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Trichome patterning in Arabidopsis serves as a model system to study how single cells are selected within a field of
initially equivalent cells. Current models explain this pattern by an activator-inhibitor feedback loop. Here, we report
that also a newly discovered mechanism is involved by which patterning is governed by the removal of the trichome-
promoting factor TRANSPARENT TESTA GLABRA1 (TTG1) from non-trichome cells. We demonstrate by clonal analysis
and misexpression studies that Arabidopsis TTG1 can act non-cell-autonomously and by microinjection experiments
that TTG1 protein moves between cells. While TTG1 is expressed ubiquitously, TTG1-YFP protein accumulates in
trichomes and is depleted in the surrounding cells. TTG1-YFP depletion depends on GLABRA3 (GL3), suggesting that
the depletion is governed by a trapping mechanism. To study the potential of the observed trapping/depletion
mechanism, we formulated a mathematical model enabling us to evaluate the relevance of each parameter and to
identify parameters explaining the paradoxical genetic finding that strong ttg17 alleles are glabrous, while weak alleles
exhibit trichome clusters.

Citation: Bouyer D, Geier F, Kragler F, Schnittger A, Pesch M, et al. (2008) Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in
Arabidopsis trichome formation. PLoS Biol 6(6): e141. doi:10.1371/journal.pbio.0060141

Introduction

During the development of animals and plants, specific cell
types need to be placed in a regular pattern within a field of
cells. In the simplest scenario, this occurs in a two-dimen-
sional sheet of cells. Mathematical modeling of such a spacing
pattern has uncovered two general principles. Both rely on
the assumption that the factor promoting the formation of
the specific cell type is autocatalytic. In the “activator—
inhibitor” mechanism autoactivation is counteracted by the
production of an inhibitor. In contrast, in the “substrate-
depletion” mechanism, a substrate is consumed by the
autocatalysis of the cell type promoting factor. A common
requirement of both principles is significantly reduced
mobility of the autocatalytic species compared to that of
the inhibitor and the substrate, respectively [1].

The activator-inhibitor system is thought to generate the
regular spacing pattern of leaf trichomes in Arabidopsis [2-4].
Trichomes are regularly distributed on the leaf surface
without any reference to morphological landmarks, and
clonal analysis indicated that cell lineage is not involved
[5,6]. Therefore, trichomes are an ideal model system to study
how single cells become regularly spaced within a sheet of
equivalent cells.

Current models assume that the R2R3 MYB transcription
factors GLABRA1 (GL1) and MYB23 [7-9], the bHLH factors
GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) [10-
12], and the WD40 repeat protein Transparent Testa Glabral
(TTG1) [13,14] form a trichome-promoting trimeric complex
due to the binding of one R2R3 MYB factor and TTGI1 to a
bHLH factor. Formally, this complex acts as the activator
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described in the theoretical models [1]. The activity of this
complex is thought to be counteracted by the single R3 repeat
MYB-like transcription factors TRIPTYCHON (TRY) [15],
CAPRICE (CPC) [16], ENHANCER OF TRY and CPC1 (ETC1)
[17], ETC2 [18], TRICHOMELESS1 [19], and CAPRICE LIKE
MYB3 (CPL3) [20] through competition for binding of the
R2R3 MYB factors to the bHLH protein [21]. The single R3
repeat MYB proteins are collectively considered to represent
the inhibitor in the theoretical models. The active complex
(AC) is postulated to activate the inhibitors, which can move
into neighboring cells, where they repress the activators. This
type of model is generally consistent with most data though
several aspects have not been confirmed experimentally
[3,4,6,22,23].

The role of TTGI in trichome patterning is obscure, as the
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Author Summary

Trichomes, the specialized hair cells found on plant leaves, represent
a model system to study how cellular interactions coordinate the
development and arrangement of a collection of initially equivalent
cells into regularly placed specialized cells. It was assumed that a
regulatory feedback loop of positively and negatively acting factors
governs these decisions. In this work, we show that trichome
spacing also is controlled by the local depletion of the trichome-
promoting protein TTG1. We provide evidence that binding of TTG1
to a second trichome-promoting protein, GL3, causes a depletion of
TTG1 in the neighborhood of cells with elevated GL3 levels. We
postulate that this leads to trichome fate determination in cells
containing high GL3/TTG1 levels and prevents trichome formation in
surrounding cells because of the reduced TTG1 levels. We show by
theoretical modeling that this mechanism alone is capable of
creating a spacing pattern and has properties that can explain even
apparently paradoxical genetic observations.

glabrous phenotype of strong alleles suggests that it promotes
trichome development, whereas the formation of trichome
clusters in weak alleles suggests that it is involved in the
inhibition of trichomes [5,24]. This dual function of TTGI1
suggested to us that TTGI1 has a central function in the
patterning process. In this work, we identified TTG]1 as the key
component of a newly discovered depletion mechanism, likely
to act in parallel to the above-described activator-inhibitor
mechanism. We demonstrate that TTG1-YFP depletion
depends on GL3, suggesting an underlying trapping mecha-
nism, such that GL3 captures TTG1 in trichomes. Finally, we
provide a mathematical model to evaluate the properties of
this new GL3/TTGI1 trapping/depletion mechanism.

Results

TTG1-YFP Protein Is Depleted in Trichome Neighboring
Cells

TTGI is expressed in most tissues of the plant [14,25]. To
determine the TTGI expression in young leaf parts, where
trichome initiation takes place, we created transgenic plants,
in which the B-glucoronidase (GUS) reporter gene was driven
by a 2.2 kb promoter fragment including the 5" UTR of TTGI
(pTTG1:GUS). This fragment is sufficient to rescue com-
pletely the ttgl—13 null-mutant phenotype when driving the
TTGI cDNA (Table 1). pTTGI1:GUS is ubiquitously expressed
in young leaves with slightly elevated levels in incipient
trichomes, and expression ceases in more mature leaf parts
(Figure 1A and 1B). To determine the localization of TTG1
protein, we created a C-terminal fusion of TTG1 with yellow
fluorescent protein (YFP) and an N-terminal fusion with
green fluorescent proten (GFP), which both rescued all
aspects of the t{gl-13 mutant phenotype, including the seed
coat mucilage, transparent testa, and trichome number when
expressed under the 7T7TGI promoter (unpublished data;
Table 1 and Figure 2A-E). We further substantiated the
functionality of this rescue construct by demonstrating that
protein-protein interactions of TTGI-YFP with GL3 are
indistinguishable from TTG1 in yeast two-hybrid interaction
assays (unpublished data). Both fusion proteins were found in
the nucleus and in the cytoplasm (Figure 2F). The integrity of
the TTG1-YFP fusion protein was confirmed by western blot
analysis (Figure 2G).

