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Strategies for the characteristic extraction of gravitational waveforms
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We develop, test, and compare new numerical and geometrical methods for improving the accuracy of
extracting waveforms using characteristic evolution. The new numerical method involves use of circular
boundaries to the stereographic grid patches which cover the spherical cross sections of the outgoing null
cones. We show how an angular version of numerical dissipation can be introduced into the characteristic
code to damp the high frequency error arising form the irregular way the circular patch boundary cuts
through the grid. The new geometric method involves use of the Weyl tensor component W, to extract the
waveform as opposed to the original approach via the Bondi news function. We develop the necessary
analytic and computational formula to compute the O(1/r) radiative part of W, in terms of a conformally
compactified treatment of null infinity. These methods are compared and calibrated in test problems based

upon linearized waves.
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I. INTRODUCTION

The unambiguous geometric description of gravitational
radiation in curved spacetimes traces back to the work of
Bondi [1] et al., Sachs [2], and Penrose [3]. By formulating
asymptotic flatness in terms of characteristic hypersurfaces
extending to infinity, they were able to reconstruct, in a
nonlinear geometric setting, the basic properties of gravi-
tational waves which had been developed in linearized
theory on a Minkowski background. The major new non-
linear features were the Bondi mass and news function, and
the mass loss formula relating them. This approach has
been implemented as a characteristic evolution code [4,5]
which computes the radiation field at infinity by using a
Penrose compactification of the space-time. The code
computes the gravitational radiation reaching infinity in
terms of boundary data supplied on an inner worldtube.
This has timely application to the important astrophysical
problem of the inspiral and merger of a binary black hole.
Several Cauchy codes, using an artificial outer boundary
condition, are now able to simulate this binary problem. By
using the data on a worldtube carved out of these binary
black hole spacetimes obtained by Cauchy evolution, the
characteristic code can supply the resulting waveform at
infinity. In this work, we develop and test new methods
designed to enhance the accuracy of this approach to
computing gravitational waveforms, which has been called
Cauchy-characteristic extraction (CCE) [6].

The Cauchy codes presently being applied to the binary
black hole problem introduce an artificial outer boundary,
where some boundary condition must be employed. The
choice of the proper boundary condition for an isolated
radiating system is a global problem, which can only be
treated exactly by an extension of the solution to infinity,
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e.g. by conformal compactification. The most elegant such
approach is the extension of the Cauchy problem to future
null infinity J* by means of a hyperboloidal time foliation
[7] (see [8,9] for reviews of progress in this direction).
Another approach is to extend the solution to I™ by
matching the interior Cauchy evolution to an exterior
characteristic evolution, i.e. Cauchy-characteristic match-
ing (CCM) [10]. (see [11] for a review). CCM has been
applied successfully to gravitational wave computations in
the linear regime [12] but has not yet been extended to the
nonlinear binary black hole problem.

When an artificial finite outer boundary is introduced
there are two broad sources of error:

(i) The outer boundary condition

(i1) Waveform extraction at an inner worldtube.

The first source of error stems from the outer boundary
condition, which must lead to a well-posed constraint-
preserving initial-boundary value problem. This has not
yet been fully established for any of the present black hole
codes. But, even were such boundary conditions imple-
mented, the correct boundary data must be prescribed.
However, this boundary data can only be exactly deter-
mined, in general, by extending the solution to infinity
[13]. Otherwise, the best that can be done is to impose a
boundary condition for which homogeneous boundary
data, i.e. zero boundary values, is a good approximation.
One proposal of this type [14] is a boundary condition that
requires the Newman-Penrose [15] Weyl tensor component
W, to vanish. In the limit that the outer boundary goes to
infinity this outer boundary condition becomes exact. In
the present state of the art of black hole simulations, this
approach comes closest to a satisfactory treatment of the
outer boundary [16].
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The second source of error arises from waveform ex-
traction at an inner worldtube, which must be well inside
the outer boundary in order to isolate it from errors intro-
duced by the boundary condition. There the waveform is
typically extracted by a perturbative scheme based upon
the introduction of a background Schwarzschild spacetime.
This has been carried out using the Regge-Wheeler-Zerilli
[17,18] treatment of the perturbed metric, as reviewed in
[19], and also by calculating the Newman-Penrose Weyl
component W,, as first done for the binary black hole
problem in [20-23]. In this approach, errors arise from
the finite size of the extraction worldtube, from nonline-
arities and from gauge ambiguities involved in the arbitrary
introduction of a background metric. The gauge ambigu-
ities might seem less severe in the case of W, (vs metric)
extraction, but there are still delicate problems associated
with the choices of a preferred null tetrad and preferred
worldlines along which to measure the waveform (see [24]
for an analysis).

Cauchy-characteristic extraction, which is one of the
pieces of the CCM strategy, offers a means to avoid this
error introduced by extraction at a finite worldtube. In
CCE, the inner worldtube data supplied by the Cauchy
evolution is used as boundary data for a characteristic
evolution to future null infinity, where the waveform can
be unambiguously computed by geometric methods. By
itself, CCE does not use the characteristic evolution to
inject outer boundary data for the Cauchy evolution, which
can be a source of instability in full CCM. Highly nonlinear
tests in black hole spacetimes [5] have shown that charac-
teristic evolution is a stable procedure which provides the
geometry in the neighborhood of null infinity up to nu-
merical error; and tests in the perturbative regime [25]
show that CCE compares favorably with Zerilli extraction
and has advantages at small extraction radii. However, in
astrophysically realistic cases which require high resolu-
tion, such as the inspiral of matter into a black hole [26],
this error has been a troublesome factor in the postprocess-
ing of the numerical solution which is necessary to com-
pute the asymptotic quantities determining the Bondi news
function.

There are two distinct ways, geometric and numerical,
that the accuracy of this calculation of the gravitational
waveform might be improved. In the geometrical category,
one option is to compute VW, instead of the news function as
the primary description of the waveform. We discuss this in
Sec. III, where we develop the extensive formulas neces-
sary to compute the asymptotic O(1/r) part of V,, i.e.
W9 = lim,_ W, which governs the radiation.

