the ground state wave
function and the excited state wave function overlap. Because the considered 1S and
2S ground states are very well localized on the scale of the laser wavelength, the dipole
approximation is still a good approximation for the transition matrix elements.

Table 4.9: Field configuration corrections to the dynamic polarizabilities of the
states |1S〉 and |e〉 [see Eqs. (4.68) and (4.73),(4.74)], as occurring at the antin-
ode of a standing wave laser field on two-photon resonance with the transition
|1S〉 ⇔ |e〉.

fc. δPωL

|g〉 ⇔ |e〉
Rfc(g) Rfc(e) Ifc(e)

1S–2S −2.25564×10−2 −1.98832×10−1 3.75000×10−2

1S–3S −3.24442×10−2 −1.10505 × 100 1.18519×10−1

1S–4S −3.64547×10−2 −3.89523 × 100 1.46875×10−1

1S–5S −3.84178×10−2 −9.99755 × 100 1.60000×10−1

1S–6S −3.95140×10−2 −2.12824 × 101 1.67130×10−1

1S–7S −4.01853×10−2 −4.00403 × 101 1.71429×10−1

1S–8S −4.06252×10−2 −6.89792 × 101 1.74219×10−1

1S–9S −4.09288×10−2 −1.11224 × 102 1.76132×10−1

1S–10S −4.11469×10−2 −1.70316 × 102 1.77500×10−1

1S–11S −4.13088×10−2 −2.50214 × 102 1.78512×10−1

1S–12S −4.14323×10−2 −3.55292 × 102 1.79282×10−1

1S–13S −4.15285×10−2 −4.90343 × 102 1.79882×10−1

1S–14S −4.16050×10−2 −6.60574 × 102 1.80357×10−1

1S–15S −4.16668×10−2 −8.71611 × 102 1.80740×10−1

1S–16S −4.17174×10−2 −1.12949 × 103 1.81055×10−1

1S–17S −4.17594×10−2 −1.44068 × 103 1.81315×10−1

1S–18S −4.17946×10−2 −1.81205 × 103 1.81534×10−1

1S–19S −4.18244×10−2 −2.25090 × 103 1.81716×10−1

1S–20S −4.18498×10−2 −2.76492 × 103 1.81879×10−1
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Table 4.10: Field configuration corrections to the dynamic polarizabilities of the
states |2S〉 and |e〉 [see Eqs. (4.68) and (4.73),(4.74)], as occurring at the antin-
ode of a standing wave laser field on two-photon resonance with the transition
|2S〉 ⇔ |e〉.

fc. δPωL

|g〉 ⇔ |e〉
Rfc(g) Rfc(e) Ifc(e)

2S–3S −1.00779×10−2 3.77122×10−3 −

2S–4S −1.90455×10−2 −1.69675×10−1 9.37500×10−3

2S–5S −2.44802×10−2 −4.85438×10−1 2.25000×10−2

2S–6S −2.78586×10−2 −1.11734 × 100 2.96296×10−2

2S–7S −3.00648×10−2 −2.20531 × 100 3.39286×10−2

2S–8S −3.15723×10−2 −3.91750 × 100 3.67188×10−2

2S–9S −3.26429×10−2 −6.44876 × 100 3.86317×10−2

2S–10S −3.34282×10−2 −1.00202 × 101 4.00000×10−2

2S–11S −3.40201×10−2 −1.48791 × 101 4.10124×10−2

2S–12S −3.44767×10−2 −2.12989 × 101 4.17824×10−2

2S–13S −3.48360×10−2 −2.95789 × 101 4.23817×10−2

2S–14S −3.51235×10−2 −4.00447 × 101 4.28571×10−2

2S–15S −3.53571×10−2 −5.30479 × 101 4.32407×10−2

2S–16S −3.55494×10−2 −6.89659 × 101 4.35547×10−2

2S–17S −3.57095×10−2 −8.82026 × 101 4.38149×10−2

2S–18S −3.58442×10−2 −1.11187 × 102 4.40329×10−2

2S–19S −3.59585×10−2 −1.38376 × 102 4.42175×10−2

2S–20S −3.60565×10−2 −1.70251 × 102 4.43750×10−2

Table 4.11: Field configuration corrections to the two-photon transition matrix
element of the transition |g〉 ⇔ |e〉 [see Eqs. (4.72) and (4.75)], as occurring at
the antinode of a standing wave laser field on two-photon resonance.

fc. δMωL

|g〉 ⇔ |e〉
Rfc |g〉 ⇔ |e〉 Rfc

1S–2S −6.02958×10−2 - −

1S–3S 3.37934×10−2 2S–3S −1.53814×10−2

1S–4S 7.46868×10−2 2S–4S 2.29524×10−1

1S–5S 9.58743×10−2 2S–5S −3.42709×10−1

1S–6S 1.08137×10−1 2S–6S −1.76620×10−1

1S–7S 1.15822×10−1 2S–7S −1.38632×10−1

1S–8S 1.20936×10−1 2S–8S −1.21615×10−1

1S–9S 1.24503×10−1 2S–9S −1.12013×10−1

1S–10S 1.27085×10−1 2S–10S −1.05906×10−1

1S–11S 1.29013×10−1 2S–11S −1.01723×10−1

1S–12S 1.30489×10−1 2S–12S −9.87082×10−2

1S–13S 1.31644×10−1 2S–13S −9.64521×10−2

1S–14S 1.32564×10−1 2S–14S −9.47140×10−2

1S–15S 1.33308×10−1 2S–15S −9.33434×10−2

1S–16S 1.33920×10−1 2S–16S −9.22417×10−2

1S–17S 1.34427×10−1 2S–17S −9.13418×10−2

1S–18S 1.34853×10−1 2S–18S −9.05965×10−2

1S–19S 1.35215×10−1 2S–19S −8.99720×10−2

1S–20S 1.35524×10−1 2S–20S −8.94432×10−2

82



4.7. Lamb shift of laser dressed states

4.7 Lamb shift of laser dressed states 1

In this section, radiative corrections to another dynamic process are considered, namely
the inelastic resonance fluorescence of a driven two-level atom. In contrast to the discus-
sion above, here the system is driven strongly on a dipole-allowed one-photon resonance.
A perturbative treatment of the energies of the bare atomic states due to the interaction
with the laser field is therefore not possible and new eigenstates of the Hamiltonian of the
system “atom+laser field” need to be considered. The transitions among these so-called
laser-dressed states [92], can readily explain the well-known Mollow spectrum [93] of the
resonance fluorescence light emitted by the system.

The problem under consideration now is, whether radiative corrections to the strongly
driven system of atom and laser field result in a Lamb shift of the observable Mollow
sidebands, which is different from the shift that is expected from the Lamb shift of the
bare states. In a nutshell, the question is, how real are the laser-dressed states, as judged
by the electromagnetic vacuum?

In the following, only the main results will be briefly presented, a detailed account of the
calculations is beyond the scope of this thesis and can be found in Refs. [70, 94].

The dressed states |(±, n)〉 of a strongly driven two-level system can be written in terms
of product states of bare states |g〉 and |e〉, and laser Fock states |n〉, and in the rotating
wave approximation, as

|(+, n)〉 = cos θn|e, n〉 + sin θn|g, n+ 1〉 , (4.76a)

|(−, n)〉 = − sin θn|e, n〉 + cos θn|g, n+ 1〉 , (4.76b)

where tan(2θn) = Ωn/∆, and Ωn is the Rabi frequency of the interacting atom and the
laser field in a Fock state with n photons. The detuning of the driving laser field from the
bare state atomic resonance frequency ωeg is denoted by ∆. The eigenenergies of these
states, without taking into account radiative corrections, read

E(±,n) =

(

n +
1

2

)

ωL +
1

2
ωeg ±

1

2
Ωn . (4.77)

Since the energy spacing of the dressed state transitions |(+, n)〉 ⇔ |(+, n ± 1)〉 and
|(−, n)〉 ⇔ |(−, n ± 1)〉 is equal to one laser photon energy, transitions among these
states lead to a central peak around the driving laser frequency ωL in the incoherent
resonance fluorescence spectrum Sinc(ω), which is plotted in Fig. 4.4. Transitions between
the dressed states |(+, n+ 1)〉 ⇔ |(−, n)〉 and |(−, n + 1)〉 ⇔ |(+, n)〉 give rise to the
sidebands, which are shifted by one generalized Rabi frequency

ΩR =
√

Ω2
n + ∆2 (4.78)

to higher or lower frequency, respectively. If one takes into account the usual interaction of

1The results of this section have been obtained in close collaboration with seminal contributions from
Drs. U. Jentschura and J. Evers, Max-Planck-Institut für Kernphysik, Heidelberg.
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Figure 4.4: The Mollow spectrum of inelastic resonance fluorescence of a strongly
driven two-level system. The sidebands are shifted by ±ΩR, the generalized Rabi
frequency (4.78), from the center frequency ω = ωL, if no radiative corrections are
taken into account. Radiative corrections to the bare state energies (usual Lamb
shift), shift the Mollow sidebands by ∆ω±, while radiative corrections to the
Rabi frequency contribute an additional shift, δω±, resulting in the fully dressed
Lamb shift (4.82). The width of the peaks is connected with the spontaneous
decay rate Γ, which for this plot is Γ = 0.15 ΩR.

the bare states with the vacuum, the bare states acquire a Lamb shift, which is transformed
via the relation (4.76) into a shift of the Mollow sidebands of

∆ω± = ∓ ∆

~
√

Ω2 + ∆2
Lbare , (4.79)

where Lbare = 〈e|δVSE|e〉 − 〈g|δVSE|g〉 is the Lamb shift of the bare transition frequency,
with δVSE as defined in Eq. (4.31). By first performing the transformation to the dressed
states, and then calculating the self-energy for the dressed states, one obtains an additional
shift of the Mollow sidebands of [94]

δω± = ∓C
Ω2

√
Ω2 + ∆2

, (4.80)

where

C =
α ln[(Zα)−2]

π

〈g|p2|g〉 + 〈e|p2|e〉
m2 c2

(4.81)

is a dimensionless constant. These two contributions to the shift of the Mollow sidebands
can be unified in one expression for the fully dressed Lamb shift

∆L± = ±
(√

Ω2(1 − C)2 + (∆ − Lbare)2 −
√

Ω2 + ∆2
)

≈ ∆ω± + δω± , (4.82)

from which, to first order in Lbare, the bare Lamb shift contribution ∆ω± can be recovered,
and equally, to first order in C, the additional shift δω± is obtained. Expression (4.82)
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allows for an interpretation of the C-term as being a radiative correction to the Rabi
frequency, in much the same way as Lbare is a radiative correction to the detuning ∆,
expressed in the Lamb shift of of the bare states.

If the above results are considered in the limit of a very strong driving field, i.e., Ω � Γ,
where Γ is the spontaneous decay rate from |e〉 → |g〉, the Mollow triplet splits into three
distinct peaks, with well-defined line centers (secular approximation). For an experimental
verification of the results, this is the scenario of choice, because very small line shifts can
be best measured in a symmetric line shape. Assuming that a shift-to-width ratio of
about

δω±

Γ
= O

(
10−3

)
(4.83)

is in principle observable experimentally, an estimation of the lower limit of the Rabi
frequency Ω needed for the experimental verification can be obtained. From Eq. (4.80)
follows

|δω±| ≈ ΩC , (4.84)

in the case where Ω � ∆. Evaluated for the 1S-2P transition, the result for C is on the
order of 10−6, and consequently the ratio of Rabi frequency and spontaneous decay rate
needs to be on the order of Ω/Γ = O(103) or larger. For a tightly focused cw-source of
Lyman-α radiation, this requires a minimum power of about 340µW. Such a light source
is being developed in the group of J. Walz [95], using a four-wave mixing scheme in a
Mercury gas cell. The presently available power is yet a factor of 1000 below the required
340µW to observe and distinguish the fully dressed Lamb shift from the usual Lamb shift
in the Mollow spectrum. However, promising improvements are in progress, such that
maybe in the near future, an experiment will be able to observe whether or not dressed
states are shifted by a nontrivially different amount than atomic bare states.
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Chapter 5

Monte Carlo Investigations and

Lineshape

5.1 Introduction

The analysis of the two-photon excitation process, and the calculation of the atomic
constants, as treated in the previous chapters, has provided a detailed insight into the
interaction of a single atom moving in a laser field which, up to now, has been character-
ized by a standing plane wave. This general scenario is common to many high-precision
spectroscopy experiments and the special case of a trapped atom or hydrogenlike ion is
naturally also contained in this description.

In this chapter, the missing link between the single atom response and the signal which
is actually observed in an experiment is established. For this reason, it is now necessary
to focus the discussion onto a specific experimental setup, the atomic hydrogen 1S–2S
spectrometer of Theodor Hänsch’s group at the Max–Planck–Institut für Quantenoptik
in Garching, which is depicted in a simplified sketch in Fig. 5.1.

The main steps which need to be performed are the following. First of all, the total ob-
served line shape is made up from contributions of an ensemble of atoms in a cold effusive
beam with certain parameters characterizing the velocity distribution and the atomic tra-
jectories. Second, the laser field in the excitation resonator is a standing Gaussian wave,
dominantly in the TEM00 mode, which gives rise to a radial intensity distribution which
has to be taken into account in the modeling of the excitation process. Moreover, the
MPQ detection method employs a time resolved scheme, in order to reduce the influence
of fast atoms with large Doppler systematics. The different interaction times resulting
from this procedure also need to be taken into account. Finally, the systematic effects af-
fecting the collective signal, like the shift and the broadening of the line, mainly originate
in the dynamic Stark shift, ionization and the second-order Doppler shift of the single
atoms, but in a quite involved and nonlinear fashion, depending on the characteristics of
both the atomic and the laser beams. This is particularly important for the extraction
of the unperturbed, single-atom 1S–2S transition frequency, which is the primary goal of
the experiment and the subject of the next chapter.

87



Chapter 5: Monte Carlo Investigations and Lineshape

� � �� � �

� � � � � �
� � � � � �

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� �
� �
� �
� �

ts

AOM

chopper

stabilized dye laser

λ=486 nm

ν×2

fiber to frequency comb

M1 M2

PM photo-
diode

atomic H shield Equench

nozzle 5K detector

λ
=

24
3

n
m

interaction region

vacuum chamber

D1 D2

Figure 5.1: Schematic of the MPQ hydrogen 1S–2S spectrometer. The output
from a stabilized dye laser at 486 nm is frequency doubled in a β-barium bo-
rate crystal and coupled into the enhancement resonator consisting of a plane
in-coupling mirror (M1) and a concave out-coupling mirror (M2). The atomic
hydrogen is cooled and effused by a copper nozzle, which is connected to a 5 K
liquid helium cryostat. The interaction zone is confined by two diaphragms, D1
and D2, and shielded from electric fields by a Faraday cage. In this region the
coherent two-photon excitation of the 1S–2S transition takes place. In the detec-
tor a weak electric field Equench triggers the emission of Lyman-α photons, which
are detected in a photomultiplier (PM). The acousto-optic modulator (AOM)
detunes the driving laser, scanning it over the 1S–2S resonance. A small part
of the fundamental beam is transferred via an optical fiber to the frequency
comb, which is stabilized to a cesium fountain clock. This links the frequency of
the driving laser phase-coherently to the primary frequency standard. The PM
counts are recorded as a function of AOM detuning and delay with respect to
the beginning of the dark phase, generated by the chopper.