iE). PLos Biology | www.plosbiology.org

TTG1 Depletion in Trichome Patterning

Table 1. Comparison of Trichome Patterning Phenotypes

Construct® Background TIS SDqs Trichome N
cluster

= RLD 295 *+3.8 0% 561
pTTG1:TTG1 ttg1-13 27.2 +24 0% 542
pTTG1:TTG1-YFP ttg1-13 335 +3.7 3.8 % 805
pPCAL:TTG1 ttg1-13 25.0 *26 21 % 579
pPCAL:TTG1-YFP ttg1-13 10.7 +3.6 45 % 320
p35S:TTG1(LoxP) ttg1-13/Nos 20.5 *1.8 0% 452
- Ler 8.0 +2.0 0.3% 321
pTTG1:TTG1 Ler 7.8 +1.4 0% 187
pTTG1:TTG1-YFP Ler 134 +1.4 7.6% 322

Representative lines out of at least 20 independent transformants were used for the
statistical analysis.
doi:10.1371/journal.pbio.0060141.t001

The distribution of the pTTG1:TTGI1-YFP fusion protein
differed strikingly from pTTG1:GUS expression. Initially, in
very young leaf regions, in which trichomes are not yet
initiated, TTG1-YFP is detected in all cells reflecting the gene
expression pattern (Figure 1C). In slightly older leaf regions,
TTGI-YFP accumulates in incipient trichomes (Figure 1C,
1D, and 1E). In the cells adjacent to young trichomes, TTG1-
YFP levels are the lowest, and fluorescence gradually
increases with the distance from the trichome (Figure 1D
and 1E). This initial observation was confirmed by quantify-
ing the fluorescence intensity, using the Leica Confocal
software (Figure 1F). On average, cells next to a trichome
showed 39% of the fluorescence of that in the trichome, the
cells in the second tier around a trichome 76%, and cells of
the third tier 93% (n = 31). As a control, we measured the
distribution of fluorescence of a nuclear-localized GFP under
the control of the TTGI promoter (pTTG1:GFP-NLS, Figure
1G and 1H). The fusion to the nuclear localization signal
(NLS) reduces or completely prohibits the movement of
proteins [26-28], and therefore the distribution of GFP-NLS
should reflect the expression pattern of the TTGI1 promoter
in this assay system. Consistent with the pTTGI1:GUS lines,
TTG1 expression is elevated in trichome initials and
ubiquitously distributed in the surrounding cells (first tier
74%, second tier 76 %, third tier 77%, n= 30). Depletion next
to the trichome cell was not found, demonstrating that the
relative distribution of TTG1-YFP differs significantly from
its expression pattern. Using the Mann-Whitney U test, the
strong fluorescence reduction in the first tier is highly
significant (p < 0.0001).

The difference between the homogeneous T7TGI reporter
expression and the non-homogeneous protein distribution
could be explained in principle by two mechanisms. First, the
protein stability could be controlled spatially, such that TTG1
is more stable in trichomes than in the neighboring cells.
Second, the uneven distribution could result from TTGI1
movement from neighboring cells into trichomes.

Depletion of TTG1-YFP Protein in Cells Surrounding
Trichomes Is Not Due to Proteasomal Degradation

To determine whether TTGI1-YFP depletion around
trichomes is regulated by protein degradation, we treated
whole pTTGIL:TTG1-YFP plants with epoxomicin, a specific
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Figure 1. Expression and Localization Analysis of TTG1 in Developing
Leaves

(A) pTTG1:GUS expression in young leaf. Inset depicts a high
magnification of an area with two trichomes. Note that the expression
strength is similar in all cells, including trichomes.

(B) pTTG1:GUS expression in mature leaf. Expression has ceased.

(C) pTTGI1:TTG1-YFP fluorescence in young leaf. Note that in older
trichomes fluorescence is still found but that epidermal cells around
them have no fluorescence.

(D) Three-dimensional illustration of signal strength in (C). The
fluorescence intensity is indicated by the size of the peaks.

(E) pTTG1:TTG1-YFP. The arrow depicts an incipient trichome.
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(F) Quantification of the relative fluorescence intensity along the green
line in (E). Note that the intensity drops the most in the cell next to the
trichome.

(G) pTTG1:GFP-NLS. The arrow depicts an incipient trichome.

(H) Quantification of the relative fluorescence intensity along the pink
line in (G).

(I) gI3 pTTG1:YFP. The arrow depicts an incipient trichome.

(J) Quantification of the relative fluorescence intensity along the green
line in (I).

Yellow, YFP-specific fluorescence; blue, cell wall stained with propidium
iodide (false colored).

doi:10.1371/journal.pbio.0060141.g001

and irreversible inhibitor of the proteasomal degradation
machinery [29]. The TTG1-YFP protein depletion around
trichomes was not affected by epoxomicin treatments,
suggesting that uneven distribution of the TTG1-YFP is not
caused by a difference in TTGI stability in trichome initials
and its adjacent cells (Figure 3E-G). As a control to show that
TTGI1 is an actual target of the 26S proteasome and that the
proteasomal inhibitor was active, we used cotyledons of the
same plants analyzed for the depletion of TTG1-YFP around
trichomes on rosette leaves. TTG1 is expressed in cotyledons
([25], our own observation); however, TTG1-YFP protein is
not detectable in cotyledons of untreated plants or control
plants (Figure 3A and 3C). In plants treated with 20 uM
epoxomicin for 24 h, TTG1-YFP protein could be detected in
cotyledons, showing that the epoxomicin treatment was
effective (Figure 3B and 3D). Control plants treated with
the solvent DMSO showed no YFP-specific fluorescence in
cotyledons (Figure 3C).

TTG1 Can Move between Cells and Acts in a Non-Cell-
Autonomous Manner

The concept that TTG1 moves from neighboring cells into
trichomes was proved by the following series of experiments.
First, we demonstrated movement of the TTGI-YFP fusion
protein from non-trichome cells into trichome cells, using
the #232 activation tag line from the Poethig collection
(http:llenhancertraps.bio.upenn.edu/default.html, line #232).
This line was identified as a line, driving the expression of the
GALA4/VP16 activator, triggering expression of a UAS pro-
moter driven mGFP5-ER, a GFP form localized to the
endoplasmatic reticulum (ER) as a cell-autonomous marker.
GFP-ER was expressed in an apparently random pattern but
never in trichomes at any stage of development (Figure 4A-
C). In contrast, the TTG1-YFP fusion under the control of the
UAS promoter in this enhancer trap line showed additional
YFP-specific fluorescence in initiating trichomes next to
epidermal cells expressing the GAL4/VP16 activator (Figure
4A-C). This suggests that the TTG1-YFP fusion moved from
the trichome neighboring cells, where it was expressed, into
the trichome.