In the numerical category, some standard methods for
improving accuracy, such as higher order finite difference
approximations, would be easy to implement whereas
others, such as adaptive mesh refinement, have only been
tackled for 1D characteristic codes [27]. But beyond these
methods, a major source of error in characteristic evolution
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arises from the intergrid interpolations arising from the
multiple patches necessary to coordinatize smoothly the
spherical cross sections of the outgoing null hypersurfaces.
The development of grids smoothly covering the sphere
has had a long history in computational meteorology that
has led to two distinct approaches: (i) the stereographic
approach in which the sphere is covered by two overlap-
ping patches obtained by stereographic projection about
the North and South poles [28]; and (ii) the cubed-sphere
approach in which the sphere is covered by the 6 patches
obtained by a projection of the faces of a circumscribed
cube [29]. Recently, the cubed-sphere approach has re-
ceived much attention because the simple structure of its
shared boundaries allows a highly scalable algorithm for
parallel architectures. A discussion of the advantages of
each of these methods and a comparison of their perform-
ance in a standard fluid test bed are given in [28]. In
numerical relativity, the stereographic method has been
reinvented in the context of the characteristic evolution
problem [30]; and the cubed-sphere method reinvented in
the context of building an apparent horizon finder [31]. The
characteristic evolution code was first developed using two
square stereographic patches, each overlapping the equa-
tor. We consider here a modification, based upon the
approach advocated in [28], which retains the original
stereographic patch structure but shrinks the overlap region
by masking a circular boundary near the equator. Recently,
the cubed-sphere method has also been developed for
application to characteristic evolution [32,33].
These geometric and numerical considerations lead to
four options for improving CCE:
(i) Computation of the news function using circular
stereographic patches
(i1)) Computation of the Weyl tensor using circular ste-
reographic patches
(iii)) Computation of the news function using the cubed-
sphere patching
(iv) Computation of the Weyl tensor using cubed-sphere
patching
We compare these options here in the context of model
problems designed to test their application to CCE.
Because the cubed-sphere approach requires further code
development to be applied to CCE, in Sec. V we present a
test based upon the propagation of a wave on the sphere to
provide a preliminary comparison with the stereographic
approach. The test compares their accuracy in calculating
the angular derivatives required in the news and Weyl
tensor extraction algorithms. In Sec. VI, we next present
tests of CCE which compare the news and Weyl tensor
approaches in a linearized gravitational wave test problem.
The development of finite-difference evolution algo-
rithms, which was largely motivated by application to
computational fluid dynamics (CFD). It has utilized the
method of lines, where a 3-dimensional spatial domain is
discretized to yield a set of coupled ordinary differential
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equations in time for the grid values, which are then
integrated, e.g. by a Runge-Kutta procedure. This 3 + 1
approach is not applicable to the 2+ 1 + 1 format of
characteristic evolution considered here, in which the dis-
cretization of a 2-dimensional spherical set of character-
istics leads to coupled 2-dimensional partial differential
equations in the plane spanned by the outgoing and ingoing
characteristics. This 2 + 1 + 1 approach is natural to gen-
eral relativity since the characteristics (light rays) are
fundamental to describing the dynamical geometry of
spacetime. It would be impractical in CFD in which the
characteristics have a complicated dynamic relation (de-
termined by equations of state) to the fixed Euclidean
geometry. As a result, characteristic evolution algorithms
were developed only recently in the context of general
relativity and there has been relatively little analysis of
their computational properties. In particular, for CFD or
any symmetric hyperbolic system, numerical dissipation
can be added in the standard Kreiss-Oliger form [34]. One
of the main results of this paper is to show how analogous
dissipation can be successfully applied in a 2+ 1+ 1
format. In the original version of the PITT code, which
used square stereographic patches with boundaries aligned
with the grid, numerical dissipation was only introduced in
the radial direction [35]. This was sufficient to establish
numerical stability. In the new version of the code with
circular stereographic patches, whose boundaries do not fit
regularly on the stereographic grid, numerical dissipation
is necessary to control the high frequency error introduced
by the intergrid interpolations, as previously noted in the
treatment of a fluid problem using circular stereographic
patches [28]. We begin with a brief review of the formalism
underlying the characteristic evolution code in Sec. II and
show how the essential new feature of angular dissipation
can be incorporated.

The two spherical grid methods, stereographic and
cubed sphere, are briefly described in Sec. IV. We present
the test results in Secs. V and VI and we summarize our
conclusions in Sec. VIIL

II. CHARACTERISTIC FORMALISM

The characteristic formalism is based upon a family of
outgoing null hypersurfaces, emanating from some inner
worldtube, which extend to infinity where they foliate J*
into spherical slices. We let u label these hypersurfaces, x4
(A = 2, 3) be angular coordinates which label the null rays
and r be a surface area coordinate. In the resulting x* =
(u, r, x4) coordinates, the metric takes the Bondi-Sachs
form [1,2]

\%

ds* = —<ezﬂ— — rzhABUAUB)du2 — 2e2Bdudr
r

— 2rh,gUBdudx® + r*h,pdx*dx®, 2.1

where hABhBC = 6'é~ and det(l’lAB) = det(qAB), with dap @
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unit sphere metric. In analyzing the Einstein equations, we
also use the intermediate variable

Qu = rle *PhypUB. (2.2)

The code introduces an auxiliary unit sphere metric ¢,p,
with associated complex dyad ¢, satisfying gup :% X
(gagp + Gaqp). For a general Bondi-Sachs metric, /iyp
can then be represented by its dyad component J =
hapg*q®/2, with the spherically symmetric case charac-
terized by J = 0. The full nonlinear £, is uniquely de-
termined by J, since the determinant condition implies that
the remaining dyad component K = h,zq*g®/2 satisfies
1 = K? — JJ. We also introduce spin-weighted fields U =
UAg, and Q = Q4q”, as well as the (complex differential)
operators d and d [36]. Refer to [6,30] for further details.

In this formalism, the Einstein equations G wr = 0 de-
compose into hypersurface equations, evolution equations
and conservation conditions on the inner worldtube. As
described in more detail in [37,38], the hypersurface equa-
tions take the form

ﬁ,r = NB! (23)

U,=r72e*Q0+ Ny, 2.4)
(r?Q), = —r*(dJ + 0K) , + 2r*0(r2B) , + Ny, (2.5)
_ 1 _ _
e*PR — ePddeP + erz(r“(éU +0U)),, + Ny,

(2.6)

0| =

v, =

where [30]
_ 1 _ _ 1 __ -
R =2K — 30K + E(621 + 02J) + R(é]él —0JdJ)
2.7)

is the curvature scalar of the 2-metric /5. The evolution
equation takes the form

2(rd) r — V(D) ), = =1 (FPOU) . + 21 1ePB?eP
- (rilV),r] + Ny, (2.8)

where, Ng, Ny, No, Ny, and N; are nonlinear terms which
vanish for spherical symmetry. Expressions for these terms
as complex spin-weighted fields and a discussion of the
conservation conditions are given in [6].

The characteristic evolution code implements this for-
malism as an explicit finite difference scheme. In this paper
we use second order accurate finite differences and we
reduce all angular derivatives to first order by the intro-
duction of auxiliary variables, as described in [39].

A. Angular dissipation

It is a feature of the composite mesh technique that
numerical dissipation is necessary to stabilize the error
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introduced by intergrid interpolations. In the case of a
square stereographic patch, whose boundary aligns with
the grid lines, the dissipation built into the characteristic
radial integration scheme is sufficient for this purpose [35].
However, because a circular boundary fits into a stereo-
graphic grid in an irregular way, angular dissipation is also
necessary in order to suppress the resulting high frequency
error introduced by the interpolations between stereo-
graphic patches.

We accomplish this by modifying the evolution Eq. (2.8)
as follows. In the code, (2.8) is expressed in terms of a
compactified radial coordinate x = r/(R + r), where R is
an adjustable scale parameter and J* has finite coordinate
value x = 1. The evolution in retarded time u is carried out
in terms of the variable ® = xJ, which is regular at J*.
Then the evolution Eq. (2.8) takes the form

9,(1 =0+ ) =5, 2.9)

where § represents the right hand side terms. We add
angular dissipation to the u-evolution through the modifi-
cation
3, (1 =)D, + D) + €,BPFWH(1 —x)P, + P) =S,
(2.10)

where £ is the discretization size, €, = 0 is an adjustable
parameter independent of 2 and W is a positive weighting
function with W = 1 inside the equator and W = 0 at the
patch boundary. This leads to
3,0 = 0D, + OP) + 2¢, PR{((1 — 0D,

+ O)FWEF(1 — 0P, + )}

=2R{((1 — 0D, + D)S}. (2.11)

Integration over the unit sphere with solid angle element
d() then gives

5, }('(1 — D, + DRI + 2,8 fw
X |31 — DD, + D)2

=20 }( (1 =)D, + D)SdQ. (2.12)

Thus the €,-term has the effect of damping high frequency

noise as measured by the L, norm of (1 — x)® , + ® over

the sphere.

Similarly, dissipation is introduced in the radial integra-
tion of (2.9) through the substitution

9,(1—x0)P, +P)—9,(1 —x)P, + D)

+ e PP WD, (2.13)

with €, = 0. Angular dissipation is also introduced in the
hypersurface equations through the substitutions

(r?Q), — (r?Q), + €xh*3d0 WddrQ (2.14)
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V,—=V,+ e/h*d0 WdV. (2.15)

III. WAVEFORMS AT I+

For an analytic treatment of the Penrose compactifica-
tion of an asymptotically flat spacetime, it is simplest to
introduce an inverse radial coordinate € = 1/r, so that
future null infinity J* is given by € = 0 [40]. In the
resulting x* = (u, £, x*) conformal Bondi coordinates,
the physical spacetime metric g, has the conformal com-
pactification §,, = €2glw, where §,, is smooth at J*
and, referring to (2.1), takes the form

8 dxtdx? = —(e*PVE3 — hypUAUB)du? + 2e*Pduddt
— 2h, g UBdudx? + hypdx*dxB. (3.1)

The inverse conformal metric has the non vanishing com-
ponents g4¢ = e 28 gt = ¢ 2B3Y, g4 = ¢ 2PUA and

gAB — l’lAB.