As the trajectory and the velocity of an individual atom that contributes to the signal
are unobservable in the experiment, and therefore constitute random parameters, the
generation of the total line shape relies on a Monte Carlo simulation of the trajectories
and velocities with a appropriate probability distributions. Comparing the output of this
simulation of the excitation process with the data recorded by the MPQ group allows one
to test to a certain degree the validity of the model, and the constants which have been
used in it. In Sec. 5.4 such a test is performed for two observables, kshift and kbroad, which
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describe the power-dependence of the observed line center and line width, respectively,
and which depend on the dynamic Stark coefficient βAC, the ionization coefficient βioni,
and the two-photon transition matrix element βge.

In addition, after a reasonable agreement of simulation and experiment is established, one
can study the effect of different experimental conditions on various observables of interest.
This is especially useful for systematic effects, that cannot be controlled or quantified in
the laboratory. In Secs. 5.5 and 5.6 two such effects are investigated and are found to
contribute to the systematic scatter in the line center of the single spectra. The results
of these investigations can then be used to improve the design of the experimental setup
accordingly.

5.2 Experimental setup

This section gives a short general overview of the setup and a more specific account of
the experimental details which are relevant for the theoretical modeling of the excitation
process and the interpretation of the observed signal. For an in-depth description of the
complete setup and the frequency comb technique, see e.g. Refs. [18, 23, 96].

The experimental setup consists of three main parts: (i) the hydrogen spectrometer,
(ii) the laser system, and (iii) the frequency comb.

In the hydrogen spectrometer, see Fig. 5.1, atomic hydrogen in a cold beam interacts with
a standing wave of 243 nm laser light, driving the two-photon 1S–2S transition. The
standing wave is the fundamental mode of the optical cavity, made up of the mirrors M1
and M2, and passes right through the nozzle through which the hydrogen is flowing after
being dissociated by an electric discharge. In the interaction zone adjacent to the nozzle,
the excitation and partially also ionization of the hydrogen atoms takes place, properly
shielded from stray electric fields which would quench atoms in the metastable 2S state.
In the detector, this effect is exploited, where a static electric field Equench couples the 2S
and 2P states of the unperturbed atom, triggering the fast decay 2P → 1S. The emitted
121 nm photon is detected in a photomultiplier and is an unambiguous signature of the
excited 2S hydrogen atom, because the photons from the laser mode have the double
wavelength. This is one of the reasons why the signal is practically noise-free.

The optical cavity provides a standing wave for the first-order Doppler free excitation.
Also, it enhances the power available for the excitation of atoms by a factor of about 40,
resulting in a maximum power of 800 mW per direction. Behind the cavity, a photodiode
records the power which is transmitted by the out-coupling mirror, giving a measure for
the circulating power if one assumes a constant transmittivity of the mirror.

The laser system is designed to provide a primary beam with extremely high frequency
stability at a wavelength of 486 nm. This is achieved by locking a dye laser to a spe-
cial optical cavity which has been developed and continuously refined at the MPQ. The
cavity which was used for the 2003 measurements has been built by Marc Fischer and
shows a drift of less than 1 Hz/s with a spectral line width of less than 100 Hz during an
observation time of 2 s [23]. This cavity is suspended in vacuum and elaborately decou-
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pled from vibrations in the laboratory. The temperature is actively stabilized at around
300 K, where the expansion coefficient of the spacer material is very small. This ultra low
expansion (ULE) substrate, which carries the cavity mirrors, also has the advantage that
crystallization processes are absent, which caused length changes in the previous cavity
made from Zerodur.

The frequency comb [18] is situated in the neighboring laboratory and a part of the
primary laser beam is therefore directed there via an optical fiber. By measuring the beat
note between the hydrogen laser and one specific mode of the frequency comb, the absolute
frequency of the hydrogen laser can be determined, because the comb is stabilized to the
primary frequency standard. The angular frequency of the nth mode of the frequency
comb is related via

ωn = nωr + ω0 (5.1)

to two radio frequencies: ωr, the repetition rate of a femtosecond laser and ω0 the frequency
offset of the zeroth mode, which can be obtained by measuring the beat note between two
modes of the comb which are an octave apart. Both ωr and ω0 can be measured with the
precision of the SI second, which in this experiment was realized by a cesium fountain
clock (FOM) from the Bureau National de Métrologie, Observatoire de Paris [13,97]. The
relative accuracy of this clock, which is on the order of 10−15, therefore directly determines
the accuracy with which the frequency of the primary hydrogen driving laser is known.

The measurement cycle is synchronized to a chopper wheel that interrupts the frequency
doubled primary laser beam in front of the vacuum chamber. The light is admitted to
the chamber during an interval of about 3.1 ms, driving the 1S–2S transition in the
atomic beam, followed by a dark phase of equal length. The start of this dark phase
defines the zero point for an important time delay, τ , which is used for time-resolved
detection of excited 2S atoms at the detector. The larger τ is selected, the smaller is the
maximum velocity vmax of excited atoms contributing to the signal, since excited atoms
faster than vmax have already passed the detector during that delay time. A larger τ
results in less Doppler systematics but also in a lower 2S count rate. In the actual data
taking, a set of delays is recorded simultaneously, by sorting the detector counts in time
bins corresponding to τ = 10µs, 210µs, . . . , 2210µs, where e.g. the time bin 1210µs
accumulates the counts starting 1210µs from the beginning of the dark phase up to its
end.

Finally, the acousto-optic modulator (AOM) is used to detune the frequency of the driving
laser field in order to record a frequency dependent 2S line shape. In the simulation, this is
implemented by integrating the equations of motion (2.11) numerically in a loop, stepping
the frequency of the laser by 150 Hz in a range of ± 7.5 kHz. It is a remarkable fact that the
resolution of the experiment is so high, that the detuning range through which the AOM
is scanned during the recording of one spectrum spans only some kHz. This frequency
interval is so small that it could be perceived by the human ear, while being added to a
frequency that is twelve orders of magnitude higher - an optical frequency at the upper
end of the visible range.
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Figure 5.2: Illustration of the interaction region. The straight trajectories of the
atoms leaving the cold nozzle are confined by two diaphragms and characterized
by (r, ψ) at each diaphragm. The trajectories overlap with the radially symmetric
Gaussian laser mode. Molecular hydrogen adhering to the nozzle walls may
additionally confine r1 of the atomic trajectories (see Sec. 5.5 below).

5.3 Implementation of the simulation

In Fig. 5.2, the interaction zone is shown in more detail. Hydrogen atoms are effusing
from the cooled nozzle and follow randomly distributed straight trajectories in the vac-
uum setup. From these trajectories, only those that are very close to the cavity axis are
selected by means of two diaphragms and can reach the detector. To model this atomic
beam, the following Monte Carlo generation of trajectories is invoked. Each trajectory
is characterized by its coordinates on the entrance diaphragm, (r1, ψ1) and on the exit
diaphragm, (r2, ψ2). These pairs of coordinates are generated randomly and indepen-
dently, with a constant area density on both diaphragms, and subject to the conditions
r1 < rD1 = 650µm and r2 < rD2 = 700µm. Further, the speed of a specific atom on its
trajectory is chosen at random with the probability distribution [98]

f(v) ∝ (v/v0)
3 exp[(v/v0)

2] , (5.2)

which is valid for a one dimensional beam effusing from a thermalized volume, in which the
modulus of the velocity v is distributed according to a Maxwell-Boltzmann distribution,
and where v0 =

√

2kBT/mH, T is the temperature and mH is the mass of a hydrogen
atom. Finally, the “dark point” of the atom, which is the location along its trajectory
at the time when the dark phase starts, is chosen at random uniformly in the interval
[0,d], where d is the length of the interaction region. With these parameters fixed, it is
easy to determine, whether the atom will have passed the detector before the given time
delay τ for which the simulation is run. If this is the case, the atom is rejected from the
ensemble. If, on the other hand, the atom will still be in the interaction region after τ ,
its parameters are appended to a list of valid trajectories. This process continues until an
ensemble of typically 10 000 atoms, which contribute to the signal, have been found.

For each of the atoms contained in the list, the individual interaction time with the laser
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field is calculated and then the probability of being in the 2S state, when the dark phase
starts is obtained by numerically integrating the master equations (2.11). Each atom
observes an individual, time dependent intensity I(t), which results in a time dependent
Rabi frequency Ω(t), a time dependent AC Stark shift ∆νAC(t) and a time dependent
ionization rate γi(t). To obtain I(t) for each atom, the location along the trajectory r(t)
of each atom is inserted into the Gaussian beam profile

I(r, z) =
4P

πw(z)2
e−2 r2/w(z)2

, (5.3)

where the beam waist w slightly varies along the cavity axis as w(z)2 = w2
0(1+(zλ/πw2

0)
2),

with w0 = 283µm and P being the power per direction, stored in the cavity. Also the
second-order Doppler shift is calculated from the atomic velocity and taken into account
in the quantum dynamics.

By integrating the master equations for a set of detunings, typically in the range of
[-7500,7500] Hz, the single atom response line shapes are obtained and added to obtain
the collective signal. Because of the different interaction parameters of each atom, each
contributing single-atom line shape is shifted and broadened by a different amount, de-
pending on the atomic velocity, interaction time and the geometry of its trajectory.

The simulation is implemented in Mathematica [78], and several program switches are
introduced in order to separately investigate the influence of ionization, dynamic Stark
shift and spontaneous decay on the total line shape. As expected, the influence of sponta-
neous two-photon emission turns out to be negligible for hydrogen. The different effects
from ionization and the dynamic Stark effect on the line center shift and the line width
however are significant and are discussed in the following section.

5.4 Photoionization broadening of the 1S–2S transi-

tion line shape 1

5.4.1 Introduction

As has been demonstrated in chapter 2, the inclusion of ionization of the 2S state into the
excitation dynamics can change the single atom line shape dramatically (cf. Figs. 2.3 and
2.4). However, for typical interaction times occurring in the MPQ hydrogen experiment,
this influence is only very small (cf. Figs. 2.1 and 2.2), which is one reason why in the
analysis of the experimental data up to date, ionization has not been considered as a line
broadening factor. However, as will be demonstrated in this section, the collective line
shape does show a substantial sensitivity to the presence of ionization of 2S atoms. This
can be understood qualitatively by considering the fact that the slowest atoms, which
would give the strongest and narrowest contributions, also run the highest risk of being
ionized and therefore do not contribute much to the observable line. In fact, this influence

1The results of this section have been obtained in cooperation with Dr. N. Kolachevsky, MPQ Garching
and P. N. Lebedev Physics Institute, Moscow and M. Herrmann, MPQ Garching.
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of ionization on the velocity distribution of atoms contributing to the signal needs to be
taken into account in the future, since only the collective line shape is observable in an
atomic beam experiment.

5.4.2 Experimentally observed broadening and shift coefficients

The experimental data presented in this section have been recorded in February 2003
during the absolute frequency measurement of the 1S–2S transition in hydrogen at the
MPQ in Garching, by Marc Fischer [23] and Nikolai Kolachevsky. The analysis of the
raw data was performed by the present author with a Lorentzian data analysis approach,
which will be described and compared to the full line shape model in the next chapter.

The atomic constants βAC, βioni and βge which govern the excitation dynamics of the
1S–2S transition are not directly observable, because of the complex superposition of
single-atom contributions in the collective line shape. The comparison between the pre-
dictions of theory and experimental observations can therefore only take place on the level
of the collective line shape. The measured collective line shape for a detection time delay
τ = 1210µs was fitted with a Lorentzian line profile

f(A, νc,Γfwhm; ν) = A
(Γfwhm/2)2

(ν − νc)2 + (Γfwhm/2)2
, (5.4)

where A is the overall amplitude, νc is the line center and Γfwhm is the full width at
half maximum. A Lorentzian has turned out to be a very good approximation to the
experimental data of the chosen time delay. The Doppler systematics for the slow atoms
which contribute are small, while the count rate is still large enough to achieve a good
signal-to-noise ratio for the fit.

Figure 5.3 shows the results of the Lorentzian fit to a number of spectra recorded on one
of 12 days of measurement, plotted as a function of excitation power per direction in the
enhancement cavity. The left plot shows the shift of the fitted line center νc with respect
to an offset frequency which is measured via the frequency comb, including a constant
offset at the AOM. In the data analysis leading to the 1S–2S frequency (see also chapter 6)
the line centers are routinely extrapolated with a linear model to zero excitation power:

νc(P ) = ν0 + kshiftP . (5.5)

In the next section, it will be demonstrated that this procedure is compatible with the
theoretical predictions following from the Monte Carlo simulation, albeit only in the low-
power regime.

The plot on the right hand side of Fig. 5.3 shows the fitted line widths Γfwhm as a function
of excitation power, which has not been examined systematically in the hydrogen analysis
before. Here, also a linear dependence on the power of the driving laser field is observed,
and modeled by

Γfwhm(P ) = Γ0 + kbroadP . (5.6)

The extrapolation of this model to zero laser power yields the total intensity-independent
width Γ0, which is due to the spectral laser line width and time-of-flight broadening.
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Figure 5.3: Results from a Lorentzian fit (dots) to the experimental raw data, for
τ = 1210µs, of one day of measurement (Feb. 13th 2003). The frequency shift
νc of the fitted line center (left) and the full width at half maximum Γfwhm of the
fitted Lorentzian (right) are plotted as a function of laser power per direction
in the interaction zone. Unweighted least squares fits with a linear model [see
Eqs. (5.5) and (5.6)] are indicated by the solid lines.

It should be noted that the uncertainties of the Lorentzian fit are small compared to the
scatter of the results of both the line center and the line width around the respective
linear models. This scatter is not due to the Lorentzian approximation to the line shape,
rather the Lorentzian data analysis has been introduced originally to test whether this
scatter, which is also obtained when the full line shape model is invoked, is caused by
the more comprehensive model (see Sec. 6.1.3). As will also be discussed in Sec. 6.1.4,
the weighting of the individual data points does not make sense in this case, because the
reduced χ2

r of the fits would be much too large. For this reason, an unweighted fit of the
data points is performed, and the small error bars are omitted.

The amount of scatter of the line centers observed in the data is the most important lim-
iting factor for the precision with which the 1S–2S absolute frequency can be determined.
Therefore, in Secs. 5.5 and 5.6, two possible contributions to this scatter are considered.

The values for kshift and kbroad for the other days of measurement are obtained in the
same fashion and plotted in Fig. 5.5 below. In the following, a Monte Carlo simulation
of the measurement will yield theoretical values for these coefficients, which can then be
compared with the values obtained from the experiment.

5.4.3 Simulated broadening and shift coefficients

In this section, the results from a Monte Carlo simulation of the 1S–2S spectroscopy
experiment are discussed, which has been performed for a set of different excitation powers
and for a time delay τ = 1210µs, in order to be compatible with the experimental results
described above. The simulation was done with an ensemble of 10 000 atoms in a detuning
range of ±7500 Hz with a beam temperature of 5 K. The geometry of the interaction
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region, as given by the MPQ experimental setup is characterized by an interaction region
length of 136 mm, a diameter of the entrance diaphragm of 1.3 mm, a diameter of the
exit diaphragm of 1.4 mm and a Gaussian beam waist of 283µm.

In analogy with the experimental data, the line shape obtained by the simulation was
fitted with a Lorentzian line profile (5.4), and the obtained line centers and line widths
are plotted as a function of simulated laser power in Fig. 5.4. In addition to the physical
case, in which both the dynamic Stark effect and ionization from the excited 2S state are
taken into account, these two processes have been artificially switched off one at a time,
and both at the same time, in three additional runs of the simulation.