Second, we asked whether TTGI1 exerts its function in a
non-autonomous manner. We used the Cre-LoxP recombi-
nation system to create {fgl mutant sectors in plants, where
wild-type-expressing cells were marked by GUS expression
[30]. This was achieved by cloning the TTGI and the GUS
genes, each under the control of the CaMV 35S promoter,
between the two LoxP recombination sites and by introduc-
ing this construct into t{g/-13 mutants, containing the Cre
recombinase under the control of a heat-shock inducible
promoter (Figure 4D). These plants showed a wild-type
trichome pattern due to the rescue of tigl by 35S TTGI
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Figure 2. Phenotypic Description of Mutants and Transgenic Lines and Localization of TTG-YFP Fusion Protein

(A-D) Seed coat mucilage stained with ruthenium red. This staining visualizes the mucilage coat as a diffusely stained zone around the seed indicated
by a curly bracket. (A) wild-type ecotype RLD. (B) ttg7-13, no mucilage is seen. (C) ttg7-13 pTTG1:TTG1. (D) ttg1-13 pTTG1:TTG-YFP.

(E) Seed coat color. Upper row: ttg1-13 pTTG1:TTG1, ttg1-13 pTTG1:TTG1-YFP line #4, ttg1-13 pTTG1:TTG1-YFP line #1. Lower row from left to right:
wild-type ecotype RLD, strong allele ttg7-13, weak allele ttg1-9 and weak allele ttg71-10.

(F) pTTG1:TTG1-YFP fluorescence. Strong fluorescence is found in the nucleus, and moderate fluorescence in the cytoplasm. This is particularly good to

see in regions containing undifferentiated cells.

(G) Western blot analysis to test the integrity of the TTG1-YFP and GFP-NLS fusion proteins. The TTG1-YFP fusion protein (70.5 kDa) is detected as a
single band at the expected size (upper arrowhead). This band is not seen in the control lane ttg1-13, and no degradation products were found. Also
the GFP-NLS fusion (31 kDa) is detected at the expected size (lower arrowhead).

doi:10.1371/journal.pbio.0060141.g002

(Table 1) and ubiquitous expression of GUS. Heat shocks were
applied when the first two leaves emerged. After a saturating
heat treatment of 1-2 h, no GUS staining and no trichomes
were detected on leaves three and four (unpublished data).
Heat-shock conditions (5-15 min) were chosen such that a
recombination event excising the 35:TTG1/35:GUS occurred
rarely. These cells subsequently developed into large clonal
sectors on leaves number three and four. As shown in Figure
4E and 4F, GUS-negative and therefore tfgl mutant sectors
were found that clearly exhibited trichomes. This shows that
TTG1 can rescue the ¢/gl mutant in a non-cell-autonomous
manner.

Third, we analyzed whether TTG1 protein can actively
move between cells. It has been shown that soluble GFP, 2 X
GFP, and 3 X GFP (27, 54, and 81 kDa, respectively) move
passively between cells with higher capacity at early stages
and restricted mobility later in development [31,32]. There-
fore, the size of a protein is not the main criterion for its
ability to move between cells. Transport of molecules
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between plant cells is mainly regulated through plasmodes-
mata (PDs), plant-specific channels that span the cell wall and
connect plant cells with each other. In recent years, several
proteins have been shown to move between cells, most likely
by using the PD pathway [33,34]. Hence, the potential of
TTGI to act non-cell-autonomously and to move between
cells raises the question whether the 38 kDa TTG1 protein
moves by actively opening the PDs. To test this general
biological property of TTGI1, we used microinjections in
tobacco mesophyll cells (Figure 5 and Table 2). This system
can be used to monitor changes in the symplasmic con-
nectivity after injection of proteins [35]. Each set of experi-
ments on a given leaf includes four steps. First, the injection
of the small fluorescent tracer molecule acridine orange and
lucifer yellow confirmed that the leaf tissue was healthy and
that cells were symplasmically connected (Figure 5A). Second,
11-kDa rhodamine-dextran or 12-kDa F-dextran were in-
jected to show that molecules larger than the plasmodesmatal
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Figure 3. TTG1 Protein Stability

(A, C, E) Control plants after 24 h of DMSO (2%) treatment.

(B, D ,F) Plants after 24 h of epoxomicin (20 uM) treatment. (A and B)
Rosette leaf (R) and basis of a cotyledon. Note the strong yellow
fluorescence in the rosette leaf and the absence of yellow fluorescence in
the cotyledon cells in the control (A) and nuclear fluorescence after
epoxomicin treatment (B). (C and D) High magnification of cotyledon
cells. (E and F) Depletion of TTG-YFP is seen in the control (E) as well as
in epoxomicin treated plants (F).

(G) Quantification of the protein distribution of control plants and
epoxomicin-treated plants (n = 36).
doi:10.1371/journal.pbio.0060141.9g003
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Figure 4. TTG1 Movement

The Poethig collection GAL4/VP16 activator line #232 containing a
PUAS:ER-GFP and a pUAS:TTG1-YFP construct was used to test whether
TTG1 moves into trichomes.

(A) GFP-specific fluorescence channel showing the expression pattern of
the GAL4/VP16 driver line. Note that cells immediately next to a trichome
(arrow) show strong expression (green).

(B) YFP-specific fluorescence channel showing the distribution of TTG1-
YFP. Note that the trichome nuclei show strong staining.

(C) Overlay of (A) and (B) with the GFP shown in false color (red).

(D) Outline of the Cre-Lox strategy to generate mutant ttg1 sectors. TTG1
and GUS under the control of the CaMV 35S promoter were cloned
between the lox sites, and ttg7 mutant plants were transformed. The ttg7
phenotype was completely rescued, and plants showed ubiquitous GUS
staining (unpublished data). After saturating heat treatment, the
recombination results in the deletion of the 355:TTG7 and 35S5:GUS. All
daughter cells were hence ttg7 mutant and GUS-negative (unpublished
data).

(E) Cre-Lox-induced sectors. Blue regions are wild-type TTG1 and white
sectors are genetically ttg7 mutant. Note that trichomes are also found in
white sectors.

(F) Higher magnification of (E) with trichomes in a white sector indicated
by an arrow.

doi:10.1371/journal.pbio.0060141.g004

size exclusion limit (SEL) for this tissue do not move into the
neighboring cells (Figure 5B and Table 2) [36].

Third, the coinjection of the normally cell-autonomous 12-
kDa F-dextran and TTGI1 protein was done to test whether
TTGI can increase the SEL for this tracer. As shown in Figure
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Figure 5. Confocal Images of Nicotiana benthamiana Mesophyll Cells
Microinjected with Fluorescent Probes

(A) Symplasmic connectivity is probed with the nucleic acid tracer
acridine orange (red, RNA; green, DNA). After 1 min, DNA/RNA
fluorescence staining is observed in nuclei of injected and neighboring
cells.

(B) An 11-kDa rhodamine-dextran probe remains in the injected cell
(red). Image was taken 10 min after injection.

(C) Recombinant TTG facilitates 11-kDa FITC-dextran (green) movement
into neighboring cells. The fluorescent signal is detected in adjacent cells
(*) after 1 min.

(D) After 5 min the green fluorescent tracer moves into 3-5 cells distant
from the injected cell. The blue channel shows autofluorescence of
plastids (false colored).