The Bondi mass, news function and W9 (functions of u
and x”), which describe the total energy and radiation
power, are constructed from the leading coefficients in an
expansion of the metric in powers of €. The requirement of
an asymptotically flat vacuum exterior imposes relations
between these expansion coefficients. In the g ,, conformal
frame, the vacuum gravitational equations are

— 026, =20V, V0 — §,,VV 0 + 35,V OV,
(3.2)

in terms of the Einstein tensor G v and covariant derivative
\Y  associated with g: v AAsymptotic flatness immediately
implies that g = (V*€)V € = O({) so that I is null.
From the trace of (3.2), we have

(VO € = %e@ + 0(?), (3.3)

where

0 1= VAV, €= e (3,((V) + 9,U%)  (3.4)

is smooth at J*. In addition, (3.2) implies the existence of
a smooth trace-free field X ,, defined by
~ A A 1 ~
62#,, =V, V¢ —Zgw,@. 3.5)
For future reference we introduce an orthonormal null
tetrad (A%, o+, m*) be such that A* = V#¢ and €“a,u =
d¢ at I*. Note that (3.2), (3.4), and (3.5) imply

14
—GV,,) —0.

7 (3.6)

i Vﬁﬂ(iw +
The gravitational waveform depends on the value of 3 wr
on I", which in turn depends on the leading terms up to
O({) in the expansion of g,,,. We thus expand
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hAB(u, €, .XC) = HAB(”) xc) + €CAB(M, .XC) + 0(62)
3.7

Further conditions on the asymptotic expansion of the
metric can be extracted from (3.2). We have

B(u, €, x) = H(u, x°) + O(£?) (3.8)
(where the O(€) term vanishes),
UA =LA+ 20> HABDyH + O(€?), (3.9)
and
02V = D,LA + €2 R /2 + D,DAe*) + 0(€?),
(3.10)

where R and D, are the 2-dimensional curvature scalar
and covariant derivative associated with /,5. These results
combine with (3.4) to give

O =27 2D, LA + (R + 3e 2HD,DAe?H) + O(£2).

(3.11)
In addition, the requirement that
2 1
€<2AB - EHABHCDECD)
vanishes at J* implies via (3.5) that
2Hc(ADB)LC + auHAB - HABDcLC = 0(6) (312)

The expansion coefficients H, H,g, cap, and L4 (all
functions of (u, x*)) completely determine the radiation
field. One can further specialize the Bondi coordinates to
be inertial at I, i.e. have Minkowski form, in which case
H = L* =0, Hyz = qup (the unit sphere metric) so that
(3.12) is trivially satisfied and the radiation field is deter-
mined by c,z. However, the characteristic extraction of the
waveform is carried out in null coordinates determined by
data on the inner worldtube so that this inertial simplifica-
tion cannot be assumed.

A. Calculation of the news

The following calculation of the Bondi news streamlines
the presentation in [5] and corrects errors. In order to carry
out the calculation in the g,, computational frame, it is
useful to refer to an inertial conformal Bondi frame [40]
with metric g,, = ng/“, = w%§,,, where Q= wf,
which satisfies the gauge requirements that Qup =
Gapl;r = 0*H ap 18 intrinsically a unit sphere metric at
J* and that (V*Q)V,Q = 0(Q3?). (See [41] for a dis-
cussion of how the news in an arbitrary conformal frame is
related to its expression in this inertial Bondi frame.)

I* is a null hypersurface with the null vector 7% =
g*PV Q|5+, or equivalently, A* = g*FVgl|;+ = wi®,
tangent to its generators. In order to complete a basis for
tangent vectors to J*, let Q¢ be a complex field tangent to
It satisfying Q%, =0, §,52°QF|;+ =0, and
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Zap Q" Qﬁ | 7+ = 2. In an inertial conformal Bondi frame,
the news function can then be expressed as [5]
1 - -
N = lim — Q*9FV_V, ;0 3.13
evaluated in the limit of J*. (Our conventions are chosen
so that the news reduces to Bondi’s original expression in

the axisymmetric case [1]). In terms of the g,z frame, with
conformal factor € = {)/w, we then have

VoVl o
T - wvavﬂ

1
0]

1
N = lim. 0@ 05
lim >  Q(

1 . - A
+ g—wgaﬂ(v“€)vﬂw) (3.14)
1 e os(< VU T T
= 5Q°Q(S0p — VTt (Gedap)
X (We)ﬁﬂw). (3.15)

[This corrects an error in Eq. (30) of [5].] We determine w
on I in the g,5 frame by solving the elliptic equation
governing the conformal transformation of the curvature
scalar (2.7) of the geometry intrinsic to a u# = constant
cross section to a unit sphere geometry,

R = 2(w*+ H*D,Dylogw). (3.16)
The condition that (V¥Q)V,Q = 0(Q?) determines the
time dependence of w,

27%9, logw = —e 2HD, LA, (3.17)

which is used to evolve w given a solution of (3.16) as
initial condition.

In order to obtain an explicit expression for the news
(3.15) in the g,z frame we need to fix the choice of 98B,
The freedom Q7 — Q8 + )Aiif leaves (3.15) invariant but
it is important for physical interpretation to choose the spin
rotation freedom Q8 — ¢ @ QF to satisfy 71*V, QP =
0(£), so that the polarization frame is parallel propagated
along the generators of I*. This fixes the polarization
modes determined by the real and imaginary parts of the
news to correspond to those of inertial observers at J ™.

We accomplish this by introducing the dyad decompo-
sition HAB = (FAFB + FAF?)/2 where

B ,(K+1)__ [T
FA—qA 3 qAJ m

We set QF = ¢ 0¢ 1 FB + \jiP, where F® := (0, 0, F4).
The requirement of an inertial polarization frame,
i*V, QP = 0(Q), then determines the time dependence
of the phase 6. We obtain, after using (3.17) to eliminate
the time derivative of w,

(3.18)
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2i(0, + L49,)86 = D,L* + H,F€((3, + LBog)FA
— FBogLA). (3.19)

We can now express the inertial news (3.15) in the g,z
frame as

1 .. . AU TR
N = 56 216(1) 2FaFB<EaB - a)vavﬁ;-i-;(aggaﬂ)

X (Wf)@#w). (3.20)

with F¢ = (0,0, F4). An explicit calculation leads to

1 . 1
N = 26_2[60)_26_2HFAFB{(6M + £L)CAB - ECABDCLC

+ 20D [0 2Dy(we?)]}, (3.21)

where £, denotes the Lie derivative with respect to L4.
This corrects a minus sign error in Eq. (38) of [5], where
spin-weighted expressions for the terms in (3.21) are given.
In inertial Bondi coordinates, the expression for the
news function reduces to the simple form
N = %QAQB(")MCAB. (3.22)
However, the general form (3.21) must be used in the
computational coordinates, which is challenging for main-
taining accuracy because of the appearance of second
angular derivatives of w.

B. Calculation of the Weyl tensor

Asymptotic flatness implies that the Weyl tensor van-
ishesat J*,i.e. CA‘W/,(r = O({) in the g, conformal Bondi
frame (3.1). This is the conformal space version of the
peeling property of asymptotically flat spacetimes [3]. In
terms of the orthonormal null tetrad (A#, o+ m*), with
Ak = V"€ and €#9pu = 9, at I*, the radiation is de-
scribed by the limit

A 1.1 N
V= ——lim-a*m*i?m°C

oo (3.23)
which corresponds in Newman-Penrose notation to
—(1/2)¢4. The limit is independent of how the tetrad is
extended off 7* but to simplify the calculation we make
the following choices adapted to our conformal Bondi
coordinates. We set £“ = 2BV u, it = V€ + 0((),
07N i = 0 and £V ,i* = 0, which implies

~ €~ A
iy, = VM€ — Z€“® + O(£2). (3.24)
Our main calculational result is
~ 1 A A A A
v = Eﬁ“n%”n%p(vﬂi,,p — V,,EM,)|1+, (3.25)

and that (3.25) is independent of the freedom
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(3.26)

m? —m’ + An’.