The results of the simulation show, that the line center shift (left hand side of Fig. 5.4)
is caused dominantly by the dynamic Stark effect, which is to be expected. However,
if ionization from the excited 2S state is taken into account, the line center shift is not
quite as large as without ionization. This behavior can be understood by contrasting
the contributions of atoms passing along different paths in the interaction region. Those
atoms which give the contributions with the largest line shift have passed through regions
with high laser intensity. In the case where ionization is switched off, these contributions
are included in the collective signal, whereas with ionization switched on, the “highly
shifting” atoms are also preferably ionized and therefore lost to the 2S signal. This
results in a smaller line center shift for the collective signal.
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Figure 5.4: Results of Lorentzian fits to the τ =1210µs line shapes of a Monte
Carlo simulation of one day of measurement: Frequency shift of the line center
(left) and full width at half maximum (right) of a fitted Lorentzian, as a function
of laser power per direction. The following scenarios with and without ioniza-
tion and dynamic Stark effect are shown: (a), triangles: γi = 0, βAC = 0 ; (b),
diamonds: γi 6= 0, βAC = 0 ; (c), squares: γi = 0, βAC 6= 0 ; (d), stars, physical
case: γi 6= 0, βAC 6= 0. Because of the finite interaction time, the line width Γtof

at P = 0 is also finite. The average of four simulated days of measurement,
with a linear extrapolation to zero power is Γtof =555(9) Hz (including only the
physical case). The residual line shift at zero excitation power, caused by the
second-order Doppler shift, is ∆νD2 = −14(1) Hz. The dashed lines indicate a
linear/quadratic fit of the power-dependence of νc and Γfwhm.
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The discussion of the simulated line width (right hand side of Fig. 5.4) is a little more
complicated. Obviously, even without taking into account ionization or the dynamic Stark
effect, the line width of the simulated spectra depends on the excitation power (triangles).
This is the power-broadening contribution to the total width. If the ionization channel
from the 2S state is switched on in the simulation, the power dependence of the line
width increases (diamonds). This can only partially be explained by the reduction of the
lifetime of the 2S state in the single-atom response, in addition there is again a collective
effect. The class of atoms in the cold beam with a short total interaction time make
broader contributions to the line shape (time-of-flight broadening), and are less affected
by ionization because of the short interaction with the field. Vice versa, those atoms which
interact longer with the laser field, contribute strong and narrow lines to the signal, but
are also preferentially removed by the ionization process. Via this effect, ionization has a
much larger impact on the line width than expected from the usual ionization broadening
in the single-atom case (cf. Figs. 2.1 and 2.2).

By switching off ionization while including the dynamic Stark effect in the quantum dy-
namics (squares), the observed line width of the collective 2S signal is also additionally
broadened as compared to the pure power-broadening case. This contribution to the width
originates in the fact that the atoms pass through an inhomogeneous intensity profile dur-
ing the excitation process. The resulting inhomogeneous dynamic Stark shift broadens
the single-atom line shape and correspondingly also the width of the collective signal is
increased. Finally, the simulation of the physical case, with both the dynamic Stark ef-
fect and the ionization process properly included (stars), results in an excitation power
dependent line width, which unites all the mentioned processes. In view of the rather
involved interplay between the single-atom responses, interaction times, velocity distribu-
tion effects and excitation in an inhomogeneous intensity profile, it is not surprising that
the contributions from the power broadening, ionization broadening and inhomogeneous
Stark broadening cannot simply be added.

In order to obtain a valid comparison with the experimentally obtained values for kshift

and kbroad, the same linear models, (5.5) and (5.6), have been fitted to the simulated
data. Since for the physical case a nonlinear power-dependence of the line center shift
is observed at high excitation powers in the simulation, the determination of the Monte
Carlo value for kshift has been obtained from a linear fit restricted to the experimental
range of excitation powers.

5.4.4 Comparison

In Fig. 5.5, a comparison is shown of the experimentally observed coefficients kshift and
kbroad with the corresponding values from the Monte Carlo simulations. The values ob-
tained from the different days of measurement are shown on the left hand side of the
respective plot, and the unweighted average and the standard error of the mean value are
indicated by the solid line and the turquoise bar, respectively. On the right hand side of
each plot, the averaged results from four Monte Carlo simulated days of measurement are
shown. The statistical uncertainties of these values are on the order of the symbol size,
therefore no error bars are indicated.
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Figure 5.5: Comparison of measured coefficients kbroad (left) and kshift (right),
with values obtained from the Monte Carlo simulation, where the following
scenarios were distinguished, by means of program switches: (a), triangles:
γi =0, βAC =0 ; (b), diamonds: γi 6=0, βAC =0 ; (c), squares: γi =0, βAC 6=0 ; (d),
stars, physical case: γi 6=0, βAC 6=0.

Four different scenarios have been simulated, as already depicted in Fig. 5.4, taking into
account the dynamic Stark effect and the ionization channel from the 2S state in different
combinations. By comparing the experimental average of kshift with the simulated results,
it is obvious that both simulations omitting the dynamic Stark effect [cases (a) and (b)]
do not agree with the experimental observation. However, it is not possible to make an
unambiguous distinction between the scenarios where the dynamic Stark shift is taken
into account, but ionization is included (d) or neglected (c), given the scatter of the
experimental values.

In the comparison of the broadening coefficients kbroad from the observation and the
simulation, clearly only the scenario in which both the ionization channel and the dynamic
Stark effect are taken into account in the quantum dynamics, agrees with the observed
line broadening coefficient. This result is an important argument for taking ionization
seriously in future line shape models to be used in the analysis of the 1S–2S transition in
hydrogen.

5.4.5 Laser line width

Apart from comparing the intensity-dependent broadening contributions, it is also inter-
esting to consider the residual line width at zero excitation power. In the Monte Carlo
simulation, a monochromatic laser with vanishing spectral line width is assumed, while a
beat note measurement of the dye laser by the MPQ group resulted in a spectral linewidth
of 60 Hz at the fundamental wavelength of 486 nm [99].

If one assumes that the contributions at zero excitation power have a Lorentzian line
shape, the line widths can be added, and the total experimental line width Γ0 reads

Γ0 = Γtof + 4 Γlaser , (5.7)
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where no involved intensity-dependent broadening contributions need to be considered.
The spectral line width of the laser enters with a factor of four, because line widths of
the 2S spectra are given at a wavelength of 121 nm, while the spectral width of the laser
has been characterized at 486 nm. It is not self-evident that a frequency doubling stage
also doubles the spectral width of the laser, but for the dye laser used at the MPQ this
property has been confirmed experimentally 1.

For the intensity-independent width of the 2S spectra at a delay of τ = 1210µs, one
obtains, by averaging the Γ0 of each day of measurement (see Fig. 5.3):

Γ0 = 776(21) Hz . (5.8)

From a set of four Monte Carlo simulations, a zero power extrapolation of the physical
case (d) results in Γtof = 555(9) Hz (see Fig. 5.4), which is exclusively due to the finite
interaction time of the atom and the laser field (time-of-flight width). Solving Eq. (5.7)
for the spectral laser line width leads to

Γlaser = 55(6)Hz (5.9)

from the indirect analysis of the experimental spectra, which is in good agreement with
the independent and more direct measurement, resulting in Γlaser =60 Hz, as mentioned
above.

5.5 Effects of nozzle freezing

In the course of the hydrogen 1S–2S measurements, the MPQ group observed a decrease
of the hydrogen flow over time, which could be restored by interrupting the measurement
and “heating” the hydrogen nozzle to above 10 K. Because this temperature is close to the
melting point of molecular hydrogen in vacuum, this drop of nozzle throughput could be
retraced to a film of molecular hydrogen, freezing to the 5 K copper surface and reducing
the diameter of the nozzle. In Fig. 5.2, this layer of hydrogen frost is illustrated at the
orifice of the nozzle. If the only effect of this nozzle congestion would be the lower flow of
atomic hydrogen, only the signal amplitude would be affected. However, also the atomic
trajectories are influenced, because they are additionally confined at the entrance of the
interaction zone.

Since the exact thickness of the layer cannot be controlled and is very difficult to quantify
in the experiment, a Monte Carlo simulation has been performed to study the effect of the
nozzle freezing on the final 2S line shape, and in particular its effect on a possible shift of
the line center. The implementation of this aspect was achieved by modifying the seeding
of the trajectory starting points (r1, ψ1). A cylindrically symmetric layer of hydrogen was
assumed, changing the boundary condition for r1 during the generation of the trajectories.
In the experiment, the excitation power was varied in a random pattern, while the layer of
hydrogen is assumed to increase gradually. Therefore, in the simulation, the radius of the
entrance diaphragm, r1, was varied at random in the interval [w0 =283µm, rD1 =650µm]

1Nikolai Kolachevsky, private communication.
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Figure 5.6: Comparison of two sets of Monte Carlo simulations of the line centers
of 2S spectra at a delay of 1210µs, with a sample of 10 000 atoms for each spec-
trum. On the left, the trajectories are unrestricted at the entrance diaphragm,
simulating a free nozzle. On the right, the starting points of the atomic trajec-
tories are radially confined at the entrance diaphragm to one random value in
the range [283µm, 650µm] per spectrum. This simulates in a simple fashion a
freezing of the nozzle.

(see also Sec. 5.3), while stepping gradually through the excitation powers, which results
in the same random relation between excitation power and nozzle radius. The lower
limit for the radius of the entrance diaphragm has been chosen to be the laser beam
waist, since a further congestion of the nozzle would significantly affect the laser mode
and correspondingly would have led to an observable loss of excitation power during the
measurement.

The results of the line centers as a function of excitation power, obtained in the simulation
of spectra with delay τ = 1210µs in a 5 K atomic beam, are shown in Fig. 5.6. On the left
hand side, the nozzle was unobstructed, while on the right hand side, the nozzle freezing
was modeled as described above. As can be observed in the figure, the nozzle freezing
does have an effect on the line centers causing a scatter on the order of at least 50 Hz.
The scatter in the plot on the left hand side is due to the finite sample size of Monte Carlo
trajectories. The smaller the radius of the entrance diaphragm, the higher the resulting
central frequency of the 2S line shape. This correlation can be explained by the action of
the dynamic Stark effect. Since the starting points of the contributing atoms have been
confined closer to the cavity axis, the average intensity observed by the atoms is higher
than for a free nozzle, resulting in a somewhat larger shift of the line center.

However, the scatter which is observed in a set of data from one given day of measurement
(see Fig. 5.7, right) is much larger and the noise caused by the nozzle freezing cannot
account for the observed frequency variation. In Fig. 5.7 (left), an additional 10% of noise
has been added to the excitation power of each simulated data point from Fig. 5.6 (right).
This is a more or less realistic estimate of the accuracy with which the excitation power
in the enhancement cavity is known. The calibration of the photodiode measuring the
power leaking from the out-coupling mirror (see Fig. 5.1) is much better than that, but
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Figure 5.7: Left: Monte Carlo simulation like in Fig. 5.6, with an added intensity
uncertainty of 10%. Right: Line centers of experimental spectra from one day of
measurement, recorded at a delay of 1210µs, as in the simulation.

suspicion has come up concerning the variability of the transmittivity of this mirror while
being exposed to molecular hydrogen.

From the above comparison, it is clear that both the nozzle freezing and a possible uncer-
tainty in the determination of the excitation power significantly contribute to the scatter
of the center frequency of the spectra, but that these effects alone, even when exerted
to the maximum, cannot fully explain the source of the frequency noise. However, the
order of magnitude and especially the systematic upwards shift in frequency of the nozzle
freezing, need to be taken seriously and amended in future experiments. For example, by
using a nozzle with a radius which is larger than the radius of the entrance diaphragm,
one would avoid the restriction of the trajectories in the interaction zone, as long as the
film of hydrogen is not allowed to grow excessively (see Sec. 6.1.6).

5.6 Effect of laser beam misalignment

Up to now, the two-photon excitation in the optical resonator has been considered to take
place in a laser with Gaussian beam characteristics [100]. In this section, the effect of a
possible misalignment of the cavity axis and the direction of the in-coupling laser beam is
investigated, giving rise to a deviation from the pure Gaussian light profile. The reason
why one expects an influence on the observed spectra from such a misalignment is clarified
in the following consideration: For an atom moving in the enhancement cavity with a
velocity v and absorbing two counter-propagating photons, the Doppler shift cancels to
first order in β = v/c and the remaining second order shift is small and can be corrected
reliably in the line shape model. The condition for this cancellation is, that the absorbed
photons have exactly opposite propagation directions, which is the case if both photons
are quanta from the fundamental cavity mode. These photons will be referred to as
“cavity photons”. However, it is also possible, that an atom absorbs one cavity photon
and one photon from the incoming laser beam, which is partially transmitted through
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Figure 5.8: Geometry of a situation in which the wavevectors of the two absorbed
photons are not perfectly antiparallel. The angles are on the order of mrad
and not drawn to scale. In the reference frame of the moving atom before the
absorption, the cavity photon is blue-shifted to the angular frequency ω+ and
encloses an angle θ with the longitudinal (l) coordinate of the atom, while the
photon from the in-coupling beam is red-shifted to ω− and observed under the
angle θ−α. The absorption of these photons results in a residual first-order
Doppler shift (5.14) and a small recoil which also has a component transversal
(t) to the original trajectory.

the in-coupling mirror M1 (see Fig. 5.1). If the axis of the cavity and the laser beam
axis enclose a small angle α, the Doppler shift no longer cancels and a residual first order
effect remains. This scenario is depicted in Fig. 5.8, where the blue photon illustrates a
cavity photon and the red photon a “stray photon” from the in-coupling laser beam.

The evaluation of the Doppler shift in the given situation is done in the rest frame of the
moving atom, before the absorption process has taken place. In this frame, initially the
atom has no momentum, no kinetic energy and is in the electronic ground state. The
frequency of the photons is given by the well-known Doppler formula

ω+ = ωL
1 + β cos(θ)
√

1 − β2
, ω− = ωL

1 − β cos(θ−α)
√

1 − β2
, (5.10)

where β = v/c and v is the velocity of the atom along the l-axis, as measured in the
laboratory frame, where both photons are observed with the laser frequency ωL. The angle
α quantifies the misalignment of the laser beam with respect to the cavity axis, while θ
is the angle which the atomic trajectory encloses with the cavity axis. For simplicity, all
three axes are considered to be in one plane. Also, the angles α and θ strictly would have
to be transformed into the frame of the moving atom, but for v � c and in the small
angle approximation, one obtains

φat.frame ≈ φlab.frame

(

1 − v

c

)

≈ φlab.frame (5.11)
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and the aberration is on a level of less than 10−5 for the MPQ setup and is neglected
in the following. For the case of vanishing misalignment, α= 0, the terms of order β in
the numerators of Eq. (5.10) cancel, if the photon frequencies are summed, and only the
second-order time dilation contribution to the Doppler shift remains. This is the situation
every time an atom absorbs two cavity photons. In the case of absorption of one stray
photon and one cavity photon, energy and momentum conservation require

~ω0 +mv′2/2 = ~ω+ + ~ω− , (5.12a)

mv′l = −~k+ cos(θ) + ~k− cos(θ−α) , (5.12b)

mv′t = ~k+ sin(θ) − ~k− sin(θ−α) , (5.12c)

for the case of two-photon resonance. Here, m is the rest mass of the absorbing atom,
k± = ω±/c and v′ = (v′l, v

′
t) is the velocity of the atom after the absorption. Solving for

ωL and expanding to first order in β, one obtains

~ωL =

√

m2c4 +mc2~ω0[cos(α) − 1] −mc2

[cos(α) − 1]

+ β
sin (α/2 − θ)

2 sin (α/2)

(√

m2c4 +mc2~ω0[cos(α) − 1] −mc2
)

. (5.13)

The laser detuning, which is needed to fulfill the 1S–2S resonance in the atomic frame,
therefore reads

2π∆νD1 = 2ωL − ω0 =
1

2
ω0βαθ −

1

4
ω0βα

2 +
1

8
ω0βα

2θ2 +
~ω2

0α
2

8mc2
, (5.14)

to second order in the angles θ and α. With a set of realistic parameters, α = θ = 1 mrad
and β = 10−6, one obtains, in frequency units Hz,

1

2
ν0βαθ = 1233Hz , −1

4
ν0βα

2 = −617Hz , (5.15)

1

8
ν0βα

2θ2 = 3.08 × 10−4Hz ,
hν2

0α
2

8mc2
= 3.35Hz . (5.16)

Especially the contributions from the αθ-term and the α2-term are worth being discussed
in more detail. Since the former is linear in θ, and the signal consists of contributions of
atoms with both positive and negative angles θ, this residual first-order Doppler contri-
bution is expected to average out, if 〈θ〉 = 0. However, in an asymmetric hydrogen beam,
this term could produce a systematic shift, as detailed in Sec. 5.6.1 below.