(E and F) TTG1 labeled with rhodamine (red) moves from cell to cell.
(F) Merged image showing nucleic acid (nucleus) and cell wall staining
with DAPI (blue).

(G) GST labeled with rhodamine (red) remains in the injected cell and
does not allow transport of 11-kDa FITC dextran (green).

(H) Merged image with DAPI staining (blue) and autofluorescence of
chloroplast (green, false colored). Arrows indicate side of injection.
doi:10.1371/journal.pbio.0060141.g005
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5C and 5D, the F-dextran moved out of the injected cell into
neighboring cells in these coinjection experiments, suggest-
ing that TTGI1 increases the SEL. Fourth, to test directly
whether the 38-kDa TTG1 protein can move, it was labeled
with fluorescein isothiocyanate (FITC) or rhodamine. After
injection, the fluorescent signal emitted by labeled TTG1
protein appeared within minutes in adjacent cells (Figure 5E
and 5F and Table 2). GST-rhodamine and NtMPB2C-FITC
were used as negative controls in these experiments [37,38].
Both proteins did not move and did not trigger movement of
the tracer, indicating that the injection procedure as such did
not change the movement behavior of the tracer or proteins
in general. Thus, recombinant TTG1 protein shows an
equivalent behavior in microinjection assays as the non-cell-
autonomous KN1 protein [36]. These data indicate that TTG1
similar to KN1 increases the plasmodesmatal SEL and moves
actively to neighboring cells via the intercellular transport
pathway established by PDs.

Finally, we tested the movement ability of TTG1 between
cell layers. For subepidermal expression studies, we used the
mesophyll-specific phosphoenolpyruvate carboxylase pro-
moter from Flaveria trinervia (ppcAl) [39]. To corroborate
the specificity of the promoter in Arabidopsis, we used it to
express a GFP-YFP fusion, which does not move between leaf
tissue layers in Arabidopsis [40]. The GFP-YFP signal was
exclusively detected in subepidermal tissue from early
primordia stages on (Figure 6A and 6B). In contrast, lines
expressing TTG1-YFP under the ppcAl promoter showed
additional fluorescence in the epidermal layer, showing that
TTG1-YFP moved from mesophyll to epidermal tissue
(Figure 6E and 6F). Consistent with this, cDNA expressed
under the ppcAl promoter rescued the #tg/ mutant trichome
phenotype equally well as under the endogenous T7TGI
promoter. Also the TTG1-YFP fusion rescued the #{gl mutant
phenotype, though less efficiently (Table 1). In young leaves,
the TTG-YFP signal was found in all epidermal cells (Figure
6E), whereas in older leaves it was found only in trichomes
(Figure 6F). This finding is consistent with the earlier
observation that T7TGI is expressed only in subepidermal
tissues during embryo development but is required in the
protodermal tissue (the embryonic epidermis) [41]. To test
whether trichomes can generally attract proteins or whether
this is a specific property of TTGI1, we also expressed YFP
under the control of the ppcAl promoter (Figure 6C and 6D).
The YFP protein was observed in all cell layers in young
tissues (Figure 6C). However, YFP did not accumulate in
trichomes (Figure 6D). These data indicate that trichome-
specific localization is a property of the TTG1 protein rather
than due to trichome characteristics, such as a larger SEL of
PDs or generally higher import rates of molecules.

TTG1-YFP Depletion Depends on GL3

To understand the mechanism leading to the depletion, we
tested the hypothesis that TTG1-YFP might be trapped by
GL3 in trichomes. This seemed reasonable because GL3
expression is increased in trichomes relative to the surround-
ing cells and because GL3 strongly binds to TTGI in yeast
two-hybrid assays [12]. If the hypothesis is correct, then one
would expect that TTG1-YFP would not show depletion in
gl3 mutants. As shown in Figure 1I and 1], TTG1-YFP is
ubiquitously distributed in the epidermis in plants lacking
functional GL3. The quantification revealed elevated fluo-
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Table 2. TTG1 Moves from Cell to Cell in Microinjection Assays

Injected Material® Microinjection

Total (n) Movement of Tracer® [n (%)] Movement of Protein [n (%)] Comment®
Acridine orange 10 10 (100%) n/a extensive/nuclei
Lucifer yellow 10 10 (100%) n/a extensive
12-kDa R-dextran 25 1 (4%) n/a autonom/cytosolic
11-kDa F-dextran 20 1 (5%) n/a autonom/cytosolic
TTG1-FITC 15 n/a 5 (30%) extensive/cytosolic
TTG1-rhodamine 10 n/a 4 (40%) extensive/cytosolic
TTG1 + 12-kDa R-dextran 15 8 (52%) n/a extensive/cytosolic
TTG1-Rhodamin + 11-kDa F-dextran 12 5 (42%) 4 (30%) extensive/cytosolic
GST-Rhodamin + 11-kDa F-dextran 10 0 (0%) 0 (0%) both cytosolic
NtMPB2C-FITC + 12-kDa R-dextran 10 0 (0%) 0 (0%) both cytosolic

“Number of injections and percent of total injections in which the probe moved into surrounding Nicotiana benthamiana mesophyll cells. n/a: not applicable.

PCellular distribution as seen with labeled proteins in the injected cells.

“The fluorescent signals originating from labeled proteins and tracer molecules were detected exclusively in cells in direct contact with the injected cell. The tracer molecules 11-kDa F-
dextran and 12-kDa R-dextran were from Sigma. Acridine orange, activated FITC, and rhodamine for recombinant TTG1, NtMPB2C and GST protein labeling were from Molecular Probes.
Note that the fluorescently labeled negative control proteins GST and NtMPB2C were isolated and treated the same way as TTG1.

doi:10.1371/journal.pbio.0060141.t002

rescence in trichome initials and ubiquitously similar levels in
the surrounding cells (first tier 79%, second tier 77%, third
tier 79%, n=40). These data strongly suggest that TTG1-YFP
is depleted through trapping in trichome cells by GL3.

Mathematical Modeling of the TTG1 Depletion
Mechanism

We used mathematical modeling to evaluate the properties
of a patterning mechanism solely based on GL3/TTGI1
depletion. Therefore, we neglected the influence of addi-
tional inhibitors on the patterning mechanism. The model is
based on the following assumptions: (i) TTGI1 is constantly
and ubiquitously expressed (shown in this work). (ii) TTG1
moves nondirectionally between cells. Although we show that
TTG1 can actively open the PDs, there is no evidence for
regulated transport affecting the actual rates. (iii) TTGI
forms a dimer with the GL3 protein as indicated by yeast two-
hybrid results [12]. (iv) The AC enhances the expression of
GL3 cooperatively. This is assumed because nonlinearity of
the positive feedback is absolutely necessary for pattern
formation. The data toward this end are not clear. At the
whole plant level, it appears that GL3 is involved in a negative
feedback loop [42]; however, at the current experimental
resolution, these data do not contradict our assumption.
Moreover, the GL3 homolog TT8 was shown to act in an
autoactivation [43]. (v) GL3 and the AC are cell-autonomous.
This assumption is based on the observation that GL3 protein
does not move in the leaf (unpublished data). (vi) All
components are degraded by first-order kinetics. The
corresponding interaction scheme is shown in Figure 7A.