The result (3.25) follows from the following sequence of
calculations beginning with (3.23) (where evaluation at J*
is assumed)

2% = %ﬁﬂmm%”éwa 3.27)
— L arioR 3.28
—En M P MR, 0 (3.28)
1 A A A A
= = At (VN =V, Vi) (3.29)
1 N A
_ Zﬁﬂmvmp(vﬂ(ezy,,) ~¥,063,.,)
o (€O o o (€O
- vﬂ”(T fp) " vm(Tep)) (3:30)

rY\g 4
(3.31)
= —ararme(V,3,, - V,5 )
1 . €O . €O
- zﬁﬂmw@,}?e# S0l
- @,ﬁy(?ep) + @ﬁﬂ(? ep)> 3.32)
= —armrme(V,3,, - V,3,,)
- %ﬁ%ﬂ(zw — " 07R ) (3.33)
e 5 g 0 .
= —atm'm?(V,%,, —V,%,,) — Zm”mp
X (ﬁyp - ﬁ'u'ga-(g,u[VGAU]p - gp[lfé(r],u)) (3.34)
= —armmr(V,5,, - V,2,,)
0., (& 1.
- mp<2,,p + 5Gyp) (3.35)
= —arm i (V,5,, = V,2,,). (3.36)

Here (3.28) follows because all trace terms vanish; (3.29)
follows from the commutator of covariant derivatives;
(3.30) follows from (3.5); (3.31) follows from differentia-
tion; (3.32) follows from (3.24); (3.33) follows from taking
leading terms and using the covariant commutator; (3.34)
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follows from the vanishing of the Weyl tensor at J*; (3.35)
follows algebraically; and (3.36) follows from (3.6).

Invariance of W under the freedom (3.26) follows from
noting that

A AVAD AT A _
Atm’ P’ Cy,pe = 0

(3.37)

and then following the steps analogous to (3.27), (3.28),
(3.29), (3.30), (3.31), (3.32), (3.33), (3.34), (3.35), and
(3.36) to show

it ar(V, 3

v = V3, ) =0 (3.38)

Finally, the Weyl tensor must be scaled intrinsic to the
&,» conformal frame in order to describe the radiation
observed by inertial observers at 7. The conformal trans-
formation g,, = w?§,, gives for the inertial radiation
field

1
Wi g lim QI Q7C,

_ ! w—3e—2i3nmlﬁ#FVﬁPFvé
2 =0 € prpo

(3.39)

where QF = ¢ ¥ 'FP + )iif is the same inertial po-
larization dyad used in describing the news (3.21). From
(3.25), we then have

1
V=3

We next need to express W in terms of the computational
variables. The straightforward way is to expand (3.40) as

1

w e WprFrpr(V, S, = V2, ). (3.40)

= Ew*3e*mﬁﬂFAF'—“(aMEAB — 0428
CipSaa + Tip2 0l (341)
and calculate the individual components of 3 wp I0 terms of

those variables. This involves lengthy algebra, which is
simplified by the following intermediate results which hold
at J*:

S = 2928 (3.42)
< 1 on B
4= 5¢ d¢(hapo U”) (3.43)
3 1 2H 1 A 2H AS
E(fu = Ze R + ZDAD e - L E(A (344)

VeV 03, % 2H(9, + LA94)(e P DyL?)
(3.45)
(VA0)S,, — %aA(e’ZHDBLB) (3.46)
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A

1
S = EeizH(au + L)cap + e D Dye*?

1
- ZHAB(R + 36_2HDCDCe2H).

(3.47)

We use a Maple script to convert these expressions in terms

of d operators acting on the spin-weighted computational

fields and construct the final Fortran expression for V.

In inertial Bondi coordinates, (3.41) reduces to

QAQBachB 020,J17. (3.48)

This is related to the expression for the news function in

inertial Bondi coordinates by

v = 9,N. (3.49)
However, as in the case of the news, the full expression
(3.41) for ¥ must be used in the code. This introduces
additional challenges to numerical accuracy due to the
large number of terms and the appearance of third angular
derivatives.

C. Linearized expressions

The general nonlinear representation of W in (3.41) in
terms of the computational variables is quite long but
reduces to a simpler form in the linearized approximation,
i.e. to first order in perturbations off a Minkowski back-
ground. In terms of the spin-weighted fields J =
hagqQB/2 and L = LAq,, we find

V= —62 -

1. .
- Ezé’ual‘ + auzl a J(E(’u + 2I()

(3.50)

(evaluated at 1), where the only nonvanishing zeroth
order parts of %, are

- L, 7 1 & 1
= ——, == 3.51
2k T Sus = 5 2 > (3.51)
and the required first order components are
& 1 4 B3 2 1 1
EJ=—61 q EAB=6H——J+—8,,8€J (3.52)
2 2 2
S =8 =ter e lean 4 Lp (3.53)
! “h g 4 2
Then (3.50) reduces to
Y= 1323 J —19 J —léL —162(6L_ +8L) + 9,0°H
5 Y ¢ oy Ju 2 g u .
(3.54)

In the same approximation, the news function is given
by
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1
N = Zq*‘qB(aucAB +2D,Dg(w + 2H))

1 1
Using the asymptotic relations
d,J = —0L (3.56)
1 _ _
d,0 = — Z((’SL + dL), (3.57)

which arise from the linearized versions of (3.12) and
(3.17), it is easy to see that (3.49), i.e. ¥ = 9, N, still holds
in the linearized approximation. (In the nonlinear case, the
derivative along the generators of J* is A%9 w=
e M, + L29,) and (3.49) must be modified
accordingly.)

The linearized expressions (3.54) and (3.55) provide a
starting point to compare the advantages between comput-
ing the radiation via the Weyl component W or the news
function N. The troublesome terms involve L, H and w,
which all vanish in inertial Bondi coordinates. One main
difference is that W contains third order angular deriva-
tives, e.g. &L, as opposed to second angular derivatives for
N. This means that the smoothness of the numerical error is
more crucial in the W approach. Balancing this, another
main difference is that N contains the 8?w term, which is a
potential source of numerical error since w must be propa-
gated across patch boundaries via (3.17).

D. Summary of the gravitational radiation calculation

The characteristic Einstein equations are evolved in a
domain between an inner radial boundary at the interior
worldtube, and an outer boundary at future null infinity.
Initial data for J(u, r, x*) is required at u = 0. This data is
constraint-free so that, in the absence of an exact solution
or other prescription of the data, we can simply set
J(0, r, x4) = 0. Alternatively, in order to reduce spurious
initial radiation, we can set the Newman-Penrose Weyl
tensor component W, (0, 7, x*) = 0, which determines
J(0, 7, x*) when continuity conditions are imposed at the
inner worldtube. The metric data from a Cauchy evolution
is interpolated onto the inner worldtube to extract the
boundary data for the characteristic evolution. This extrac-
tion process involves carrying out the complicated
Jacobian transformation between the Cartesian coordinates
used in the Cauchy evolution and the spherical null
coordinates used in the characteristic evolution. The full
details are given in [10]. The result is boundary data for J,
B, U, Q, V on the worldtube, which supply the integration
constants for a radial numerical integration of (2.3), (2.4),
(2.5), and (2.6), in that order. Given the initial data
J(0, r, x*), this leads to complete knowledge of the metric
on the initial null cone. Then (2.8) gives an expression for
J ur» which is used to determine J on the *“next” null cone,
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so that the process can be repeated to yield the complete
metric throughout the domain, which extends to J*.

Before the gravitational radiation is calculated from the
metric in the neighborhood of I7, it is necessary to com-
pute the auxiliary variables w(u, x*) and &(u, x*) which
determine the inertial polarization dyad in which to mea-
sure the news function N or Weyl component W. Given a
solution of (3.16) for the initial value of w(0, x4), its
evolution is computed by integrating (3.17). (If J =0
initially, then w = 1 is the solution to (3.16). Otherwise,
o is initiated by solving a 2-dimensional elliptic equation.)
Similarly, fixing the initial polarization basis by 8(0, x4) =
0, its evolution is computed by integrating (3.19). Then the
news N is given by (3.21) (or in spin-weighted form by the
formulas in Appendix B of Ref. [5]) and W is given by
(3.41).