In contrast, the shift due to the α2 term, although smaller in magnitude, does not average,
and occurs also in a symmetric beam of hydrogen (see Sec. 5.6.2). The reason why the
shift of the observed line center does not reach the large values as given in the estimation
above is, that only a small fraction of the total absorption processes is affected by the
shift. In the MPQ cavity, where a power enhancement of 40 with respect to the in-coupling
beam power is achieved, the assumption of a level 1/40 of stray photons is a reasonable
upper bound. In the following sections, the misalignment effect on the collective signal
is investigated. It should be mentioned, that the results depend sensitively on the ratio
of stray photons and cavity photons, and that a cavity with a higher power enhancement
factor would suppress these systematics.
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5.6. Effect of laser beam misalignment

5.6.1 The αθ-term

In the following, the shift of the observed 2S spectra is examined, which is due to the term
1/2ω0βαθ in Eq. (5.14). By separating the contributions to the total Doppler effect ∆νD1,
it is easier to physically interpret the results obtained in the Monte Carlo simulation. In
order to maximize the visibility of the effect caused by the αθ-term, the trajectories of
the hydrogen atoms were generated in such a way that only positive angles θ occur, lying
in the range [0,10] mrad, as permitted by the experimental geometry. This represents an
asymmetric situation for the hydrogen beam in which, e.g., the upper half of the nozzle is
frozen and the atoms pass the entrance diaphragm only on the lower half, while passing
the exit diaphragm on the upper half. As a function of the misalignment angle, the Monte
Carlo simulation of the spectra at 1210µs delay and the usual beam temperature of 5 K,
results in a line center shift as depicted in Fig. 5.9.

First of all, it is important to observe that the magnitude of the shift of the collective
signal is in the range of ±10 Hz, for a maximum asymmetry, and thus far smaller than
the single-atom estimate in Eq. (5.15), because only in a small fraction of the absorption
processes a stray photon is involved. In addition, although for small angles α, the line
shift depends linearly on α as expected, for large misalignment angles, the shift of the
line center disappears. This effect is also caused by the low level of stray photons, and
can be interpreted as follows (see Fig. 5.10): The total line shape (black line) is the sum
of the contribution of atoms which have absorbed only cavity photons (blue line) and of
atoms which have absorbed one cavity photon and one stray photon (red line). The red
contribution is shifted linearly in α by a large amount, on the order of kHz, while the
blue contribution is unaffected by the misalignment. Because the “stray contribution” is
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Figure 5.9: Monte Carlo results of the residual first-order Doppler shift in an
asymmetric hydrogen beam, interacting partially with stray photons from the
in-coupling laser beam. The angle of misalignment is denoted by α. The offset
of the line center ∆νc of about 428 Hz is due to the dynamic Stark shift and the
second-order Doppler shift.
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Figure 5.10: Interpretation of the Monte Carlo results in Fig. 5.9. The total line
shape of the 2S signal (black line) is composed of a large unshifted contribution
(blue line) and a small contribution (red line), subject to a residual first-order
Doppler shift. The center of the total line shape is only shifted discernibly,
if the red contribution is close to zero detuning (small misalignment α). For
illustrational purposes, the amplitude of the red contribution is exaggerated.

small in amplitude, the center of the total line shape is only significantly affected for the
case that the red contribution is close to this center [cases (2) and (3)]. For large shifts
of the red contribution [case (1)], the center of a fit to the collective signal (Lorentzian
fit or line shape model fit), is not influenced by the small disturbance on the wings of the
signal. For even larger misalignments, the stray contribution is not even in the recorded
frequency range.

For the current 1S–2S experiment at the MPQ, one can conclude that the contribution
from the αθ-term is bounded by ±10 Hz, but realistically it is smaller, since the asymmetry
in the atomic beam, as assumed here, is quite large. In addition, if one assumes small
vibrations of α around zero, or repeated readjustments of the optics, resulting in an
average value of zero for α, the Doppler effect due to the αθ-term averages out during a
day of measurement. However, for small angles, this effect very sensitively depends on α,
so when the precision of the line center fits reaches the 10 Hz level, the large slope of the
∆ν(α) dependence will impose a tight upper limit on the misalignment of the in-coupling
laser beam, if a certain asymmetry of the hydrogen beam cannot be ruled out.

5.6.2 The α2-term

The second important contribution to the residual first-order Doppler shift (5.14) is the
term −1/4ω0βα

2. Since it is independent of θ, it is also independent of the symmetry
properties of the atomic beam, therefore the α2 contribution is also present under perfect
hydrogen beam conditions. A simulation with a symmetric beam of 10 000 atoms at 5 K
and a 1210µs time delay has been performed. The line centers of the collective spectra
for each run with a different misalignment angle α are plotted in Fig. 5.11.

For small misalignment angles α, the collective signal again behaves like expected from the
single atom shift, being shifted proportional to α2. The amplitude of the shift is reduced,
as above, due to the fact that the largest contribution to the signal is unshifted, originating
in the exclusive absorption of cavity photons. A very similar picture like Fig. 5.10 can
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Figure 5.11: Systematic line shift of the collective 2S signal, as occurring in a
cavity with a power enhancement factor of 40 and an in-coupling beam misalign-
ment angle α with respect to the cavity axis. The offset of about 414 Hz is due
to the collective AC Stark shift and the second-order Doppler effect.

be drawn for the interpretation of the fall-off of the collective line center shift for large
misalignment angles, and the characteristic of the α2 contribution to the total line shape
can be explained with the same argument. The only difference is, that here, the red
contribution to the total line shape is always shifted towards positive detunings.

The reason that the two curves in Figs. 5.9 and 5.11 are not centered around the same offset
is, that different hydrogen beam geometries were considered. The integrated dynamic
Stark effect along these trajectories is therefore a little different.

The consequence of this result for the MPQ experiment is, that the α2-contribution can
have an important influence, again when the line center precision is at about 10 Hz. The
most important observation is, that this effect shifts the line upwards systematically, and
therefore does not average out. However, at small angles a deviation from α = 0 is not
as critical as for the αθ-term, because ∂νc/∂α|α=0 = 0.

5.7 Conclusion

The Monte Carlo simulation presented in this chapter has been shown to be able to
model the two-photon excitation process in the MPQ setup to full extent. The simulated
line broadening coefficient, line shift coefficient and laser line width inferred from the
simulation, agree well with the experimentally observed values. This also constitutes
an indirect verification of the 1S–2S transition matrix element, βge, and the dynamic
polarizabilities βAC and βioni of the involved states.

The simulation also provides a strong contribution in identifying an important broadening
contribution, namely the ionization broadening of the collective 2S line shape observed
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in the experiment, which goes beyond the single-atom ionization broadening.

In addition, the simulation has been shown to be a valuable tool to investigate systematic
effects which are difficult to assess or quantify experimentally. In this way, the importance
of nozzle freezing and cavity beam misalignment could be clarified in contributing to the
observed scatter.

For future experiments, this simulation can provide a testing ground for changes of the
setup and for a quantitative evaluation of relative count rates and line shapes for different
setups or detection schemes. In particular, the detection of the ionization fragments
instead of the 2S signal is a promising perspective to increase the signal amplitude. The
generation of the corresponding ionization line shape is already implemented in the Monte
Carlo program.
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Chapter 6

1S–2S Spectroscopy and Possible

Drift of Fundamental Constants

This chapter consists of two main parts. In the first part, the data analysis procedure of
the hydrogen 1S–2S absolute frequency measurement used at the Max–Planck–Institut
für Quantenoptik (MPQ) is examined. This investigation of the existing line shape model
is aimed at the question, whether the very intricate fitting algorithm might be responsible
for the residual scatter which is observed in the results of the line shape fits during one day
of measurement and also among the results for the absolute frequency of different days.
On the basis of direct scrutiny and by comparison with an own independent data analysis,
it an be concluded that the line shape model can be ruled out as the main source of scatter.
This conclusion however leads to the question of which physical processes could explain
the remaining uncontrolled systematics instead. Different candidates for these processes
are examined and specific improvements to the experimental setup are proposed.

The second part of this chapter is dedicated to one of the most exciting insights which
present-day high-precision spectroscopy laboratory experiments are able to provide. The
question of whether the coupling strengths of fundamental interactions in physics are
really constant, or whether they are subject to a temporal change, is addressed. This
question is especially interesting in the context of the search for unified theories, some of
which predict a tiny drift of the observable fundamental constants due to the cosmological
evolution of compact extra spatial dimensions. As a consequence of the very high absolute
precision on the order of 10−14, the considered laboratory experiments reach the same level
of sensitivity to a drift of fundamental constants, within an interval of some years, as do
astronomical and geological investigations, which rely on very long time scales separating
the probing of the constants’ values. Stringent limits on the relative order of 10−15/yr
are derived for the drift of the fine structure constant and the cesium nuclear magnetic
moment, based on the repeated MPQ 1S–2S measurements and an experiment probing
the mercury clock transition in the group of J. Bergquist at NIST.
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6.1 Data analysis and systematic effects

The physical model of the two-photon excitation process, discussed in chapter 2 and the
calculation of experimental observables from this model, as performed by means of a
Monte Carlo simulation in chapter 5, constitute a so-called forward problem. That is,
a set of physical and experimental parameters, e.g., the 1S–2S absolute frequency, is
used as input, and an observable, e.g., the collective 2S spectrum, is obtained as the
output. The data analysis, where one aims to obtain the 1S–2S absolute frequency from
the observed spectra, constitutes the corresponding inverse problem. For the 1S–2S ex-
periment, the data analysis is routinely carried out at the MPQ by a numerical fitting
program, FitAll [101], which is a commercial product, and which has been extensively
adapted to the 1S–2S experiment by A. Huber [102], M. Niering [96] and M. Fischer [23].
This program, referred to as the line shape model (LSM) below, is essentially based on a
Levenberg-Marquardt nonlinear fitting algorithm. In an iterative process, a set of param-
eters is varied, in each step solving the forward problem and minimizing a least squares
figure of merit. After a brief description of this data analysis method in Sec. 6.1.1, the
aspect of specific velocity distributions that enter the LSM is discussed in Sec. 6.1.2. Sec-
tion 6.1.3 is dedicated to the independent verification of the LSM by means of a transpar-
ent data analysis method relying on spectra with low Doppler systematics. In Sec. 6.1.4 a
statistical argument is given to support the observation that some unaccounted systematic
effects exist, and the weighted fitting of the data is briefly addressed. In Secs. 6.1.5-6.1.6,
possible candidates for these systematic effects are examined and improvements to the
experimental setup and to the LSM are proposed.

6.1.1 MPQ data analysis procedure

The analysis of the hydrogen 1S–2S data recorded at the MPQ takes place in three
major stages. First, the time resolved spectra are simultaneously fitted with the LSM,
which contains all the physical modeling of the excitation process, the laser geometry
and the hydrogen beam characteristics. For an example of a LSM fit to a time resolved
experimental spectrum see Fig. 6.1. This is by far the most involved step and is described
in more detail below. From the LSM fit, a frequency value ∆det is obtained for each
spectrum, representing the 1S–2S resonance frequency, already corrected for the second-
order Doppler effect. Since in the LSM the excitation power is fixed to 450 mW, the
dynamic Stark shift is not taken into account correctly for other excitation powers and
therefore has to be corrected for.

For this purpose, in the second stage all results ∆det from the LSM fits are plotted versus
the excitation power (Fig. 6.2, left), which varies in a range of about 100mW . . . 500 mW
during one day of measurement. A linear extrapolation to zero excitation power yields
the absolute frequency associated with that day of measurement.

Finally, in the third stage, a constant is fitted to all day values, i.e., all days of measure-
ment are averaged (Fig. 6.2, right), resulting in the value for the absolute frequency νF of
the 1S(F =1, mF =±1) ⇔ 2S(F ′=1, m′

F =±1) transition. To obtain the centroid 1S–2S
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Figure 6.1: Fit of the line shape model (solid line) to time-resolved experimental
spectra (dots) of the hydrogen 1S–2S transition. All delays are taken into ac-
count simultaneously, as shown on the left hand side. The right hand side plot
shows a close-up for the delays τ≥1210µs, where the signal amplitude is about
two orders of magnitude lower.
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Figure 6.2: Left: Extrapolation to zero excitation power of the line shape model
results of the line center ∆det, for the data of Feb. 13th. The scatter of the ∆det
values, exceeding their respective statistical uncertainty is a strong indication
for remaining systematic effects as investigated in chapter 5 and in this chapter.
Right: Final averaging over the results of all days of measurement.

absolute frequency, the hyperfine splitting νHFS(1S) of the ground state and the hyperfine
splitting νHFS(2S) of the excited state have to be taken into account:

νcent.(1S−2S) = νF +
1

4
νHFS(1S) − 1

4
νHFS(2S) . (6.1)

In the first stage, the LSM fit, a set of seven free parameters is used to fit the experimental
data. These parameters are used to calculate the theoretical line shape of the collective
signal from a set of signal contributions obtained for ensembles of atoms with a constant
velocity and at a constant detuning. This method is described in a little more detail
in Sec. 6.1.7 and in full detail in [102]. In this section, the focus is put on the LSM
parameters, in particular on those which describe the velocity distribution.
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An overall amplitude parameter, A, scales the theoretical line shape to fit the experimental
signal height. The second parameter, ∆det, corresponds to the second-order Doppler
corrected line center shift with respect to a fixed frequency which is determined with the
frequency comb (see Fig 5.1). Four parameters, T , vs, vexp and KnL, are used to model the
velocity distribution as described in more detail in Sec. 6.1.2. The 2S signal contributions
for constant velocity are weighted with this velocity distribution to obtain the theoretical
line shape corresponding to a thermal ensemble in the atomic beam. Finally, a normalized
Lorentzian, with a width parameter FWHMLor is convoluted with the this line shape in
order to account for broadening effects.

These parameters are obviously not the only parameters determining the line shape,
as it also depends on the geometry of the interaction region, as presented in detail in
chapter 5. However, the geometric parameters are taken into account, via the modeling of
trajectories, during the numerical integration of the master equations (2.11), and the seven
parameters mentioned above represent the free parameters which are not included into
the integration of the quantum dynamics. The nonlinear fitting of the seven-parameter
model to the data is a time consuming process and it is therefore desirable to reduce the
number of free parameters by improving the physical model, which would result in a faster
fit. Since only a certain probability to represent the true values can be assigned to a given
set of fitted parameter values, any such estimate of parameters is in general ambiguous,
and the true values might be located closer to a different local minimum of the figure
of merit of the fit. The reduction of the number of free parameters would therefore also
improve the stability of the fitting procedure.