Because the model parameters are unknown, we employed
a two-step approach. First, a rescaling of model variables
allowed the confinement of the parameters to relevant
ranges. Second, we fitted the resulting model to the
experimentally obtained relative fluorescence intensities of
TTG1 in the vicinity of the trichomes. Fitting of the
parameters also took into consideration the mean trichome
density in the initiation zone. For parameter values and
details of the optimization, see the Materials and Methods
section.
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A typical simulated concentration pattern of total TTGI
(i.e., TTG1 4 AQ) is presented in Figure 7B. The highest TTG1
levels are found in the trichomes where it is completely
bound to GL3. In cells adjacent to trichomes, the level of
unbound TTG1 is significantly lowered by depletion, while
the level increases with distance from the trichomes.

Our rescaling and fitting procedure enabled us to estimate
the model parameters and in turn to judge their relevance.
We focused on the dependence of trichome density and
clustering on parameters related to TTG1 function (Figure
7C). Here, trichome density is defined as the ratio of trichome
cells to the total number of epidermal cells in the initiation
zone of the young leaf. A decrease of the degradation rate A5
of the AC (cyan line, circles) or of the transport rate d of
TTGI (green line, squares) results in an elevated trichome
density/clustering. Conversely, an increase in the complex
formation rate B (blue line, diamonds) raises the trichome
density/clustering. Surprisingly, the trichome density/cluster-
ing is unaffected by a decreased degradation rate A; of TTG1
(red line, triangles). The increase of trichome density is
correlated with a corresponding change of the percentage of
the trichomes found in clusters (Figure 7C, inset). Note that
blunt ends correspond to a loss of the trichome pattern; e.g., a
decreased complex formation rate leads to glabrous plants.

These data provide for the first time an explanation for the
apparently paradoxical observation that strong tsgl alleles are
glabrous (suggesting a positive function) and weak ttgl alleles
show clusters (suggesting an inhibitory function). While it is
trivial that the absence of TTGI in this model causes a
glabrous phenotype, surprisingly, simulations of the deple-
tion mechanism revealed that alterations of all parameters,
except for the protein degradation rate, can lead to clusters.

Discussion

In this study, we focus on the functional analysis of TTG1 in
trichome patterning on Arabidopsis leaves. We show that TTG1
is ubiquitously expressed with slightly higher levels in
developing trichomes. The distribution of TTG1-YFP differs
from the expression pattern such that the signal is strongly
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Figure 6. TTG1 Movement between Cell Layers

(A) ppcA1:GFP-YFP in a young leaf. GFP/YFP-specific fluorescence is
found in the subepidermal but not in the epidermal cell layer.

(B) ppcA1:GFP-YFP in an old leaf. Fluorescence is restricted to the
subepidermal cell layers.

(C) ppcA1:YFP in a young leaf. YFP is found in all cells.

(D) ppcA1:YFP in an old leaf. Subepidermal expressed YFP is occasionally
found in the epidermis (arrow). Trichomes show little or no fluorescence
as shown in this picture.

(E) ppcAL:TTGI-YFP in a young leaf. Fluorescence is found in all cell
layers.

(F) ppcAT:TTG1-YFP in an older leaf. In the epidermis, only trichomes
exhibit fluorescence. Inset shows epidermis at higher magnification.
Green, specific YFP fluorescence; red, chlorophyll fluorescence.
doi:10.1371/journal.pbio.0060141.g006

reduced in cells immediately next to the trichome. In showing
that the proteasome inhibitor epoxomicin does not affect the
protein distribution, we exclude the possibility that differ-
ential protein degradation results in the local depletion of
TTG1-YFP around incipient trichomes. We demonstrate that
TTG1 acts non-cell-autonomously by clonal analysis and that
the TTG1-YFP protein can move within the epidermis into
trichomes by using a GAL4-based expression system. Further,
we show that TTG1-YFP can move between cell layers and
that the TTGI protein can open actively PDs in a heterologous
system. Together these data suggest that TTG1 is redistributed
from neighboring cells into the trichome by intracellular
movement. What is the underlying mechanism of the observed
depletion/attraction of TTG1? One possibility is that TTGI1
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moves freely and becomes trapped in trichomes. Alternatively,
the redistribution could be achieved by directional movement
into the trichomes, although both mechanisms do not
necessarily rule out each other. The latter scenario is similar
to that proposed for the function of auxin in the positioning
of primordia in the meristematic region [44]. In this system,
directional transport of auxin by the transporter PIN1 leads to
an accumulation of the hormones in primordia and a reduced
level of auxin in the neighborhood [44,45]. A directional
transport similar to auxin is unlikely for TTG1 because TTG1-
YFP can move from the cells, expressing it not only into
trichomes but also into other epidermal cells (Figure 4A-C).
We therefore hypothesized that TTG1 accumulates in
trichomes, because it binds to another protein, as suggested
for SHORT ROOT (SHR) in the root [46]. SHR is expressed in
the stele and moves specifically into the endodermis, where it
is required and sequestered in the nucleus due to interaction
with SCARECROW [46]. In support of this hypothesis, we find
no depletion of TTG1-YFP in gl3 mutants, indicating that
TTGI1 binding to GL3 causes the depletion.

Current models explaining trichome patterning on Arabi-
dopsis leaves are based on the activator-inhibitor-like mech-
anisms described above [2-4,47]. These mechanisms can
explain the generation of a pattern in the absence of pre-
existing positional information. However, not all aspects of
the model have been shown experimentally. The mobility of
the inhibitors was shown for CPC in the root system [48], but
nothing is known about the mobility in leaves. Moreover, the
theoretical requirement that the activators can autoactivate
lacks experimental proof. Another problem with the current
models is that various genetic data cannot be explained [3].

Our finding that in addition to the activator-inhibitor
mechanism a substrate-depletion-like mechanism is operat-
ing during trichome patterning may provide some missing
clues. In general, a substrate-depletion mechanism is super-
ficially similar to the activator-inhibitor mechanism. Instead
of producing an inhibitor that laterally suppresses trichome
development in cells next to a developing trichome, a factor
necessary for trichome development is removed from these
cells. When simulating this type of mechanism, however, it
turned out that the system properties are different [1,49]. In
particular, it was noted that new peaks are formed at the
maximum distance by the activator-inhibitor mechanism and
by splitting already existing ones by the substrate-depletion
mechanism [1,49].