The above procedure computes N or ¥ as functions of
the code coordinates (u, x*), rather than inertial coordi-
nates. In the linearized case, which is used for the tests in
Sec. VI, the change to inertial coordinates is a second-order
effect that can be neglected. However, that is not the case in
general and the full procedure is described in Sec. IV B of
Ref. [5].

IV. PATCHING THE SPHERE

The nonsingular description of smooth tensor fields on
the sphere requires more than a single coordinate patch.
Here we consider the stereographic treatment which uses 2
coordinate patches, and the cubed-sphere treatment, which
uses 6 patches. In both cases the metric g4 of the unit
sphere is expressed in terms of a complex dyad g4 (sat-
isfying ¢ g, = 0, 4Gy = 2, ¢* = ¢"Pqp, with ¢*Pqpc =
84 and qap = 3(qadp + Gaqp)). The dyads for each patch
are related by spin transformations at points common to
more than one patch.

A. Circular stereographic patches

In stereographic coordinates, the sphere is covered with
two patches, one for each hemisphere. The North hemi-
sphere is covered by the complex stereographic coordinate
&y = my + ipy, which is related to standard (6, ¢) angu-
lar coordinates by &y = tan(f/2)e’® and which is regular
on the entire sphere except for the South pole. The South
hemisphere is covered by the complex stereographic coor-
dinate &g = 1/&y = mg + ipg = cot(8/2)e” %, which is
singular at the North pole. Every point on the sphere is
covered by at least one of the patches, and there is a region
around the equator where points are covered by both
patches. In this overlap region between the two patches,
a scalar function F with value Fy(&y) on the North patch
has the value Fg(&ég = 1/£y) on the South patch. For a
function F of spin-weight s, Fg(ég = 1/&y) = Fy(éy) X
(_ l)se—Zisq).

In the x* = (7, p) coordinates, the unit sphere metric in
each patch is given by
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4
gapdxtdx® = ﬁ(dWQ +dp?), 4.1)
where
P=1+n>+p’ 4.2)
The equator corresponds to the circle
V 172 + p2 = 1. 4.3)
We fix the dyad by the explicit choice
P
gt = 5(1, i), i=+-1L 4.4)

In the composite mesh method, all boundary points of
one patch are interior points of another patch. The over-
lapping of the patches is key to the stability of this method.
The two stereographic coordinate patches must both ex-
tend beyond the equator. In the scheme originally used to
implement the computational d-formalism [30] in the char-
acteristic code, the North and South patches were repre-
sented by square (7, p) grids. In the scheme implemented
for meteorological studies [28], circular masks are applied
so that the computational grids extend only a few zones
beyond the equator. Here we adopt this circular grid bound-
ary but place it a fixed geometrical distance past the
equator, i.e. the grid boundary for the North patch is a
circle lying in the South patch. The finite buffer zone
between the equator and the grid boundary allows for
angular dissipation, as developed in Sec. , to damp the
high frequency intergrid interpolation error before it
crosses the equator. This protects measurements of the
news function (or VW) in the North patch, which involve
two (or three) angular derivatives, from substantial con-
tamination by the interpolation error at the patch boundary.

We discretize the stereographic coordinates according to

mi=—1+(—0-1A,

(4.5)
p;=—1+(—0-1DA

where, following the notation in [28], O is the number of
points (overlapping points) by which each grid extends
beyond the equator and the indices range over 1 = i, j =
M + 1+ 20, with M? being the number of grid points
inside the equator. The grid spacing A depends on M
according to

A=—. 4.6
Vi (4.6)
The square grid determined by (4.5) ranges over

in each patch.

In the original square patch method [30], the evolution
algorithm is applied to the entire set of points in the square
(n, p) grid, with the field values at the resulting ghost
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points supplied by interpolation from the other patch. In
the circular patch method [28], the evolution algorithm is

only applied to points inside a circle r = /5> + p?, where
r > 1 so that the boundary lies a small distance past the
equator. In convergence tests, the number of overlap points
determined by O is adjusted so that r is at a fixed position
for all grids, i.e. O scales as 1/A. The grid points outside
this circle are either ghost points or inactive. The circular
patch is clearly more economical than using a square patch
and avoids the error introduced by the large stereographic
grid stretching near the corners of the square.

When the finite-difference stencil is used near the
boundary of the active grid points, field values required
at the ghost points outside a circular patch are interpolated
from values at interior points of the opposite patch. The
algorithm for determining the value of a scalar function Fy
at a ghost point in the North patch starts with the determi-
nation of the ghost point’s coordinates in the overlapping
South patch, followed by the interpolation of the value of
the function Fg at the ghost point, i.e. the F ghost point
values are obtained by interpolation via the Fg active grid
values.

Let Ry be the width of the finite-difference stencil
divided by 2A. In the circular patch method, we define
the active finite difference grid, i.e. the grid points to which
the evolution algorithm is applied, by

where O > Rg. Stability of the composite mesh method
requires that the interpolation stencil for the ghost points
for one patch lies below the equator in the other patch.
Those requirements give a minimum value of O but a
larger value may be necessary to establish an effective
buffer zone for the dissipation to attenuate the interpolation
error before it enters the opposite patch. The optimum
value of O in order to avoid instability or inaccuracy, needs
to be established by experiment. (Too large a value would
lead to inaccuracy due to the stretching of the stereographic
grid.)

(4.8)

B. The cubed sphere

In the cubed-sphere approach, developed for meteoro-
logical studies in [29] and later for numerical relativity in
[31], 6 coordinate patches on the sphere are obtained by
projecting the 6 faces of a circumscribed cube. The method
has recently been applied to characteristic evolution in [32]
and independently in [33]. Here we follow the notation of
[32], except we denote the angular coordinates by (¢, ¢»)
(rather than by (p, )). In addition, in order to ensure that
the coordinates and dyads on each patch are consistently
right-handed, with the vector cross-product vector pointing
out of the sphere, we introduce some sign changes in the
conventions used in [32] for the coordinate transformations
between the patches and in the definition of the dyad g*.
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These conventions simplify the interpatch transformation
of spin-weighted quantities.

Given Cartesian coordinates (x, y, z), we define angular
coordinates x* = (¢, ¢,) on the 2-sphere x> + y*> + 7> =
1 by means of the six patches (x~, y+, z+), where

z
X+: p) = arctan(i X), by, = arctan(—)
X X

yei by = arctan(i E), by = arctan@) (4.9)
y y

7o by = arctan(t f), by = arctan(X).
Z Z

In each patch, the range of the coordinates is — /4 <
¢y, ¢, = /4 and the metric is

ds> =(1— sin2¢1sin2¢2)_2<cos2¢2d¢% + cos?¢d 3

- % sin(2¢,) sin(2d)2)d¢1d¢2). (4.10)

r
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As a simple dyad representing (4.10), we choose

((HC —if,)cosep, (0. + iHS)cosd)l)
qa = b

46262 ’ 46262
0C S'e 6 +9 10
A— (200 g,zgwg 57“),
7 ( 7 cosg, % cosg
where
0 — 1 — sin¢ sin¢, g — 1 + sin¢ sin¢,
C 2 i N 2 .
(4.12)

The operator @ acting on a field S with spin-weight s is
asS = qA d,S + sI'S where, with the present conventions,

_cos’¢cos’,(sing, + sing,) + (cos’p; — cos*¢,)(sing, — singp;)

46, cos¢, cosg

3 icos2¢lcos2¢2(sin¢1 — sing,) + (cos’>¢, — cos’¢)(sing, + sing,)

(4.13)

46, cosg, cosg

We introduce ghost zones in the usual manner along the
boundaries of each patch, and couple the patches together
by interpolating the field variables from neighboring
patches to each ghost point. With the definition (4.9), the
angular coordinate ¢, or ¢, perpendicular to an interpatch
boundary is always common to both adjacent patches. This
greatly simplifies interpatch interpolation, since it only
needs to be done in 1 dimension, parallel to the boundary.