Currently the LSM does not include the ionization channel γi in the integration of the
master equations (2.11). This might have been motivated by the observation that ioniza-
tion does not change the excitation line shape of a single-atom contribution. However, in
view of the results of chapter 5, where a significant ionization broadening was identified
as an effect on the collective signal, one could argue that the FWHMLor parameter could
be removed, or at least its importance be reduced, by including the ionization broadening
into the LSM. This would probably leave only the laser line width to be accounted for by
this free parameter. As will be argued in Sec. 6.1.2, the phenomenological parameters vs

and vexp might also be dispensable by inclusion of the ionization damping, because the
modification to the velocity distribution which is described by those parameters can also
be partly explained by ionization losses.

The most striking feature of the data analysis is the scatter of LSM fit results ∆det around
the expected linear power dependence, as depicted in Fig. 6.2 (left). Since the seven-
parameter regression is a quite involved process, the MPQ group decided to have the LSM
checked by an independent group. For this purpose of direct examination of the program,
FitAll was ported to a Linux environment by the present author. After a thorough
examination of the source code, the sensitivity to initial conditions, and many detailed
cross-checks, it could be concluded that ∆det is an exceptionally stable fit parameter,
especially when the fit takes into account only delays τ ≥ 1210µs. From this analysis,
the LSM could rather confidently be ruled out as the major source of the scatter. A
stronger and quantitative argument is provided by the comparison of the LSM with an
own independent data analysis, described in Sec. 6.1.3.
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In the course of the investigation, a number of different models for the velocity distribution
were tried out and one interesting result is given in the next section. Also, the LSM was
extended with a scripting mode, such that the data analysis can now be run without
manual input.

6.1.2 Models for the velocity distribution

In the MPQ experimental setup, the excitation of atomic hydrogen takes place in a cold
beam which is aligned parallel to the standing wave laser field. For a brief description of
the experimental setup, see chapter 5, and Figs. 5.1 and 5.2. In Sec. 5.5, the implications
of different perturbations on the trajectories are discussed. In this section, the aspect of
the atomic velocity distribution, i.e., the distribution of the absolute value of the velocities
f(|v|) = f(v), will be addressed, as it enters the data analysis by means of the MPQ line
shape model.

For an ideal gas in thermal equilibrium, the velocity distribution is a Maxwell-Boltzmann
distribution, which is uniquely defined by one parameter, the temperature T . For an
effusive beam flowing from a thermalized volume through a diaphragm into a small solid
angle, the normalized Maxwell-Boltzmann distribution of atoms, passing the diaphragm
in a given time interval, reads [98]

fM(v) =
2

v0

( v

v0

)3

exp[(v/v0)
2] , v0 =

√

2kBT

m
. (6.2)

Note that this expression for the velocity distribution of the one-dimensional flow differs
from the velocity distribution in a stationary gas cell, where f(v) ∝ v2 for small velocities.
Individual atoms in the effused dilute beam are assumed to no longer interact. This is
also implied in the Monte Carlo simulations, where only straight trajectories are taken
into account. It has been observed by the MPQ group [102] that a better agreement of
the LSM and the experimental spectra is achieved, if the velocity distribution f(v) is
suppressed for low velocities by means of the model

fs(v) =







fM(v)
( v

vs

)vexp−3

v < vs ,

fM(v) v ≥ vs .
(6.3)

For velocities below the suppression threshold vs, the v3-dependence is replaced by a vvexp

dependence. In addition to the temperature, this model introduces two free parameters vs

and vexp into the LSM. In order to give a physical interpretation to this phenomenological
approach, the new loss model

fl(v) = fM(v) exp[−a(v/v0)−b] , (6.4)

was introduced into the LSM. It avoids the unphysical threshold velocity and the asso-
ciated discontinuity in the first derivative of the velocity distribution. The exponential
damping for small velocities is motivated by the fact that atoms which are ionized during
the interaction do not contribute to the signal. The lower an atom’s velocity, the longer
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Figure 6.3: Comparison of the low-velocity tails of different velocity distributions
f(v) in a beam of atomic hydrogen, corresponding to a temperature of 5 K. The
Maxwellian velocity distribution of an effusive beam (6.2) is plotted as a black
solid line, the vs-model (6.3) with vs =30 m/s and vexp =5 is plotted in red. The
loss model (6.4), with parameters a= 0.01 and b= 1.5, is shown in blue. Left:
direct comparison of the velocity distributions. Right: suppression of atoms with
low velocities relative to a Maxwellian distribution. The relative loss of atoms
from an initial Maxwellian distribution due to ionization, obtained from a Monte
Carlo simulation, is denoted by the black dots. The Monte Carlo results can be
represented in terms of the loss model with parameters a=0.02 and b=0.75.

is the mean interaction time and the higher is the probability of being ionized. The loss
model also introduces two parameters and shows comparable success in fitting the ob-
served lines. However, the parameter a turns out not to be a very stable fit parameter
and displays a large fitting uncertainty. In Fig. 6.3, the three models are compared for
typical parameters, with the focus on the relevant low-velocity regime. On the left hand
side, the different modifications to the Maxwellian velocity distribution by the vs-model
and the loss model are displayed. Since the modification is in general a very small effect,
the suppression of atoms relative to the Maxwellian distribution is depicted on the right
hand side of the figure.

The comparison shows, that both the vs-model and the loss model effectively suppress
the slow atoms, but in a quite different fashion. The loss model also removes atoms
above the threshold velocity vs, approaching zero suppression for large velocities. The
fact that the loss model is quite successful in the fitting of the experimental spectra is a
hint that ionization losses might actually be responsible for the suspected suppression of
slow atoms. To support this argument, a Monte Carlo simulation of the excitation process
at very small velocities was performed and the ionization loss to the initial Maxwellian
velocity distribution was was evaluated. The result is plotted in Fig. 6.3 (right). The
magnitude of the ionization loss is not on the same level as represented by the vs-model
and the loss model, indicating that there are additional processes removing of slow atoms
in the beam, e.g., collisions with the background gas or intra-beam collisions, scattering
out very slow atoms.

It should be mentioned that the LSM takes into account an additional modification of
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the velocity distribution, the Zacharias effect [98, 102]. This effect is caused by the finite
length of the nozzle and is parameterized by the Knudsen number KnL = λ̄/Lnozzle, which
is the ratio of the mean free path of atoms in the nozzle and the nozzle length. This effect
shifts the distribution in the whole range of velocities. For a discussion of the relative
suppression of the very slow atoms, this effect is therefore negligible.

6.1.3 Full line shape model and Lorentz data analysis

The analysis of the absolute frequency measurement by means of the line shape model
discussed above, is an involved nonlinear fitting procedure in a seven parameter space,
which is computationally demanding. On a 2.4 GHz Opteron machine, the automated
evaluation of one day of measurement as implemented by the present author takes about
10 hours. A faster data analysis routine would therefore be desirable for online evaluation
or neartime evaluation in the lab on the same day. Ultimately, for a feedback loop
stabilizing an all-optical clock, a sub-second analysis of the line shape would be desirable.

However, any model which is simpler than the full line shape model must also prove
that it does not sacrifice precision for speed. In this section, a fast data analysis method
is presented, which relies on fitting a Lorentz line shape to the raw data. As is to be
expected, this method only works for spectra with long delay τ , where the data display a
symmetric line shape. For these data, the systematic Doppler shift is small, but still has
to be accounted for.

In addition, the Lorentz approach provides a LSM-independent evaluation of the hydrogen
1S–2S absolute frequency, taking into account all recorded data corresponding to a specific
delay, and as such constitutes an independent verification of the LSM. It should be stressed
that it has become possible to reliably fit selected single delays from the whole data
set, because of a number of experimental improvements achieved by the MPQ group as
compared to the 1999 setup. A substantially higher stability of the primary laser beam,
improvements of the vacuum, enlargement of the detection solid angle, a hydrogen chopper
and an improved shielding of the interaction region, contributed to an excellent signal-to-
noise ratio and high count rates even for the longest delays. The counts in the time bins
with long delays originate from an atomic ensemble from a narrow, low-velocity interval
of the velocity distribution of the atomic beam, and therefore are not very sensitive to
the overall distortions of the velocity distribution. Therefore, the high-τ spectra resemble
very closely a Lorentzian lineshape of an atom at rest.

The Lorentz data analysis has been performed as follows. The MPQ raw data files (e.g.,
10 02 02.dat) which contain the count rates of the time-resolved spectra as a function of
AOM frequency, have been automatically split into 12 separate files, each containing one
spectrum of delay τ = (10, 210, . . . , 2210)µs. In order to ensure the comparability with
the LSM, the manual line cuttings as recorded in the respective inf files have also been
applied. This line cutting removes extensive stretches of zero count rate far off resonance,
as a function of τ .

For a specific delay, the generated set of files corresponding to each day of measurement
were loaded into a Mathematica notebook in which a Lorentzian (5.4) was fitted to the
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line and the resulting line centers and line widths were recorded as a function of excitation
power. The excitation power was obtained from the UVN-2 voltage value at the photo-
diode detector as recorded in the dat files, and converted by means of the power-voltage
calibration curves provided by the MPQ group.

An exemplary set of results obtained from the Lorentz analysis is presented in Fig. 5.3
(left) for spectra with delay τ=1210. At this stage, the only difference to corresponding
LSM results is that the second-order Doppler shift still has to be accounted for. Note
that in the analysis of the power shift coefficient kshift, a constant frequency offset was
irrelevant. As has already been discussed above [see e.g. Eq. (2.13)], in order to obtain
the true resonance frequency of an atom at rest, the second-order Doppler shift of

δν(v) = νL

(v

c

)2

(6.5)

has to be added to the measured resonance frequency, because the frequency in the moving
atom frame is blue shifted with respect to the laboratory laser frequency. Here, νL is the
laser frequency in Hz and v denotes the speed of the atom. In the model-independent
Lorentz analysis, the Doppler shift correction is calculated starting from a Maxwellian
velocity distribution (6.2) for the atomic beam. The frequency correction of the Lorentzian
fits of a given delay τ is calculated as the mean second-order Doppler shift 〈δν〉 in an
effective atom velocity distribution fτ (v):

〈δν〉 =

vmax∫

0

dv fτ (v) δν(v)

vmax∫

0

dv fτ (v)

, (6.6)

where vmax is the maximal velocity of excited atoms reaching the detector, and is given by
the length of the interaction region divided by the respective delay time τ . The effective
velocity distribution

fτ (v) = fM(v)

(

1 − v

vmax

)

(6.7)

takes into account the fact that the Maxwellian velocity distribution fM(v) of atoms in the
beam and the velocity distribution of atoms contributing to the signal fτ (v) are different.
Atoms from the original velocity distribution, although being excited to the 2S state, can
pass the detector during the time τ after the beginning of the dark phase. Because at
the start of the dark phase, all atoms with a specific velocity are evenly distributed along
the longitudinal coordinate in the interaction zone, the higher the velocity of a class of
atoms, the larger is the fraction of atoms which pass the detector unnoticed. This can
be illustrated best by considering the class of atoms with v = vmax. By the time the
detector starts binning the counts for the considered delay τ , all these atoms have passed
the detector and do not contribute to the signal, and consequently, fτ (vmax) = 0. The
following table lists the mean frequency shift 〈δν〉 as a function of delay for a 5 K atomic
beam of the MPQ setup.
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τ 610µs 810µ 1010µs 1210µs 1410µs 1610µs 1810µs 2010µs 2210µs
〈δν〉 211 Hz 122 Hz 79 Hz 55 Hz 41 Hz 31 Hz 25 Hz 20 Hz 17 Hz

If one approximates the velocity distribution in the relevant low-velocity regime to be of
the form f(v) = a vb, one obtains

〈δν〉 =
(1 + b)(2 + b)

(3 + b)(4 + b)
δν(vmax) , (6.8)

which can be used as an approximation on the 1 Hz level for delays of about τ = 1210µs
and longer.
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Figure 6.4: Comparison of 1S–2S absolute frequency results obtained from the
LSM analysis (black circles) and the independent Lorentz analysis (blue trian-
gles) as a function of day of measurement. The LSM fit was performed using the
basic MPQ model (T, vs, vexp, KnL) for the velocity distribution, including the de-
lays τ = 1210, 1410, . . . , 2210µs. An unweighted mean and the standard error of
the mean are indicated by solid and dashed lines, respectively. The Lorentz anal-
ysis is shown for the delay τ = 1210µs, corrected for the second-order Doppler
shift according to Eq. (6.6) with a Maxwellian velocity distribution correspond-
ing to a temperature of 5 K. The error bars indicate the standard error of the
linear extrapolation to zero excitation power. The frequency detuning ∆ν de-
notes the 1S–2S absolute frequency relative to the 1999 result [6]. In the fitting
of the spectra, in both the LSM and the Lorentz analysis, a σ(n)-weighting was
performed (see Eq. 6.17) below, while the zero-power extrapolation and the av-
eraging of the day results was performed without weighting (see Sec. 6.1.4). The
systematic trend that, e.g., the day value of Feb 17th is far above average, and
the day values of Feb 24th and 25th are below the average, is equally observable
in the Lorentzian analysis of the delays other than 1210µs, as well as the LSM
analysis with different models for the velocity distribution.
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The Doppler corrected values of the line centers were then extrapolated to zero excitation
power, as shown in Fig. 5.3 (left), with a linear model. The final results for the 1210µs
Lorentz analysis of all days of measurement are shown in Fig. 6.4, together with a LSM
analysis using the MPQ model for the velocity distribution. For comparability, the LSM
analysis was performed taking into account only the delays τ = 1210µs and longer, for
which the Lorentz analysis is self-consistent (see Fig. 6.5).

From this comparison, some important conclusions can be drawn. First of all, the results
of the two independent data analysis methods are in mutual agreement. This is a strong
indication that both methods do not contain substantial errors in evaluating the raw data.
Second, the deviations from the mean value of each day of measurement show the same
trend in both evaluations, e.g., the final result of February 17th is significantly higher
than the final result of February 24th. This suggests that the scatter of the values around
the mean is not caused by a statistical uncertainty but that rather a systematic effect is
responsible for the observed scatter. Some possible candidates for this systematic effect
have already been encountered in chapter 5, and more are discussed below. As the stan-
dard errors of both the LSM results and the Lorentz results are of comparable magnitude,
statistics is obviously not a limiting factor for the Lorentzian analysis, although it is based
only on a single delay of the 12-delay data set. This is a direct benefit of experimental
improvements and therefore should be put to use at least for a preliminary evaluation
during future measurements. Finally, the observed agreement is also an indication that
the simplified second-order Doppler correction (6.6) works well for the spectra with long
delays.

In Fig. 6.5, the final day averaged results of the Lorentz analysis are shown as a function of
delay under consideration. The 1210µs value corresponds to the unweighted mean of the
Lorentz results shown in Fig. 6.4. For the delays 1210µs and longer, the Lorentz analysis
yields self-consistent results, while for shorter delays, this is no longer the case. As is to
be expected, the Lorentzian approximation to the line shape gets worse for shorter time
delays, where the recorded spectra show significant asymmetries.

6.1.4 Weighting and χ2
r in the data regression

One special aspect of the data analysis will now be considered closer, namely the weighting
of individual data points at the different stages of fitting: (i) LSM fit to the time-resolved
spectra (Fig. 6.1), (ii) linear fit to the νc-power plot (Fig. 6.2, left) and (iii) averaging of
the day values (Fig. 6.2, right). In the MPQ data analysis, weighting is not used in any
of these steps. It will be argued that weighting makes sense for the analysis of the raw
data in the LSM and the Lorentz analysis for delays τ ≥ 1210µs, but that it is justified
not to weight the individual data points for the fits at stages (ii) and (iii). In the Lorentz
analysis in Sec. 6.1.3, the proposed weighting procedure has been applied.