To understand the properties of the GL3/TTGI1 trapping
mechanism, we formulated a mathematical model and fitted
it to our experimental data to obtain a biologically relevant
parameter range. This strategy enabled us to test how
parameter changes affect patterning. In particular, we aimed
to simulate the weak tfgl cluster phenotype as this genetic
finding was the most confusing, because the lack of trichomes
in strong ttgl mutants suggested that TTGI1 functions as a
trichome-promoting factor and the cluster phenotype in
weak ffgl mutants pointed toward a role as a negative
regulator [5,13,24,50,51]. The simulations of the GL3/TTG1
trapping mechanism revealed that changes of several param-
eters related to TTG1 function can result in a clustering
phenotype. Thus, we can offer for the first time explanations
for the apparently paradoxical genetic results on TTG1 with
our new GL3/TTG1 trapping/depletion model. However, our
reduced model can only partially capture the experimental
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Figure 7. Mathematical Modeling of Trichome Patterning by Depletion of TTG1

(A) Interaction scheme. TTG1 is ubiquitously expressed at rate o, (magenta arrow), degraded at rate A, (red arrow), and nondirectionally transported
between cells at rate d (green arrow). It forms an AC with GL3 at rate  (blue arrows). The AC induces the expression of GL3 at rate o, (brown arrow).

GL3 and AC are degraded at rates A, and A3, respectively.

(B) Typical concentration pattern of total TTG1 (i.e., TTG1 + AC). Model parameters were estimated as explained in the Materials and Methods section.
Light color indicates high concentration. Levels are normalized by the maximal concentration found in trichomes, which are indicated by white. A
substantial amount of TTG1 is found in trichomes while it is depleted in neighboring cells.

(C) Dependence of trichome density on parameters related to TTG1 function (color code as in (A); o, star; oy, plus; B, diamond; A4, triangle; A3, circle; d,
square). Parameters are changed in a range from 10% to 1000% of their estimated values. Blunt ends denote the loss of trichome patterning. Inset:

Corresponding change of the percentage of trichome found in clusters.
doi:10.1371/journal.pbio.0060141.g007

observations. For example, the simulated mean trichome
density as predicted by the optimal parameter set is still
substantially larger than that in the wild type. We expect that
more complex models involving additional patterning genes
will improve the agreement between theory and experiment.

As GL3 is also a central component of all activator-
inhibitor-based models, it is conceivable that the two models
act in concert. We can recognize TTG1-YFP depletion at the
earliest stages of morphologically recognizable trichome
development. This would suggest that the trapping/depletion
mechanism becomes relevant after the activator-inhibitor
mechanism already has started the selection of trichomes.
However, it is well possible that more sensitive microscopic
techniques and more sophisticated imaging analysis tools will
reveal the depletion much earlier, so we consider the relative
timing of the two processes to be elusive at the moment. It
will be a future challenge to combine both principles in a
single model. To operate in biologically reasonable param-
eter ranges, it will be crucial to base such a model not only on
qualitative but also on quantitative data.

Materials and Methods

Plant lines and growth conditions. In this study, the wild-type
ecotypes Landsberg erecta (Ler) and RLD were used. The tigl-1, -9,
-10, and -13 and gi3-1 mutant lines have been described previously
[14,24,52]. The Poethig activation tag line #232 (Columbia ecotype)
was a kind gift from Scott Poethig, University of Pennsylvania (http://
enhancertraps.bio.upenn.edu/default.html). The heat-shock inducible
HSP:CRE3 line containing the pCGNHCN construct in a Nossen
ecotype background [380] was crossed into the t/{g/-13 mutant line
(RLD background), and plants homozygous for both the transgene
and the tigl-13 allele were isolated and crossed to TTGI1-Lox lines.
The TTGI-Lox construct is a descendant from the pCGNLox2a
construct [30], introducing a 35S:TTG1:NOSpA cassette into the
Pmel site of pCGNLox2a. The resulting plants of these crossings were
used for heat-shock treatments. Plants were grown on 1 X Murashige
Skoog agar (1% sucrose) plates for approximately 10 d at 20 °C under
16 h light/8 h dark conditions. Heat shock was performed by placing
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the plates into an illuminated incubator at 41 °C for 10-15 min. All
transgenic lines were produced using the floral dip method [53].

Constructs. The TTGI promoter (position —2227 to —1 from the
start codon and includes the 110 nucleotide of the 5 UTR) was
isolated from Arabidopsis thaliana ecotype Ler by PCR (forward
primer, 5-AAAGCTTAACCGAGAATGTCTCCCGACTTCTAT-3';
reverse primer, 5'-AGTCGACTCAAACTCTAAGGAGCTGCATTTG-
3") and cloned into pGEM-T vector (Promega Corporation) (pTTG-
pGEM). An Ascl restriction site was added by adapter ligation (5'-
CTAGAATGGCGCGCCATT-3') into the Spel site of the vector. To
generate the pTTG:GUS construct, the pTTG-pGEM was digested
with Ascl and Sall, and the resulting fragment was cloned into the
binary gateway vector pAM-PAT-GW-GUS (GenBank accession
AY02531) to replace the existing CaMV 35S promoter between the
Ascl and the Xhol sites.

To create the pPPCAl-pAMPAT binary vector, the 2117 bp
promoter fragment of the phosphoenolpyruvate carboxylase 1 gene
(ppcAl) from Flaveria trinervia (GenBank accession X64143) [39] was
removed from ppcAl-pBS 5" with HindIIl and religated using an
oligonucleotide linker to generate an Ascl restriction site. The
resulting AscI-Xhol fragment was inserted into pAM-PAT-GW using
the same restriction enzymes.

The yeast UAS promoter was PCR-amplified with the attachments
of Ascl for the forward primer and Xhol for the reverse primer. The
corresponding fragment was ligated into pAMPAT-GW by exchang-
ing the existing CaMV 35S promoter using Ascl and Xhol, giving rise
to pUAS-pAMPAT.

The TTGI cDNA (GenBank accession AT5G24520.1) was PCR-
amplified with attB1l forward and attB2 reverse linker primers for
Gateway BP recombination with the pDONR201 vector (Invitrogen).
To create the TTG1-YFP fusion, the TTGI cDNA was PCR-amplified
again to add a Sall site at the 5" and a Xhol site at the 3’ of the coding
sequence deleting the stop codon (forward primer, 5'-AGTCGA-
CATGGATAATTCAGCTCCAGA-3'; reverse primer, 5'-ACTCGA-
CAACTCTAAGGAGCTGCATTT-3"). The digested fragment was
ligated into the Sall site of pUCI18, then a Xbal-Sacl EYFP fragment
(Clontech) was fused C-terminally to T7TGI using the same sites. The
fusion was isolated using Xhol and EcoRI and ligated into pEN1a Sall-
EcoRI fragment. The resulting construct was called TTG1-YFPpEN.
PEYFP (Clontech) was digested with Sall and Notl and ligated into
pENla to create EYFPpEN. The GFP-YFP fusion was constructed
using an Ncol fragment of mGFP4, which was ligated in frame into the
Ncol site of EYFPpEN. All constructs were sequenced. To create all of
the binary constructs or yeast two-hybrid vectors, the Gateway LR
Reaction System was used according to the user’s manual (Invitrogen).