V. COMPARISON BETWEEN STEREOGRAPHIC
AND CUBED-SPHERE METHODS

We carry out a test of wave propagation on the sphere to
compare the accuracy of using circular stereographic
patches with the cubed-sphere methods, with emphasis
on the accuracy of the angular derivatives required in
waveform extraction by the news and W, approaches.
The test allows direct comparison between the stereo-
graphic and cubed-sphere treatments without introducing
the complications of characteristic evolution and the ex-
plicit calculations of the news or V.

The test is based upon solutions to the 2D wave equation

— 920 + 30D = 0, 5.1

where @ = cos(w?)Y,,,, @ =+€(f+ 1) and Y, are
spherical harmonics.

For the case £ = m = 2, we compare test results for the
stereographic grid with circular patches and the cubed-

sphere grid. For the stereographic grid, the simulations
are run with M? grid points in each patch, for M = 100
and M = 120. The corresponding cubed sphere runs keep
the number of grid-cells covering the sphere the same as
for the stereographic case, not counting those cells that
overlap with another patch. For M? stereographic grid
points there are =~ 7M?/4 grid-cells inside the equator
on each hemisphere. In the cubed sphere grid, with N?
points per patch, the entire sphere is covered by 6 X N?
points. Equating the number of cells for the entire sphere
gives N2> = (7/12)M?. The above values of M then corre-
spond to N = 51, 61. The tests are run until = 120.

Angular dissipation is necessary for the stability of the
stereographic runs. For grid size A, it was added in the
finite-difference form

2P — 2P + A3 D49, D, (5.2)

where D*® = (PTZ(DJrnD_n +D,,D_,)*®, where
D, (or D_) indicates the forward (or backward) differ-
ence operator in the indicated direction. Experimentation
with tuning the dissipation revealed that a small value € =
0.01 is sufficient to suppress high frequency error. The
finite-difference stencil (taking dissipation into account)
has width Rg = 2. Using a 4th order Lagrange interpolator
and by tuning the number O of overlapping points, we
obtained good results with O = 5. Angular dissipation was
not used in the cubed sphere runs.
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TABLE I. Convergence rates for £(d), obtained with the L, TABLE II.  Convergence rates for the L. error £(@*®) for

norm using the M = 100 and M = 120 grids. various times ¢, obtained using the two highest resolution runs.

ALGORITHM t=12 t=12 t =102 t =120 ALGORITHM t=12 t=12 =102 t =120
circular patch 2.002 1.988 1.994 1.999 circular patch 2.022 1.945 1.992 2.006
cubed-sphere 1.994 1.970 1.982 1.985 cubed-sphere 1.954 2.019 1.997 1.971

We use the L,, norm to measure the error the error versus time in Fig. 2 show that the error for the

cubed-sphere is about % the stereographic error.
E(P) = [[Phumeric — Panaytic lloo- (5.3) Similarly, it is important for the purpose of gravitational

We measure the convergence rate for £(P) at a given time
t, for two grid sizes A; and A,, by

_ log,(E(P) s, /E(DP)4,)

R
log,(Ay/A))

5.4)

Convergence rates for other quantities are measured anal-
ogously. For a given grid, we measure the error for the
circular patches in the North hemisphere; while for the
cubed-sphere method we measure the error on the
(+x, +y, +z) patch, excluding ghost points at the edges
of the patch. The finite difference approximations for the
codes are designed to be second order accurate.

Excellent second-order convergence of &(®), based
upon the M = 100 and M = 120 grids, is evident for
both methods from the results listed in Table I. The time
dependence of the error plots in Fig. 1, shows that the
cubed-sphere error is = % the stereographic error.

A more important test to assess the error relevant to
gravitational wave extraction is to measure the error in
d?®, since second angular derivatives enter in the compu-
tation of the Bondi news. The convergence rates, measured
with the L., norm, are shown in Table II. The circular patch
and cubed-sphere results indicate clean second order con-
vergence up to the final run time at + = 120. The plots of

wave extraction using the Weyl tensor to measure the error
in 802®d, since third angular derivatives enter into the
computation of W. The corresponding convergence rates
are shown in Table III. Now the cubed-sphere method
shows poor convergence of the L,, error at early times.
The underlying error is generated at the corners where
three patches meet, as indicated by the improved conver-

0.08 : T : T :
L —— circular ]
— — sixpatch
0.06 —
8
£ 004 - -
15} ~ /
L ]
I~ ,’ W
/1 \ v\
002 |- AN T N
~ U 1 \ \
/ \
L N A Wy LV
N/ \ \
~ v
0 4 ! L ! L
0 40 80 120

time

FIG. 2 (color online). The L, error £(d*®) vs ¢ for the highest
resolution runs is compared using the circular patch method and
the cubed-sphere method.

TABLE III.  Convergence rates for the error £(33>®). For the
cubed-sphere method the dominant error arises at the patch
corners, which is revealed by the comparison of the L, and
L, errors. This can be understood in terms of the interpatch
interpolation stencil which is partially off-centered near the
corners, where the error is greatest. The inherent numerical
dissipation of the evolution algorithm keeps this localized,
nonsmooth noise from growing, while smoother error from other
regions grows linearly in time (see Fig. 3). The net effect is that
at late times both the L., and the L, norms of the error in the
third derivative show second order convergence, while early in
the evolution the L, shows only first order convergence.

0.02 T T T T T
L —— circular ]
— — sixpatch
0.015
=
8
8001 a
Q
0.005 . 7
N /
/N N
L PN / \ / \ ! |
s8N/ \\ / \\J/ K
- \\My
o L=\~ SV e Y | v /
0 40 80 120
time

FIG. 1 (color online). Comparison of the L, error E(P) vs ¢,
for the highest resolution runs using the circular patch method
and the cubed-sphere method.

ALGORITHM t=12 =12 t=102 =120
circular patch, L,, norm  2.278 2.032 1.988 2.009
cubed-sphere, L, norm 1.108 0.882 2.009 1.959
cubed-sphere, L, norm 1.883 1.983 1.981 1.959
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circular
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error
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003N, v \ L
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time

FIG. 3 (color online). The error £(33?®) vs ¢ is compared for
the highest resolution runs using the circular patch method and
the cubed-sphere method.

gence rate measured using the L, norm. Apparently some
built-in dissipation of the evolution algorithm smooths this
patch-boundary error and second order convergence is
evident by + = 102. To a much smaller extent, the L., error
for the circular patch method also shows some deviation
from second order convergence at early times, but clean
second order convergence is evident by ¢ = 12.

The magnitude of the L, error in 33>®d is plotted vs time
in Fig. 3. Until about ¢ = 60, the cubed-sphere method has
the largest error. But at the end of the run at t = 120 the
cubed-sphere error is about ‘51 the stereographic error.
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frequency error introduced at the patch boundary. Our
results for the stereographic method justify its use in the
comparison of the news and Weyl tensor extraction strat-
egies in Sec. VI.

VI. COMPARISON OF NEWS AND WEYL TENSOR
EXTRACTION

Here we compare the accuracy of waveform extraction
by computing the news function N or the Weyl tensor
component WV in a linearized gravitational wave test prob-
lem. The computations are carried out by the procedure
described in Sec. III D. In accord with (3.49), the ¥ com-
putation yields an alternative numerical value for the news

Ny = Nl,_o + f Wdu, 6.1)
0

where N = Ny in the analytic problem. We compare the

two extraction methods in terms of the errors in N and Ny

obtained using the stereographic method.

We base the test on a class of solutions in Bondi-Sachs
form to the linearized vacuum Einstein equation on a
Minkowski background given in Sec. 4.3 of [42]. The
solution allows us to make convergence checks of the
Bondi-Sachs metric quantities as well as the news function.
The solutions are expressed in terms of spin-weighted
spherical harmonics sYy,, [36,43], modified to avoid mix-
ing of the m and —m components when extracting the real
part according to [44]

; 1
' Sgrface plots f’f the error at the final run time are shown R, = [,Y,, +(=1)"Y, ] form>0,
in Fig. 4. The circular patch and cubed-sphere errors are V2
both smooth, as would be expected of the second order i ", (6.2)
truncation error arising from the finite differencing. For the Ry = N2 [(=D"Y,, —Y,,] form <0,
circular patch, this shows that dissipation in the buffer zone
surrounding the equator effectively guards against the high A
.
R
S
B AE Rt e
ottty
S
++:+::+:+::+:++:+::+::+:++::+:I+:+++ by
A e
R T e At At St T,
T T T T e e e
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FIG. 4. 2D snapshots of the error in 33°® at + = 120 for the on the North hemisphere for the circular patch method (left plot), and for
a cubed-sphere patch (right plot). For the sake of plot clarity these 2D snapshots use only every third data-point along each axis. The
third angular derivatives are smooth for both methods.
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Ref. [44] gives explicit expressions for the (R, in stereo-
graphic coordinates.