Performing a fit of a model to data points amounts to minimizing a figure of merit, which
normally is the sum of squared deviations of the model from the data points, where in a
weighted fit, each deviation in the sum is multiplied by a weighting factor. The results
of such a fit have to be interpreted in probabilistic terms. How probable is it to find
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Figure 6.5: Comparison of the day-averaged result obtained with the lineshape
model (solid line; dashed lines indicate 1σ uncertainty) with independent day-
averaged results from a Lorentz analysis of spectra with a specific delay τ (sym-
bols). The dynamic Stark shift is taken into account in both cases by a linear
extrapolation to zero excitation power. In the Lorentz analysis, the second-order
Doppler effect is corrected for by Eq. (6.6), with a 5 K Maxwellian velocity
distribution (blue triangles) and with a v5-distribution (red diamonds). The
Lorentzian analysis agrees well with the line shape model result for long delays,
but is limited by line shape asymmetries at delays τ . 1210µs.

the true values in a given interval about the parameters resulting from the fit? Is the
model appropriate? These questions can be answered by considering the reduced χ2

r of
a fit, which provides valuable additional information. To recall the reduced chi-square
χ2

r -distribution (see, e.g., [103]), consider the random variable

S =
1

n

n∑

i=1

X2
i , (6.9)

as a function of mutually independent random variables Xi that are assumed to be stan-
dard normally distributed, i.e., with zero mean and a standard deviation of unity. The
corresponding Gaussian probability densities of the Xi will be denoted by ρXi

(xi). Then
the probability density for the realization {x1, . . . , xn} of the {X1, . . . , Xn} is the product

ρX1,...,Xn
(x1, . . . , xn) =

n∏

i=1

ρXi
(xi) , (6.10)

and the probability density for S is [103]

ρS(s) =

∫

dx1 . . . dxn δ(s− x2
1/n . . .− x2

n/n) ρX1,...,Xn
(x1, . . . , xn) . (6.11)
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Inserting a standard normal distribution for the ρXi
, one obtains:

ρS(s) =

∫

dx1 . . . dxn δ(s− x2
1/n . . .− x2

n/n) (2π)−
n

2 e−
1
2
(x2

1+...+x2
n) (6.12a)

= n
(ns)

n

2
−1 e−

ns

2

2
n

2 Γ
(
n
2

) =: ρχ2
r
(s) . (6.12b)

This probability density is called the χ2
r -distribution with n degrees of freedom. Its

expectation value and variance are

〈χ2
r〉 =

∞∫

0

ds s ρχ2
r
(s) = 1 , var(χ2

r ) =

∞∫

0

ds (s− 〈χ2
r 〉)2 ρχ2

r
(s) =

2

n
. (6.13)

This means that for a random realization {x1, . . . , xn}, the value of s = (x2
1 + · · ·+ x2

n)/n
falls into the interval I=[1-

√

2/n, 1+
√

2/n] with a certain probability, given by the
integral of (6.12b) over I, which tends to 68.3 % for large n. The important point this
implies is that if the sum of squares s is far outside of the interval I, the corresponding
xi represent an extremely unlikely realization from a statistical point of view. To apply
this formalism to the data analysis, consider the case where

Xi =

(
f(i) − Yi

σi

)

, (6.14)

where f(i) is a physical model that gives a prediction for the ith data point Yi. The
statistical uncertainty of the data point, which is assumed to obey Gaussian statistics
for a repeated measurement, is denoted by σi. If, and only if, (i) the physical model is
appropriate, giving the correct mean of the Yi and (ii) the uncertainty of the data is only
given by the statistical uncertainty σi and is not in fact larger, then the Xi are standard
normally distributed. For a given realization {y1, . . . , yn} of the Yi in Eq. (6.14), and a
best-fit physical model with m parameters, the reduced χ2

r is given by

χ2
r =

1

dof

n∑

i=1

x2
i , (6.15)

and is a measure of the mean squared deviation of the model in terms of the individual
standard uncertainty of each data point. Here, dof=n−m denotes the adjusted number of
degrees of freedom. For the resulting value of χ2

r , the confidence level of the fit is defined
as the integral over “worse” realizations

CL(χ2
r ) =

∞∫

χ2
r

ds ρχ2
r
(s) . (6.16)

This is the basis for the so-called chi-square test for the goodness of a fit. A low confidence
level, corresponding to a value of χ2

r far above I, indicates either an extremely unlikely
set of data or the violation of assumptions (i) or (ii). If the experiment is repeated and
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the fit results in the same low confidence level, one therefore can conclude that either
the physical model is not appropriate or that the uncertainties of the data have been
underestimated.

In the first fitting stage of the MPQ data, the LSM fit to the time resolved spectra,
an experimentally determined σi is used. By varying the excitation power and keeping
all other parameters fixed, the MPQ group has experimentally characterized the count
rate statistics in the 1S–2S excitation process. For a mean count rate n, the standard
deviation is best described by the non-Poissonian model

σ(n) =
√
n+ 0.025n . (6.17)

The Poissonian
√
n-behavior for a statistical count rate is dominated by a linear noise

term for larger count rates, suggesting an explanation in terms of laser power fluctuations.
Using this uncertainty for each data point, the χ2

r -test of the LSM fits taking into account
all delays τ≥1210µs yields satisfactory confidence levels.

At the second stage, which is the linear fit to the excitation-power dependence (see Fig. 6.2,
left), one obtains χ2

r = 6.5 with I =[0.8, 1.2] and consequently a confidence level of close
to zero for the data of Feb. 13th shown in the figure, and similar values for the other
days of measurement. At this stage, there is not much doubt about the linear model,
even though it has been observed in the Monte Carlo simulations in Sec. 5.4.3, that a
small nonlinearity exists for high excitation powers. One must therefore conclude that
the true uncertainty of the data is not purely statistical, and unaccounted systematic
effects exist. The recording of a single spectrum is completed in less than one minute.
Since the χ2

r -test is successful for the LSM fits, but fails for the linear extrapolation, this
hints at the presence of systematic effects that shift the line centers on a rather slow time
scale. The systematic effects of the nozzle freezing, and an unsteady excitation power
calibration as presented in the sections below, are two examples of such possible effects.

As the χ2
r -test yields no acceptable confidence level on the basis of the purely statistical

uncertainties of the data, it is also not advisable to choose the χ2
r as the figure of merit

to be minimized in the fit. An unweighted fit, ignoring the individual uncertainties is
therefore appropriate at stage (ii). Consequently, as the chain of purely statistical uncer-
tainties is broken, at stage (iii) the averaging of the day results should also be performed
by an unweighted fit. Of course, this procedure will have to be reconsidered in future
experiments.

6.1.5 Effect of unsteady power calibration

As was experimentally observed by the MPQ group, the maximum laser power which can
be reached in the enhancement resonator, as indicated by the photodiode (see Fig. 5.1),
is slowly dropping in time during the measurement of several spectra. After a break,
the maximum photodiode readout is restored. One possible explanation suggests that
it is not the actual excitation power that drops, but that the transmittivity of the out-
coupling mirror changes, as a result of a deposition of molecular hydrogen on the mirror
surface. The deposited hydrogen molecules could scatter a fraction of the incident light,
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reducing the transmittivity. In the following, the consequences of the transmittivity-effect
are investigated, and a method to check and correct for this effect is proposed.

If the transmittivity of the out-coupling mirror changes in time, this implies that the mea-
sured voltage underestimates the true excitation power, with the discrepancy increasing
in time. As a result, the power calibration would not be valid for all recorded spectra.
The fact that the observed line shift coefficients kshift [see Fig 5.5 (right)] exhibit sig-
nificant scatter, could be a consequence of this systematic. In Fig. 6.6, the scenario of
unsteady transmittivity is illustrated with exaggerated magnitude. The dots represent
the line centers of 1S–2S spectra, recorded with a random excitation power in a fixed
range. This simulates the scenario that the real excitation power does not suffer from
a decay in maximum magnitude. However, the photodiode voltage assigned to each dot
is assumed to result from one out of three different mirror transmittivities, resulting in
three distinct clouds of simulated data points.

An extrapolation of the line center shifts νc to zero photodiode voltage, indicated by the
solid lines, leads to mutually consistent results, if only the data points corresponding to
a constant transmittivity are taken into account. However, if all data are included, a
systematically higher value for the extrapolated result is obtained. This shows that the
knowledge of the absolute value of the transmittivity is not crucial for the extrapolation,
but that an unsteady mirror transmittivity results in a systematic upwards shift of the
result of one day of measurement.
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Figure 6.6: Exaggerated illustration of the effect of a possible unsteady trans-
mittivity of the out-coupling cavity mirror. The shifts of the line centers, νc, are
distributed in a fixed range, corresponding to a constant range of true excitation
powers. The corresponding voltage values are distributed in three differently
scaled ranges, representing three different mirror transmittivities. Linear zero-
voltage extrapolations of the simulated data points belonging to a specific trans-
mittivity are shown as solid lines, a linear extrapolation of all simulated data is
indicated by the dashed line. A varying transmittivity results in an upward shift
of the extrapolation to zero voltage.
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Figure 6.7: Proposal for an improved cavity power measurement scheme. A
reference beam is used to probe the transmittivity T of the out-coupling mirror
M2. Detector D1 measures the power P1 = P · 90% · X · T , detector D2 is
exposed to the power P2 = P · 10% · T , and D3 detects the power P3 in front
of the first beam splitter. From the three signals, the power enhancement X
and the transmittivity T can be obtained, without inserting an optical element
into the interaction zone. The 9:1 power splitting ratio is chosen arbitrarily to
illustrate the principle.

Assuming that deposited hydrogen molecules scatter part of the incident light, not only
the transmittivity T of the out-coupling mirror is affected, but also the power enhancement
X itself is influenced, because the incoherently scattering hydrogen removes power from
the resonator mode. To account for these two separate effects, an extension to the power
measurement setup is proposed as depicted in Fig. 6.7. It has the advantage of providing
both a quantitative measure for the transmittivity and for the actual power stored in the
resonator. In addition, this is achieved without inserting any device inside the interaction
zone.

From the primary beam coupled into the cavity, a small part is diverted by means of
a beam splitter, before it reaches the in-coupling mirror. This reference beam is then
directed through the out-coupling mirror at some angle with respect to the cavity axis,
bypassing the interaction region and passing through the out-coupling mirror at the same
spot, where the axis of the cavity mode is situated. In this way, the reference beam is
attenuated by the same amount as the light power per direction in the cavity, before
reaching the respective detectors. By dividing the power P1 measured by detector D1, by
the power P2 of the detector D2 monitoring the transmitted reference beam, the power
enhancement factor X can be obtained. By means of an additional power measurement
on the primary beam with detector D3, the absolute excitation power in the cavity can
be monitored, as well as the transmittivity.

There are however some experimental challenges with this approach, which need to be
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Figure 6.8: Proposal for a nozzle with a radius larger than the radius of the
entrance diaphragm D1. Only atoms passing the entrance diaphragm D1 can
contribute to the signal. The adhering layer of molecular hydrogen restricts
the atomic trajectories in the present setup (left), whereas in a larger nozzle
there would be room for some unavoidable hydrogen frost, without changing the
conditions at the entrance D1 to the interaction region (right).

mentioned. First, the calibration of the power detectors must be much more stable than
the suspected unsteady transmittivity. In addition, the use of three detectors instead of
one renders this aspect even more important, especially because the quotient of a strong
and a weak signal is involved. Second, to align the invisible reference beam to the right
spot on the out-coupling mirror might prove to be difficult. Finally, the absorption of the
additional beam splitters and mirrors introduced need to be taken into account, at least
if the goal of an absolute power measurement is aimed for in future experiments.

6.1.6 Freezing nozzle

As has been investigated in detail in Sec. 5.5, an uncontrolled congestion of the hydrogen
nozzle can have an effect on the line center of the collective 2S spectrum via the dynamic
Stark shift. The film of hydrogen adhering to the nozzle can restrict the trajectories,
which contribute to the signal, closer to the center of the Gaussian laser mode at the
entrance to the interaction region. As a consequence, the atoms are on average subject
to a larger dynamic Stark shift, suffering a systematic shift upwards in frequency.

Since the hydrogen layer thickness is difficult to quantify, a solution to this problem which
could tolerate a moderate amount of hydrogen frost is proposed in Fig. 6.8. The use of a
nozzle that is somewhat larger than the entrance diaphragm, as depicted, would present
an inexpensive way to reduce the possible systematic effects from the nozzle freezing. In
this setup, the growth of a layer of hydrogen frost, which is probably unavoidable, would
not influence the trajectories of the atoms contributing to the signal, as long as the layer
thickness does not reach the difference of nozzle radius and radius of the diaphragm.
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6.1.7 Power-dependent line shape model

The original LSM relies on the numerical integration of the master equations (2.11) with-
out the ionization terms involving γi and for a fixed intensity of 450 mW per direction.
As the actual excitation power in the setup varies from about 60 mW to 660 mW, the
LSM accounts for this discrepancy by scaling the overall amplitude A of the theoretical
model fitted to the data. If the proposed excitation power measurement scheme in Fig 6.7
is implemented, or the absolute excitation power is determined with a different method,
the numerical integration of (2.11) can be performed including the corresponding inten-
sity distribution, and a set of improvements can be integrated into the LSM program, as
proposed in the following.

As already mentioned above, the MPQ line shape model involves a phenomenological
width parameter. A normalized Lorentzian function with full width at half maximum
FWHMLor is convoluted with the result of the numerical quantum dynamics calculation
in order to account for the total width observed in the experiment. This parameter is
needed because there are at least two broadening effects, which are not included in the
LSM: (i) the laser line width of the driving laser and (ii) ionization broadening of the
excited 2S state.

The ionization broadening of the collective signal can be described using the EOM (2.11)
by including the excited state ionization rate γi = (2πβioni) I(t). In Sec. 5.4, it was demon-
strated that this description agrees very well for the Lorentz analysis of the experimental
spectra. This result suggests that the excited state ionization γi should also be included
into the LSM, which would increase the accuracy of the LSM and would probably reduce
the parameter FWHMLor to FWHMLaser.

In addition, the quantitative treatment of the excited state ionization in the framework
of the LSM would implicitly generate a suppression of slow atoms in the velocity distri-
bution contributing to the collective signal. As has been pointed out in Sec. 6.1.2, in
the current LSM this suppression is modeled by the phenomenological parameters vs and
vexp. It would be a significant simplification of the nonlinear fitting process, if these two
parameters could be abandoned due to the inclusion of the ionization channel.

The main reason why the LSM is based on the master equations (2.11) for a single ex-
citation power is that the computation of the required v-∆ν-matrices takes a significant
amount of time. In these matrices, the signal contribution for a class of atoms with fixed
velocity v and laser detuning ∆ν is stored, as it is obtained from a numerical integra-
tion of (2.11) with γi = γs = 0. During the integration, a large number of trajectories is
taken into account for atoms with 95 velocities in the range [3. . . 3400] m/s and at 40
detunings spanning ±50 kHz. The LSM fitting program FitAll then constructs the collec-
tive theoretical line shape from these matrix contributions, weighted with the respective
velocity distribution and shifted by ∆ det in order to find the optimal values for the fit
parameters. This method avoids integrating the master equations for every iteration in
the fitting procedure and should of course be maintained. However, the increase in com-
putation power has reduced the time needed to generate a set of matrices (one for each
delay τ) to about 20 hours on a single processor of the MPI-K computer cluster in 2006
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as compared to M. Fischer’s evaluation in 2003, which needed about one week [23], and
A. Huber’s original runs in 1997, which took several weeks [102].