Histochemical analysis and microscopy. GUS activity was assayed
as described previously [54]. After adding the X-Gluc-solution (5-
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Table 3. Parameters of the Mathematical Model

Dimensionless Relation to Range Used Optimal Value
Parameter Dimensional for Parameter (Mean = std)
Parameters Optimization
kq chms’z 0.01-10 0.6662 * 0.2690
ky ks 0.1-10 0.1767 +0.0677
ks drs! 0.1-10 3.1804 + 1.4742
ks o, 0.01-10 5.3583 + 2.4240

ks Dotz ™! - Fixed at 1

doi:10.1371/journal.pbio.0060141.t003

bromo-4-chloro-3-indolyl-B-p-glucuronic acid), plants were vacuum-
infiltrated for 15 min and then incubated at 37 °C overnight. The
tissue was cleared by an ethanol series (15%, 30%, 50%, and 70%
EtOH solutions at 37 °C for several hours).

Seed coat mucilage staining was done with a 0.01% ruthenium red
solution for 15 min.

Light microscopy was performed using a Leica DMRE microscope
using differential interference contrast optics. Images were taken
using a KY-F70 3-CCD JVC camera and DISKUS software (DISKUS,
Technisches Biiro). Confocal laser scanning microscopy was done
with a Leica TCS-SP2 confocal microscope equipped with the Leica
software Lite 2.05 (LCS, Leica Microsystems). Z-stacks in steps of 1 or
2 pm were taken and processed using deconvolution tools of the
Leica software. Quantification of fluorescence was performed using
the same software. Plants were incubated for 10-15 min with a 10 pg/
ml propidium iodide solution to visualize cell walls. Transverse
sections were generated by embedding the tissues in 4% low-melting-
point agarose and by hand sectioning using a razor blade as described
by [55]. Images were assembled and processed using GIMP 2.2
software (http://lwww.gimp.org).

Microinjections. Recombinant TTG1 protein was produced in
Escherichia coli, labeled, purified, and microinjected as previously
described [38,56]. The protein concentration used for microinjection
was 2 pglul. A Leica SP2 AOBS UV confocal microscope was
employed to detect the fluorescent probes after microinjection.
Tissues were scanned in sequential mode to excite and detect
fluorescence probes in their specific wavelengths, and the resulting
Z-stack (5 um distance) images were merged using the NIH image
software Image] (version 1.32j) (http://rsb.info.nih.govlij/).

Epoxomicin treatment. pTTG1:TTG1-YFP plants were grown on
Murashige Skoog agar plates containing 1% sucrose at 22 °C for 6 d
under 16 h light/8 h dark conditions and then transferred into liquid
% MS medium containing 1% sucrose. The medium contained either
2% DMSO (control) or 20 uM epoxomicin (Sigma-Aldrich, stock
solution in DMSO). The samples were vacuum-infiltrated for 15 min
and incubated under the same growth conditions as previously for 24
h. After being washed with % MS (1% sucrose), plants were analyzed
using confocal laser scanning microscopy (see above).

Yeast two-hybrid. Yeast two-hybrid interaction assays were
performed as described previously [9]. Fusions with the GAL4
activation domain and GAL4 DNA-binding domain were performed
in the pACT and pAS plasmids (Clontech).

TRY, GL3, and a truncated version of GL3 lacking 96 amino acids
at the N-terminus were fused to the GAL4 activation domain in the
PACT vector. TTG1 and TTG1-YFP were fused to the GAL4 DNA-
binding domain of pAS. None of the constructs or empty vectors
showed any self-activation in yeast.

Western blot analysis. Fifteen 10 d old plants (long day conditions,
24 °C) were harvested without roots, frozen in liquid nitrogen, and
afterwards ground. The powder was mixed and boiled in 300 pl of
sample buffer (50 mM Tris/HCL. pH 6,8, 2% (wlv) SDS, 8 M urea, 30%
(vIv) glycerol, 5% (vIv) B-mercaptoethanol, and 0.5% (wlv) bromphe-
nol blue) for 15 min followed by centrifugation (16,000g at 4 °C) for
15 min. Approximately 25 pl of the supernatant was analyzed by 12%
SDS-PAGE, which was followed either by Coomassie staining or by
western blotting and subsequent immunodetection with anti-GFP
monoclonal IgG mouse antiobody (Roche). Detection was done by
electrochemiluminescence.

Mathematical model. On the basis of the interaction diagram
presented in Figure 7A, a system of coupled ordinary differential
equations was derived that describes the temporal evolution of the
protein concentrations of TTG1, GL3, and the AC inside each cell. The
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model was formulated on a two-dimensional grid of hexagonal cells with
the cell index j= (y,x), where 1 <y < Nand 1 <x < M. N and M denote
the number of cells in the y and x directions, respectively. Periodic
boundary conditions were chosen for model simulation and analysis.

A[TTGL]; = oy — 2 [TTG1]; — B[TTGI],[GL3]; + d([TTG1];)
0/[GL3]; = 0s[AC] — %5[GL3]; — B[TTG1],[GL3];

IAC]; = BTTG1];[GL3], — As[AC],

The nondirectional transport of TTGI1 between cell j and its six
neighboring cells is characterized by the coupling term

y—1x

([TTG,) = [TTGL]_; , + [TTGL],,, , + [TTGI],, ; + [TTG]]
+[TTG1], .y + [TTG] — 6[TTG1]

yx+1

y—1,x+1 yx+1

The model includes parameters o; for the expression of TTG1 and
GL3 and parameters A; for the degradation of the single proteins and
the active complex. The parameter d is the transport rate of TTG1
between neighboring cells and the parameter B is the rate of active
complex formation. To allow an assignment of reasonable parameter
ranges and to reduce the number of model parameters a rescaling of
the model variables was applied. All concentrations were multiplied
by the factor B/ks, and the new dimensionless time was expressed as T
=tAs. The transformed, but mathematically equivalent, dimensionless
equations are

O[tegl]; = k1 — holttgl]; — [tegl][g13); + Aa([tegl];) (1)
O:lg13]; = hufac)? — ks[g13]; — [tegl);[513), (2)
drfac]; = [ttgl][g13), — [ac], )

The relation between the dimensional and the dimensionless
parameters k; to ks is given in Table 3. Let v = ([ttgl]y®,[g13]o, [ac]o?)"
denote the ith uniform steady state. Equations 1-3 have three uniform
steady states given by

o) = (ky /hs,0,0)

S (k=1 +f ki(kiks — 1= f) — 2koks kiky +1—f
0 Okoky ks ’ 2k,

SO (k= 1—f ki(kiky — 1+ f) — 2koks kiky+1+f
0 Okoky ks, ’ Ok,

where f= ((kiks - 1)? - 4k2k4k5)”2. For biological relevance, all three
steady states must be real and positive, which restricts the range of
possible values for parameters k;.