Following [32], these linearized solutions have Bondi-
Sachs variables

J = -1+ )€+ 2)2R€m§ﬁ(‘]€(r)eivu)’

U = VO + D,R,, R(U(r)e™),
B = Remm(ﬁﬂeiyu))
WC = R€mm(Wc€(r)eiVu))

(6.3)

where W, determines the perturbation in V. Here J,(r),
U¢(r), Be, Wee(r) are in general complex, and taking the
real part leads to cos(vu) and sin(»u) terms. The quantities
B and W,. are real, while J and U are complex. We require a
solution that is well-behaved at future null infinity, and is
well-defined for » = r, > 0, where r( is the inner bound-
ary. We find in the case € = 2

B2 = Bo
248, + 3ivC, —iv’C, C; G,
Sl = 36 T 12r3
_24lVBO + 3V2Cl - V 2 2,80
U = =0 + i
2(7) 36 -t
iVC2 C2
-|- =
33 454
24ivB, — 3v*C, + v*C
WCZ(r) = ’80 6 ! 2
3iVC1 - 6B0 - iV3C2 V2C2 iVC2 C2
+ - + —,
3r r? r 25t
(6.4)

with the (complex) constants By, C; and C, freely speci-
fiable. In the case £ = 3

B2= Po
6OBO + 3iVC1 + V4C2 Cl iVCZ C2
J3(r) = + L -2
3(7) 180 10r 65 4r4
—60iv B, + 3v*C, — i’ C, L 2B
= +
Us(r) 130 p 2r
. 2V2C2 5iVC2 2
33 454 s
60ivBy — 3v*C, + iv’C, ivC; — 28, + v*C
Ws(r) = Bo = 1 2, 1 50 2
. 3 <2
_ 12V2C2 _ 411/3C2 n 51/4Cz n g 6.5)
r r r r

The news N for the linearized wave is given by
. €€+ 1 j .
Y Y LR WP
r—o0 4 2 ’
X A€ — DE + 1)(€ + 2),R

(6.6)

m’
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corresponding For the cases £ = 2 and 3, this gives

ir’C
€=2:N=§R< 2W“)R :
/—24 2m

_ic (6.7)
(=3 N= i)’t(L e“’”) R,
\/‘:,;6 2% 3m
For the linearized case ¥ = N ,, which gives
—v*C
(=2 = %( Ze ) R,
\/ﬁ (6.8)

—ir’C
€=3:\P=§R< Zwu)R
\/% 3m*
A. Test specifications

Tests were run with the solution parameters v = 1 and
m = 0 for the cases £ = 2 and £ = 3, with

Cl =3- 1076, C2 == 1076,
(6.9)
Bo=i-10°  (£=2)
C,=3-100  Cy=i-107,
(6.10)
Bo=i-10"0 (£ =23)

The inner worldtube boundary was placed at ry = 2 cor-
responding to a compactified radial coordinate x, =
ro/(R + ry) = .1888, where we have set the scale parame-
ter R =09.

For the convergence measurements, the (7, p, x) grid
consisted of M? points, with M = 100 and M = 120.
The boundary of the circular patches were fixed at

V1% + p? = 1.4. The runs were stopped at t = 100. The
L and L, error norms were computed on the North hemi-
sphere, using the values from the North patch.

Angular dissipation was applied only to the circular
patch runs, with the dissipation coefficients €, = 0.009,
€, = 0.0009, and €, = ey = 0.00001. The weighting
function ‘W for application of the dissipation was taken

to be a unit step function which vanishes for ¢ > + p? =
1.3.

We present output data for the real parts of J, N, and Ny.
For the m = 0 case, these quantities correspond to a pure &
polarization mode. For comparison purposes, we include
results for the circular patch without dissipation and the
original square patch treatment.

B. Test results for J

We first present test results for J, which is a typical
metric quantity entering into the waveform calculation.
Figure 5 show the L, norm over the North hemisphere
of the error £(J) vs the compactified radial coordinate x at
the end of the run at t = 100 for the € = 2 wave. The figure
compares runs made with the circular patch method (dis-
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| ' ‘ ' ‘ ' ‘ ' ‘ ' | TABLE V. Convergence rates of the error £(J) at I* for the
circularpatch ) € =3 run, measured at times ¢t =1, t = 10, r = 90, and r =
6e-10 — — — — - circular, no dissipation et ’: 100.
L = square patch e -
Se-10f~ Variable  circular patch circular, no dissipation square patch
4o 10— Er, ()= 2.02 2.01 2.01
5 | £, (Ni=10 2.00 2.00 2.00
set0- E1,()i=o0 2.03 2.02 2.02
I £ =100 2,05 2.00 2.01
2e-10— (‘:L00 (J)t:l 2.02 2.02 2.02
. £ (D=1 1.99 1.99 2.00
te-10 4 & (Do 2.02 2.02 2.04
. 1 & Dimie 200 2.00 1.99
% B - R VE— P a— T 1

FIG. 5 (color online). The L., error £(J) plotted vs x at t =
100 for runs with the circular patch method (with and without
dissipation) and with the square patch method.

sipation applied) with runs without dissipation and runs
with the original square patch method. The plots show that
angular dissipation reduces the error. This will become
more evident in the later test results for the news in which
higher angular derivatives are involved. An important fea-
ture of the plots is that in all cases the error increases
monotonically and takes it maximum value at J* (x =
1), as would be expected of the radial marching algorithm.
This allows us to focus our error analysis on output at J ™.

Table IV gives the convergence rate of the error in J
measured at J* at various times during the € = 2 run for
the three methods shown in Fig. 5. Clean second order
convergence, measured either with an L, or L., norm, is
indicated in all cases. The corresponding convergence rates
for the € = 3 runs are given in Table V. The € = 2 runs are
more discriminating because |J| has a sin?6# dependence
which peaks at the equator close to the interpatch interpo-
lation, as opposed to the sin?# cos@ dependence of the £ =
3 case which vanishes at the equator. In the following we
restrict our discussion to the £ = 2 case.

The time dependence of the L, and L, errorsin J at J*
for the circular patch run (with dissipation) is plotted in

TABLE IV. Convergence rates of the error £(J) at I* for the
€ = 2 run, measured at times t =1, t = 10, r = 90, and ¢t =
100.

Variable circular patch circular, no dissipation square patch
Er, (D)= 2.01 2.00 2.01
Er,Di=10 2.01 1.98 2.00
Er, (D=0 2.00 2.02 2.02
Er,(Di=100 1.92 2.03 2.00
Er. )i 2.01 2.01 2.01
Er.(Di—10 1.95 2.00 1.99
Er. (D)oo 2.07 1.96 2.00
Er. (=100 1.92 2.01 1.99

Fig. 6. The plots are based upon output at integer values of
t, which samples the error at various phases during the
underlying period 7 = 27r. The errors for the two grids
used in the convergence measurements are rescaled to the
values for the finest M = 120 grid, with the overlap again
confirming clean convergence. The magnitude of the error
is approximately 0.1% the value of J. The L, error is
smaller than the L, because the error is sharply peaked
near the equator. This error pattern in the North hemisphere
is exhibited in the snapshot of Fig. 7 at r = 100. The profile
is quite smooth—some of the apparent jaggedness near the
edge is an artificial effect of the irregular pattern of grid
points at the edge of the equator. The sharp spikes in the
corresponding error snapshot for the circular run without
dissipation shown in Fig. 8 illustrate the essential role of
angular dissipation in guarding the Northern hemisphere
from the interpolation error at the circular patch boundary.
Such spikes are not apparent in the corresponding error
snapshot for the square patch shown in Fig. 9. The more
regular square patch boundary does not require angular
dissipation, although the resulting error is larger than for
the circular patch with dissipation.