A power-dependent LSM could therefore be implemented in the existing framework as
follows. A set of matrices for different excitation powers could be generated, e.g., for
a set of excitation powers {50,100, . . . , 700} mW per direction, in parallel on several
nodes of the cluster. The recorded experimental spectra could then be sorted into the
corresponding excitation power bin and the LSM analysis would be performed with the
v-∆ν-matrices which were generated for the excitation power closest to the measured
power. In this approach, the generation of the power-dependent matrices would take
280 processor hours instead of 20, but only once, while time needed by the LSM fitting
procedure for each spectrum would not increase.
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6.2. Test of the drift of fundamental constants

6.2 Test of the drift of fundamental constants 1

6.2.1 Introduction

When P. A. M. Dirac first proposed his large number hypothesis in 1937 [104], it was
motivated by the observation that the ratio of the gravitational force and the electromag-
netic force acting on, e.g., a proton and an electron, is on the same order of magnitude
as the ratio of a natural atomic time scale and the age of the universe. Following Dirac,
this could be an indication that so-called large numbers, like this ratio of 1039, would not
have to be explained ab initio by a unified theory of all interactions, as opposed to small
numbers like, e.g., the mass ratio of the proton and the electron. Instead, the coupling
strengths of the fundamental interactions could be related in some functional form to the
age of the universe. As a consequence, the “constants” like the fine structure constant or
the gravitational constant would be subject to a temporal change.

In some approaches to unification of the fundamental interactions [105], generalized
Kaluza-Klein (KK) theories, and more recently string theories, suggest the existence of
extra spatial dimensions, extending the 4-dimensional manifold of general relativity to
4+N dimensions. With N≥7 extra compact dimensions with a mean radius RKK on the
order of the Planck length, the metric tensor of a Kaluza-Klein model can incorporate
general relativity as well as the gauge symmetries of the strong, weak and electromagnetic
interactions [106]. As it is generally accepted that the observable universe is expanding,
i.e., the scale of the three extended dimensions of space is increasing, it is natural to
suggest that also the scale of the compact dimensions should vary in time [107]. This
variation ṘKK 6= 0 of the hypothetical extra dimensions, would lead to a variation of
fundamental constants as observed in the 4-dimensional world [105].

The fine structure constant α, with

α−1 = 137.035 999 11(46) (6.18)

(2002 CODATA recommended value [12]), is an especially attractive candidate for inves-
tigations of a possible drift, because it is dimensionless. Any possible drift of a constant
involving units cannot be interpreted without additional assumptions, since the reference
unit could also be subject to drift. Vice versa, a zero drift within the observational un-
certainties could be the result of two cancelling drifts, which might have been observable
separately.

Astronomical measurements with the HIRES spectrograph on the Keck I telescope in
Hawai’i [25, 108], have found strong indications that far back in the past, the fine struc-
ture constant α was different from today’s value (6.18), which is known with a relative
uncertainty of 3.3× 10−9. Investigating the absorption spectra of intergalactic gas clouds
in the line of sight towards an even more distant quasar, in a first step the above authors
determined the redshift of each cloud, from which the look-back time can be obtained
via the Hubble relation. In a second step, transition frequencies of absorption lines due

1The results of this section have been obtained in close cooperation with the hydrogen spectroscopy
group of T. Hänsch at the Max-Planck-Institut für Quantenoptik, Garching

125



Chapter 6: 1S–2S Spectroscopy and Possible Drift of Fundamental Constants

to the presence of a number of heavy ions were measured. Since in the non-relativistic
limit, all optical transition frequencies scale with α2, a possible drift of α cannot be ob-
served by comparing different optical transitions in the much more abundant hydrogen
or helium atoms, because in the frequency ratios, α2 would always cancel. The critical
ingredient is therefore a different functional α-dependence of the transition frequencies
due to relativistic and many body effects [109] as also discussed below. The result of the
quasar absorption spectroscopy in a look-back time interval of 0.4 to 0.9 times the age of
the universe, is [25, 108]

∆α

α
= (−5.42 ± 1.16) × 10−6 (6.19)

for an assumed constant difference ∆α of the past and the present values, and

α̇

α
= (6.40 ± 1.35) × 10−16/yr (6.20)

for an assumed linear drift. One should mention that astronomical measurements have the
disadvantage that a possible spatial variation of the fine structure constant could mimic
the observed results, interpreted as a temporal variation (6.20), because the distances of
the gas clouds under study from the Earth are on a cosmological length scale, and in
addition they are observed in different directions.

Other groups have investigated a phenomenon which occurred about 2 × 109 years ago,
here on the Earth. In these early times, a natural fission reactor was in operation in
a uranium deposit at Oklo, Gabon, and the resulting neutron flux changed the isotope
ratios of several lanthanoids like samarium and gadolinium from the natural abundance
ratios, as they can be observed outside the uranium deposit [26, 110, 111]. Although
the relevant nuclear transmutation n + 149Sm → 150Sm + γ is mediated by the strong
interaction, the cross-section for this process very sensitively depends on the Coulomb
energy of the excited intermediate state of 150Sm, bringing the electromagnetic interaction,
and therefore α, into play. Depending on different models used in the interpretation, either
a null result or a significant drift of α is obtained, both on the level of 10−17/year. The
additional inclusion of gadolinium abundance ratios supports the null result [26]. This
shows one major difficulty that is characteristic for experiments that look far back in time.
Some systematic effects must be taken into account on the basis of assumptions, and the
experiment cannot be repeated under improved conditions.

In contrast, in the laboratory, systematic effects can be assessed in a much more direct
fashion and actively suppressed in an improved setup. In the following, the results of such
a project, which has taken place in collaboration with the hydrogen spectroscopy group
at the MPQ [112] are reported.

6.2.2 Analysis of the laboratory measurements

As opposed to the observations reported by [25, 26, 108, 110, 111], high-precision spec-
troscopy of atomic resonances can test the drift of fundamental constants at present
times and restricted to a comparably small part of the universe. If the constants under
consideration were truly fixed, one should obtain a zero drift in experiments sensitive to
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every time scale. However, if a drift was real, its magnitude might be different at different
times, as was already pointed out by Dirac [104]. It is at least not unintuitive to conceive
a large drift of fundamental constants in the past, while during the ageing and cooling of
the universe, the constants “settle” and today’s drift is small.

In the experiments at the MPQ [6,112] in the years 1999 and 2003, the absolute frequency
of the 1S–2S two-photon transition in atomic hydrogen has been very accurately compared
to the time standard, the SI second, which is defined in terms of the 133Cs ground state
hyperfine transition frequency, νCs, and was realized by means of a cesium fountain clock.
From these observations, a limit on the drift of the 1S–2S transition frequency relative
to the cesium clock over a time interval of 44 months could be derived. In combination
with the limit on the drift of another optical transition frequency in mercury [24] separate
statements on the drift of the fine structure constant and the cesium nuclear magnetic
moment can be derived.

The transformation of these observed independent limits on the drift of two optical transi-
tion frequencies to separate limits on the drift of fundamental constants is presented in the
following. The 1999 and 2003 results of the MPQ measurements of the absolute frequency
of the hydrogen 1S(F =1, mF =±1) ⇔ 2S(F ′=1, m′

F =±1) transition read [112]

νH,1999 = 2 466 061 102 474 880(36)(28) Hz , (6.21)

νH,2003 = 2 466 061 102 474 851(25)(23) Hz . (6.22)

Here the uncertainties given in the first brackets are the statistical uncertainties, while
the second brackets denote the systematic uncertainties. In the data analysis of the
2003 result, the same fitting procedure was used as for the 1999 analysis, to ensure the
comparability of both values. As a consequence of the definition of the SI second, the
definition of the Hz reads

Hz =
νCs

9 192 631 770
, (6.23)

therefore the results (6.21) and (6.22) directly yield the values of the frequency ratio
νCs/νH, at two points in time. From these values one obtains

νH,2003 − νH,1999 = (−29 ± 57) Hz , (6.24)

∂

∂t
ln

(
νCs

νH

)

= (3.2 ± 6.3) × 10−15/yr , (6.25)

assuming a possible drift to be linear on the time scale of a few years, and using the
notation

∂

∂t
ln(κ) =

κ̇

κ
(6.26)

to describe the relative temporal change, or relative drift, of an entity κ. In order to
connect the possible drift of the 1S–2S transition frequency to a drift of fundamental
constants, consider the following form, in which any optical transition frequency ν can be
written:

ν = ARyFrel(α) = ν0Frel(α) . (6.27)
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Here, A is a numerical prefactor which is independent of physical constants, and Ry is the
Rydberg frequency. The factor Frel describes the dependence of ν on relativistic effects as
discussed below and is essentially unity for hydrogen. Analogously, the frequency of the
133Cs ground state hyperfine transition can be written as

νCs = A′ Ryα2 µCs

µB
Frel,Cs(α) . (6.28)

In the measured frequency ratio νCs/νH, if expressed by (6.28) and (6.27), the Ry cancels
out, and since the numerical constants A and A′ are time-independent, the relative drift
of the frequency ratio νCs/νH can be written as

∂

∂t
ln

(
νCs

νH

)

=
∂

∂t
ln
(
α2
)

+
∂

∂t
ln

(
µCs

µB

)

+
∂

∂t
ln

(
Frel,Cs(α)

Frel,H(α)

)

(6.29)

=
∂

∂t
ln

(
µCs

µB

)

+

(

2 +
α

Frel,Cs(α)

∂

∂α
Frel,Cs(α) − α

Frel,H(α)

∂

∂α
Frel,H(α)

)
∂

∂t
ln(α) . (6.30)

From this relation, it is clear that a statement concerning a possible drift of α cannot be
extracted from the measured result of νCs/νH alone, because the cesium nuclear moment
in units of the Bohr magneton, µCs/µB, can also be subject to drift. In addition, a zero
drift of the frequency ratio might be caused by a cancelling drift of α and µCs. This
missing information therefore has to be provided by another frequency comparison. For
energy levels in atoms like hydrogen with very small relativistic effects and no many-body
corrections, Frel,H(α) ≈ 1 and using, e.g., another transition in hydrogen, would add no
additional uncorrelated information.

Therefore, a second measurement was taken into account, performed with a single mercury
ion, by the group of J. Bergquist at NIST between July 2000 and December 2002 [24].
In this experiment, the 199Hg+ 5d106s 2S1/2(F = 0) → 5d 96s2 2D5/2(F

′ = 2) electric
quadrupole transition was investigated and a relative drift with respect to the cesium
standard of

∂

∂t
ln

(
νCs

νHg

)

= (0.2 ± 7) × 10−15/yr , (6.31)

was obtained. The advantage of including the mercury result is, that Frel of this particular
transition frequency has a very strong α-dependence, which will turn out to provide an
independent restriction to the drift of the fine structure constant, in combination with
the weak α-dependence of the hydrogen transition frequency.

The α-dependence of atomic energy levels can obviously not be directly measured exper-
imentally. In Ref. [109], ab initio calculations of transition frequencies are performed for
a set of transitions in heavy ions, including mercury, and successfully compared to exper-
iments. These numerical calculations include relativistic and many-body effects using a
relativistic Hartree-Fock Hamiltonian and many-body perturbation theory. In addition,
these calculations have been repeated for different values of the fine structure constant,
and the resulting α-dependence of the transition frequency ω0 (in the notation of [109])
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is given in the form of the expansion

ω(α) = ω0

{

1 +
q1
ω0

[(
α

αl

)2

− 1

]

+
q2
ω0

[(
α

αl

)4

− 1

]}

=: ω0 Frel(α) , (6.32)

where αl is the reference value (6.18), as determined in the laboratory at present, ω0 is
the corresponding transition frequency and the coefficients q1 and q2 are listed in Tabs. III
and IV of [109]. From the expansion (6.32), the terms involving Frel(α) in (6.30) can be
obtained:

α
∂

∂α
lnFrel(α)

∣
∣
∣
∣
α=αl

≡ α

Frel(α)

∂

∂α
Frel(α)

∣
∣
∣
∣
α=αl

=
2 q1 + 4 q2

ω0
. (6.33)

Specifically, for the α-dependencies of the mercury transition and the cesium ground state
hyperfine splitting, one obtains from the expansion around the present value αl

α
∂

∂α
ln[Frel,Hg(α)] = −3.19 , (6.34)

α
∂

∂α
ln[Frel,Cs(α)] = 0.83 , (6.35)

α
∂

∂α
ln[Frel,H(α)] ≈ 0 . (6.36)

Summarizing the above considerations, one arrives at the following relations between the
possible drifts of the transition frequencies, α and µCs:

∂

∂t
ln

(
νCs

νH

)

= (3.2 ± 6.3) × 10−15/yr =
∂

∂t
ln

(
µCs

µB

)

+ (2 + 0.8 + 0.0)
∂

∂t
ln(α) ,

(6.37)

∂

∂t
ln

(
νCs

νHg

)

= (0.2 ± 7) × 10−15/yr =
∂

∂t
ln

(
µCs

µB

)

+ (2 + 0.8 + 3.2)
∂

∂t
ln(α) .

(6.38)

The numerical precision is restricted by the relative uncertainty of 7×10−15 of the mercury
measurement, therefore all other values are taken into account with only one more signif-
icant digit. With the abbreviations for the relative drift of the fine structure constant, x,
and the relative drift of the cesium nuclear magnetic moment, y,

x =
∂

∂t
ln(α) , y =

∂

∂t
ln

(
µCs

µB

)

, (6.39)

one obtains

y + 6.0 x = (0.2 ± 7) × 10−15/yr , (6.40a)

y + 2.8 x = (3.2 ± 6.3) × 10−15/yr . (6.40b)
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In Fig. 6.9, the x-y plane of possible independent drifts of α and µCs/µB is depicted.
The linear restrictions (6.40) are indicated by a solid line, and the dashed lines mark
the stripe of 1σ uncertainty, assuming a Gaussian probability density for the observed
restrictions (6.25) and (6.31) of the drift of the transition frequencies.
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Figure 6.9: Combination of two independent experimental restrictions to the
possible drifts of the fine structure constant α and the drift of the cesium
nuclear magnetic moment µCs/µB. The x-y plane corresponds to all possi-
ble combinations of independent relative drifts of the fine structure constant,
x = α̇/α = ∂ ln(α)/∂t, and the cesium magnetic moment, y. The restriction
obtained from the repeated absolute frequency measurement of the hydrogen
1S–2S transition is marked by the blue solid line, including a 1σ-uncertainty as
indicated by the blue dashed lines. The restriction imposed by the experiment
investigating a mercury quadrupole transition is given by the corresponding red
lines. The possible drift of µCs/µB comes into play, because both optical transi-
tion frequencies are compared to the SI time normal, which is a cesium atomic
clock. The 1σ-ellipse of the intersection, when projected onto the axes, yields the
1σ-intervals for the drift of the fine structure constant and the cesium nuclear
magnetic moment (black arrows).
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Figure 6.10: Joint probability density p(x, y) and corresponding marginal prob-
ability densities p(x) for x and p(y) for y. The projections of the 1σ-ellipse of
the joint distribution, containing both true values for (x,y) with a probability
of 39.3%, yield the 1σ-intervals of the marginal distributions, in which the true
values of x and y are contained with 68.3% probability, respectively.