Stability analysis and conditions for Turing instability. In a
pioneering work, Turing introduced the concept of pattern
formation from homogeneous conditions by a diffusion driven
instability; a uniform steady state that is stable for a single cell can
be driven unstable by the interaction between cells [57]. On the basis
of the idea of Turing, the criteria for pattern formation from a
uniform steady state were derived in two steps: (i) criteria for the
stability of the steady state without TTG1 mobility and (ii) criteria for
an instability of the uniform steady state when adding TTG1 mobility.
The stability of the steady in the absence of TTGl mobility was
analyzed by a linearization of equations 1-3 leading to 0,AV? =
JOAV?. Here, Av? = v — v;® are small deviations from the ith steady
state, and J@ is the Jacobian matrix evaluated at steady state v?. A
steady state is stable if small deviations from it decay with time. This
is the case if all eigenvalues of the Jacobian matrix have negative real
parts [58]. The eigenvalues of J are the roots of the characteristic
equation A4+ 1922 + a0\ + a3@ = 0 with the coefficients

a(li) =1+ko+ks+ [ttgl]g) + [gl?’]g)i)

) = ko + ks + koks + [tegl] ) (1 + ko) + [g13]7) (1 + ko)
— 2ky [ttgl]ﬁf) [aCL()i)
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) = kohs + ho[ttgl]{ + ks[g13]\) — 2koka[tegl)! [ac](

All three roots have negative real parts if the following three
necessary and sufficient criteria for the coefficients of the character-
istic equation are fulfilled [58]

al? >0 (Cla)

a’ >0 (C1b)

agi)afj) > aéi) (Cle)

Next, we considered the stability of the steady state v, including

the mobility of TTGI1. The temporal evolution of small spatially
inhomogeneous deviations Avj(” =v,? - v; from the uniform steady
state vo® are again described by a linearization of Equations 1-3, now
including the cellular coupling 0;Av;” =] PAv” + D(Av;”). The matrix
of transport coefficients is D and has a single entry for [ttgl] at Dy, =ks.
Fourier analysis was used to study the temporal evolution of spatially
periodic solutions of the form Av®=3"_ Ny~ M, e2miniV e2miriM,
The transformed linear equations read 9:¢,,” = (J@ - 4Dg(s,1)) @,,®
with the function g(s,r) = sin?(1tsIN) + sin?(nr/M) + sin?(n(sIN - r/M)). The
uniform steady state v’ becomes unstable to small spatial variations
if any of the eigenvalues of the matrix J© - 4Dg(s,r) has a positive real
part. The eigenvalues ()fj(l) - 4Dg(s,r) are roots of the characteristic
equation 7»:,,3 + bl(l)(s,r)XS,,»Q + b 2(s;1)her + b3”(s;r) = 0 with the
coefficients: b;“(s,r) = (@;? + 4Dg(s,7), bo®(s,r) = as” + 4Dg(s,)(1 + ks +
[tegllo®), and bs?(s,r) = as” + 4Dg(s,r) (ks + [ttgllo” - 2k4[ttgl]oP[acl™). If
any of the three necessary and sufficient criteria

(i)

by’ (s,7) >0 (C2a)
) (s,7) >0 (G2b)
b(li) (s, r)bg) (s,7)> bg) (s,7) (C2¢)

are violated, then the ith steady state gives rise to a Turing instability.
For the analysis, we restricted all parameters k; to be real and positive.
Analysis of steady state vo" revealed that conditions Cla-Clc and
(C2a-C2c are always fulfilled. Furthermore, if both steady states vo®
and vo® are real and positive, then only vo® fulfills conditions Cla-
Clc. Therefore, only steady state v was considered in the following.
For a given parameter set, all six conditions were verified numerically.
Here, it is sufficient for Turing instability if conditions C2a-C2c are
violated at the maxima of g(s,r).

Parameter optimization. The parameter optimization was confined
to the region in parameter space that gave rise to a Turing instability
of steady state vo® as defined by the criteria given above. Addition-
ally, parameters were restricted to the biological reasonable ranges
given in Table 3. Parameters were estimated by fitting the model
Equations 1-3 to the experimentally determined relative fluorescence
intensities of TTGI in the vicinity of the trichomes as well as the
mean trichome density in the initiation zone of the young leaf. The
optimized function was

I(k) 3 2
) = gy 2 2P0~ R+ ( (5 o) o)
References

1. Koch AJ, Meinhardt H (1994) Biological pattern formation: from basic
mechanisms to complex structures. Rev Mod Phys 66: 1481-1507.

Larkin JC, Brown ML, Schiefelbein J (2003) How do cells know what they
want to be when they grow up? Lessons from epidermal patterning in
Arabidopsis. Annu Rev Plant Biol 54: 403-430.

Pesch M, Hulskamp M (2004) Creating a two-dimensional pattern de novo
during Arabidopsis trichome and root hair initiation. Current Opin Genet
Dev 14: 422-427.

Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network
in the development of trichomes and root hairs. Annu Rev Plant Biol 59:
365-386

Schnittger A, Folkers U, Schwab B, Jirgens G, Hulskamp M (1999)
Generation of a spacing pattern: The role of TRIPTYCHON in trichome
patterning in Arabidopsis. Plant Cell 11: 1105-1116.

at

i), PLoS Biology | www.plosbiology.org

TTG1 Depletion in Trichome Patterning

with k = (ky,ko,ks3,k4,k5). The trichome number T(k) was determined
from a numerical solution of Equations 1-3. The uniform steady state
vo® plus a small inhomogeneous perturbation were used as the initial
conditions. The average total [ttgl] level of the cells in tier j around
trichome i is P; (k). It was normalized by the total [ttg]] level in
trichome i; i.e., Pik). R; is the experimentally determined average
relative TTGI level in tier j, and o ; is the corresponding standard
deviation. The levels are R = (0.387,0.765,0.985), and the standard
deviation is 6z = (0.14,0.22,0.183). For the mean trichome density in
the initiation zone, we used L, = 0.075 with the corresponding
standard deviation 6, = 0.035. Both values reflect the experimental
observation that the mean trichome distance in the initiation zone is
between 3 and 5 cells. Because the numerical solution of T(k) and
P;j(k) depends on the initial conditions, the optimal parameter set
also depends on the initial conditions. Therefore, optimal parameters
were averaged across 10 optimizations to determine the mean and
standard deviation given in Table 3. For each of the 10 optimizations,
a different random perturbation of the initial conditions was chosen.
Parameters k4 and k5 cannot be determined simultaneously from the
data. To resolve this nonidentifiability, we fixed k; = 1. Global
optimization was performed using an algorithm based on adaptive
simulated annealing (Lester Ingber, http://www.ingber.com) in combi-
nation with the MATLAB interface ASAMIN by Shinichi Sakata
(http://www.econ.ubc.calssakata/public__html/software/). All numeri-
cal analysis was performed with MATLAB from Math Works, Inc.
The predicted mean trichome density and mean percentage of the
trichomes in clusters given in Figure 7C were determined from an
average over 100 simulations for each parameter set.
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