C. Test results for the news

We now compare test results for the news function in
terms of a direct calculation of N via (3.21) and a calcu-
lation of Ny via (6.1) using the Weyl component W given
in (3.41). We restrict the discussion to the £ = 2 runs which
are more challenging than € = 3 with respect to problems
near the equator. Tables VI and VII give the convergence
rates of the L, and L., errors in N and Ny measured at
various times for runs with the circular patch (with dis-
sipation), the circular patch without dissipation and the
original square patch methods. At the final run time ¢t =
100, measurements for all cases show clean second order
convergence, although there is a small departure in the Ny
rates at early times.

The plots of the L, error vs time for the circular patch
runs in Fig. 10 show little difference in the time behavior
between N and Ny, although the error in Ny is slightly
smaller. The L, errors measured at the end of the runs on
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FIG. 6 (color online). Plots of the error £(J) at I™ vs ¢, for the circular patch with dissipation measured with the L, norm (left plot)
and the L,, norm (right plot). The error for the M = 100 grid is rescaled and overlaid on the error for the M = 120 grid to exhibit the
second order convergence. The smaller L, error indicates that the maximum error arises near the equator.

FIG. 7. Surface plot of the error in J at t = 100 for the circular
patch run (with dissipation).

1.5e-09
1e-09
5e-10

-5e-10 Y
-1e-09
-1.5e-09

[ —

FIG. 8. Surface plot of the error in J at = 100 for the circular
patch run without dissipation.

L

i,

FIG. 9. Surface plot of the error in J at + = 100 for the square
patch run.

TABLE VI. Convergence rates of the error £(N), measured at
t=1,1t=10,t=90, and r = 100.

Variable circular patch  circular, no dissipation  square patch
EL (N)— 2.05 2.05 2.05
EL,(N)i=10 2.05 2.05 2.04
Er,(N)=o0 2.04 2.04 2.01
Er,(N) =100 2.01 2.07 2.05
Er (N)— 2.04 2.04 2.04
Er.(N)=10 2.04 1.99 2.04
Er . (N)i—op 2.01 2.01 2.06
Er.(N)—100 1.98 2.00 1.93

TABLE VII. Convergence rates of the error £(Ny ), measured
att=1,1=10, r =90, and r = 100.

Variable circular patch circular, no dissipation square patch
Er,(Ny)i= 2.11 2.10 2.11
Er,(Ny) =10 2.13 2.13 2.11
Er,(Ny) =90 2.09 2.09 2.08
Er, (Nw)i=100 2.02 1.98 2.00
Er.(Ny)— 2.08 2.08 2.08
Er. (Ny)—10 2.09 2.05 2.10
Er..(Ny)—o0 2.05 2.00 2.06
Er.(Ny) =100 1.98 2.01 1.93
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Plots of the L, errors vs ¢ for N (left plot) and Ny (right plot) for the circular patch runs. The plots for the

M = 100 grid are rescaled to the M = 120 grid. The plots are based upon output at integer values of .

TABLE VIII. The values of the L, errors in N and Ny
measured at ¢ = 100.

Variable circular patch circular, no dissipation square patch

& (N) 2247x107° 3.325 X 107° 2.897 X 107°
& (Ny) 1706 X 1077 2.747 X 107° 2315 x107°

L

L

1 A5

FIG. 11. Surface plot of the error in N at ¢t = 100 for the
circular patch.

3e-09
2e-09
1e-09

-1e-09
-2e-09
-3e-09

FIG. 12. Surface plot of the error in N at t = 100 for the square
patch.

the M = 120 grid are given in Table VIII for the circular
patch, the circular patch without dissipation and the square
patch. The best results are obtained for the circular patch,
which shows an = 30% improvement over the original
square patch treatment. The results also show the essential
improvement due to the use of angular dissipation. For the
circular patch, the error in Ny was = 24% smaller than the
error in NV at the end of the run. But it is also clear from the
plots of the L, error in Fig. 10 that this ratio depends when
and where this ratio is taken. At the equator where the news
takes its maximum value, its modulus for this test is
|Nanaryiicl = 8 X 1073, At the end of run, the corresponding
fractional errors in Ny and N are =~ 4% for averaged
values and = 9% for the maximum errors at the equator.

Surface plots of the error in N and Ny at the end of the
run are given in Figs. 11-14 for the circular and square
patches. The lack of sharp spikes in the errors for the
circular patches shows the effectiveness of applying angu-
lar dissipation. There is slightly more jaggedness near the
equator for the circular vs square patch errors, but this is
overbalanced by the relative smallness of the circular patch
error.

2e-09

1e-09

-1e-09

-2e-09

FIG. 13.

Surface plot of the error in Ny at = 100 for the
circular patch.
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FIG. 14. Surface plot of the error in Ny at t = 100 for the
square patch.

VII. CONCLUSION

We have proposed two new methods for enhancing the
accuracy of CCE, One is a numerical method modifying
the stereographic patches used in the characteristic evolu-
tion code to conform to the circular patch boundaries as
used in meteorology [28]. The other is a geometrical
method that bases the waveform on the limiting behavior
at J* of the Weyl tensor component W, rather than the
news function.

We have used a scalar wave test bed to compare the
circular patch method against the cubed-sphere method,
which is also extensively used in meteorology [29]. We
found, for equivalent computational expense, that the
cubed-sphere method has an edge in accuracy over the
stereographic method. The cubed-sphere error in the scalar
field £(®) is =~} the stereographic error but that the
advantage is smaller for the higher derivatives required in
gravitational waveform extraction. The cubed-sphere error
£(33*®) is only =~ %the stereographic error. An advantage
of the stereographic approach is its relative programming
simplicity. But as originally pointed out in [29], and dem-
onstrated recently for the case of a characteristic evolution
code [33], once all the necessary infrastructure for inter-
patch communication is in place, the shared boundaries of
the cubed-sphere approach admit a highly scalable algo-
rithm for parallel architectures.

We used the circular patch stereographic code to com-
pare waveform extraction in a linearized wave test directly
via the Bondi news function N and its counterpart Ny
constructed from the Weyl curvature. For this purpose,
we were able to successfully implement a new form of
angular dissipation in the characteristic evolution code,
which otherwise would be prone to high frequency error
introduced by the irregular way a circular boundary cuts
through a square grid. Our test results show that this
dissipation works: the resulting error in the waveforms
and metric quantities is smooth. In addition, the extensive
analytic and numerical manipulations carried out to com-
pute the limiting behavior of the Weyl curvature was
demonstrated to yield second order accurate results for Ny;.

PHYSICAL REVIEW D 79, 084011 (2009)

In the linearized tests presented here, neither N nor Ny
was a clear winner. We already knew that the original news
module based upon a square stereographic patch worked
well in the linear regime. The news N calculated on a
circular patch had lower error than that on a square patch
but only by a = 30% factor. In turn, the news calculated via
Ny on the circular patch had a lower error than N on the
circular patch by a = 24% factor. Weyl tensor extraction is
slightly more accurate than news function extraction, even
though there are many more terms involved.

All errors were second order convergent. However,
while there was a small fractional error = .1% in metric
quantities such as J, the corresponding averaged error in
the Ny, and N was = 4% for the circular patch runs and the
maximum error at the equator was = 9%. These errors did
not vary appreciably ( = 30%) with the choice of discre-
tization method, i.e. circular patch or square patch. They
reflect the intrinsic difficulty in extracting waveforms due
to the delicate cancellation of leading order terms in the
underlying metric and connection when computing O(1/r)
quantities such as W,. The excellent accuracy that we find
for the metric suggests that perturbative waveform extrac-
tion must suffer the same difficulty. In that case it is just
less obvious how to quantify the errors. The delicate issues
involved at J* have been shown to have counterparts in
extraction on a finite worldtube [24].

Waveforms are not easy to extract accurately. However,
the convergence of our error measurements is a positive
sign that higher order finite difference approximations
might supply the accuracy that is needed for realistic
astrophysical applications. Whether the advantages the
new methods proposed here prove to be significant will
depend upon the results of future application in the non-
linear regime.
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