6.2.3 Results

Solving Eqs. (6.40) for x and y, one obtains for the most probable values

xm = −0.9 × 10−15/yr , ym = 0.6 × 10−14/yr . (6.41)

The joint probability density for x and y to be the true values of the respective relative
drift, therefore reads

p(x, y) =
1

2πσHσHg
exp [−R(∆x,∆y)] , (6.42)

R(∆x,∆y) =
(∆y + 2.8∆x)2

2σ2
H

+
(∆y + 6∆x)2

2σ2
Hg

, (6.43)

with ∆x = x−xm, ∆y = y−ym and the corresponding uncertainties of the frequency drift
measurements, σH = 6.3 × 10−15/yr and σHg = 7 × 10−15/yr. The 1σ-ellipse in Fig. 6.9
is defined to be the set of values (x, y) for which R(∆x,∆y) = 1/2, in accordance with a
one-dimensional Gaussian distribution, where the 1σ-interval is given by the exponents
of ±1/2.
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Integrating the bivariate Gaussian probability density (6.42) over one of the arguments,
e.g., y, one obtains a univariate Gaussian probability density [103] for the other random
variable, x. From this marginal distribution, one can easily obtain the most probable
value including the 1σ-uncertainty, irrespective of the actual value of y. In this way, one
obtains

x =
∂

∂t
ln(α) = (−0.9 ± 2.9) × 10−15/yr , (6.44a)

y =
∂

∂t
ln

(
µCs

µB

)

= (0.6 ± 1.3) × 10−14/yr . (6.44b)

In Fig. 6.10 this extraction of the 1σ-intervals is illustrated, which are given by the
projection of the 1σ-ellipse on the respective axis. The final results (6.44) for the drift of
the fine structure constant and the cesium nuclear magnetic moment are separate limits
for the two drifts and both are compatible with zero within one standard uncertainty.
The only assumptions made in the laboratory measurement approach are, that a possible
temporal change of α is not by chance cancelled by a spacial drift of α due to the Earth’s
trajectory in space, and that a possible drift can be described in good approximation as
linear on the timescale of about three years.

In conclusion, laboratory experiments can provide complementary results to astronomi-
cal and geological investigations for the drift of fundamental constants, with comparable
relative precision. Two stringent, separate upper limits are given on the present relative
drifts of the fine structure constant and the cesium nuclear magnetic moment, derived
from the results of independent high-precision spectroscopy laboratory experiments. No
assumption regarding the exclusive drift of any single constant was needed in the deriva-
tion, and both results agree well with a zero drift within the observational uncertainties.
Further developments in the experimental control, and in the theoretical understanding
of systematic effects as undertaken in this thesis, as well as simply the passage of time,
will help to make these limits even more stringent or make it possible to detect a nonzero
drift, if it exists.
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Conclusion

7.1 General conclusion

In this thesis, the excitation dynamics of two-photon transitions in bound two-body
Coulomb systems, and in particular the hydrogen 1S–2S transition, has been examined
theoretically and high-precision matrix elements have been calculated. The modeling of
the experimentally observed line shape has been improved and a thorough search for small
systematic effects has been conducted in order to further improve the control of system-
atics in the future. From the analysis of experimental results, stringent limits on the drift
of two fundamental constants have been derived.

Starting from first principles, the quantum dynamics and the atomic constants describing
the two-photon excitation process in ongoing and planned high-precision experiments were
presented in a unified treatment, including the dependence on Z, the reduced mass and
hyperfine structure of the system. By generalizing the usual master equations, the special
circumstances of a typical standing wave field configuration were taken into account, and
an analytic solution for the time-dependent excited state line shape for constant driving
intensity was derived. The relative importance of ionization losses and spontaneous decay
of the excited state have been discussed in detail for hydrogenlike systems with different
nuclear charge numbers. Ionization has been identified as a decisive feature of the quantum
dynamics which has to be taken into account in future line shape models of high-precision
experiments.

Leading-order relativistic and radiative corrections to the excitation dynamics and to
the dynamic Stark effect have been calculated in anticipation of increasing experimental
precision. Especially in the case of the dynamic Stark shift, which consists a major
systematic effect in high-precision two-photon spectroscopy, the quantitative calculation of
these corrections is important. In addition, corrections beyond the dipole approximation
as they occur in a standing-wave setup in the context of first-order Doppler free excitation
have been obtained. These are especially important for highly excited states.

A Monte Carlo simulation implementing the experimental setup of the hydrogen 1S–2S
absolute frequency measurement at the Max–Planck–Institut für Quantenoptik (MPQ)
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has been developed and the simulation results were found to agree very well with experi-
mental data. In particular, the photoionization broadening of the 1S–2S transition as a
function of excitation power could be quantitatively reproduced for the first time. This
comparison also constitutes an indirect verification of the calculated transition matrix
elements and dynamic polarizabilities. By means of the numerical simulation, systematic
effects were studied which are difficult to assess in the laboratory, like the freezing of the
hydrogen nozzle and the effect of a small misalignment of the in-coupling laser beam with
respect to the power enhancement cavity.

The program performing the nonlinear regression in the data analysis at the MPQ was
directly checked in great detail, and has also been validated by comparison with a new
data analysis procedure, carried out with the same raw data but completely independent
otherwise. This comparison also allowed to exclude the numerical line shape model as a
major source of scatter observed in the data and supported the suspicion that uncontrolled
systematic effects are still present in the experimental setup, possible sources of which are
briefly summarized in the section below.

By analyzing the repeated high-precision measurements of the hydrogen 1S–2S absolute
frequency at the MPQ, and the results of a mercury quadrupole clock transition experi-
ment at NIST, separate stringent limits on the relative drift of the fine structure constant
and the cesium nuclear magnetic moment have been derived in cooperation with the MPQ
group, which are comparable with the precision of existing astronomical and geological
measurements, and require only very basic assumptions. The relative temporal change in
the course of three years has been found to be compatible with zero, within one standard
deviation, on the level of 10−15/yr.

7.2 Proposals for future experiments

The analysis carried out in this thesis suggests the following proposals for the experiments
carried out in the high-precision spectroscopy group at the MPQ, aiming at a further
improvement of resolution.

It has been found that the scatter which is exhibited in the fitted line centers of spectra
recorded in one day, and in the zero-power extrapolated day values, cannot be attributed
to the line shape model developed by A. Huber [102]. Both thorough checks of the program
and a comparison with the Lorentz data analysis support this conclusion. A number of
alternative systematic effects have been examined and the following have been identified
as possible contributions to the scatter.

The freezing of the hydrogen nozzle during consecutive measurements of several spectra
can lead to a different inhomogeneous Stark shift than that taken into account by the
line shape model. Although the general trend of this effect is an upward shift, the zero-
power extrapolated value is not systematically shifted in a specific direction, because the
excitation power is varied randomly. However, the scatter of the line centers may be a
limiting factor for a further increase in precision. A proposal for a different geometry of
the nozzle avoiding this effect, is given in Sec. 6.1.6.
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7.2. Proposals for future experiments

The misalignment of the in-coupling laser beam with respect to the cavity axis can lead to
two different systematic contributions, both originating in a residual first-order Doppler
shift from the absorption of photons that are not perfectly counter-propagating. One of
these misalignment effects averages as a function of misalignment angle, while the other
entails a small systematic shift towards a higher observed transition frequency. A cavity
with an increased power enhancement factor will reduce both these effects.

In view of the Monte Carlo results, displaying quantitative agreement of the photoion-
ization broadening with the experimental data, it is advisable to take into account the
ionization rate and the varying excitation powers into the line shape model. Also the
ionization losses from the initial velocity distributions, incorporated phenomenologically
in the current line shape model, are likely to be described more appropriately in this way.
To take advantage from a power-dependent line shape model, a reliable power measure-
ment and an improved power stabilization are required. A proposal for a non-invasive
power measurement scheme, using a reference beam to probe the transmittivity of a cavity
mirror, is given in Sec. 6.1.5.

For the 1S–3S experiment, the inconsistencies found in the literature concerning the tran-
sition matrix elements have been resolved and all relevant matrix elements are explicitly
given in appendix B.

The detection of ionization products is a promising alternative to the current detection
of atoms in the excited state, because charged particles can be detected with higher
quantum efficiency. This scheme could be applied in the hydrogen experiments as well as
in the planned He+ spectroscopy [113]. The relevant ionization coefficients and the time-
dependent line shape have been derived and can be directly used in a power-dependent
line shape model for the evaluation of the expected signal and for the data analysis.

For the future, it may be worthwhile to examine more closely the excitation with very short
pulses, e.g., to the benefit of the ongoing 1S–3S experiment, and the possible consequences
of chirps which the pulses acquire by passing through the dispersive media of the setup.
The high-precision spectroscopy experiment with trapped hydrogenlike helium, which is
currently in preparation at the MPQ, will also present new challenges for theoretical
investigations.

Further, the development of a power-dependent line shape model, taking into account the
excitation power and ionization from the excited state would be desirable, especially in
view of the alternative ionization detection scheme. An implementation using the existing
data analysis framework is proposed in Sec. 6.1.7.

Continuing efforts, both experimentally and theoretically as undertaken in this thesis,
are required to further enhance the precision of the determination of absolute transition
frequencies and fundamental constants.
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Chapter 7: Conclusion

136



Appendix A

Some comparisons with the

literature

A.1 The 1S–2S transition

This section is dedicated to a comparison of the results given in this thesis and previous
work. For the convenience of the reader, all the prefactors are described in detail, where
different conventions and units are used. The collection of articles covered in the following
is not claimed to be complete.

For the 1S–2S two-photon transition matrix element, the result of this thesis reads
βge = 3.68111 × 10−5 Hz/(W/m2), see Tab. 3.1, with

βge = − e2

2 h c ε0

〈

2S

∣
∣
∣
∣
z

1

H0 − (E1S + ~ωL)
z

∣
∣
∣
∣
1S

〉

=

− e2

2 h c ε0

∑

n

〈2S |z|n〉〈n|z| 1S〉
En −E1S − ~ωL

, (A.1)

and with intermediate states |n〉. To relate this result in SI units to atomic units, where
~ = a0 = e = me = 1, one has to apply the conversion

βge [at.u.] = βge [SI]
~

2

me a4
0 α

, (A.2)

in which these constants are reinstated, resulting in a value of βge = 7.85366 atomic units.
In Ref. [49], the authors define

D[J0] =
3

2

∑

(1 + P12)
ê1 · 〈2S|r/a0|n〉〈n|r/a0|1S〉 · ê2

ν(n) − ν(1s) − ν2
(A.3)

as the two-photon transition probability amplitude and obtain a value of -11.7805 atomic
units, which differs precisely by a factor of - 3/2 from the result of this work. The opposite
sign obviously is just a consequence of a different definition of the Green’s function.
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Appendix A: Some comparisons with the literature

The operator P12 interchanges the polarization vectors ê1 and ê2 and the frequencies of
the two photons. The authors of Ref. [49] treat the light fields more generally to have
different frequencies. This makes the photons distinguishable, and therefore there are two
different ways to excite the atom, one path with first low-frequency, then high-frequency
photon absorption and another with first high-frequency and then low-frequency photon
absorption.

To reduce definition (A.3) to the case of equal polarizations and equal frequencies, as
considered in this thesis, one needs to set the polarization vectors ê1 = ê2 = êz and one
has to omit the part where the polarizations and frequencies are interchanged, because
the photons are indistinguishable. Then the manifest prefactor of 3/2 in Eq. (A.3) explains
the numerical difference as being only a matter of definition, while the physical results
agree. This value of D[J0] is cited and used by Ref. [50], therefore the same considerations
apply there.

A.2 The 1S–3S transition

The result of this work for the 1S–3S transition matrix element (see Tab. 3.1) reads
βge = 1.00333 × 10−5 Hz/(W/m2), or when converted to atomic units: βge = 2.14061.
This equals the value given in Ref. [52]. Also, the other S–S transition matrix elements
calculated there, namely for the 2S–6S and 2S–8S transitions, are equal to the results
presented here, if converted according to Eq. (A.2).

In Ref. [51], Tab. 20, the square of the transition matrix elements, called M , for the
transitions 1S–nS, 1S–nD, 2S–nS and 2S–nD with n up to 6 are given. Out of these 18
squared matrix elements (given in atomic units), the results of this thesis are in agreement
with 16 values. The cases in which differences occur, are the values for the 1S–3S and
the 2S–6S transition (see Tab. A.1). The value for M(1S–3S) given by Tung et al. [51]
is equal to the double of the transition matrix element from this work (2.14061), not the
square. Also in view of the agreement of this thesis with Ref. [52], it is likely that Tung
et al. inadvertently doubled their correct result for the transition matrix element instead
of squaring it. The second inconsistency might be explained by a twist of digits.

Table A.1: Comparison of squared transition matrix elements M , as defined in
Ref. [51], with the corresponding results from this thesis.

Literature source Transition M

Tung et al. [51] 1S–3S 4.2812

this work 1S–3S 4.5822

Tung et al. [51] 2S–6S 261.44

this work 2S–6S 216.4420
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A.3. Light shifts

In an even older study [53], the authors work in the velocity gauge, as opposed to the
length gauge used in all articles considered here. Tung et al. agree with their results for the
absorption cross section, which is related to the transition matrix element. This supports
the assumption that Tung et al. indeed have obtained matrix elements in agreement with
the results presented here, while the numerical differences originated in the compilation
process.

A.3 Light shifts

The complete set of results for the light shifts of S states, for transitions where the 2S state
acts as the ground state (see Tab. 3.4), agree with Tab. Ic of Ref. [31]. In that work, where
atomic units are used, only the real parts of the dynamic Stark shifts are presented; the
light shift of 20S in the 2S–20S transition for example is 261.18 atomic units in Ref. [31],
which can be converted via relation (A.2), into βAC(20S) = 1.2242 × 10−3 Hz/(W/m2)
in agreement with the value given in Tab. 3.4. The light shifts of the gross structure D
states given in the same table in Ref. [31], agree with the values obtained in this thesis,
reduced to the special case where the atomic fine structure and hyperfine structure are
not taken into account.
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Appendix B

Explicit Polarizabilities and

Transition Matrix Elements

This appendix lists explicit expressions for the transition matrix elements and dynamic
polarizabilities relevant for the 1S–2S and the 1S–3S transitions in hydrogenic systems,
as a function of the intermediate state energies. The energy parameterization E(η) is
defined in Eq. (3.30). The Bohr radius is denoted by a0, me is the electron mass, and
H0 the unperturbed Hamiltonian (3.1b). The purpose of giving the matrix elements in
this general form is to enable the reader to evaluate the polarizabilities also at other
frequencies than the two-photon resonance frequency. This is particularly useful for a
planned detection scheme in the MPQ 1S–3S experiment, where excited 3S atoms are
detected via the observation of ionization products. An additional dedicated laser, tuned
slightly above the frequency needed to ionize the 3S state, increases the ionization rate,
because close to the continuum threshold, ionization is very efficient. The corresponding
ionization rate, for a laser with arbitrary frequency can be obtained from the imaginary
part of the excited state polarizability below, as defined in Eq. (3.64).

〈

1S

∣
∣
∣
∣
z

1

H0 −E(η)
z

∣
∣
∣
∣
2S

〉

=
me a0

4
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512
√

2 η2

729 (η2 − 4)3(η2 − 1)2
(B.1)

×
[
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(
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)]
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1S

∣
∣
∣
∣
z

1

H0 −E(η)
z

∣
∣
∣
∣
3S

〉

=
me a0

4

Z4 ~2

9
√

3 η2

64(η2 − 9)4(η2 − 1)2
(B.2)

×
[

− 19683 + 37179 η2 − 6318 η4 − 62586 η6 − 221184 η7 − 47487 η8 + 57344 η9

+16975 η10 − 16384 η7(7 η2 − 27) 2F1

(

1,−η, 1 − η,
(1 − η)(3 − η)

(1 + η)(3 + η)

)]
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〈
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∣
∣
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For higher excited states, the analytic results rapidly increase in length, which necessitates
the use of a computer algebra system [78]. The 2F1 hypergeometric function often occurs
in the result for integrals containing the Schrödinger-Coulomb Green’s function in the
above form [56].
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